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Abstract This paper describes a formal measure of epistemic justification motivated
by the dual goal of cognition, which is to increase true beliefs and reduce false beliefs.
From this perspective the degree of epistemic justification should not be the conditional
probability of the proposition given the evidence, as it is commonly thought. It should
be determined instead by the combination of the conditional probability and the prior
probability. This is also true of the degree of incremental confirmation, and I argue that
any measure of epistemic justification is also a measure of incremental confirmation.
However, the degree of epistemic justification must meet an additional condition, and
all known measures of incremental confirmation fail to meet it. I describe this addi-
tional condition as well as a measure that meets it. The paper then applies the measure
to the conjunction fallacy and proposes an explanation of the fallacy.

Keywords Degree of justification · Degree of confidence · Degree of confirmation ·
Information · Conjunction fallacy · Bayesian epistemology

1 Justification and confidence

This paper examines the degree of epistemic justification (hereafter simply “degree of
justification”) for accepting or rejecting propositions from the perspective of the dual
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goal of cognition, which is to increase true beliefs and reduce false beliefs. To be a
little more precise, when we add propositions to our body of beliefs, the dual goal is
to increase true beliefs but not to increase false beliefs. When we remove propositions
from our body of beliefs, the dual goal is to reduce false beliefs but not to reduce
true beliefs. Whether we are adding or removing propositions, the goal must have two
components for obvious reasons. It is easy to increase true beliefs: Believe everything
you can think of, including negations of what you already believe, and never abandon
any beliefs. But, of course, we end up with numerous false beliefs, which is unaccept-
able. It is also easy to reduce false beliefs: Abandon all beliefs and don’t form any
new beliefs. But then we end up with no true beliefs, which is also unacceptable. The
challenge is to balance the two demands. I will focus on cases of adding propositions
to our body of beliefs, which is more straightforward than removing propositions from
a tangled web of existing beliefs. The relevant goal of cognition is then to increase true
beliefs but not to increase false beliefs. In this section I argue that when we understand
epistemic justification from this perspective, we must reject the common view that the
degree of justification for accepting a proposition is its probability.

To express the common view a little more precisely, the degree of justification for
accepting the proposition h given the evidence e (based on the background assumption
b—this is suppressed in the following discussion) is the conditional probability of h
given e, or P(h|e). It may seem that this view can take account of the dual goal of cogni-
tion. If we only care about increasing true beliefs, we set the probabilistic threshold of
justification at the lowest possible level, viz. we are justified in accepting h if and only
if P(h|e) ≥ 0, and accept any propositions we can think of. If we only care about not
increasing false beliefs, we set the threshold degree at the highest possible level, viz.
P(h|e) ≥ 1, and reject all but absolutely certain propositions. Since neither approach
serves the dual goal of cognition well, we set the threshold t somewhere in between,
depending on our degree of risk aversion—perhaps in consideration of the pragmatic
context. However, it is well known that this view is in conflict with an intuitive princi-
ple about conjunction, viz. if we are justified in accepting each conjunct, then we are
justified in accepting their conjunction. The conflict arises because it is possible for any
non-trivial probabilistic threshold t (i.e. t �= 0, 1) that P(h1|e) ≥ t, . . . , P(hn|e) ≥ t
but P(h1 ∧ · · · ∧ hn|e) < t . When this happens, and if we apply the common view
that the degree of justification is the conditional probability, then we are justified in
accepting each of the propositions h1, . . . , hn but not their conjunction h1 ∧ · · · ∧ hn .
This is a violation of the intuitive principle. The lottery paradox (Kyburg 1961) and
the preface paradox (Makinson 1965) are good illustrations of the difficulty, but I want
to present the problem in a different way to focus on what I take to be the core issue.

Consider the set H = {h1, . . . , hn} of probabilistically independent propositions.
To put it informally, these propositions have nothing to do with each other. The prop-
osition h1 could be about the demise of the Roman Empire, while the proposition
h2 could be about the salmon’s immune system, and so forth. Let’s assume that they
remain probabilistically independent given the body of all available evidence e that is
relevant to these propositions.1 Given their mutual irrelevance, one would expect that

1 The evidence e consists of e1, . . . , en that respectively support h1, . . . , hn . The propositions h1, . . . , hn
are still probabilistically independent on condition of e provided e1, . . . , en are probabilistically
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provided we are justified in accepting each of them, we are justified in accepting all of
them. Here is the reasoning. Assume that we are justified in accepting each member
of H, and consider h1 alone, first. We are justified in accepting h1 because we are
justified in accepting each member of H. Next we consider h2. Since h1 and h2 are
mutually irrelevant, we can evaluate h2 independently of our acceptance of h1. So,
we are justified in accepting h2 because we are justified in accepting each member of
H. The same reasoning applies to h3, h4, and so on. As a result, we are justified in
accepting all the propositions h1, . . . , hn .

Notice that one forceful response to the lottery paradox does not apply to the present
case. When the individually acceptable propositions are jointly inconsistent as in the
lottery paradox, it could be plausibly argued that we can accept each of h1, . . . , hn

by itself, but not all of them together, i.e. we cannot accept H = {h1, . . . , hn} as a
set. But this suggestion makes sense only if there is inconsistency—or at least some
tension—among the propositions h1, . . . , hn while we are assuming in the present
case that the propositions involved are mutually irrelevant. This allows us to evaluate
each proposition independently even if we have already accepted some of the propo-
sitions, so that if we are justified in accepting each member, we are justified in accept-
ing the set.

Some people may question the final move from the acceptance of the set
H = {h1, . . . , hn} to the acceptance of the conjunction h1 ∧ · · · ∧ hn because
P(h1 ∧ · · · ∧ hn|e) can be extremely low when the number of the conjuncts is large.
How can we be justified in accepting a proposition that is almost certainly false? My
response is twofold. First, there is no difference between accepting all of h1, . . . , hn

together and accepting their conjunction h1 ∧ · · · ∧ hn . Once we accept all the con-
juncts together, it is unreasonable not to accept their conjunction. Second, we should
distinguish the degree of justification from the degree of confidence. The subject of
this paper is the degree of justification motivated by the dual goal of cognition, which is
to increase true beliefs and reduce false beliefs. The degree of confidence serves other
purposes, most notably the calculation of the expected utility.2 In order to play that role,
the degree of confidence should be proportional to the probability. So, in any non-trivial
case where 0 < P(h1 ∧ · · ·∧ hn|e) and P(h1|e), . . . , P(hn|e) < 1, we should be less
confident in the conjunction h1∧· · ·∧hn than we are in any of the conjuncts h1, . . . , hn .
However, that does not mean that we are less justified in accepting the conjunction
than we are in accepting any conjunct. It is true that accepting the conjunction is
riskier than accepting a conjunct because the conjunction has a lower probability
than any conjunct. But this higher risk is counterbalanced by the greater potential
gain in true beliefs. From the perspective of the dual goal of cognition, the risk of

Footnote 1 continued
independent. Note that this does not entail that h1, . . . , hn are probabilistically independent on condition
of ¬e as well. If they are, the case becomes trivial because the Fork Theorem (Reichenbach 1956, Section
19) applies.
2 It is not part of my claim that this distinction is in accord with the everyday use of the terms “justification”
and “confidence”. My project in this paper is to formulate a measure of justification that serves the dual
goal of cognition. I do not object to the use of the term “justification” for a broader concept, which may
encompass confidence and some other features such as stability (Joyce 2005), but that will be a different
concept suitable for different purposes.
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adding false beliefs is not the sole determinant of the degree of justification—the
potential gain in true beliefs is also a factor. Once we distinguish the degree of
justification from the degree of confidence in this way, the common view that the
degree of justification is the conditional probability of the proposition given the
evidence loses its appeal. Even if the conditional probability is low, we may still
be justified in accepting the proposition if the potential gain in truth is sufficiently
high.

2 Formalizing the risk and the potential gain

This section formalizes the two factors that affect the degree of justification—the
risk of adding false beliefs and the potential gain in truth beliefs—in probabilistic
terms.3 First, the risk of increasing false beliefs is inversely related to the conditional
probability of the proposition given the evidence. The higher the evidence makes the
probability of the proposition, the lower the risk of increasing false beliefs. Since
the risk of increasing false beliefs is inversely related to the degree of justification, the
conditional probability of the proposition given the evidence is directly (positively)
related to the degree of justification. There is no surprise here. The other factor, the
potential gain in true beliefs, may seem less clear. Obviously, we cannot simply count
the number of potentially true beliefs. Adding the set H = {h1, . . . , hn} to our body
of beliefs is no different from adding the singleton H∗ = {h1 ∧ · · · ∧ hn} though
the former contains many more propositions, and hence many more potentially true
beliefs. A more sensible approach is to measure the potential gain in true beliefs by
the amount of information the proposition (or the conjunction of the propositions if a
set of propositions is added) carries. Since the amount of information the proposition
carries is inversely related to its prior probability, we can capture the potential gain in
true beliefs in probabilistic terms.

We can see the inverse relation between the amount of information and the prior
probability in two steps. First, the degree of specificity is directly (positively) re-
lated to the amount of information. The more specifically the proposition describes
the world, the larger amount of information it carries. Second, the degree of spec-
ificity is inversely related to the prior probability. The more specifically the prop-
osition describes the world, the lower its prior probability is. By combining these
two steps, we see that the amount of information that the proposition carries is in-
versely related to its prior probability. Further, since the amount of information the
proposition carries is directly (positively) related to the degree of justification, the
prior probability of the proposition is inversely related to the degree of justification.
To express this more intuitively, if the level of risk is the same (if the conditional
probability of the proposition given the evidence is the same), a proposition that de-
scribes the world more specifically (and thus has a lower prior probability) is more
worthy of adding to our body of beliefs because the per-unit-of-information risk is
lower.

3 See Huber (2008a,b) for a similar two-factor approach to the formal assessment of scientific theories.
Huber calls the two factors “plausibility” and “informativeness”.
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We put all these together to state that the degree of justification J (h, e) for the
proposition h given the evidence e is directly (positively) related to the conditional
probability P(h|e) and inversely related to the prior probability P(h). Note that under
this conception the degree of justification looks much like the degree of incremen-
tal confirmation (hereafter simply “degree of confirmation”). There have been many
proposals in the literature to formally measure the degree of confirmation. Here I
mention only two of them, the difference measure CD(h, e) and the ratio measure
CR(h, e):

CD(h, e) = P(h|e) − P(h)

CR(h, e) = P(h|e)
P(h)

In both measures, the degree of confirmation is directly (positively) related to the con-
ditional probability and inversely related to the prior probability, and that is the way
it should be for any plausible measure of confirmation.

The question arises at this point whether the degree of justification is simply the
degree of confirmation. The question has two parts: (1) whether an additional condi-
tion exists that the degree of confirmation should satisfy but the degree of justification
need not, and (2) whether an additional condition exists that the degree of justification
should satisfy but the degree of confirmation need not. The next section addresses
these two questions.

3 Justification and confirmation

There is a general consensus in the literature that in addition to being an increas-
ing function of the conditional probability and a decreasing function of the prior
probability, the degree of confirmation should have a constant neutral value k when
P(h|e)= P(h) regardless of P(h). The idea is that when the evidence e has no im-
pact on the proposition h and thus P(h|e)= P(h), the evidence neither confirms
nor disconfirms the proposition. So, the degree of confirmation in such cases should
be the same, regardless of the prior probability of the proposition. Let’s call this
requirement the equi-neutrality condition. The equi-neutrality condition is satisfied
by all known measures of confirmation. For example, the condition P(h|e)= P(h)

makes the difference measure CD(h, e)= P(h|e) − P(h) constant at zero; it makes
the ratio measure CR(h, e)= P(h|e)/P(h) constant at one. We can adjust any mea-
sure of confirmation to make the neutral value zero by subtracting the constant
value k from it.4 For example, if we subtract one from the ratio measure, the new
measure C ∗

R (h, e)= P(h|e)/P(h) − 1 has its neutral value at zero. So, I will as-
sume hereafter that the neutral degree of confirmation is zero, i.e. C(h, e)= 0 when
P(h|e)= P(h).

4 The obtained measure C ∗
X (h, e) = CX(h, e) − k is ordinally equivalent to the original measure

CX(h, e), i.e. for any two pairs 〈h1, e1〉 and 〈h2, e2〉, C ∗
X (h1, e1) > ( = ,<)C ∗

X (h2, e2) if and only
if CX(h1, e1) > ( = ,<)CX(h2, e2). For many purposes, ordinally equivalent measures are essentially the
same measure.

123



34 Synthese (2012) 184:29–48

I want to argue in this section that the degree of justification should also satisfy the
equi-neutrality condition—i.e. J (h, e) = 0 when P(h|e) = P(h), regardless of P(h).
In other words, although there is an additional condition (beyond being an increasing
function of the conditional probability and a decreasing function of the prior proba-
bility) that the degree of confirmation should satisfy, the degree of justification should
also satisfy it. The basis of my argument for the equi-neutrality of justification is the
case of conjunction mentioned in Sect. 1, namely: If the propositions h1, . . . , hn are
probabilistically independent, both unconditionally and conditionally given the evi-
dence e, and if each of them is justified by the evidence e (with regard to some threshold
degree t), then so is their conjunction h1 ∧ · · · ∧ hn .5 The converse should also hold:
If the propositions h1, . . . , hn are probabilistically independent, both unconditionally
and conditionally given the evidence e, and if each of them is not justified by e (with
regard to some threshold degree t), then neither is their conjunction h1 ∧ · · · ∧ hn .
I call the combination of these two conditions the general conjunction requirement
(GCR).

An immediate consequence of GCR is the following special conjunction require-
ment (SCR): If the propositions h1, . . . , hn are probabilistically independent, both
unconditionally and conditionally given the evidence e, and if each of them is jus-
tified to the same degree j, then so is their conjunction h1 ∧ · · · ∧ hn . I show here
that GCR entails SCR by proving its contraposition. Suppose measure J (h, e) of
justification fails to satisfy SCR, and thus for some evidence e and some probabi-
listically independent (both unconditionally and conditionally given e) propositions
h1, . . . , hn, J (h1, e) = · · · = J (hn, e) = j but J (h1 ∧ · · · ∧ hn, e) = j +α for some
α �= 0. We can see that J (h, e) violates GCR as follows. If α > 0, then let t = j + α,
so that each of h1, . . . , hn is not justified by e but their conjunction h1 ∧ · · · ∧ hn is. If
α < 0, then let t = j , so that each of h1, . . . , hn is justified by e but their conjunction
h1 ∧ · · · ∧ hn is not. Either way, GCR is violated. So, GCR entails SCR. Further,
if we assume that J (h, e), which is of the form F(P(h|e), P(h)), is a continuous
function (hereafter this is assumed), then SCR entails equi-neutrality (see Appendix
1 for proof). Putting all these together, we conclude that J (h, e) should satisfy the
equi-neutrality condition since J (h, e) should satisfy GCR, which entails SCR, which
in turn entails equi-neutrality.6

This result may look suspect. When the evidence affects neither h1 nor h2, are we
no more justified in accepting h1 than in accepting h2 even if h1 is almost certainly
true while h2 is almost certainly false? My response is again the distinction between
the degree of confidence and the degree of justification. We should certainly have more
confidence in h1 than in h2 when P(h1) is higher than P(h2), but it does not follow
that we are more justified in accepting h1 than we are in accepting h2. Though h2 is

5 I assume that we can draw different thresholds in different contexts, but that the choice of the thresh-
old does not affect the degree of justification. So, if we are more (equally, less) justified in believing one
proposition than another, merely changing the threshold level does not change it.
6 The existence of the neutral value may prompt the suggestion that the threshold of justification must be
positive, i.e. t > 0, so that we will not be justified in believing h unless there is positive justification. If
we choose to restrict the range of the threshold, GCR would be of the form “for some threshold t > 0”
instead of “for some threshold t.” The restricted version of GCR entails the restricted version of SCR whose
condition is “if all the conjuncts have the same positive degree of justification.”
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more likely to be false than h1 is, the higher risk is offset by the greater potential gain
we make if h2 turns out to be true because h2, whose prior probability is lower, carries
more information than h1 does. So, if the degree of justification is to serve the dual
goal of cognition, it is not unreasonable to assign the same degree of justification to
h1 and h2.7

To summarize what we have uncovered so far, the degree of justification for the
proposition h given the evidence e is directly (positively) related to its conditional prob-
ability P(h|e) and inversely related to the prior probability P(h). Further, the degree of
justification should also satisfy the equi-neutrality condition—i.e. J (h, e) = 0 when
P(h|e) = P(h), regardless of P(h). Since these are the standard requirements for a
measure of confirmation, a measure of justification is also a measure of confirmation.8

However, the converse is not true. Not all plausible measures of confirmation can serve
as a measure of justification because the latter must satisfy GCR, while there is no
reason to require that a measure of confirmation should satisfy GCR. Indeed none
of the many measures of confirmation proposed in the literature satisfies GCR.9 So,
none of them is a measure of justification. We need to formulate a new measure of
confirmation that meets GCR.

4 Formal measure of justification

This section describes a formal measure J (h, e) of justification for the proposition
h given the evidence e. In order to facilitate the task, I want to describe one fur-
ther consequence of GCR. We saw in Sect. 3 that the degree of justification should
be equi-neutral. It turns out that the degree of justification should also be equi-max-
imal. It is obvious already that for any given P(h), J (h, e) should be the highest
when P(h|e) = 1 because J (h, e) is an increasing function of P(h|e). Equi-maxi-
mality requires further that this highest value should be constant, regardless of P(h).
Intuitively, this means that when the evidence e makes the proposition h certain, we
are justified in accepting h to the highest possible degree, regardless of the prior
probability of h.10 This is a sensible thing to say about the degree of justifica-
tion, but it is also a consequence of SCR (see Appendix 2 for proof) and hence of
GCR.

Let us see what J (h, e) should look like in light of the requirements we have
uncovered. First, J (h, e) should be an increasing function of P(h|e) and a decreasing

7 Equi-neutrality of epistemic justification can explain the intuition that in the absence of some inside infor-
mation we cannot assert that a given lottery ticket does not win even if the probability for that proposition
is extremely high (Williamson 2000, p. 246). The reason is that when there is no relevant evidence beyond
the background assumption, there is no positive justification at all for the proposition, no matter how high
its prior probability is.
8 There is one important difference in their applications. The evidence e in the degree of (incremental)
confirmation for h can be just the latest piece of evidence, while to determine the degree of justification for
h properly, e must be the total evidence for h that is not in the background assumption.
9 See Fitelson (1999, 2001); Crupi et al. (2007) for the growing list of confirmation measures.
10 We assume that the proposition h is not already certain, so it cannot the case that P(h|e) = P(h) = 1
to make J (h, e) both neutral and maximal.
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function of P(h). There are two natural ways for J (h, e) to meet these requirements,
namely, the difference-based measures JD and the ratio-based measures JR:

JD(h, e) = f (P(h|e)) − g(P(h))

JR(h, e) = f (P(h|e)
g(P(h))

where both f and g are increasing functions. The second set of requirements is equi-
neutrality and equi-maximality. If we set the neutral value at zero and the maximum
value at one, then:

J (h, e) = 0 when P(h|e) = P(h)

J (h, e) = 1 when P(h|e) = 1

We need to adjust the difference-based measures JD(h, e) and the ratio-based measures
JR(h, e) to meet this second set of requirements.

We start with the difference-based measures. When P(h|e)= P(h), JD(h, e)=
f (P(h)) − g(P(h)). Since this value should be zero regardless of P(h), f and g
should be the same function. This means that J ∗

D (h, e)= f (P(h|e)) − f (P(h)).
Further, when P(h|e)= 1, J ∗

D (h, e)= f (1) − f (P(h)). Since this value should
be one regardless of P(h), we need to “normalize” J ∗

D (h, e) by dividing it by
f (1)− f (P(h)), to obtain J ∗∗

D (h, e)= [ f (P(h|e)) − f (P(h))] / [ f (1)− f (P(h))].
This measure satisfies both the first and second sets of requirements. We turn next
to the ratio-based measures JR(h, e). When P(h|e)= P(h), JR(h, e)= f (P(h)) /

g(P(h)). Since this value should be zero regardless of P(h), we subtract f (P(h)) /

g(P(h)) from JR(h, e) to obtain J ∗
R (h, e)= [ f (P(h|e)) / g(P(h))] − [ f (P(h))

/ g(P(h))]= [ f (P(h|e)) − f (P(h))] / g(P(h)). Further, when P(h|e)= 1, J ∗
R (h, e)

= [ f (1) − f (P(h))] / g(P(h)). Since this value should be one regardless of
P(h), g(P(h)) should be f (1) − f (P(h)), so that J ∗∗

R (h, e)= [ f (P(h|e)) −
f (P(h))] / [ f (1)− f (P(h))]. This turns out to be the same as J ∗∗

D (h, e). So, whether
we start from the difference-based measures JD(h, e) or the ratio-based measures
JR(h, e), we arrive at the same general formula, JG(h, e)= [ f (P(h|e)) − f (P(h))] /

[ f (1) − f (P(h))]. The remaining task is to determine the function f, so that JG(h, e)
satisfies the general conjunction requirement.

This is not a trivial task. If we take f to be the identity function, f (x) = x , then
the degree of justification will be J ∗

G (h, e) = [P(h|e) − P(h)] / [1 − P(h)].11 But
J ∗

G (h, e) fails to meet SCR (and hence GCR) even for n = 2, i.e. even when the con-
junction has only two conjuncts (proof omitted). The problem is solved by making f a
logarithmic function. If we choose 2 as the base of logarithm, as it is common in mea-
suring the amount of information, then we obtain the following measure J ∗∗

G (h, e):12

11 This is the positive half of Crupi et al.’s (2007) measure Z of confirmation.
12 The assumption that P(h) �= 1 (see footnote 10 above) ensures that the denominator − log2 P(h) is not
zero.
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J ∗∗
G (h, e) = log2 P(h|e) − log2 P(h)

log2 1 − log2 P(h)

= log2 P(h|e) − log2 P(h)

− log2 P(h)

J ∗∗
G (h, e) meets GCR (see Appendix 3 for proof), so it is a measure of justification.

From now on, I will write J ∗∗
G (h, e) simply as J (h, e).

Once we find a measure of justification, the next natural question is whether it
is the only measure of justification. It turned out that there are many others, i.e. we
can construct many measures of confirmation that satisfy GCR and thus can serve as
measures of justification. Some of them differ from J (h, e) in an interesting way. For
example, J (h, e) has the infinite range (−∞, 1], while Atkinson’s (2009) measure
J ′(h, e) has the finite range [−1, 1]. However, it also turned out that all measures of
justification are ordinally equivalent to each other, and thus to J (h, e) (see Appendix
4 for proof).13 In other words, J (h, e) is the unique measure of justification, up to
ordinal equivalence.14

Two more remarks are in order. First, J (h, e) is related to the log ratio measure of
confirmation, which is CLR(h, e) = log2[P(h|e)/P(h)] if we choose 2 as the base
of logarithm. Note that the numerator of J (h, e) is the log ratio measure of confirma-
tion, i.e. log2 P(h|e)− log2 P(h) = log2[P(h|e)/P(h)]. The denominator of J (h, e)
is the highest value of CLR(h, e) reached when P(h|e) = 1, i.e. − log2 P(h) =
log2[1/P(h)]. This means that J (h, e) is the “normalized” log ratio measure of con-
firmation.15

Second, J (h, e) has a simple and intuitive meaning when we express it in the lan-
guage of information. According to the standard mathematical theory of information,
the amount of information that h carries is I (h) = − log2 P(h). The rationale for this
measure is easy to see by an example. If the probability of the proposition h is 1/8, then
the amount of information that h carries is I (h) = − log2 1/8 = − log2 2−3 = 3. This
means that knowing h with certainty gives us 3 bits of information. I (h) is commonly
referred to as “self-information” because it is the amount of information on h that we
gain when it becomes certain that h is true. Meanwhile, the amount of information on
h that we gain when it becomes certain that e is true is called “mutual information”

13 See also Atkinson (2009) for the same result obtained independently with an illuminating alternative
proof.
14 In footnote 6 we considered restricting the range of the threshold to t > 0. If GCR is restricted to
t > 0, satisfying GCR does not guarantee that the measures are ordinally equivalent. For example, let
J∗(h, e) = J (h, e) if P(h|e) > P(h) but J∗(h, e) = P(h|e) − P(h) otherwise. J∗(h, e) satisfies the
restricted GCR, just as J (h, e) does, but it is not ordinally equivalent to J (h, e). We can restore ordinal
equivalence by the additional stipulation that for any j (h, e), j (h, e) = 0 if P(h|e) ≤ P(h). We can meet
the additional stipulation by converting any measure j (h, e) that satisfies the original GCR into j+(h, e),
which is identical to j (h, e) if P(h|e) > P(h), but zero if P(h|e) ≤ P(h). Intuitively this means that
we ignore different degrees of unjusification, which seems fine if our concern is whether we should add
a proposition to our body of beliefs, for we should not add an unjustified proposition no matter what its
degree of unjustification is.
15 Crupi et al. (2007) point out that many known measures of confirmation become ordinally equivalent to
their preferred measure Z (see footnote 11 above) when they are “normalized,” but the log ratio measure is
not one of them.
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and is defined as follows: I (h, e) = log2 P(h|e) − log2 P(h).16 To see its intuitive
meaning, suppose the prior probability of the proposition, P(h), is 1/8 and the evidence
e raises its probability to P(h|e) = 1/2. Then, the amount of mutual information is
I (h, e) = log2 2−1 − log2 2−3 = 2. This means that we gain 2 bits of information on
h when we obtain the evidence e. The point to note is that the numerator of J (h, e)
is the mutual information I (h, e) = log2 P(h|e) − log2 P(h), while the denominator
of J (h, e) is the self-information I (h) = − log2 P(h). So, J (h, e) turns out to be the
ratio of the mutual information to the self-information:

J (h, e) = I (h, e)

I (h)

This expression allows us to interpret J (h, e) as the degree of justification in a natural
way. Self-information I (h) is the amount of information we register when we add h
to our body of beliefs. Let’s call it “registered information.” Meanwhile mutual infor-
mation I (h, e) is the amount of information on h we gain from the evidence e. So,
I call it “earned information.” If we use this terminology, the degree of justification
J (h, e) is the ratio of the earned information to the registered information. The higher
the ratio is, the more justified we are in accepting (registering) the proposition. This
makes good sense if the degree of justification is to serve the dual goal of cognition—to
increase true beliefs and reduce false beliefs.

5 The conjunction fallacy

This section applies the measure of justification J (h, e) to the analysis of the
conjunction fallacy. The conjunction fallacy is the fallacy of assigning a higher prob-
ability to a conjunction h1 ∧ h2 than to its conjunct h1 (or h2). Since the conjunction
h1∧h2 logically entails the conjunct h1, the conjunction cannot have a higher probabil-
ity than the conjunct, but it is well known that people are prone to commit this fallacy
in certain contexts. The most famous is the Linda problem (Tversky and Kahneman
1983), in which the two conjuncts are:

h1 : Linda is a bank teller.
h2 : Linda is active in the feminist movement.

The participants in the experiment receive the following information:

e : Linda is 31 years old, single, outspoken, and very bright. She majored in philos-
ophy. As a student, she was deeply concerned with issues of discrimination and
social justice, and also participated in anti-nuclear demonstrations.

Upon receiving this information, a large majority of the participants answer that
h1 ∧ h2 is more probable than h1, committing the conjunction fallacy.

Tversky and Kahneman explain the fallacy by the representativeness heuristic, i.e.
given e, most participants judge that Linda is more representative of a feminist bank
teller than of a bank teller, and they solely rely on this judgment in assigning a higher

16 I (x, y) is called “mutual” information because it follows from the definition that I (x, y) = I (y, x).
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probability to h1 ∧ h2 than to h1. More formal analyses are also possible. Shafir
et al. (1990) propose that most participants focus on likelihood, i.e. the conditional
probability of the evidence given the hypothesis. According to this analysis, most par-
ticipants compare the two likelihoods P(e|h1 ∧h2) and P(e|h1), instead of comparing
the two conditional probabilities P(h1 ∧ h2|e) and P(h1|e) as they should. Another
possibility is that most participants focus on the degree of coherence between the
evidence and the hypothesis. We can make it a formal analysis by plugging in any of
the many probabilistic measures of coherence available in the literature.17 Yet another
possibility is that most participants focus on the degree of confirmation (Sides et al.
2002), i.e. they compare the degrees to which the evidence raises the probabilities
of the two hypotheses, h1 and h1 ∧ h2. In support of this idea Crupi et al. (2008)
show that the confirmation analysis is robust. That is to say, in Linda-like cases—
which they characterize by the two conditions (1) P(h2|e ∧ h1) > P(h2|h1) and (2)
P(h1|e) < P(h1)—the evidence e confirms the conjunction h1 ∧ h2 more than it
does the conjunct h1 by any measure of confirmation that has been proposed in the
literature.

These analyses offer competing accounts of the cognitive process responsible for
the fallacy, in particular which features of the case the participants focus on, while
I am more interested in the conditions under which the fallacy is common. To use
Marr’s (1982) distinction, I am more interested in the computation (the input-output
relation) that is accomplished than in the algorithm for the computation. Despite their
differences in algorithm, the three formal analyses—by likelihood, by coherence, and
by confirmation—are similar at the computational level. In fact they are formally
equivalent if we determine the degree of coherence by Shogenji’s (1999) measure
S(x1, . . . , xn) = P(x1∧ · · · ∧ xn)/[P(x1) × · · · × P(xn)] and the degree of confir-
mation by the ratio measure CR(h, e) = P(h ∧ e)/P(h).18 I have no reason to think
these formal conditions are seriously at odds with empirical data, but I still propose
my own analysis. The reason for the proposal is not a better fit with the empirical data
but a better explanation of why the fallacy occurs.

Here is my proposal (the justification analysis): The conjunction fallacy is com-
mon when the degree of justification for the conjunction is higher than the degree
of justification for the conjunct, i.e. J (h1 ∧ h2, e) > J (h1, e). Since J (h, e) is
also a measure of confirmation, the proposal is a variant of the confirmation anal-
ysis. Given the robustness of the confirmation analysis, it is not surprising that the
justification analysis gives the right prediction in Linda-like cases, i.e. when (1)
P(h2|e ∧ h1) > P(h2|h1) and (2) P(h1|e) < P(h1), the evidence justifies the
conjunction more than it does the conjunct, or J (h1 ∧ h2, e) > J (h1, e) (see the
corollary of Appendix 5 for proof), so that the conjunction fallacy should be common
in Linda-like cases. The attraction of the justification analysis is its explanation of
why the fallacy occurs, viz. the fallacy occurs because we tend to utilize the cognitive
process appropriate for choosing better justified propositions, even when that is not our
task. The justification-oriented process serves the dual goal of cognition well, so its

17 See Meijs (2005) for a survey of probabilistic measures of coherence.
18 That is to say, P(e|h1 ∧ h2) > P(e|h1) iff S(h1 ∧ h2, e) > S(h1, e) iff CR(h1 ∧ h2, e) > CR(h1, e)
(proof omitted).
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persistent use is generally a good epistemic policy. However, it causes trouble in
cases where our task is not to choose better justified propositions but to choose
more probable propositions. The explanation makes the conjunction fallacy under-
standable.

The justification analysis is compatible with different theories of the cognitive
process. One of the cognitive processes mentioned above may be responsible for the
conjunction fallacy. If so, my proposal is that we utilize that cognitive process, not
because it guides us to choose propositions with higher degrees of representative-
ness, likelihood, coherence, or confirmation per se, but because it guides us to choose
propositions with higher degrees of justification. In other words, the computational
objective of the process is to choose better justified propositions.

I want to note that although the justification analysis makes the conjunction fallacy
understandable, I do not subscribe to the view that the conjunction fallacy (or the “con-
junction effect”) can be explained by semantic variance (cf. Hertwig and Gigerenzer
1999). For example, I do not think that many people interpret the word “probable” to
mean justified and that their judgment is correct under this interpretation. The betting
case provides strong evidence against the semantic account. It is known that the con-
junction fallacy occurs even in betting cases, e.g. many people are more willing to bet
on h1 ∧ h2 than on h1 in the Linda case for the same reward (Tversky and Kahneman
1983, p. 300). There is no semantic excuse for this behavior since the situation itself
requires the assessment of probabilities. Some people question the reality of the con-
junction fallacy on other grounds. It has been reported that changing the problem
structure—e.g. expressing the problem in terms of frequencies instead of probabili-
ties—reduces the occurrence of cognitive fallacies, including the conjunction fallacy
(Gigerenzer 1991). But if the justification analysis is correct, the fallacy should be
less frequent in those contexts where people are less accustomed to choosing better
justified propositions automatically. If this is born out, the reduction of the fallacy in
such contexts strengthens the case for the justification analysis.

6 Conclusion

When we aim at the dual goal of cognition, the degree of justification for accepting
the proposition should not be its conditional probability given the evidence, as it is
commonly thought. We have compelling reason to adopt J (h, e) as our formal mea-
sure of justification. It has a simple and intuitive meaning as the ratio of the earned
information to the registered information, and it is the only measure (up to ordinal
equivalence) that meets the General Conjunction Requirement. I already mentioned
its relevance to the lottery paradox and the preface paradox in Sect. 1, and showed how
it helps the analysis of the conjunction fallacy in Sect. 5. Another significant area of
application is logical closure of knowledge. Even if p logically entails q, the degree of
justification for q can be lower than that for p, as the conjunction fallacy exemplifies.
This means that knowledge is not closed under (known) logical entailment if a certain
degree of justification is a necessary condition for knowledge. I suspect that we need
to reconsider many issues of cognitive science and normative epistemology in light of
the new understanding of epistemic justification.
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Appendices

1. Equi-neutrality

Suppose J (h, e), which is of the form F(P(h|e), P(h)), is a continuous function, and
J (h, e) satisfies SCR. Then, for any two pairs 〈hi , ei 〉 and 〈h j , e j 〉, if P(hi |ei ) = P(hi )

and P(h j |e j ) = P(h j ), then J (hi , ei ) = J (h j , e j ).

Proof Let logP(hi )
P(h j )= r , so that [P(hi )]r = P(h j ). r > 0 because 0 <P(hi ),

P(h j )< 1. Since J (h, e) is a continuous function, it suffices to show that the claim
holds for any two pairs 〈 hi , ei 〉 and 〈 h j , e j 〉 such that [P(hi )]q = P(h j ) where q is
a positive rational number. Let < m, n > be the smallest pair of positive integers such
that n/m = q, so that [P(hi )]n = [P(h j )]m . Choose probabilistically independent
(both unconditionally and conditionally on ei ) propositions h1, . . . , hn , and proba-
bilistically independent (both unconditionally and conditionally on e j ) propositions
hn+1, . . . , hn+m such that:19

(i) [P(hi )]n = [P(h j )]m

(ii) P(hi ) = P(h1) = · · · = P(hn)

(iii) P(h j ) = P(hn+1) = · · · = P(hn+m)

(iv) P(hi |ei ) = P(h1|ei ) = · · · = P(hn|ei )

(v) P(h j |e j ) = P(hn+1|e j ) = · · · = P(hn+m |e j )

It follows from (ii) and (iv) that J (hi , ei ) = J (h1, ei ) = · · · = J (hn, ei ). So, by SCR:

J (hi , ei ) = J (h1 ∧ · · · ∧ hn, ei ) (1)

Similarly, it follows from (iii) and (v) that J (h j , e j )= J (hn+1, e j ) = · · · =
J (hn+m, e j ). So, by SCR:

J (h j , e j ) = J (hn+1 ∧ · · · ∧ hn+m, e j ) (2)

Since h1, . . . , hn are probabilistically independent, P(h1 ∧ · · · ∧ hn) = [P(hi )]n

from (ii). Similarly, since hn+1, . . ., hn+m are probabilistically independent, P(hn+1 ∧
· · · ∧ hn+m) = [P(h j )]m from (iii). So, it follows from (i) that:

P(h1 ∧ · · · ∧ hn) = P(hn+1 ∧ · · · ∧ hn+m) (3)

19 For example, think of n urns of colored marbles, for each of which the probability of drawing a red
marble is the same as P(hi ), and m urns of colored marbles, for each of which the probability of drawing
a red marble is the same as P(h j ). To satisfy the conditions P(hi |ei ) = P(hi ) and P(h j |e j ) = P(h j ) of
the theorem (in addition to (i) through (v)), the n urns must have nothing to do with ei and the m urns must
have nothing to do with e j .
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Since h1, . . . , hn are probabilistically independent conditionally on ei , P(h1 ∧ · · · ∧
hn|ei ) = [P(hi |ei )]n = [P(hi )]n from (iv) and from the condition P(hi |ei ) = P(hi )

of the theorem. Similarly, since hn+1, . . ., hn+m are probabilistically independent con-
ditionally on e j , P(hn+1 ∧ · · · ∧ hn+m |e j ) = [P(h j |e j )]m = [P(h j )]m from (v) and
from the condition P(h j |e j ) = P(h j ) of the theorem. So, it follows from (i) that:

P(h1 ∧ · · · ∧ hn|ei ) = P(hn+1 ∧ · · · ∧ hn+m |e j ) (4)

From (3) and (4) it follows that:

J (h1 ∧ · · · ∧ hn, ei ) = J (hn+1 ∧ · · · ∧ hn+m, e j ) (5)

From (1), (2) and (5) it follows that J (hi , ei ) = J (h j , e j ). ��

2. Equi-maximality

Suppose J (h, e) is a justification measure (i.e. a confirmation measure that
satisfies GCR and hence SCR). Then, for any two pairs 〈hi , ei 〉 and 〈h j , e j 〉, if
P(hi |ei ) = P(h j |e j ) = 1, then J (hi , ei ) = J (h j , e j ).

Proof Assume without loss of generality that P(hi ) ≤ P(h j ). It follows from this
and from the condition P(hi |ei ) = P(h j |e j ) of the theorem that:

J (hi , ei ) ≥ J (h j , e j ) (1)

since the confirmation measure J (h, e) = F(P(h|e), P(h)) is a decreasing function
of P(h). Choose probabilistically independent propositions h1, . . . , hn such that:

(i) [P(h j )]n ≤ P(hi )

(ii) P(h j ) = P(h1) = · · · = P(hn)

It follows from (ii) and P(h1|h1 ∧ · · · ∧ hn) = · · · = P(hn|h1 ∧ · · · ∧ hn) = 1 that
J (h1, h1∧· · ·∧hn) = · · · = J (hn, h1∧· · ·∧hn). But h1, . . . , hn are probabilistically
independent, and h1, . . . , hn are also trivially probabilistically independent condition-
ally on h1 ∧ · · · ∧ hn because P(h1|h1 ∧ · · · ∧ hn) = · · · = P(hn|h1 ∧ · · · ∧ hn) = 1.
So, by SCR:

J (h1, h1 ∧ · · · ∧ hn) = J (h1 ∧ · · · ∧ hn, h1 ∧ · · · ∧ hn) (2)

Also, it follows from the condition P(h j |e j ) = 1 of the theorem and from P(h1|h1 ∧
· · · ∧ hn) = 1 that P(h j |e j ) = P(h1|h1 ∧ · · · ∧ hn). Further, P(h j ) = P(h1) from
(ii). So,

J (h j , e j ) = J (h1, h1 ∧ · · · ∧ hn) (3)

It follows from (2) and (3) that:

J (h j , e j ) = J (h1 ∧ · · · ∧ hn, h1 ∧ · · · ∧ hn) (4)
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Meanwhile, it follows from (ii) that P(h1 ∧ · · · ∧ hn) = [P(h j )]n since h1, . . . , hn

are probabilistically independent. But [P(hj)]n ≤ P(hi) from (i). So,

P(h1 ∧ · · · ∧ hn) ≤ P(hi ) (5)

while it follows from the condition P(hi |ei ) = 1 of the theorem and from P(h1 ∧
· · · ∧ hn|h1 ∧ · · · ∧ hn) = 1 that:

P(h1 ∧ · · · ∧ hn|h1 ∧ · · · ∧ hn) = P(hi |ei ) (6)

It follows from (5) and (6) that:

J (h1 ∧ · · · ∧ hn, h1 ∧ · · · ∧ hn) ≥ J (hi , ei ) (7)

since the confirmation measure J (h, e) is a decreasing function of P(h). It follows
from (4) and (7) that:

J (h j , e j ) ≥ J (hi , ei ) (8)

It follows from (1) and (8) that J (hi , ei ) = J (h j , e j ). ��

3. General conjunction requirement

Suppose h1, . . . , hn are probabilistically independent (both unconditionally and condi-
tionally on e) and P(h1), . . . , P(hn) < 1. Then, (i) if J (h1, e), . . . , J (hn, e) ≥ t , then
J (h1∧· · ·∧hn, e) ≥ t ; (ii) if J (h1, e), . . . , J (hn, e) < t , then J (h1∧· · ·∧hn, e) < t .

Proof

J (h1 ∧ · · · ∧ hn, e) = log2 P(h1 ∧ · · · ∧ hn|e) − log2 P(h1 ∧ · · · ∧ hn)

− log2 P(h1 ∧ · · · ∧ hn)

= log2
∏n

i=1 P(hi |e) − log2
∏n

i=1 P(hi )

− log2
∏n

i=1 P(hi )
[from independence]

=
∑n

i=1 log2 P(hi |e) − ∑n
i=1 log2 P(hi )

−∑n
i=1 log2 P(hi )

=
∑n

i=1 [log2 P(hi |e) − log2 P(hi )]
∑n

i=1 − log2 P(hi )
(1)

(i) Suppose J (h1, e), . . . , J (hn, e) ≥ t . Then, for i = 1, . . . , n, there is some
αi ≥ 0 such that:

J (hi , e) = log2 P(hi |e) − log2 P(hi )

− log2 P(hi )

= t + αi

123



44 Synthese (2012) 184:29–48

So,

log2 P(hi |e) − log2 P(hi ) = (t + αi )[− log2 P(hi )] (2)

By plugging (2) into (1) above, we obtain:

J (h1 ∧ · · · ∧ hn, e) =
∑n

i=1 (t + αi )[− log2 P(hi )]
∑n

i=1 − log2 P(hi )

= t
∑n

i=1 − log2 P(hi ) + ∑n
i=1 αi [− log2 P(hi )]

∑n
i=1 − log2 P(hi )

= t +
∑n

i=1 αi [− log2 P(hi )]
∑n

i=1 − log2 P(hi )

≥ t [from αi ≥ 0 and P(hi ) < 1]

(ii) Suppose next J (h1, e), . . . , J (hn, e) < t . Then, for i = 1, . . ., n, there is some
βi > 0 such that:

J (hi , e) = log2 P(hi |e) − log2 P(hi )

− log2 P(hi )

= t − βi

So,

log2 P(hi |e) − log2 P(hi ) = (t − βi )[− log2 P(hi )] (3)

By plugging (3) into (1) above, we obtain:

J (h1 ∧ · · · ∧ hn, e) =
∑n

i=1 (t − βi )[− log2 P(hi )]
∑n

i=1 − log2 P(hi )

= t
∑n

i=1 − log2 P(hi ) − ∑n
i=1 βi [− log2 P(hi )]

∑n
i=1 − log2 P(hi )

= t −
∑n

i=1 βi [− log2 P(hi )]
∑n

i=1 − log2 P(hi )

< t [from βi > 0 and P(hi ) < 1]

��

4. Ordinal equivalence

Suppose J1(h, e) = F1(P(h|e), P(h)) and J2(h, e) = F2(P(h|e), P(h)) are both
continuous functions that are measures of justification. Then, they are ordinally equiva-
lent to each other, i.e. for any two pairs 〈hi , ei 〉 and 〈h j , e j 〉, J1(hi , ei )< (=,>)J1(h j , e j )

if and only if J2(hi , ei ) < (=,>)J2(h j , e j ).
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Proof Let logP(hi )
P(h j )= r , so that [P(hi )]r = P(h j ). r > 0 because 0<P(hi ),

P(h j )< 1. Since J1(h, e)= F1(P(h|e), P(h)) and J2(h, e)= F2(P(h|e), P(h)) are
continuous functions, it suffices to show that the claim holds for any two pairs 〈hi , ei 〉
and 〈h j , e j 〉 such that [P(hi )]q = P(h j ) where q is a positive rational number. Let
〈m, n〉 be the smallest pair of positive integers such that n/m = q, so that [P(hi )]n =
[P(h j )]m . Choose probabilistically independent (both unconditionally and condition-
ally on e ∗

i ) propositions h1, . . . , hn , and probabilistically independent (both uncon-
ditionally and conditionally on e ∗

j ) propositions hn+1, . . . , hn+m such that:20

(i) [P(hi )]n = [P(h j )]m

(ii) P(hi ) = P(h1) = · · · = P(hn)

(iii) P(h j ) = P(hn+1) = · · · = P(hn+m)

(iv) P(hi |ei ) = P(h1|e ∗
i ) = · · · = P(hn|e ∗

i )

(v) P(h j |e j ) = P(hn+1|e ∗
j ) = · · · = P(hn+m |e ∗

j )

It follows from (ii) and (iv) that J1(hi , ei ) = J1(h1, e ∗
i ) = · · · = J1(hn, e ∗

i ). So, by
SCR:

J1(hi , ei ) = J1(h1 ∧ · · · ∧ hn, e ∗
i ) (1)

Similarly, it follows from (iii), (v) and SCR that:

J1(h j , e j ) = J1(hn+1 ∧ · · · ∧ hn+m, e ∗
j ) (2)

Since h1, . . . , hn are probabilistically independent, it follows from (ii) that P(h1∧· · ·∧
hn) = [P(hi )]n . Similarly, since hn+1, . . . , hn+m are probabilistically independent, it
follows from (iii) that P(hn+1 ∧ · · · ∧ hn+m) = [P(h j )]m. But [P(hi )]n = [P(h j )]m

from (i). So,

P(h1 ∧ · · · ∧ hn) = P(hn+1 ∧ · · · ∧ hn+m) (3)

Meanwhile, since h1, . . . , hn are probabilistically independent conditionally on
e∗

i , it follows from (iv) that P(h1 ∧ · · · ∧ hn|e ∗
i ) = [P(hi |ei )]n . Similarly,

since hn+1, . . . , hn+m are probabilistically independent conditionally on e ∗
j , it fol-

lows from (v) that P(hn+1 ∧ · · · ∧ hn+m |e ∗
j ) = [P(h j |e j )]m . So,

P(h1 ∧ · · · ∧ hn|e ∗
i ) < (=,>)P(hn+1 ∧ · · · ∧ hn+m |e ∗

j )

iff [P(hi |ei )]n < (=,>)[P(h j |e j )]m (4)

20 For example, think of n urns of colored marbles, for each of which the probability of drawing a red mar-
ble is the same as P(hi ), but given the evidence e ∗

i that the n urns belong to a certain type, the probability
of drawing a red marble is the same as P(hi |ei ). Similarly, think of m urns of colored marbles, for each of
which the probability of drawing a red marble is the same as P(h j ), but given the evidence e ∗

j that the m
urns belong to a certain other type, the probability of drawing a red marble is the same as P(h j |e j ).
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Since J1(h, e) = F1(P(h|e), P(h)) is an increasing function of P(h|e), it follows
from (3) and (4) that:

J1(h1 ∧ · · · ∧ hn, e ∗
i ) < (=,>)J1(hn+1 ∧ · · · ∧ hn+m, e ∗

j )

iff [P(hi |ei )]n < (=,>) [P(h j |e j )]m (5)

It follows from (1), (2) and (5) that:

J1(hi , ei ) < (=,>)J1(h j , e j ) iff [P(hi |ei )]n < (=,>) [P(h j |e j )]m (6)

By the same reasoning,

J2(hi , ei ) < (=,>)J2(h j , e j )iff [P(hi |ei )]n < (=,>) [P(h j |e j )]m (7)

It follows from (6) and (7) that:

J1(hi , ei ) < (=,>)J1(h j , e j )iffJ2(hi , ei ) < (=,>)J2(h j , e j )

��

5. Conjunction theorem

Suppose P(hi ), P(h j |hi ) �= 1. Then, J (hi ∧ h j , e) > J (hi , e) iff J (h j , e|hi ) >

J (hi , e).21

Lemma 1 I (x ∧ y, z) = I (x, z|y) + I (y, z)

Lemma 2 I (x ∧ y) = I (x |y) + I (y).

Corollary If (i) P(h1|e) < P(h1) and (ii) P(h2|e ∧ h1) > P(h2|h1), then J (h1 ∧
h2, e) > J (h1, e).

Proof of Lemma1

I (x ∧ y, z) = log2 P(x ∧ y|z) − log2 P(x ∧ y)

= log2 P(x |y ∧ z)P(y|z) − log2 P(x |y)P(y)

= [log2 P(x |y ∧ z) + log2 P(y|z)] − [log2 P(x |y) + log2 P(y)]
= [log2 P(x |y ∧ z) − log2 P(x |y)] + [log2 P(y|z) − log2 P(y)]
= I (x, z|y) + I (y, z)

��
21 J (x, y|z)def = I (x, y|z)/I (x |z) is the degree of justification for adding the proposition x to the accepted
proposition z given the evidence y. I (x, y|z)def = log2 P(x |y ∧ z) − log2 P(x |z) is the amount of mutual
information between x and y when z is already accepted. I (x |z)def = − log2 P(x |z) is the amount of
self-information of x when z is already accepted.
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Proof of Lemma2

I (x ∧ y) = − log2 P(x ∧ y)

= − log2 P(x |y)P(y)

= −[log2 P(x |y) + log2 P(y)]
= I (x |y) + I (y)

��
Proof of the Conjunction Theorem

J (hi ∧ h j , e) − J (hi , e)= I (hi ∧ h j , e)

I (hi ∧ h j )
− I (hi , e)

I (hi )

= I (h j , e|hi )+ I (hi , e)

I (hi |h j )+I (hi )
− I (hi , e)

I (hi )
[from Lemmas 1 and 2]

= [I (h j , e|hi )+ I (hi , e)]I (hi ) − I (hi , e)[I (h j |hi )+I (hi )]
[I (h j |hi )+ I (hi )]I (hi )

= I (h j , e|hi )I (hi ) − I (hi , e)I (h j |hi )

[I (h j |hi ) + I (hi )]I (hi )

But I (h j |hi ), I (hi ) > 0 from the assumption P(hi ), P(h j |hi ) �= 1. So,

J (hi ∧ h j , e) > J (hi , e) iff I (h j , e|hi )I (hi ) > I (hi , e)I (h j |hi )

iff
I (h j ,e|hi )

I (h j |hi )
>

I (hi ,e)
I (hi )

iff J (h j , e|hi ) > J (hi , e)

��
Proof of the Corollary I (h1, e) = log2 P(h1|e) − log2 P(h1) < 0 from (i), while
I (h1) > 0 from the assumption. So,

J (h1, e) = I (h1, e)

I (h1)
< 0 (1)

I (h2, e|h1) = log2 P(h2|e ∧ h1) − log2 P(h2|h1) > 0 from (ii), while I (h2|h1) > 0
from the assumption. So,

J (h2, e|h1) = I (h2, e|h1)

I (h2|h1)
> 0 (2)

It follows from (1) and (2) that:

J (h2, e|h1) > J (h1, e) (3)

It follows from (3) by the Conjunction Theorem that J (h1 ∧ h2, e) > J (h1, e). ��
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