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Abstract Though pictures are often used to present mathematical arguments, they
are not typically thought to be an acceptable means for presenting mathematical argu-
ments rigorously. With respect to the proofs in the Elements in particular, the received
view is that Euclid’s reliance on geometric diagrams undermines his efforts to develop
a gap-free deductive theory. The central difficulty concerns the generality of the theory.
How can inferences made from a particular diagrams license general mathematical
results? After surveying the history behind the received view, this essay provides a con-
trary analysis by introducing a formal account of Euclid’s proofs, termed Eu. Eu solves
the puzzle of generality surrounding Euclid’s arguments. It specifies what diagrams
Euclid’s diagrams are, in a precise formal sense, and defines generality-preserving
proof rules in terms of them. After the central principles behind the formalization
are laid out, its implications with respect to the question of what does and does not
constitute a genuine picture proof are explored.

Keywords Proof · Diagrams · Logic · Geometry

The prevailing conception of mathematical proof, or at least the conception which
has been developed most thoroughly, is logical. A proof, accordingly, is a sequence of
sentences. Each sentence is either an assumption of the proof, or is derived via sound
inference rules from sentences preceding it. The sentence appearing at the end of the
sequence is what has been proved.

This conception has been enormously fruitful and illuminating. Yet its great suc-
cess in giving a precise account of mathematical reasoning does not imply that
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all mathematical proofs are, in essence, a sequence of sentences. My aim in this
paper is to consider data which do not sit comfortably with the standard logical
conception: proofs in which pictures seem to be instrumental in establishing a
result.

I focus, in particular, on a famous collection of picture proofs—Euclid’s diagram-
matic arguments in the early books of the Elements. The familiar sentential model of
proof portrays inferences as transitions between sentences. And so, by the familiar
model, Euclid’s diagrams would at best serve as a heuristic, illustrative device. They
could not be part of the rigorous proof itself. In direct opposition to this, I introduce
the proof system Eu, which accounts for the role of the diagram within Euclid’s math-
ematical arguments. It possesses a diagrammatic symbol type, and specifies rules of
proof for these symbols. It thus provides a formal model where Euclid’s diagrams
are part of the rigorous proof. Though Eu has been designed specifically to formalize
these arguments, we can subsequently look to it to understand what is distinctive about
proving with pictures. Eu represents a species of rigorous mathematical thought fall-
ing outside the scope of the familiar model. Not all rigorous reasoning in mathematics
proceeds line by line.

After reviewing the history behind the modern, critical stance towards Euclid’s
diagrammatic arguments, I explain the proof system Eu. In a final section, I explore
what is novel about Eu’s picture proofs, and what questions these novel features raise
for the philosopher of mathematics.

1 Historical background

For most of its long history, Euclid’s Elements was the paradigm for careful and exact
mathematical reasoning. In the past century, however, it has been just the opposite.
Its proofs are often invoked to illustrate what rigor in mathematics does not consist
in. Though some steps of Euclid’s proofs are respectable as logical inferences, a good
many are not. With these, one cannot look only at the logical form of the claims in
the proof and understand what underlies the inference. One is forced, rather, to look
at the accompanying diagram. The modern opinion is that Euclid’s proofs exhibit a
deductive gap at such places.

The full historical story behind this opinion is of course a complicated one. Three
interrelated factors, however, are consistently tied to its emergence, and it is these I will
discuss. They are: the generality problem, the modern mathematical understanding of
continuity, and the modern axiomatic method. The first is a puzzle that has surrounded
Euclid’s proofs from the time they were conceived. The second is a nineteenth century
conceptual development which seemed to expose diagrammatic methods as hopelessly
imprecise. And the third is a methodological development, also occurring in the nine-
teenth century, which provided a clear and exact way to understand both geometric
generality and continuity.

The generality problem arises with Euclid’s proofs because the diagram used for
a proof is always a particular diagram. Euclid clearly did not intend his proposi-
tions to concern just the figure on display beside the proposition. They are applied in
subsequent proofs to other figures, which are not exact duplicates of the original. And
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so, for Euclid, consultation of the original diagram, with all its particular features, is
somehow supposed to license a generalization. But Euclid leaves the process by which
this is done obscure. And so we are left with some doubt as to whether the jump from
the particular to general is justified.

Even before the nineteenth century, when the legitimacy of Euclid’s methods was
taken for granted, philosophers recognized that there was something to be explained
with this jump. The neo-Platonist Proclus asserts that the use of a particular diagram
is justified because the geometer does not “make use of the particular qualities” of the
diagram [A Commentary on the First Book of Euclid’s Elements, Morrow (1970, 207)].
Roughly 13 centuries later, Berkeley reiterates the point. In assailing Locke’s theory
of abstract ideas, Berkeley argues that we need not invoke such things to account for
the generality of Euclid’s arguments. He asserted that though Euclid uses a particu-
lar triangle, with many particular properties, to establish a general proposition about
triangles

there is not the least mention made of them (the particular details) in the proof
of the proposition. (Section 16 of the introduction to Principles of Human
Knowledge.)

The claim of Berkeley and Proclus is that since no explicit connection is made in the
proof between the particular qualities or details (such as the obliqueness/acuteness of
the triangle’s angles) and the conclusion, the conclusion does not depend on them in
any way.

Kant saw a deep epistemological fact about mathematics in Euclid’s jump from
the particular to the general. In proving a proposition with a geometrical concept, the
mathematician

hastens at once to intuition, in which it considers the concept in concreto, though
non-empirically, but only in an intuition which it presents a priori, that is, which
it has constructed, and in which whatever follows from the universal conditions
of the construction must be universally valid of the object of the concept thus
constructed. (Critique of Pure Reason, A716/B744.)

A forefather of what seems to be the modern consensus regarding Euclid’s proofs
is Leibniz. Also commenting critically on Locke, he writes:

…it is not the figures which furnish the proof with geometers, though the style
of the exposition may make you think so. The force of the demonstration is
independent of the figure drawn, which is drawn only to facilitate the knowl-
edge of our meaning, and to fix the attention; it is the universal propositions,
i.e. the definitions, axioms, and theorems already demonstrated, which make the
reasoning, and which would sustain it though the figure were not there. (Leibniz
1949, p. 403)

According to Leibniz, the arguments in the Elements succeed as proofs insofar as
they express universal propositions. The universal propositions are what carry the rea-
soner through to the conclusion. The diagrams, though perhaps useful for pedagogical
purposes, are inessential.
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Mathematical developments in the nineteenth century seem to have confirmed
Leibniz’s position decisively. In the light of the huge advances made in geometry
and analysis, the use of diagrams in geometric argument comes to look at best imprecise
or at worst downright misleading. Of these advances, none seems more damag-
ing to the legitimacy of diagrammatic proof than the sharper understanding of
continuity.

Our intuitive grasp of the continuous phenomena treated by the calculus is robust.
The image of a point tracing out a curve in space comes to most of us easily, and
is naturally associated with the basics of differentiation and integration. What the
work of nineteenth century figures like Bolzano, Weierstrass and Dedekind has been
taken to show is that this imagery need not, and ought not, play a justificatory role
in mathematical arguments. They defined continuity without any reference to geo-
metric intuitions, in terms far more precise than any previous characterization. The
connection with pictures arises from the fact that they are often used to convey the
intuitive image of continuity. The tip of a pencil moving on a piece of paper becomes
a surrogate for the point moving in the plane.

The danger in taking the pictorial representation too seriously is that it can lead to
unsound inferences. Understanding curves in terms of such representations, one may
conclude that a curve can fail to be differentiable only at a finite number of points
(because one can only ever draw a finite number of jagged corners on a curve). That
conclusion however is falsified by Weierstrass’s construction of a nowhere differen-
tiable curve.

Similarly, we might take the intermediate value theorem to have a quick and easy
picture proof.1 The theorem states that a continuous function f defined on an interval
[a, b] assumes all values between f (a) and f (b). Pictorially, it seems clear that if
we draw a curve which starts below (or above) a horizontal line and ends above (or
below) the line, the curve must intersect the line at some point.

1 Both Brown (1997) and Dove (2002) defend this position, albeit in different ways.
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But familiarity with the modern theory of continuity leaves room for doubt. Noth-
ing in the picture fixes the underlying field of points. The field could be the reals,
but it could also be the rationals or anything in between. All are consistent with what
we see in the picture. But only in the case of the reals will the intersection point be
guaranteed to exist. Thus the picture on its own fails to have the undeniable force of
a mathematical proof.

The general observation here, if accepted, is fatal to the legitimacy of Euclid’s dia-
grammatic proofs. Again and again, Euclid takes intersection points to exist because
they appear in his diagrams. Indeed, he does this right away in Proposition I,1 when
he introduces the intersection point of two constructed circles. The only thing Euclid
offers as justification is a diagram where two circles cross. Nowhere do we find the
articulation of a continuity principle which by modern standards seems necessary to
secure the point’s existence.

It is instructive to consider what the role of such an assumption would be in the
context of the Elements. In modern theories, order relationships on lines are expressed
with a logical relation—e.g. a two place inequality relation or a three place between-
ness relation. Such a relation provides the means by which the continuity assumption
is formally expressed. But Euclid, famously, fails to develop a logically respectable
theory of order. The way points relate on a line is exhibited directly, in diagrams. And
so, though Euclid could perhaps formulate a continuity assumption like the least upper
bound principle verbally, it would have mathematical relevance insofar as it could be
applied in proofs containing diagrams. The situation, by modern standards of mathe-
matical rigor, seems highly unsatisfactory. In logical theories, a continuity assumption
is firmly rooted in a clearly defined method of proof. In Euclid’s diagrammatic theory,
its inferential role seems fuzzy and open-ended.

The inadequacy of Euclid’s diagrammatic method in this respect is not limited to the
issue of continuity. Whenever Euclid relies on a diagram in a proof, he seems to leave
the firm and certain realm of rule-governed proof and enter a foggy, intuitive realm.
This comes out dramatically when we compare Euclid’s proofs with their counterparts
in modern axiomatic theories of elementary geometry. Whereas some inferences in the
Elements seem to be justified by an unanalyzable experience induced by the diagram,
all inferences in a modern theory can be seen to be grounded in the application of
sound rules to statements assumed as axioms or previously proved.
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Fittingly, in the preface to the Grundgesetze, the father of modern logic articulates
the methodological ideal satisfied by modern axiomatic theories and unsuccessfully
pursued by Euclid:

The ideal of a strictly scientific method in mathematics, which I have attempted to
realize, and which might indeed be named after Euclid, I should like to describe
as follows. It cannot be required that everything be proved, because that is impos-
sible; but we can require that all propositions used without proof be expressly
declared as such, so that we can see distinctly what the whole structure rests
upon…

In this general foundational sense Frege puts his work in the same category as Euclid’s.
But he then distinguishes it from the Elements with the remark

Furthermore, I demand—and in this I go beyond Euclid—that all modes of
inference be specified in advance. (Frege 1964, p. 2)

It is not difficult to understand why Frege took himself to have advanced beyond
Euclid. The common notions, postulates, and definitions in book I are Euclid’s foun-
dational starting points. If these lay the theoretical groundwork in accordance with
Frege’s ideal, we ought to trace every move Euclid makes to them. But we cannot.
Independent, obscure principles seem to be in play when we consult the diagram to
understand the proof. It is as if with each new proposition we are being asked to accept
a new proof technique. We do not accept the theory’s methods of inference all at once,
and then go on to deduce consequences from them. Rather, we approach the proofs
on a case by case basis. We decide, as we are reading a diagrammatic proof, whether
an inference never seen before is acceptable or not.2

Frege never produced a formal work on the foundations of geometry, so it is not clear
how he thought this flaw in the Elements ought to be remedied. Many of his contempo-
raries, however, tackled the problem with compelling and influential results. Starting
with Moritz Pasch’s Lectures in Modern Geometry in 1882 (Pasch 1882), a body of
work emerged in the late nineteenth century which grounded elementary geometry in
abstract axiomatic theories. Euclid’s theorems were placed, finally, in a mathematical
context where all modes of inference were laid out explicitly in advance. This devel-
opment is now universally regarded as a methodological breakthrough. Geometric
relations which previously were logically free-floating, because they were understood
via diagrams, were given a firm footing with precisely defined primitives and axioms.3

2 One may object that holding Euclid to Frege’s standards is unfair, as both were pursuing different foun-
dational aims. Working this objection out means specifying the kind of foundational project which does not
require that all modes of inference be specified in advance. Euclid at the very least considered it important
to specify some modes of inference in advance. He takes pains to tie steps in his proofs to his common
notions and postulates, or to theorems previously proved from these. It is thus natural to understand Euclid
as driven by a desire to push such a project to the limit. Why stop half-way? In the next section, after
presenting Eu, I consider the question in the light of its analysis.
3 Frege, ironically, vocally opposed such an interpretation of the new axiomatic theories. In his famous
correspondence with Hilbert and a sequence of articles, he argued that starting with abstract, undefined
primitives was illicit—i.e. the meaning of a theory’s primitives must be fixed before they are placed into

123



Synthese (2010) 175:255–287 261

Fig. 1 Diagram for fallacy
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Pasch, Hilbert, and Klein are all explicit on the superiority of abstract axioms over
diagrams. Pasch declared “that the theorem is only truly demonstrated if the proof is
completely independent of the figure.” In lectures which would eventually develop
into his famous axiomatization, Hilbert reaffirmed the position.

A theorem is only proved when the proof is completely independent of the dia-
gram. The proof must call step by step on the preceding axioms. The making of
figures is [equivalent to] the experimentation of the physicist, and experimental
geometry is already over with [laying down of the] axioms. [Hilbert 2004, p. 75,
as translated by Mancosu in Mancosu (2005).]

Klein’s argument (1939), showing that it is necessary and not merely pedantic to lay
out all axioms in advance, is especially illuminating. At the center of his discussion
is the ‘all triangles are isosceles’ fallacy. It is a diagrammatic argument in the style of
Euclid whose putative conclusion is that all triangles are isosceles. As is it happens
with many Euclidean proofs, it calls for a construction on an arbitrary triangle. The
result of the construction is presented diagrammatically in Fig. 1. The construction
proceeds as follows: produce the bisector to the angle BAC and the perpendicular
bisector to the segment BC so that they meet in E; join E with B and C; finally, drop
the perpendiculars from E to the sides AB and AC. Applying the familiar triangle con-
gruence theorems to the resulting figure, we can deduce that AF=AG and FB=GC.
Since equals added to equals are equal, side AB=AC.

Concluding from this that all triangles are isosceles is obviously unwarranted, but it
is not clear what in Euclid’s diagrammatic method of proof blocks it. If some diagrams
of triangles license general conclusions, why doesn’t this one? It is in fact impossible
for a physical figure to realize the spatial relationships on display in the diagram and
to satisfy the metric conditions stipulated in the construction. This is what makes the
fallacy possible. When the construction is carried out accurately on a non-isosceles
triangle, E lies outside the triangle, and crucially only one of the two points F and G

Footnote 3 continued
axioms. For him, presumably, this requirement could not be abandoned for the sake of a precise yet abstract
elucidation of what one can and cannot do in geometric arguments.
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lies outside the triangle. The step invoking the equals added to equal rule is thus the
place where the proof goes wrong. But the diagram does not do a good job of revealing
this to us. Our inability to discern slight divergences from exact metric conditions can
lead to fallacies, it seems. Accordingly, Klein stresses the necessity of elucidating all
the axioms of elementary geometry (even the most obvious ones). Building up the
subject along the lines of Pasch and Hilbert, we are safely insulated from the errors
diagrammatic reasoning is prone to. Specifically, there is no danger of an unwarranted
generalization, as everything is proven with the laws of logic from geometric axioms
whose generality is beyond question. (A prime example of such a geometric axiom
is the famous axiom from Pasch which states that any line entering a triangle leaves
it.) For the same reason, there is no danger of being misled by imprecise visualiza-
tions of continuous geometric phenomena. The axioms specify exactly what does and
doesn’t exist. Given these advantages it is not surprising that Pasch, Hilbert, and Klein
championed axiomatic proofs over diagrammatic ones in geometry.

This view has since become standard. Euclid’s reliance on pictures in his arguments
disqualifies them as rigorous proofs. They do not stand on their own, mathematically.
They must be supplemented with the appropriate axioms. Less has been said in support
of the stronger view that pictorial presentations of any kind of mathematical argument
(geometrical or otherwise) do not count as legitimate proofs. It seems safe to assume
however that the default view on the issue simply generalizes the standard assessment
of Euclid. Since the pictures in the Elements are not taken to prove anything, pictures
are not taken to prove anything in other areas of mathematics.

In the past 15 years, a sizable literature consciously opposed to this attitude has
emerged. The work ranges from technical presentations of formal diagrammatic
systems of proof (e.g. Shin 1994) to philosophical arguments for the mathematical
legitimacy of pictures. (e.g. Brown 1997; Dove 2002) Despite the fact the Euclid’s
diagrammatic arguments are often discussed, a satisfactory account of them has yet to
be given. The formal system Eu was developed to rectify this—i.e. to bring out more
clearly the structure of Euclid’s diagrammatic reasoning. At the same time, it helps us
get a better sense of the characteristic features of picture proofs in general.

2 The proof system Eu

Discussing Klein’s reflections on the all-triangle-are-isosceles fallacy, Ian Mueller is
reluctant to endorse Klein’s conclusions. Euclid’s diagrammatic proofs do not, for
Mueller, constitute a serious breach of mathematical rigor:

Perhaps a ‘pupil of Euclid’ might stumble on such a proof; but probably he, and
certainly an interested mathematician, would have no trouble figuring out the
fallacy on the basis of intuition and figures alone. (Mueller 1981, p. 5)

Mueller, however, has little to say about the way ancient geometers arrived at sound,
general results via intuitions and figures. He simply attributes it to “general mathe-
matical intelligence.”

Mueller’s desire to soften Klein’s assessment is understandable. Though explicit
rules for every proof step are absent, a close reading of book I leaves the impression
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Fig. 2 Diagram for
Proposition 10
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that strict, if implicit, standards are in force. As Oswald Veblen observes, Euclid’s
purpose was

to prove every proposition which he could prove, and to prove it with a min-
imum of assumptions. This required him often to prove statements which are
intuitively evident. (Veblen 1914)

Propositions 14 and 20 furnish good examples of what Veblen is referring to. Propo-
sition 14 states the following: if the sum of two angles which share a side (e.g. angle
CBA and the angle ABD below) is equal to two right angles, then the non-adjacent
sides of the angles (e.g. BC and BD) lie in a straight line (see Fig. 2).

Proposition 20 asserts the triangle inequality—i.e. the sum of two sides of a tri-
angle is always greater than the third. It is hard to see why Euclid troubled himself
to prove these statements if he allowed himself to draw conclusions from diagrams
in an unconstrained, intuitive way. He seems to have had some conception of what
does and does not require proof. The point does not have to do with the importance
of the Proposition 20, for instance, to Euclid’s theory of geometry. We can consult
Proclus’s commentary to understand the proposition’s role with respect to what comes
after it in book I. The question, rather, is why the triangle inequality appears 20 prop-
ositions into book I, and not as axiom (as it does in modern characterizations of metric
spaces) or as an early proposition which is proved on intuitive grounds (which seems
to be Euclid’s approach to side-angle-side congruence of triangles with Proposition
4). One answer is simply that there is a great deal of arbitrariness in the first 20 prop-
ositions—i.e. Euclid relied on intuition when it suited his fancy. An alternative thesis
is that definite standards restricted what Euclid could and couldn’t do with diagrams
in proofs.

Defending this thesis satisfactorily requires making explicit the standards posited
to shape the Elements implicitly. Though there have been some recent attempts, none
have provided a level of detail necessary to move decisively beyond Mueller’s appeal
to “general mathematical intelligence.”4 A more compelling account would match
the explicitness present in modern axiomatic theories of geometry. That is, it would

4 Both Netz (1999) in Chap. 6 and Norman (2005) in Chap. 10 seem to be moving in the right direction. Yet
their comments fall short of a complete account. On the other hand, Miller develops a formally impeccable
account of Euclid’s diagrammatic reasoning, similar to that of Eu, in Miller (2007). The work fails however
to be satisfactory in that it demands consideration of a staggering number of cases, all but a few of which
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formulate in advance Euclid’s implicit standards in terms of precisely defined, sound
rules. The proof system Eu is advanced as such an account.

Eu is, in the terminology of Barwise and Hammer in Barwise and Hammer (1996),
a heterogeneous system. It has a conventional sentential syntax and a discrete dia-
gram symbol type. The inspiration for the system is Ken Manders’ work on ancient
geometric proof in Manders (2008). His investigations have revealed that both text
and diagram have definite roles in establishing a result. The rules of Eu have been
designed so that its sentences and diagrams fulfill these roles.5

To explain the division of labor between text and diagram, Manders distinguishes
the exact and co-exact properties of diagrams. Any one of Euclid’s diagrams contains
a collection of spatially related magnitudes—e.g. lengths, angles, areas. For any two
magnitudes of the same type, one will be greater than another, or they will be equal.
These relations comprise the exact properties of the diagram. How these magnitudes
relate topologically to one another—i.e. the regions they define, the containment rela-
tions between these regions—comprise the diagram’s co-exact properties. Diagrams
of a single triangle, for instance, vary with respect to their exact properties. That is, the
lengths of the sides, the size of the angles, the area enclosed, vary. Yet with respect to
their co-exact properties the diagrams are all the same. Each consists of three bounded
linear regions, which together define an area.6

The key observation is that Euclid’s diagrams contribute to proofs only through their
co-exact properties. Euclid never infers an exact property from a diagram unless it fol-
lows directly from a co-exact property. Exact relations between magnitudes which are
not exhibited as a containment are either assumed from the outset or are proved via a
chain of inferences in the text. It is not difficult to hypothesize why Euclid would have
restricted himself in such a way. Any proof, diagrammatic or otherwise, ought to be
reproducible. Generating the symbols which comprise it ought to be straightforward
and unproblematic. Yet there seems to be room for doubt whether one has succeeded
in constructing a diagram according to its exact specifications perfectly. The compass
may have slipped slightly, or the ruler may have taken a tiny nudge. In constraining
himself to the co-exact properties of diagrams, Euclid is constraining himself to those
properties stable under such perturbations.

For an illustration of the interplay between text and diagram, consider Proposition
35 of book I. It asserts that any two parallelograms which are bounded by the same
parallel lines and share the same base have the same area. Euclid’s proof proceeds as
follows.

Footnote 4 continued
are ever considered by Euclid (not least because most of the cases are not physically realizable). For a
discussion of the drawbacks of Miller’s approach, see my review of Miller’s book (Mumma 2008).
5 For all the formal details of Eu, see Mumma (2006).
6 This is admittedly only a suggestive characterization of the distinction between exact and co-exact.
Manders’ definition categorizes the co-exact exact “as those conditions unaffected by some range of every
continuous variation of the diagram” and the exact as “those which, for at least some continuous variation
of the diagram, obtain only in isolated cases.” (Manders 2008). The formal characterization of co-exactness
within Eu takes the form of an equivalence relation between its diagrammatic symbols. See the appendix
for a brief description of this relation ∼. Its complete description occurs on pages 34–40 of Mumma (2006).
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Let ABCD, EBCF be parallelograms on the same base BC and in the same parallels
AF, BC.
Since ABCD is parallelogram, AD equals BC (Proposition 34). Similarly, EF equals
BC.
Thus, AD equals EF (common notion 1).
Equals added to equals are equal, so AE equals DF (Common notion 2).
Again, since ABCD is a parallelogram, AB equals DC (Proposition 34) and angle
EAB equals angle FDC (Proposition 29).
By side angle side congruence, triangle EAB equals triangle FDC (Proposition 4).
Subtracting triangle EDG from both, we have that the trapezium ABGD equals the
trapezium EGCF (common notion 3).
Adding triangle GBC to both, we have that ABCD equals EBCF (common
notion 2). ��

The proof is independent of the diagram up until the inference that AE equals DF.
This step depends on common notion 2, which states that if equals are added to equals,
the wholes are equal. The rule is correctly invoked because four conditions are sat-
isfied: AD=EF, DE=DE, DE is contained in AE, and DE is contained in DF. The
first pair of conditions are exact, the second pair co-exact. Accordingly, the first pair
of conditions are seen to be satisfied via the text, and the second pair via the dia-
gram. Similar observations apply to the last two inferences. The applicability of the
relevant common notion is secured by both the text and the diagram. With just the
textual component of the proof to go on, we would have no reason to believe that
the necessary containment relations hold. Indeed, we would be completely in the dark
as to the nature of containment relations in general.

The standard line is that this situation needs to be rectified with something like a
betweenness relation. Manders’s opposing thesis is that diagrams function in the Ele-
ments as reliable symbols because Euclid only invokes their co-exact features. Though
we may not be able to trust ourselves to produce and read off the exact properties of
diagrams, we can trust ourselves to produce and read off co-exact properties. Thus,
Euclid seems to be within his rights to use diagrams to record co-exact information.
If Manders’s analysis is correct, Euclid’s proofs ought to go through with diagrams
which are equivalent in a co-exact sense (hereafter c.e. equivalent), but differ with
respect to their exact properties. This turns out to be the case. The Proof of Proposi-
tion 35, for instance, still works if we substitute either of the diagrams in Fig. 3 for the
given diagram. The diagram need not even satisfy the stipulated exact conditions. The
diagram in Fig. 4 also fulfills the role the proof demands of it. The diagram’s burden
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Fig. 3 Alternate diagrams for Proposition 35

Fig. 4 Metrically distorted
diagram for Proposition 35
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is to reveal how certain co-exact relationships lead to others. It is not used to show
exact relationships. This is the job of the text. The proof must invariably employ a
particular diagram, with particular exact relationships. But since the proof only calls
on the co-exact relationships of the diagram, it holds of all diagrams which are c.e.
equivalent to it. And so, in giving the distinction between exact and co-exact properties
its due, we come to see what the generality of Euclid’s results consists in.

The formal structure of Eu is built around these insights. A well-formed atomic
claim of Eu has the form

�, A

where � is its diagrammatic component, and A is its sentential component. A is termed
the metric assertion of the atomic claim. Their syntax is similar to that of first-order
predicate logic. The syntax of the diagrams are defined so that the full range of
co-exact relations conveyed by Euclid’s diagrams are expressible, and the rules gov-
erning these symbols in proofs recognize only these relations. For the formal details,
see the Appendix.

The propositions of the Elements are formalized as conditionals

�1, A1 −→ �2, A2

The antecedent �1, A1 fixes the properties of the figure as stipulated at the beginning
of the proof. If one can, via the proof rules of Eu, produce the claim �2, A2 then the
conditional is proved. Proposition 35, for instance, is represented as the conditional
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where the metric assertion M asserts equality between four pairs of angles: ABC and
ADC; BAD and BCD; EBC and EFC; and BEF and BCF. In this case �1 = �2 and
so the conditional represents one of Euclid’s theorems. When �2 contains additional
elements, the conditional represents one of Euclid’s problems.

In this way Eu turns the standard, logical assessment of the Elements on its head.
In presenting a proposition, Euclid first provides a sentence which in general terms
describes what is to be proved. Following this is a proof which makes reference to
a particular diagram. Looked at from a logical point of view, the general statement
emerges as an essential part of the proof, and the particular diagram appears decora-
tive. By the lights of Eu, in contrast, it is just the reverse. The particular diagram is
essential to the proof, and the general statement plays no role. Propositions are repre-
sented in terms of diagrams and statements specifying metric relationships between
magnitudes of the diagrams. The applicability of a proposition �1, A1 −→ �2, A2 in
a future proof depends on whether the conditions expressed by �1, A1 obtain in that
proof—i.e. whether a configuration c.e. equivalent appears in the proof’s diagram, and
whether the metric relationships given by A1 have been shown to hold. There is no
need for a general statement to act as an intermediary. Once it is understood how the
diagrams function as proof symbols, any particular diagram can comprise a general
mathematical claim.

3 The construction stage and generality

The insight that Euclid’s proofs rely only on the co-exact properties of diagrams does
much to determine what a formalization of the proofs ought to look like. It is not
enough, however, to determine a unique formalization which solves the problem of
generality. Rules of proof do not fall out immediately once a suitable diagrammatic
and sentential symbolism has been specified. A deep difficulty remains. It arises from
the fact that the diagram of a Euclidean proof rarely displays just the geometric ele-
ments stipulated at the beginning of the proof. They often have a construction stage
dictating how new geometric elements are to be built on top of the given configuration.
The demonstration stage then follows, in which inferences from the augmented figure
can be made. The building up process is not shown explicitly. All that appears is the
end result of the construction on a particular configuration.

As the Proof of Proposition 35 has no construction stage, it fails to illustrate this
common feature of Euclid’s proofs. The diagram of the proof contains just those ele-
ments which instantiate the proposition’s general co-exact conditions. We are thus
justified in grounding the result on the co-exact features of the diagram, given that we
only apply the result to configurations which are c.e. equivalent to the diagram.

The soundness of Euclid’s co-exact inferences is much less obvious when the
proof’s diagram contains augmented elements. The construction is always performed
on a particular diagram. Though the diagram is representative of a range of configu-
rations—i.e. all configurations c.e. equivalent to it—it cannot avoid having particular
exact properties. And these exact properties can influence how the co-exact relations
within the final diagram work out. When the same construction is performed on two
diagrams which are c.e. equivalent but distinct with respect to their exact features, there
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Fig. 5 Diagram for
proposition 2
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is no reason to think that the two resulting diagrams will be c.e. equivalent. Euclid
nevertheless draws conclusions from the co-exact features of one such diagram. The
vexing question is: how do we know that the co-exact features that Euclid isolates are
shared by all diagrams which could result from the construction? As there is nothing
in the Elements addressing the question, it seems that all we have to assure ourselves
that inferences from constructed figures are generally sound is not something mathe-
matical, but something empirical: the fact that in the long history of the Elements as a
canonical text in geometry no counter-examples to one of his proofs was successfully
advanced.

Proposition 2 of book I illustrates the problem clearly. The proposition states a
construction problem: given a point A and a segment BC, construct from A a segment
equal to BC. The proof that a solution always exists is the following:

From the point A to the point B let the straight line AB be joined; and on it let the
equilateral triangle DAB be constructed.
Let the straight lines AE, BF be produced in a straight line with DA and DB.
With center B and radius BC let the circle GCH be described; and again, with center
D and radius DG let the circle GKL be described.
Since the point B is the center of the circle GCH, BC is equal to BG.
Again, since the point D is the center of the circle GKL, DL equals DG.
And in these DA is equal to DB, therefore the remainder AL is equal to the remainder
BG (common notion 3).
But BC was also proved equal to BG, therefore each of the straight lines AL, BC is
equal to BG.
And things which equal the same thing also equal one another (common notion 1),
therefore AL is also equal to BC. ��

The first lines of the proof constitute the proof’s construction stage. The diagram
shown with them (Fig. 5) shows how the construction turns out with a particular point
A and a particular segment BC (shown in Fig. 6). The resulting figure does indeed
seem to support the conclusion that AL equals BC. This means at the very least that
the problem has been solved for this A and this BC. Yet the force of the proposition,
mathematically, is that this construction can be effected on any segment and point. The
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Fig. 6 Initial diagram for
particular diagram of Fig. 5
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proposition plays an indispensable role in the proof of I,3, and I,3 is applied through-
out the Elements. Nothing in the proof of I,3, nor in its many applications afterwards,
demands that the given segment and point have the particular exact position A and BC
have to each other in the given diagram. By Euclid’s standards, at least, carrying out
the demonstration with this particular diagram is enough to secure the general result.

But it is not clear is whether we ought to adopt these standards. There is nothing
explicit in his proof, taken by itself, which addresses the worry that the construction
will support the same inferences if it is performed on a configuration the exact position
of A to BC in Fig. 7. The result of applying the construction to this figure is given in
Fig. 8. This diagram is distinct from the diagram of Fig. 5, topologically. In the first
diagram, the following relations hold: the point D lies outside the circle H; C and L
are both to the right of BA; and E and D are both above BC. The relations between
corresponding elements in the second diagram are different. Point D lies inside H,
C and L lie on different sides of the segment BA, and E and D lie on different sides
of BC.

The one diagram-based inference of the proof occurs with the claim that AL=BG.
Crucially, the containment relations which justify it are shared by both diagrams. The
equality AL=BG follows from an application of the equals subtracted from equals
rule. And for this to be applicable, A must lie on the segment DL and B must lie on the
segment DG. So with these two diagrams we see that with two of the possible exact
positions A can have to BC the topology needed for the proof obtains. But prima facie
we have no mathematical reason to believe that it obtains for all the other positions A
can have to BC.

123



270 Synthese (2010) 175:255–287

Fig. 9 The diagram for
constructions C1 and C2
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Euclid, clearly, possessed the mathematical intelligence to pick out what does and
does not hold generally in his diagrams. The main question with respect to formalizing
the proofs is whether or not we can characterize this intelligence in terms of a precise
and uniform method. The proof system Eu, I maintain, answers this question in the
affirmative.

The method provided by Eu is based on the principle that what is general in a
diagram depends on how it was constructed.7 Consider the diagram of Fig. 9. Many
distinct constructions could have produced it. For instance, the initial configuration
could have been the segment AB, and the construction steps leading to the diagram
could have been:

– draw the circle D with center A and radius AB.
– pick a point C in the circle D, and a point E outside it.
– produce the ray CE from the point C.

Call this construction C1. Alternatively, it is possible that the initial configuration
consists of the segment AB and the points C and E, while the construction consists of
the following two steps:

– draw the circle D with center A and radius AB.
– produce the ray CE from the point C.

Call this construction C2. Now, if C1 is responsible for the diagram, we are justified
in taking the position of C within D as a general property of the diagram. The act of
picking C in D fixes the point’s position with respect to the circle as general. And
since we know the position of C relative to D is general, we can pick out the point of
intersection of the ray CE with D with confidence. It always exists in general, since
a ray originating inside a circle must intersect the circle. In contrast, none of these
inferences are justified if C2 is responsible for the diagram. Nothing is assumed from
the outset about the distance of the point C to A. And so, even though C lies within
D in this particular diagram, it could possibly lie on D or outside it. Further, as the
position of C relative to D is indeterminate, the intersection point of CE and D cannot
be assumed to exist in general, even though one exists in this particular diagram.

7 The principle is perhaps close to what Kant is talking about when he speaks of the “the universal condi-
tions of the construction” in the passage quoted above. For a discussion which relates Kant’s philosophy of
mathematics to Euclid’s geometric constructions, see Shabel (2006).
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Fig. 10 Guaranteed
sub-diagram of proposition 2’s
construction
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Viewing Proposition 2 in this way, we can satisfy ourselves that Euclid’s diagram-
matic inferences are sound. Though the position of segment BC with respect to the
triangle ADB is indeterminate, what that segment contributes to the proof is the cir-
cle H, whose role in turn is to produce an intersection point G with the ray DF. The
intersection point always exists no matter the position of BC to the ray DF. We can
rotate BC through the possible alternatives, and we will always have a circle H whose
center is B. And this is all we need to be assured that the intersection point G exists.
The ray DF contains B, since it is the extension of the segment DB, and a ray which
contains a point inside a circle always intersects the circle.

A similar argument shows that the intersection point L of the ray DE and the cir-
cle K always exists. The argument does not establish, however, that A lies between
D and L. Here a case analysis is forced upon us. We must consider the case where
A coincides with L, or the case where L lies between A and D. These latter two
possibilities, however, are quickly ruled out, since they imply that DL ≡seg DA or
that DL <seg DA. This contradicts DA <seg DL, which follows from the equali-
ties DA ≡seg DB, DG ≡seg DL and the inequality DB <seg DG. (The inequality
DB <seg DG is entailed by the fact that B lies between D and G, which holds because
G was stipulated to lie on the extension of DB.) Thus, Euclid’s construction in I,2 can
always be trusted to produce a configuration as in Fig. 10. where DA =seg DB and
DG =seg DL. Accordingly, the equals-subtracted-from-equals rule is applicable, and
we can infer that AL ≡seg BG.

Thus runs the Proof of Proposition 2 in Eu. Though the informal version given here
is much more compact, each of its moves is matched in the formal version. Generally,
proofs of propositions �1, A1 −→ �2, A2 in Eu are two tiered, just as they are in the
Elements. They open with a construction stage, and end with a demonstration stage.
The rules which govern the construction stage are relatively lax. One is free to enrich
the initial diagram �1 by adding points, joining segments, extending segments and
rays, and constructing a circle on a segment. Presented as a sequence of Eu diagrams,
the construction stage for Proposition 2 is given in Fig. 11. The last step in the con-
struction yields a diagram �, which contains all the objects to be reasoned about in the
demonstration. But it is not � alone, but the whole construction history of �, which
determines what can be inferred in the demonstration.

The sequence of steps by which � was constructed determine a partial ordering
� of its geometric elements. An element x in the diagram immediately precedes y if
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Fig. 11 Construction of Proposition 2 in Eu

the construction of y utilized x. For instance, if the points A and B are joined in a
construction, the points A and B immediately precede the segment AB. Likewise, if
a circle H is constructed with radius BC, the segment BC immediately precedes H.
The complete partial ordering � is simply the transitive closure of the immediately
precedes relation. It serves to record the dependencies among the elements of �. For
example, for the representation of I,2 in Eu, what the partial ordering works out to be
is given in Fig. 12 As the elements A, B, C and BC are part of the initial diagram �1,
they were not constructed from any elements in �, and so nothing precedes them. The
rest appear somewhere above these, according to the way they were introduced.

The construction thus produces a tuple

〈�, M, �〉

which is called the context of the proof. The term M is the metric assertion which
records the exact relationships stipulated from the beginning or introduced during the
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Fig. 12 The poset for the
construction of Proposition 2
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course of the construction. These three pieces of data serve as input for the demon-
stration stage. Rules of this stage are of two types: positional and metric.

An application of a positional rule results in a sub-diagram of �. Deriving a sub-
diagram amounts to confirming the generality of the co-exact relationships exhibited
in it. As such, the application of the rules are constrained by �. One can introduce as a
premise any sub-diagram of the initial diagram �1—i.e. any sub-diagram consisting
of elements which have nothing preceding them by �. Any other sub-diagram must
be derived from these by the positional rules, where the derivations proceed along
the branches laid out by �. For instance, in the Proof of Proposition 2, one derives
from the segment BC the first sub-diagram in Fig. 13 and from the points A and B
the second sub-diagram in Fig. 13 From these two sub-diagrams we can then derive
the sub-diagram of Fig. 14 from a rule which encodes the general condition for the
intersection of a ray and a circle.8

8 Here then is a specific instance of Eu’s treatment of geometric continuity. How it compares to the modern
treatment of continuity is too involved a question to discuss fully here. Some brief comments are possible,
however. In Eu, the intersection points which in a modern theory are secured by a continuity axiom appear
directly in its diagrammatic symbols. One must employ rules (such as the one just described) to establish
that such a point as exists in general. But the particular existence of an intersection point is read directly
from a diagrammatic symbol. If there is a crossing in a Eu diagram—between two circles, two lines, or a
line and a circle—a point of intersection exists in the diagram or an equivalent one. Building intersection
points into diagrams in this way may be thought to be illicit. As brought out in the discussion on picture
proofs of the intermediate value theorem, we need not understand the crossing of curves in a diagram to
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Fig. 14 Conclusion
sub-diagram of Eu rule
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The metric rules are more straightforward. They dictate how metric assertions can
be inferred from established metric assertions and derived sub-diagrams. Most cod-
ify principles explicitly mentioned by Euclid—e.g. the transitivity of equality, the
equals-added to equals rule, the equidistance of points from a circle’s center.

Placing Euclid’s proofs next to those of Eu, we arrive at a new conception of what
the former lack. Euclid’s proofs still have gaps, but they appear much smaller than they
those which open up when a modern axiomatization serves as the ideal for rigorous
proof in elementary geometry. Bringing Euclid up to Hilbert’s standard means ban-
ishing diagrams from the proofs and replacing them with an abstract theory of order.
The evidence for any such theory in the Elements is nil. Thus to understand Euclid as
an imperfect version of Hilbert does not just reveal flaws in the proofs. A considerable
theoretical chunk is posited to be missing. In contrast, a critique which takes Eu as the
ideal is much less damning. What Eu has, and Euclid does not, is an explicit method
for judging what is and isn’t general in a constructed diagram. The extra steps that
these rules require fit in naturally between the steps Euclid actually makes. Eu actually
fills in gaps in Euclid’s proofs. It does not alter their structure completely.

Thus, for a rigorous foundation of Euclid’s proofs, one need not dig all the way
down to modern logic. The epistemological interest of this lies in the fact that a rig-
orous foundation for a mathematical subject provides a picture of what justification
amounts to in the subject. It sets standards by which a proof is complete, and so marks
the point where a defender of the proof is released from the obligation to provide
further justifications. When she displays the full proof, she has hit rock bottom. There
is nothing more for her to do. If something like Hilbert’s axiomatization is understood
as the rigorous foundation for Euclid’s proofs, there is a great deal more for Euclid to
do, and the idea that Euclid succeeded at proving anything becomes strained. If on the
other hand Eu is taken as providing a rigorous foundation for the proofs, the burden
on Euclid is less severe. To furnish a complete proof, Euclid need only verify that the
features he reads from the constructed from the diagram are general according to Eu.

This does not imply, of course, that Euclid and his contemporaries actually carried
such verifications out. Clearly, it cannot be plausibly maintained that the rules of Eu

Footnote 8 continued
indicate a point. And so in a sense a principle of continuity is present in Eu. But it is present in a way
which is different from its presence in modern theories. It does not serve to rule out other mathematical
possibilities, in the way that a modern continuity axiom rules out certain models. Rather it is embedded
into the way the proof system’s symbols are used.
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Fig. 15 Diagram for
Proposition 44
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were followed exactly. That is, it is definitely not the case that with every proof in the
Elements an experienced ancient geometer mentally rehearsed the Eu formalization
of the proof. The details of the formalization are much too specific. Yet a case can be
made, I believe, that constraints roughly similar to those imposed by Eu played a part
in ancient geometric practice.

The general lesson of Eu is that care must be taken in considering positional rela-
tionships between diagrammatic elements which by the construction are not directly
dependent on one another. In terms of the immediately precedes relation, x is not
directly dependent on y if y does not immediately precede x. For want of a better
term, call such pairs of elements unlinked. The diagram cannot help but display some
relationship between unlinked elements, but one must refrain from accepting the mani-
fest relationship uncritically. Additional considerations are necessary to confirm that it
holds generally. Though Euclid does not exhibit this scruple at every opportunity, there
is evidence that he does possess it. In Proposition 44, for instance, the construction
calls for the segments HB to be extended in the configuration of Fig. 15. It is clear in
this particular diagram that HB and FE will meet in an intersection point. But Euclid
makes sure to establish this as a general fact in the text with the parallel postulate.
The segment HB is not directly dependent on FE, nor is FE directly dependent on
HB. Thus their intersection cannot be taken for granted. Something similar occurs in
Proposition 47 (the Pythagorean theorem) when Euclid takes pains to argue that the
perpendiculars constructed on opposite sides of a segment lie on a straight line.

If this is correct, and an awareness of the dependencies between constructed ele-
ments guided how ancient geometers read diagrams, we are then able to flesh out
Mueller’s assertion concerning the all-triangles-are-isosceles fallacy. The reason that
there is little danger that an experienced geometer would be seduced into accepting the
putative proof is that crucial elements in the diagram are unlinked. Specifically,
the fact that F lies on the segment AB and G lies on the segment AC in Fig. 1 allows the
false result to go through. Yet scrutiny of the construction reveals that neither F and AB
are directly dependent one another. The same is true of G and AC. We thus cannot take
the position of these elements in the diagram at face value. We need further reasons
to accept this aspect of the diagram. We cannot, of course, find any. So the proof does
not succeed.
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Euclid was not forthcoming with regard to all the reasons which can establish the
generality of positional relationships in his diagrams. Eu fills in this lacunae with
its positional proof rules. The principles fall, roughly, into three groups. One lists the
conditions under which intersection points exist. An example is the rule which justifies
the existence of the intersection point G above. The way various elements of a diagram
can function as a frame of reference form the basis for another group. Finally, a third
group grounds the generality of a segment’s position within a figure on the convexity
of the figure. With these principles one can recover much of the mathematics in the
Elements. One cannot recover all of it. Eu lacks the resources to represent the theory
of ratios Euclid develops in book V; nor can it represent the number theory and solid
geometry developed in later books. The goal of the proof system is to formalize the
elementary plane geometry in books I–IV.9

There are places where the Eu version of a proof seems needlessly detailed next to
Euclid’s original. This is usually attributable, however, to the fact that Eu is a modern
formal system, subject to Frege’s ideal. Because within Eu one can only use the rules
which have been laid out in advance, one is sometimes obligated to prove something
which is no less obvious or basic from a geometric point of view than the soundness
of the rules licensing the steps. Accordingly, Euclid does not simply demand from
his readers that they check that he has applied a pre-accepted list of axioms and rules
correctly. They must also check for the soundness of what in Eu would be classified
as diagrammatic inference rules.10

The obvious geometrical legitimacy of these rules is attested by the fact that many
correspond naturally to axioms which appear in modern synthetic axiomatizations.
For instance, the rule already discussed in connection with Proposition 2—whereby

9 It is not known at present how exactly Eu relates to standard axiomatizations of Euclidean plane geometry.
It is straightforward to check the relative consistency of Eu to any such axiomatization. The conditionals
�1, A1 −→ �2, A2 have a natural interpretation in terms of first order formulas made up of the theory’s
primitives. The soundness of Eu’s proof rules is then easily checked in terms of this interpretation. An open
question, however, is the strength of Eu with respect to a modern theory. That is, can Eu prove everything an
axiomatization can prove? One can give a partial, negative answer immediately. Since it is only possible to
solve quadratic equations with the intersection of lines and circles, it follows that one cannot prove anything
which, when interpreted in a axiomatization, requires a continuity assumption stronger than the condition
that the plane’s underlying field is closed under square roots. Appropriately, fields which satisfy this property
are termed Euclidean. Thus, an axiomatization whose continuity assumption guarantees Euclidean fields
but nothing more sets an upper bound for what is provable in Eu.

To address the question of the completeness of Euclid’s diagrammatic method, a proof system inspired
by Eu has recently been developed. The new system, termed E, is complete. That is, it can be shown that
modern axiomatizations of elementary geometry are conservative extensions of E. For a description of E
and the completeness proof, see Avigad et al. (2009). Though inspired by Eu, the system E is not so similar
that its completeness settles the question of Eu’s completeness.
10 The picture of Euclid’s method which thus emerges seems akin to the account of proof Azzouni provides
in Azzouni (2004), whereby a mathematician introduces axioms into a proof as she is carrying out the proof.
In Azzouni’s words, she augments the proof system she is working within. How exactly this process of
augmentation relates to Eu’s account of Euclid is a question worth exploring, for it seems a case could be
made that the account also supports the view Azzouni opposes in the piece. The view, defended by Yehudi
Rav (1999) and Rav (2007), is that mathematical proof is grounded on a formalism-independent knowledge
of what the terms in the proof mean mathematically. Accordingly, the Euclidean inferences codified as new
rules within Eu’s framework could be said to be based on the way diagrams bring out the meaning of the
geometric concepts involved in the proof.
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one reads off the intersection of a ray and circle as general—is in propositional form
axiom A13′ in Tarski’s theory E ′′

2 (Tarski 1959). And an Eu rule whereby one reads
off the intersection of two lines as general is a more specific version of the Pasch
axiom. If one is to engage in synthetic Euclidean geometry, one has to acknowledge
certain simple topological invariances of geometric configurations at some point. One
can privilege a handful as basic from the outset, and prove the rest, as it is done in a
modern axiomatization. Or one can acknowledge them during proofs, by inspecting
a diagram according to its construction, as Eu portrays Euclid as doing it. On Eu’s
account, geometric diagrams provide a stable, reliable tool with which certain topo-
logical invariances can be checked. It is for this reason, perhaps, that Euclid did not
feel the need to provide the axioms which from our modern, Fregean standpoint seem
to be missing from his foundation of geometry.

4 Conclusion: illustrating and proving

The standard position against the mathematical significance of pictures in proofs reso-
nates with a broader position on the relationship between picture and text. The natural
way to fix the identity conditions of a non-mathematical book is via its sentences—i.e.
their order, their arrangement into paragraphs and chapters. The book may come with
illustrations, and these will influence how the book is experienced. But when a differ-
ent edition comes out, with different illustrations or none at all, we would not regard
it as a different book. The sentences carry the content of the book, and so define what
it is. The illustrations are incidental.

The idea carries over into mathematical books smoothly. Just as an illustration in
a work of fiction can depict a scene, a mathematical illustration can depict the rela-
tions between various concepts in a proof. Yet just as the story survives without the
illustration, so does the proof. A proponent of this view will concede that the illustra-
tion may be invaluable in helping one get a mental grip on the proof. But he will go
on to maintain that the real activity of the proof is in its inferences, in the transition
from premise to conclusion. Pictures may illustrate the transitions, but they are not
the means by which the transitions are made.

The analogy has its merits. Pictures which serve only to illustrate proofs pervade
mathematical texts. A fitting example, in the present context, is Hilbert’s Foundations
of Geometry. The triangles and circles which fill its pages play no part in Hilbert’s
derivation of theorems from his axioms. Yet the role of pictures in the Foundations
does not generalize to all mathematical contexts. Pictures can operate as a means of
inference, as Eu demonstrates.11 The proofs of Eu go through the diagrams. The dia-
grams record positional information and carry positional inferences. And so we cannot
dismiss out of hand a proof as incomplete because it relies on a picture.

11 Eu is not the first to demonstrate it. As mentioned, formal diagrammatic systems of deduction have
already been developed. Eu contributes to the case for picture proofs by formalizing picture proofs of
enormous historical importance. Not only is rigorous reasoning with pictures possible. If Eu’s account of
the Elements is accurate, rigorous reasoning with pictures was once commonplace and played a huge part
in shaping mathematical thought and practice.
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Acknowledging this forces upon us a difficult question. The view that only lists
of sentences prove draws a clear line between proof and non-proof. The line loses
its sharpness when we allow proofs to have diagrams or pictures. How should we
re-draw it so that Euclid’s triangles are separated from Hilbert’s? More specifically,
are there any general features of Eu’s account of Euclid which could serve to distin-
guish genuine picture proofs from mathematical illustrations?

It is helpful in addressing this question to consider another one first: what about a
symbol distinguishes it as pictorial or diagrammatic? Keith Stenning has done some
useful work on the question in Stenning (2000). He theorizes that the characteristic
trait of diagrammatic argument is its agglomerative nature. Proofs are commonly con-
ceived of as consisting of lines. The symbols of one line are transformed via inference
rules into another line until the desired line is obtained. A paradigm is the solution of
an equation by means of elementary high school algebra. The equation is manipulated
in a series of steps until the unknown variable is isolated. Each manipulation produces
a new configuration of symbols, connected to but strictly separate from the preceding
symbols. In contrast, a diagrammatic proof sequence proceeds cumulatively. Each step
does not leave the previous configuration behind but builds on it. For example, in the
Elements, we do not see the state of the diagram at each stage in the construction. We
only see the final result.

Given this, one may wonder how diagrams can support useful inferences. A useful
proof symbolism ought to allow us to derive relationships which are not immediately
transparent. Yet a diagrammatic symbol, being agglomerative, is packed with infor-
mation which we have built into it. The symbol has been constructed according to a
stipulated set of conditions. If the situation is analogous to elementary algebra, it can
only express those conditions. After we construct an equation expressing a known
condition on an unknown quantity x, we go on to change the equation to learn what x
is. But with an agglomerative diagram, we do not change anything. How then can it
yield any useful information?

The answer is simply that the situation with diagrams is not analogous with algebra.
A diagram can provide what Shimojima refers to in Shimojima (1996) as a free ride. A
diagrammatic symbol constructed according to a certain set of conditions can express,
automatically, conditions not in the set. Consider the order relations of points on a
line. Suppose we want to express the condition that B lies between A and C, and C lies
between B and D. In a modern theory of geometry possessing a betweenness relation
B, we would accomplish this with the sentence

B(ABC) & B(BCD)

It would then be an axiom or theorem of the theory that

∀ xyzw ((B(xyz) & B(yzw)) −→ B(xzw))

We could then infer that

B(ACD)
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Fig. 16 Betweenness in a
diagram A B C D

In Eu, we express the betweenness conditions in a single diagram like that of Fig. 16.
We do not have to do anything more with the symbol to see that C lies between
A and D. It comes for free once we formulate the first two betweenness conditions
diagrammatically.

The capacity of Euclid’s diagrams to give free rides is, I maintain, what classifies
them as genuine proof symbols. A diagram is constructed to express a certain set of
positional conditions. Once it is constructed, one sees in the very same diagram that
other positional conditions must hold. In Proposition 35, for example, the containment
relations which underlie the conclusion are not stipulated at the outset of the proof.
These, rather, are pointed out after a diagram is constructed to express positional rela-
tionships between two parallelograms. Things are more complicated with diagrams
resulting from a construction. Not all the containment relations which come for free
can be regarded as holding in general. But some can, as Eu confirms, and Euclid
restricts himself to these.

Many pictures which appear with mathematical proofs are absent any free-rides.
They depict only the relationships which have already been proved, linguistically,
and so sit outside the proof. This is what is happening, for example, in the following
proof/picture pair from Munkres’ Topology. The theorem is that if X is a compact
Hausdorff space, and every point of X is a limit point of X, then X is uncountable. The
first half of the proof is:

First we show that, given a (nonempty) open set U of X, and given x ∈ X , there exists
a (nonempty) open set V contained in U such that V does not contain x.
The point x may or may not be in U. But in either case, we can choose a point y in
U that is different from x. This is possible if x is in U because x is a limit point of
X (so that U must contain a point y different from x). And it is possible if x is not
in U because U is nonempty. Let W1 and W2 be disjoint neighborhoods of x and
y, respectively; then V = U ∩ W2 is the desired open set, whose closure does not
contain x. See Fig. 16.

Directly following this appears ‘Fig. 16’ (Fig. 17). No topological relationship is
read off from the picture. There is none to be read off. All it is meant to do is illustrate
the various membership and subset relations between the points and sets of the proof. It
thus performs a valuable function. Unifying all the proof’s objects into one surveyable
image makes the proof easier to grasp. Yet it is important to distinguish this function
from that fulfilled by Euclid’s diagrams. Nothing is inferred from Munkres’ picture.
It sits apart from the proof’s line of reasoning. Euclid’s diagrams, in contrast, support
inferences. His proofs travel straight through them.

The diagrams in Euclid and pictures in Munkres exemplifies the contrast between
pictorial proof and illustration sharply. Yet the status of other cases with respect to the
proof/illustration dichotomy is not so clear. For one thing, the presence of a free-ride
in a mathematical picture may be debatable. Consider again the picture of Fig. 18 and
the intermediate value theorem. One may claim that the appearance of an intersection
point between the curve and the line is the result of a free-ride. A contrary position
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Fig. 17 Munkres’ Fig. 16

U

y

W2

W1

x xOR

ba

Fig. 18 Picture for intermediate value theorem

is that the intersection point ‘appears’ only after norms for reading the picture have
been fixed. As noted, the picture can be thought to depict a situation where the set of
points on the line is not Cauchy complete. Fixing the norms so as to rule out such a
possibility seems tantamount to assuming the theorem without proof. There is then no
distance for a free-ride to transverse.12

Alternatively, a picture may relate two distinct mathematical conditions, but the way
it does so may be thought to be merely suggestive rather than mathematically sound.
Consider the picture of Fig. 19 as a candidate proof for the equation in the caption.
Grasping the relevance of the picture to the equation involves, I believe, something
like a free-ride. The picture is first seen to express the sum

1 + 3 + 5 + 7

by the way the dots are partitioned. It is then seen to be a square with sides of length
four. (The free-ride could go in the other direction as well. That is, it can first be seen

12 See note 8 for a brief discussion of how fixing the norms for diagrammatic symbols differs from assuming
a continuity axiom.
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Fig. 19 1 + 3 + 5 + · · · +
(2n − 1) = n2

that all the dots form a square, and then it can be seen that the square spits into a
sequence of odd numbers.) So the picture at the very least shows that

1 + 3 + 5 + 7 = 42

But does it show the equation

1 + 3 + 5 + · · · + (2n − 1) = n2

holds for all numbers n? It all seems to come down to whether or not the picture
shows what a modern proof by induction would require. Namely, the picture needs to
establish that the equation is preserved when we move from the nth to the (n + 1)th
case. If we understand the dot sequence of odd numbers increasing indefinitely up and
to the right, does the picture show that each new layer results in a square with sides
one unit larger? (Alternatively, if we understand the square as growing indefinitely
up and to the right, does the picture show that each new layer of the growing square
has two more dots than the previous layer?) By focusing on sub-squares of the four
by four square, we can convince ourselves of this for the first three stages of growth.
Whether we are justified in extrapolating the pattern to all stages of growth, does not
seem obvious or non-controversial.

The questions raised by the last two examples deserve further investigation. And
there is no reason to stop with them. The enumerability of ordered pairs of natural
numbers is often shown with an array, as is the non-enumerability of the powerset
of natural numbers. Are the arrays used to present both proofs legitimate vehicles of
proof? Why or why not? A whole field of modern mathematics—category theory—
uses diagrams extensively. Do any general principles underlie the ‘diagram chases’
one often encounters in its proofs? And if so, what relation do these principles have
to those behind Euclid’s diagrammatic proofs? Abandoning the orthodox view of
pictures and proof opens up to the philosophy of mathematics a rich range of phe-
nomena. Exploring it promises not only a deeper understanding of the way pictures
can prove but, I believe, a deeper understanding of the general nature of mathematical
proof.
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Appendix: Syntax of Eu

As mentioned, the atomic claims of Eu have two components: a diagram � and a
metric assertion A. The purpose of this appendix is to sketch the syntactic structure of
these components.

The syntax of a metric assertion is very close that of atomic sentence in predicate
logic. There are six relation symbols

≡seg,<seg,≡angle,<angle,≡area,<area

each representing either the equality or inequality of a certain magnitude. Just as in
predicate logic, the relation symbols serve as place-holders for variables A,B,C,D….
The arity of the ≡angle, for instance, is 6. A well-formed atomic metric assertion with
≡angle is

ABC ≡angle DE F

There is one connective—&—with which two well-formed metric assertions can be
combined into one. An example of such a metric assertion is

ABC ≡angle DE F & AB <seg BC

Finally, there are two constant metric assertions: ⊥ and �. The first represents con-
tradiction, the second represents the empty metric assertion.

The syntactic structure of diagrams in Eu has no natural analogue in standard logic.
Their underlying form is a square array of dots of arbitrary finite dimension.

The arrays provide the planar background for an Eu diagram. Within them geo-
metric elements—points, linear elements, and circles—are distinguished. A point is
simply a single array entry. An example of a diagram with a single point in it is

Linear elements are subsets of array entries defined by linear equations expressed in
terms of the array entries. (The equation can be bounded. If it is bounded one one side,
the geometric element is a ray. If it is bounded on two sides, the geometric element is
a segment.) An example of a diagram with a point and linear element is
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Finally, a circle is a convex polygon within the array, along with a point inside it
distinguished as its center. An example of a diagram with a point, linear element and
a circle is

The size of a diagram’s underlying array and the geometric elements distinguished
within it, comprise a diagram’s identity. Accordingly, a diagram in Eu is a tuple

〈n, p, l, c〉

where n, a natural number, is the length of the underlying array’s sides, and p, l and c
are the sets of points, linear elements and circles of the diagram, respectively.

Like the relation symbols which comprise metric assertions, the diagrams have slots
for variables. A diagram in which the slots are filled is termed a labeled diagram. The
slots a diagram has depends on the geometric elements constituting it. In particular,
there is a place for a variable beside a point, beside the end of a linear element (which
can be an endpoint or endarrow), and beside a circle. One possible labeling for the
above diagram is thus

A

B C

DE

Having labeled diagrams within Eu is essential, for otherwise it would be impos-
sible for diagrams and metric assertions to interact in the course of a proof. We can
notate any labeled diagram as

〈n, p, l, c〉[ �A, R]
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where �A denotes a sequence of variables and R a rule matching each variable to each
slot in the diagram.

Understood as such, labeled diagrams carry too much information. For any one
labeled diagram there will be an infinite number of others which convey the same
co-exact relationships, and so support the same inferences in a Euclidean proof. For
example the differences between the two labeled diagrams would have no bearing on
what one could do with them in a Euclidean proof. It does not matter that the second
one is rotated counter-clockwise, and the dimension of its underlying array is 7 rather
than 5. It expresses the same co-exact conditions with respect to A,B,C,D and E, and
so would play the same role in an argument.

A

B C

D E

A

B

C

D

E

To group such diagrams together, Eu possesses an equivalence relation ∼ which
abstracts away all irrelevant information. Roughly, if we understand a diagram as a
structure whose objects are its points, linear elements, and circles, the equivalence
relation amounts to a characterization of what it is for two labeled diagrams to be iso-
morphic. Such an isomorphism is a bijection between the geometric elements of two
labeled diagrams, whereby the following relations are preserved: point p1 is on/not
on line l1 or circle c1; points p1, p2 are the same/different side of line l1; point p1
is inside/oustide circle c1; lines l1 and l2 intersect/don’t intersect; line l1 does not
intersect/is tangent to circle c1; line l1 intersects circle c1 one/two time(s); circles c1
and c2 do not intersect; intersecting circles c1 and c2 together define k regions. For
the details see pages 34–40 of Mumma (2006).

According to Eu’s analysis, then, a diagram

〈n, p, l, c〉[ �A, R]

modulo the equivalence relation ∼ characterizes what a diagram in the Elements
is as a proof-symbol. The definition is meant to capture all the co-exact relation-
ships expressed by Euclid’s diagrams. Its suitability is not transparent, however. A
few remarks addressing some possible misgivings with the definition are thus in
order.

First, one may worry that as discrete objects Eu’s diagrams will fail in general to
produce the intersection points which appear in Euclid’s diagrams. For instance, in
the diagram
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A

B

C
D

We can join the points above and below the line to obtain the diagram

A

B

C
D

Given what this diagram is intended to represent, we ought to be able to produce an
intersection point between the segment AB and the line DC. But the underlying array
of the diagram is too coarse. An array entry does not exist where we want a point to
be.

Within a proof carried out in Eu, this can always be dealt with by refining the
diagram. The equation which characterizes a line (and the circumference of a circle)
is linear, expressed in terms of the coordinates of the array entries. Since the arrays
are discrete, the coefficients of the equation are always integers. Thus, the solution for
two equations characterizing geometric elements of a diagram will always be rational.

This means that if two geometric elements ought to intersect but don’t in a diagram,
we can always find an equivalent diagram where they do. The equivalent diagram will
just be the original diagram with a more refined underlying array. In particular, if the
original diagram has dimension n and the solution between the two equations is a
rational with an m in its denominator, the new diagram will have dimension mn − 1.

For the diagram above, then, adding the desired intersection point is a two step
process. First, the diagram is refined to an equivalent diagram of dimension 5.

A

B

CD

Then the intersection point is added.
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A

B

CD

E

Another natural worry has to do with the circles of diagrams. The circles which
appear in Euclid’s diagrams actually appear circular. The circles of diagrams, how-
ever, are rectilinear. If Euclid exploits the circularity of his circles in his proofs, then
the diagrams of Eu would fail to capture this aspect of Euclid’s mathematics. Euclid,
however, never does this. All he seems to assume about circles is that they have an
interior. Many features of circles, which would seem to follow from their circularity,
are actually proved by Euclid in book III. For instance, he proves that it is impossi-
ble for a line and a circle to intersect in more than two points. He also proves that
it is impossible for two circles to intersect in more than two points. This is done in
Propositions III,2 and III,10, respectively.

And so, it is actually a virtue of Eu’s diagrams that they are not circular. Because
they are convex polygons, they can represent the physically impossible situations of
Propositions III,2 and III,10. (See the two diagrams below.) This makes it possible for
the reductio proofs of these propositions to be carried out in Eu.

C

D

A EB

C

A

B
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