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Abstract We discuss several features of coherent choice functions—where the
admissible options in a decision problem are exactly those that maximize expected
utility for some probability/utility pair in fixed set S of probability/utility pairs. In this
paper we consider, primarily, normal form decision problems under uncertainty—
where only the probability component of S is indeterminate and utility for two privi-
leged outcomes is determinate. Coherent choice distinguishes between each pair of sets
of probabilities regardless the “shape” or “connectedness” of the sets of probabilities.
We axiomatize the theory of choice functions and show these axioms are necessary for
coherence. The axioms are sufficient for coherence using a set of probability/almost-
state-independent utility pairs. We give sufficient conditions when a choice function
satisfying our axioms is represented by a set of probability/state-independent utility
pairs with a common utility.

Keywords Choice functions · Coherence · �-Maximin · Maximality · Uncertainty ·
State-independent utility

1 Introduction

In this paper we continue our study of coherent choice functions, which we started in
our (Kadane et al. 2004) “Rubinesque” theory of decision. Let O be a set of feasible
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options, which we also call an option set. A choice function C(O) identifies the (pos-
sibly empty) subset of O that are the C-admissible options in the decision problem
given by the option set O. We say that C(•) is coherent provided that there is a non-
empty set S of probability/utility pairs S = {(p, u)} such that the C-admissible options
are precisely those that are Bayes with respect to some probability/utility pair (p,u)
in S. That is, a coherent choice function satisfies the condition that for each feasible
option o ∈ O, o is C-admissible, o ∈ C(O), if and only if there is a pair (p, u) ∈ S
such that o maximizes the p-expected u-utility over O. For short, we will call these
the Bayes-admissible options in O with respect to S.

Here we consider decision problems under uncertainty, where utility for two priv-
ileged outcomes is determinate. That is, in this paper, the target representation for a
coherent choice function is a set of probability/utility pairs with a common cardinal
utility function for two outcomes, which serve as the 0 and 1 of each utility function, u.
For simplicity, we restrict attention to option sets O where C-admissible options exist.
In order to assure that, i.e., so that C(O) is not empty we require that the option set be
closed (as we make precise in Sect. 2). By contrast, if O is not closed, then given a set
S there may be no Bayes-admissible options in O. For a familiar example, if utility is
increasing in the quantity X , then in a decision-under-certainty problem—where the
decision maker chooses from an infinite menu of sure outcomes, and where probability
is irrelevant—with O = {0 ≤ x < 1} each option in O is Bayes-inadmissible.

The use of a coherent choice function coincides with Levi’s (1980) principle of
E-admissibility in cases where the set S is a cross-product of a convex set of proba-
bilities and a convex set of utilities: S = P × U—with convex sets P and U. Also, we
find that Savage [(1954, pp. 123–124), where he argues that option b is “superfluous”
for the decision pictured by his Fig. 1] endorses a coherent choice rule with S a convex
set of probabilities and a common utility.

We adopt the framework of choice functions, rather than using a binary preference
relation because coherent choice (as used here) does not reduce to pairwise compari-
sons. The following example, which we repeat from our ISIPTA-03 paper, illustrates
this theme.

Example 1 Consider a binary decision problem involving two states of uncertainty,
� = {ω1, ω2} with three feasible options O = { f, g, h}, and where utility is deter-
minate: u( f (ω1)) = u(g(ω2)) = 0.0, u( f (ω2)) = u(g(ω1)) = 1.0, and u(h(ω1) =
u(h(ω2)) = 0.4. Let uncertainty over the states be indeterminate, with P = {p : 0.25 ≤
p(ω2) ≤ .75}. Figure 1 shows the graph of expected utilities for each option. Thick
lines depict the surface of expected-utility maximization.

We rehearse three decision rules for use in this problem.
�-Maximin. Maximize minimum expected utility over the feasible options. This

rule is well studied in Gilboa and Schmeidler (1989). In brief, �-Maximin induces a
preference ordering over options, but fails the von Neumann–Morgenstern Indepen-
dence postulate. Under �-Maximin only {h} is admissible from the set { f, g, h}. In
Fig. 1, this is evident as the low point of each of the graphs of f and of g is below that
of the constant act h.

Maximality (Sen/Walley). Admissible options are those that are undominated in
expectations (over all p ∈ P) by any single alternative option. Under Maximality all
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Fig. 1 The graph of expected utilities for each act in O = {f , g, h}. The surface of Bayes-admissibility is
bold

three options are admissible from the set { f, g, h} as none dominates the others in
P-expectations under pairwise comparisons. In Fig. 1, this is seen by noting that the
graphs for each pair of act cross each other. Maximality does not induce a preference
ordering over options; nonetheless, admissibility is given by pairwise comparisons.
Note that if the option set is expanded to include mixed options, then h is no longer
maximal, since the “fair” mixture h′ of f and g, denoted .5 f ⊕ .5g, which corresponds
to a constant act with expected utility 0.5, has greater expected utility than does h for
each p ∈ P. As is evident then, whether an option (e.g., option h) is admissible under
Maximality depends upon whether the set of feasible options is closed under mixtures.

Coherent choice. Since the set of probabilities P is convex in this example, coher-
ent choice reduces to Levi’s rule of. E-admissibility—admissible choices have Bayes’
models, i.e., they maximize expected utility for some probability in the (convex) set P.
Subset { f, g} identifies the Bayes-admissible options from { f, g, h} under Coherent
Choice. In Fig. 1, the surface of Bayes-admissible options meets acts f and g, but not
h. In this setting, Levi (1986, Sect. 5.2), calls the Bayes-inadmissible option h “second
worst.” E-admissibility does not induce an ordering over options and does not reduce
to pairwise comparisons either, as the following illustrates.

Consider the three pairwise choice problems using binary subsets of O = { f, g, h}.
In such pairwise choices, both options are E-admissible, even though h is inadmissible
in the feasible set of three options O. But if h is replaced by a (“second best”) constant
option h′ with utility u(h′(ω1)) = u(h′(ω2)) = 0.5. then with respect to the set P, in
the decision problem with feasible set O′ = { f, g, h′}, all three options are E-admis-
sible and likewise, in pairwise choices between any two of them each is E-admissible.
Hence, E-admissibility in pairwise choice does not determine E-admissibility from
larger option sets. Pairwise choice is insufficient, generally, to distinguish second best
from second worst.
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As noted above, h is not “Bayes” in O with respect to P. More dramatically, h
is (uniformly) dominated by some mixtures of f and g. The constant mixed option
h′ = .5 f ⊕ .5g, with expected utility 0.5 independent of p, uniformly dominates h.
This is no coincidence, as the following result establishes.

Let � = {ω1, ω2, . . . , ωn} be a finite partition of states. Let O = {o1, o2, . . ., om}
be a finite set of options defined on �, such that for oi ∈ O, u(oi(ωj)) = uij, a deter-
minate cardinal utility of the consequence of oi when state ωj obtains. Let P be the
class of all probability distributions over �. Similarly, let Q be the class of all (simple)
mixed acts over O, with a mixed act denoted q.

Theorem 1 (Pearce 1984, p. 1048) Suppose for each p ∈ P, act o∗ ∈ O fails to max-
imize expected utility. Then there is a mixed alternative q∗ that (uniformly) strictly
dominates o∗. That is, u(q∗(ω j )) > u(o∗(ω j )) + ε, for j = 1, . . . , n, with ε > 0.

With this result we are able to apply the strict standard of de Finetti’s “incoherence”
(= uniform, strict dominance), to a broad class of decisions under uncertainty, analo-
gous to the scope of traditional Complete Class theorems for Bayes decisions (Wald
1950). That is, de Finetti (1974) uses his theory of coherent previsions in a class of
decision problems where the decision maker’s sole options are to fix fair gambling rates
over random variables assuming a linear utility in payoffs. As explained in Sect. 2, the
domain of our coherent choice functions are (simple) horse-lotteries. When the state-
space is finite, this is a much larger class of decision problems than is addressed in de
Finetti’s theory. By contrast with Wald’s theory, the standard of coherence used here—
avoiding strict dominance—is more generous than Wald’s requirement of admissibility
(= avoiding weak dominance), as is used in his Complete Class theorems. That is, some
Bayes-admissible options in a decision problem may be inadmissible in Wald’s theory.
But not so in the theory developed here.

2 Distinguishing sets of probabilities by their coherent choice functions

Consider a finite state space � = {ω1, . . . , ωn} with the class of all options H the
(Anscombe and Aumann 1963) horse lotteries defined on a denumerable reward set
{r1, r2, . . .}. A (simple) horse lottery h is a function from states to (simple) proba-
bility distributions, i.e., von Neumann–Morgenstern lotteries over the set of rewards.
Denote such a lottery by L . Then h(ω j ) = L j . In von Neumann–Morgenstern the-
ory, with 0 ≤ x ≤ 1, the x : (1 − x) convex combination of two lotteries, L1 and L2,

denoted L3 = x L1⊕(1 − x)L2, is the (simple) probability distribution obtained by the
x : (1−x) weighted average of the two (simple) distributions that define L1 and L2. Fol-
lowing Anscombe–Aumann’s theory, with 0 ≤ x ≤ 1, define the convex combination
of two horse lotteries, h3 = xh1⊕(1 − x)h2, by h3(ω j ) = L3 j = x L1 j ⊕(1 − x)L2 j .

We use the topology of pointwise convergence in distributions to define closure of
a set of options. That is, a sequence of horse lotteries < hi : i = 1, . . . > converges
to the horse lottery h if, for each 1 ≤ j ≤ n, the sequence < Li j : i = 1, . . . >

converges to the lottery L j .
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Let H(O) denote the result of taking the (closed) convex hull of the option set O.
That is, H(O) is the (closure of the) set of all mixed options in O. Then when O is
finite, without loss of generality, q∗ of Theorem 1 may be taken to be an option that
also is Bayes-admissible for some p∗ ∈ P. That is, in Theorem 1 we may choose
q∗ ∈ H(O) such that q∗ ∈ C(H(O)) for a coherent choice function using the set P of
all probability distributions on �. In terms of Theorem 1, in Example 1 with o∗ = h,
then q∗

x = x f ⊕ (1 − x) g for .4 < x < .6 uniformly dominates o*. But each such
q∗

x is Bayes with respect to H(O) precisely for one probability on � : p (ω1) = .5.
We use this fact, next, to establish that each set of probabilities has its own unique
coherent choice function.

Aside: Under a topology of pointwise convergence in lotteries, Theorem 1 gen-
eralizes to infinite states spaces � and infinite, closed options sets O by using
Theorem 2.1 of Kindler (1983) to replace Pearce’s use of von Neumann’s Mini-
max Theorem, which does not generalize to infinite games. But then the mixed
strategies needed with Kindler’s result are merely finitely additive, rather than
countably additive. For an intermediate generalization using countably additive
mixed strategies, where the set of feasible options may be infinite though the
state space is finite, see our (2008).

In this section we use decision problems involving horse lotteries defined on only
two privileged rewards, 0 and 1, to individuate different sets of indeterminate proba-
bilities. Regarding the two privileged rewards, we assume there is a strict preference
for the constant horse lottery 1 over the constant horse lottery 0. That is, C{0, 1} = {1}.
We consider coherent choice using state-independent utilities, where for each utility,
u(1) = 1 and u(0) = 0 in each state, ω. Since in this construction we use horse lotteries
involving only these two rewards, our goal is to show that if P and P′ are two differ-
ent sets of probabilities, the coherent choice function based on the set S = P × {u}
is different from the coherent choice function based on the set S′ = P′ × {u}. We
establish that goal as a corollary to the Theorem 2, below, which shows how to use
coherent choice functions to characterize membership of a particular distribution p in
an arbitrary set of distributions, P.

Let p∗ = (p1, . . ., pn) be a probability distribution on �. Denote by p
¯

the smallest
nonzero coordinate of p∗. Define the constant horse lottery act a = p

¯
1 + (1 − p

¯
)0,

which yields the same lottery in each state. For each j = 1, . . . , n, de f ine the act h j

as follows.

h j (ωi ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if i = j and p j = 0
a if i �= j and p j = 0
p
p̄ j

1 ⊕
(

1 − p
p̄ j

)
0 if i = j and p j > 0

0 if i �= j and p j > 0

Consider the finite option set Op∗ = {a, h1, . . . , hn}. Let P be a non-empty set of
probabilities defined on � and let C(·) be a coherent choice function based on the
non-empty set S of probability-utility pairs of the form S = P × {u}. Denote by
Ep(u(·)) the expected utility function with respect to a pair (p, u) in S.
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Theorem 2 p∗ ∈ P if and only if C(Op∗) = Op∗ .

Proof First, observe that for all j and utility u, Ep*(u(hj)) = p
¯

= Ep*(u(a)). For
the “only if” direction, assume that the pair (p*; u) ∈ S for some utility u. Then by
this equality, every element of Op* is Bayes with respect to (p*; u) and C(O*

p) = Op* .

For the “if” direction, assume that C(O)*
p = Op* . Note that Eq(u(a)) = p

¯
for every

probability/utility pair (q, u). Let (q, u) be a probability/utility pair with q �= p∗. First,
consider the case with p

¯
< 1. Then there exists j with q j > p j . So,

Eq(u(hj)) =
qj p

¯
/pj > p

¯
if pj > 0,

qj + (1 − qj)p
¯

> p
¯

if pj = 0.

Hence, for each (q, u) with q �= p*, Eq(u(hj)) > Eq(u(a)). It follows that a /∈ C(Op*)

unless (p*, u) ∈ S. Finally, consider the case with p
¯

= 1. In this case, Op* = {1, h j }
where pj = 1. So, Eq(u(hj)) = qj < 1 = Eq(u(a)) for every probability/utility pair
(q, u) with q �= p*. It follows that h j /∈ C(Op*) unless (p, u) /∈ S. ��
Corollary Let P1 and P2 be two distinct (nonempty) sets of probabilities with cor-
responding Bayes-admissible choice functions C1 and C2. There exists a finite option
set Op, as above, such that C1(Op) �= C2(Op).

Proof Since P1 �= P2, either there exists p ∈ P1 and p /∈ P2 or, p /∈ P1 and p ∈
P2. Construct the finite option set Op as above. Then by Theorem 2, C1(Op) �= C2
(Op). ��
Thus, each set of probabilities P has its own distinct pattern of Bayes-admissible
choice functions with respect to option sets Op for p ∈ P.

Aside: This Corollary is a generalization of Theorem 1 from our (2004) paper,
which establishes distinct coherent choice functions for distinct convex sets p of
probabilities.

3 Axiomatizing coherent choice functions

We turn, next, to a system of axioms for choice functions that are necessary for
coherence, and which are jointly sufficient for a representation of choice by a set S
of probability/almost-state-independent utility pairs, as explained below. We provide
sufficient conditions when these pairs have a common state-independent utility. In
such a case the coherent choice function corresponds to choice under indeterminate
uncertainty with a determinate utility.

We continue with the framework of the previous section: options are simple horse
lotteries defined over a finite state space � = {ω1, . . . , ωn}. Using choice functions
over sets of options permits us to extend our (1995) work, which deals solely with
(partially ordered) strict preference ≺. Specifically, interpret the strict preference rela-
tion, h1 ≺ h2 as fixing coherent choice in binary option sets: C{h1, h2} = {h2}.
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Then, as explained below, our (1995) theory of strict partial orders is a special case
of coherent choice functions. Thus, some results that follow from binary choice prob-
lems are available also within this theory. For example, it then follows from Sect. II.6
of our (1995) theory that each agreeing cardinal utility for the choice function C(·),
if one exists, is a bounded utility function, since that condition is already forced by
considering choice problems with binary option sets.

Also, with this interpretation of our (1995) theory of binary choice, we assert with-
out proof the following characterization of the Maximality rule. Specifically, let C(·)
be a coherent choice function based on a set S of probability/utility pairs.

Definition Define the choice function CM (·) using C(·) applied to pairs of
options in O as follows. Declare an option o in O to be CM -admissible if and
only if it is C-admissible in all binary problems, i.e., o ∈ C({o, o′}) for each{
o, o′} ⊆ O.

Proposition A choice function accords with the Maximality rule of admissibility
for the set S if and only if it is of the form CM (·) for the coherent choice function
C(·) based on S.

Here, we focus on an axiomatic representation of coherent choice when utility is deter-
minate regarding the two distinguished prizes 1 and 0, which we take, respectively,
as the upper and lower bounds on all other constant acts: the constant act 1 is better
than, and the constant act 0 is worse than, each other constant act. For convenience,
we assume that all cardinal utilities are scaled so that u(1) = 1 and u(0) = 0.

With these assumptions about the utility for the two distinguished rewards, and to
motivate our axiomatization of coherent choice functions, next we rehearse a standard
axiomatization of the Anscombe–Aumann (1963) theory of binary preference (�).

A-A Axiom 1 Choice over sets of horse lotteries reduces to a pairwise comparison
of options by preference (�), which generates an Ordering of the set of options: � is
reflexive, transitive, and complete for all pairs. That is, there exists a binary preference
order � over H × H such that an option h is admissible from a feasible set O if and
only if h is �-maximal in O.

Definition Let ≺ denote strict preference, the asymmetric part of � : h1 ≺ h2 if and
only if h1� h2 and not h2 � h1; and let ≈ denote indifference, the symmetric part of
� : h1 ≈ h2 if and only if h1 � h2 and h2 � h1.

A-A Axiom 2 Preference (�) satisfies the von Neumann–Morgenstern postulate of
Independence. For each h1, h2 and h3, and for each 0 < x ≤ 1, h1 ≺ h2 if and only
if xh1 ⊕ (1 − x)h3 ≺ xh2 ⊕ (1 − x)h3

A-A Axiom 3 An Archimedean axiom—to secure that preference (�) admits a real-
valued representation, thus insuring also a real-valued representation for subjective
probability over � and a real-valued cardinal utility over prizes.

If h1 ≺ h2 ≺ h3 there exist 0 < x, y < 1 such that xh1 ⊕ (1 − x)h3 ≺ h2 ≺
xh1 ⊕ (1 − x)h3
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A-A Axiom 4 For existence of a state-independent utility representation for prefer-
ence, a final axiom requires that the decision maker’s preference for constant horse
lotteries reproduces under each non-null state in the form of called-off horse lotteries.
This is made precise as follows.

Definition A state ω∗ ∈ � is null provided that for all pairs of horse lotteries, h1 ≈ h2
whenever h1(ω) = h2(ω) for ω �= ω∗. It is a non-null state otherwise.

A pair of horse lotteries h1, h2 are called-off on the event E if for each ω ∈
E, h1 (ω) = h2 (ω).

Let h1 and h2 be a pair of constant horse lotteries yielding, respectively the reward
r1 and r2. That is, for each ω ∈ �, h1 (ω) = r1 and h2 (ω) = r2. Let ω∗ be a non-null
state. Axiom 4 requires that, for each pair of horse lotteries h1∗ and h2∗ such that
h1∗(ω∗) = r1 and h2∗(ω∗) = r2, and they are called-off on {ω∗}c , then h1�h2 if and
only if h1∗�h2∗

We adapt our presentation here to match these four axioms. For ease of exposition
some conditions are formulated in terms of the rejection function, R(·) which identifies
the C-inadmissible options from a feasible set O.

Definition R(O) = O − C(O)

In place of the ordering axiom, we require the following two conditions:

Axiom 1a—Sen’s property alpha If O2 ⊆ R(O1) and O1 ⊆ O3, then O2 ⊆ R(O3).
You cannot promote an unacceptable option into an acceptable option by adding

options to the feasible set.
Axiom 1b—a variant of Aizerman’s (1985) condition, if O2 ⊆ R(O1) and O3 ⊆ O2,
then O2 − O3 ⊆ R(closure[O1 ⊆ O3]).

You cannot promote an unacceptable option into an acceptable option by deleting
unacceptable options from the option set.

Note: We require closure of [O1 − O3] since O1 − O3 may not be a closed set,
despite the fact that O1 and O3 are closed.

With Axioms 1a and 1b, define a strict partial order 〈 on sets of options as follows.
Let O1 and O2 be two option sets.

Definition O1〈O2 if and only if O1 ⊆ R[O1 ∪ O2].
So O1〈O2 obtains when O1 contains only inadmissible options in a choice among the
options in both sets, O1 ∪ O2. Lemma 1 of our (2004) establishes that given Axioms
1a and 1b, the binary relation 〈 is a strict partial order over pairs of sets of options:
〈 is transitive and irreflexive. This finding is the basis for the assertion, above, that our
(1995) theory of strict partial orders is a special case of the theory developed here for
coherent choice functions. Our (1995) theory is the restriction of the current theory to
decision problems with two feasible options.

The role of mixtures between options is captured in the following pair of axioms
for 〈. With O1 an option set and o an option, the notation αO1 ⊕ (1 − α)o denotes the
set of pointwise mixtures, αo1 ⊕ (1 − α)o for o1 ∈ O1.
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Axiom 2a—Independence is formulated for the relation 〈 over sets of options. Spe-
cifically, let o be an option and 0 < α ≤ 1.

O1〈O1 if and only if αO1 ⊕ (1 − α)o 〈αO2 ⊕ (1 − α)o.
Axiom 2b—Mixtures If o ∈ O and o ∈ R[H(O)], then o ∈ R[O].

Axiom 2b asserts that inadmissible options from a mixed set remain so even before
mixing.

With respect to the three decision rules discussed in Sect. 1, Independence (Axiom
2a) fails in �-Maximin theory. Mixing (Axiom 2b) fails for the choice function deter-
mined by Maximality. Thus, by distinguishing between axioms 2a and 2b we highlight
what we judge to be the key difference between �-Maximin and Maximality, and how
each fails to limit admissibility to Bayes-admissibility.

The Archimedean condition for coherent choice functions requires a technical
adjustment from the canonical form used by, e.g. von Neumann–Morgenstern the-
ory or Anscombe–Aumann theory. The canonical form is too restrictive in this setting.
(See Sect. II.4 of our 1995.) The reformulated version of the Archimedean condition
is as a continuity principle compatible with strict preference as a strict partial order.
It reads as follows.

Let An and Bn(n = 1, . . .) be sets of options converging pointwise, respectively, to
the option sets A and B. Let N be an option set.

Axiom 3a If, for each n, Bn〈 An and A〈 N, then B〈 N.
Axiom 3b If, for each n, Bn〈 An and N〈 B, then N〈 A.

The counterpart to A-A Axiom 4 for state-neutrality is captured by the following
dominance relations. Consider horse lotteries h1 and h2, with hi (ω j ) = βi j 1 ⊕ (1 −
βi j )0; i = 1, 2 j = 1, . . . , n.

Definition h2 weakly dominates h1if β2 j ≥ β1 j for j = 1, . . . , n.
Assume that o2 weakly dominates o1, and that a is an option different from each

of these two.

Axiom 4a If o2 ∈ O and a ∈ R({o1} ∪ O) then a ∈ R(O).
Axiom 4b If o1 ∈ O and a ∈ R(O) then a ∈ R([{o2} ∪ O − {o1}]).

In words, Axiom 4a says that when a weakly dominated option is removed from
the set of options, other inadmissible options remain inadmissible. So, by Axiom 1,
when an option is replaced in the option set by one that it weakly dominates, other
admissible options remain admissible.

Axiom 4b says that when an option is replaced by one that weakly dominates it,
(other) inadmissible options remain inadmissible. Trivially by Axiom 1, merely add-
ing a weakly dominating option cannot promote an inadmissible option into one that
is admissible.

Axiom 4 captures key aspects of what Savage’s postulate P3 asserts about state-
independent utility of the prizes 1 and 0 without assuming states are not-null. That
is, the intended representation for a coherent choice function C(·) uses the expected
utility rule (i.e., Bayes-admissibility) applied with a set S of probability/utility pairs.
However, it may be that for each state ω j there is a probability/utility pair, (pj, u) ∈ S
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such that pj(ω j ) = 0. In the language of our (1995) paper, then each state in � is
potentially null under S. Thus, Savage’s P3 (or the corresponding Anscombe–Aumann
Axiom 4) is vacuous when potentially null states are excepted. Nonetheless, Axiom
4 reports two facts about weakly dominated lotteries that obtain even when each state
is potentially null.

Theorem 3 Axioms 1–4 are necessary for a coherent choice function.
Let S be a non-empty set of pairs of probability/state-independent utilities, and

let CS(·) be the coherent choice function defined by setting the admissible options in
feasible set O to be exactly those that are Bayes-admissible with respect to S. Then
CS(·) satisfies Axioms 1–4.

Proof The argument for the necessity of Axioms 1–3 is given in our (2004). That
Axiom 4 is necessary as well follows immediately by noting that whenever o2 weakly
dominates o1 then for each (p,u) ∈ S, Ep(u(o2)) ≥ Ep(u(o1)). ��

The following result is helpful in linking our theory with Theorem 1. Consider horse
lotteries h1 and h2, with hi (ω j ) = βi j 1 ⊕ (1 − βi j )0; i = 1, 2 j = 1, . . . , n.

Definition h2 strongly dominates h1 if β2 j > β1 j for j = 1, . . . , n.

Lemma 1 Inadmissibility of strongly dominated options: If h2 strongly dominates
h1 then {h1} = R({h1, h2}).
Proof The strategy of the proof is as follows: Use the Independence axiom to convert
the problem with option set O = {h1, h2} into an equivalent problem O′ = {h′

1, h′
2},

where h′
1 is a constant horse lottery, and where h′

2 strongly dominates h′
1. Then we

show that h′
2 weakly dominates another constant horse lottery, h′′

2 which also strongly
dominates h′

1. Then, by Independence {h′
1} = R({h′

1, h′′
2}) and by Axiom 4b, {h′

1} =
R({h′

1, h′
2}). Last, by Independence, {h1} = R({h1, h2}).

Here are the details. Let 0 ≤ β∗ = min{β1 j } and 1 > β∗ = max{β1 j }. Let
h3(ω j ) = β3 j 1 ⊕ (1 − β3 j )0, where β3 j = β∗ + β∗ − β1 j . Then the horse lot-
tery h′

1 = .5h1 ⊕ .5h3 is the constant (von Neumann–Morgenstern) lottery with
β ′

1 j = (β∗ + β∗)/2. Define h′
2 = .5h2 ⊕ .5h3. The Independence axiom asserts that

{h1} = R({h1, h2}) if and only if {h′
1} = R({h′

1, h′
2}). But h′

2 strongly dominates h′
1,

because h2 strongly dominates h1. In fact, β ′
2 j −β ′

1 j = (β2 j − β1 j )/2 > 0. So, let 0 <

δ = min{β2 j −β1 j }, and then δ/2 = min{β ′
2 j −β ′

1 j }. Let h′′
2 be the constant (von Neu-

mann–Morgenstern) lottery defined with β ′′
2 j = β ′

1 j +δ/2 = (β∗ + β∗ + δ)/2 > β ′
1 j .

Observe, also, that h′
2 weakly dominates h′′

2. Then, as announced before, by Inde-
pendence {h′

1} = R({h′
1, h′′

2}); by Axiom 4b, {h′
1} = R({h′

1, h′
2}); and by another

application of Independence, {h1} = R({h1, h2}). ��
Next we introduce two concepts central to our argument for representing coherent

choice functions.

Definition The pair (p, u) is a local Bayes model for option o provided that o maxi-
mizes (p, u)-expected utility with respect to the options in set O.
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The pair (p,u) is it a global Bayes model for the choice function C(•) provided that,
for each option set O, if o ∈ O maximizes (p,u)-expected utility with respect to the
options in set O then o ∈ C(O).

We adapt the concept of a set of almost state-independent utilities, presented in our
(1995, Definition 31), as follows. Let {r1, . . . , rm} be a set of rewards and assume that
for each constant horse lottery r ∈ {r1, . . . , rm}{0}〈{r}〈{1}, so that the constant acts 0
and 1 strictly bound the value of the other constant acts.

The set of probability/utility pairs S# = {(p j , u j ) : j = 1, . . .} form a set of
almost state independent utilities for {r1, . . . , rm} provided that for each ε > 0, there

is a pair (pε, uε) ∈ S# and a set of states �(1−ε) ⊆ � with pε(�(1−ε)) ≥ 1 − ε such
that for each rε{r1, . . . , rm}.

maxωi ,ω j ∈ �1−ε | uε, ωi (r) − uε, ω j (r)| ≤ ε.

This allows us to formulate the central result of this paper.

Theorem 4 A choice function C(·) defined on the class H of simple Anscombe–Au-
mann Horse-lotteries using (at least) three prizes {0, r, 1}, with {0}〈{r}〈{1}, satisfies
our 4 axioms only if it is represented as a coherent choice function by a set S of
probability/almost-state-independent utility pairs.

Aside: A sufficient condition is given at the end of Appendix 2 for the global Ba-
yes models of S to be comprised solely of probability/state-independent utility
pairs.

Proof This theorem follows from three lemmas.

Lemma 2 For each choice set O and admissible option o ∈ C(O), o has at least one
local Bayes model.

Proof By Theorem 1, an option lacking a local Bayes model is strongly dominated
by a finite mixture of other options already available in the same choice problem.
Then, Axiom 3 and the Lemma 1 on inadmissibility of strongly dominated options
demonstrate Lemma 2. ��

Aside: Let o ∈ C(O). If ( p,u) and (p′, u) both are local Bayes models for o, then
so too is each pair (q, u) of the form q = xp + (1 − x)p′(0 ≤ x ≤ 1). Likewise,
if each of (p j , u)( j = 1, . . .) is a local Bayes model for o and the sequences of
distributions {p j } converges to distribution q, then also (q, u) is a local Bayes
model for o. Hence, we have the following corollary

Corollary The set of local Bayes models for o ∈ C(O) with a common utility u is
given by a non-empty, closed, convex set of probabilities.

Let H{0,1} be the set of horse lotteries defined using only the privileged pair of rewards,
0 and 1. Based on the ideas presented in Sect. 2, given a distribution p, next we define a
special choice problem O* involving only horse lotteries from H{0,1} so that, precisely
when all of O*’s options are admissible, then p is a global Bayes model for the choice
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function defined on feasible subsets of H{0,1}. Thus, the notation for the special choice
problem should be ‘O*p’ with the subscript identifying the distribution p. To make
the proofs readable, that subscript is suppressed here.

Lemma 3 Suppose that C(O∗) = O∗. Then p is a global Bayes model for the choice
function C(·) restricted to feasible sets in H{0,1}.

Proof See Appendix 1.

Lemma 4 For each admissible option o ∈ C(O) at least one of its local Bayes models
is a global Bayes model or else there is a set of probability/almost-state-independent
utility pairs that represent C.

Proof See Appendix 2.

4 An example of coherent choice using a non-convex set P reflecting “expert”
opinion

In this section we illustrate how coherent choices may represent “expert” opinions
while preserving independence between two events. The following example highlights
the use of a non-convex set of probabilities to represent a coherent choice function.

Example 2 Consider a decision problem among three options—three treatment plans
{T1, T2, T3} defined over four states � = {ω1, ω2, ω3, ω4} with determinate utility
outcomes given in the following table. That is, the numbers in Table 1 are the utility
outcomes for the options (rows) in the respective states (columns).

Let a convex set P of probabilities be generated by two extreme points, distributions
p1 and p2, defined in Table 2. Distribution p3 is the .50–.50 (convex) mixture of p1
and p2.

Note that (for i = 1, 2, 3) under probability pi , only option Ti is Bayes-admis-
sible from the option set of {T1, T2, T3}. Without convexity—that is, using the set
P containing the two (extreme) distributions P = {p1, p2}—option T3 is the sole
Bayes-inadmissible option from among the three options {T1, T2, T3}.

Now, interpret these states as the cross product of two binary partitions: a med-
ical event A (patient allergic) and its complementary event NA (patient not-aller-
gic), with a binary meteorological partition. S (sunny) and NS (cloudy). Specifically:

Table 1 Utilities for each of the
three treatment plans in each of
the four states

ω1 ω2 ω3 ω4

T1 0.00 0.00 1.00 1.00

T2 1.00 1.00 0.00 0.00

T3 0.99 −0.01 −0.01 0.99
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Table 2 Probabilities for the
four states under each of the
three distributions

ω1 ω2 ω3 ω4

p1 0.08 0.32 0.12 0.48

p2 0.48 0.12 0.32 0.08

p3 0.28 0.22 0.22 0.28

ω1 = A&S, ω2 = A&NS, ω3 = NA&S, ω4 = NA&NS. Under probability distri-
bution p1, the two partitions are independent events with p1(A) = .4 and p1(S) = .2.
Likewise, under probability distribution p2, the two partitions are independent events
with p2(A) = .6 and p2(S) = .8. And under distribution p3 the events A and S are
positively correlated: .56 = p3(A|S) > p3(A) = .5, as happens with each distribution
q that is a non-trivial mixture of p1 and p2.

Then the three options have the following interpretations: T1 and T2 are ordinary
medical options for how to treat the patient, with outcomes that depend solely upon the
patient’s allergic state. T3 is an option that makes the allocation of medical treatment a
function of the meteorological state, with a “fee” of 0.01 utile assessed for that input.
That is, T3 is the option “T1 if cloudy and T2 if sunny, while paying a fee of 0.01.”

Suppose that p1 represents the opinion of medical expert 1, and p2 represents
the opinion of medical expert 2. Without convexity of the credal probabilities, T3 is
inadmissible. This captures the shared agreement between the two medical experts
that T3 is unacceptable from the choice of three options {T1, T2, T3}, and it captures
the pre-systematic understanding that under T3 you pay to use medically irrelevant
inputs about the weather in order to determine the medical treatment. However, with
convexity of the set generated by p1 and p2, then T3 is admissible as well, since it
functions as a “second best” option. Convexity of the set of indeterminate probabil-
ities, we note, is required in each of Gilboa and Schmeidler’s (1989) version of �-
Maximin, in Walley’s (1990) version of Maximality, and in Levi’s (1980) account of
E-admissibility.

Aside: Example 2 relies on the fact that normal and extensive form decisions are
generally not equivalent in decision theories with indeterminate probabilities.
Example 2 is in the normal form, as are all the choice problems considered in
this paper. In the extensive form of this decision problem, the decision maker has
the opportunity to make a terminal choice between T1 and T2 first, or to take as a
third option a sequential alternative: pay a fee of 0.01 utiles in order to learn the
state of the weather before choosing between T1 and T2. Under decision rules
for extensive form problems that we endorse, and which we believe also are
endorsed by Levi, then it is E-inadmissible to postpone the immediate medical
decision between T1 and T2 in order to pay an amount to acquire the irrelevant
meteorological evidence. And this holds whether the indeterminate probabil-
ity set is convex or not. Related results about independence with indeterminate
probability are presented in Cozman and Walley (2005).
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5 Concluding remarks

We have discussed coherent choice functions—where the admissible options in a
decision problem are exactly those that maximize expected utility for some probabil-
ity/utility pair in fixed set S of probability/utility pairs. All of the decision problems
used here to characterize and axiomatize coherent choice functions are normal form
decision problems. But, as indicated in Sect. 4, normal and extensive form decisions
generally are not equivalent when probability (or utility) is indeterminate. One of our
future projects is to study coherent choice for extensive form, i.e., sequential decision
problems.

Also, as noted in Lemma 4, in parallel with our findings about coherent strict partial
orders (1995), the axioms are sufficient for coherence using a set of probability/almost-
state-independent utility pairs. Though we give sufficient conditions when a choice
function satisfying our axioms is represented by a set of probability/state-independent
utility pairs with a common utility, also we intend to study how to modify the axioms
to avoid the use of almost-state-independent utilities.
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Appendix 1—Lemma 3

Lemma 2 Suppose that C(O∗) = O∗. Then p is a global Bayes model for the choice
function C(·) restricted to feasible sets in H{0,1}.

Proof Let p = (p1, . . . , pn) be a probability distribution on � with p
¯

its smallest
nonzero coordinate. We define O∗ so that it is comprised by a set of acts that span all
the elements of H{0,1} with p-expected utility p

¯
.

Partition the states in � in two sets:

�
p
1 = {ω1, . . . , ωk} is the support of p

and,

�
p
2 = {ωk+1, . . . , ωn} are those states null under p.

Clearly, �p
2 = φ if and only if p has full support. We define O∗ by two cases, depending

whether �
p
2 = φ or not.

Case 1 �
p
2 = φ and p has full support. O∗ is comprised by n-many acts, {a j : j = 1,

. . . , n}. For each j = 1, . . . , n, define the act a j by

a j (ωi ) = p
p̄ j

1 ⊕
(

1 − p
p̄ j

)
0 if i = j

a j (ωi ) = 0 if i �= j.

123



Synthese (2010) 172:157–176 171

Case 2 �
p
2 �= φ. Then O∗ is defined by k(n + 2 − k)-many acts which can be under-

stood to be the product of acts defined on �
p
1 × �

p
2 . With respect to �

p
1 , O∗ contains

k-many acts that span horse lotteries defined on �
p
1 that have p-Expected utility p

¯
,

similarly to Case 1. With respect to �
p
2 , O∗ contains (n + 2 − k)-many acts that span

all horse lotteries defined on �
p
2 , including the two constants 0 and 1.

For each j = 1, . . ., k, and m = k + 1, . . ., n + 2 define the act am
j by

am
j (ωi ) = p

p̄ j
1 ⊕

(
1 − p

p̄ j

)
0 if i = j

am
j (ωi ) = 1 if i = m or (m = n + 2 and i > k)

am
j (ωi ) = 0 otherwise

Note that an+1
j (ωi ) �= 0 if and only if i = j . In particular, it equals 0 on �

p
2 . And

note that an+2
j (ωi ) �= 0 if and only if, either i = j or i > k. It equals 1 on �

p
2 .

Let O* be the choice problem formed by taking the convex hull of these options.
That is, in Case 1 O* = H

{
a j : j = 1, . . . , n

}
, the convex hull of n-many options.

In Case 2, O∗ = H
{

am
j : j = 1, . . . , k; m = k + 1, . . . , n + 2

}
, the convex hull of

k(n + 2 − k)-many options.
Let ap denote the constant horse lottery that awards the identical von Neumann–

Morgenstern lottery in each state, with

ap = p
¯
1 ⊕ (

1 − p
¯

)
0.

Claim 1 ap ∈ O∗.

Proof In Case 1, when p has full support, p1a1 ⊕p2a2 ⊕ . . .⊕pnan is the horse lottery
ap. In Case 2, when p-null states exist, for each j = 1, . . . , k, define the horse lottery
bj = (1 − p

¯
)an+1

j ⊕ p
¯
an+2

j with payoffs:

b j (ωi ) = ap if i > k

b j (ωi ) = p
p̄ j

1 ⊕
(

1 − p
p̄ j

)
0 if i = j

b j (ωi ) = 0 if i �= j and i ≤ k.

Then p1b1 ⊕ p2b2 ⊕ . . . ⊕ pkbk is the horse lottery ap. �� − claim1.

Note that ( p, u) is a local Bayes model for each element of O∗ as the p-Expected
utility for each element of O∗ is the same value, namely p

¯
.

Claim 2 If p
¯

< 1 then (p,u) is the only local Bayes model for a p

Proof Consider q �= p. Regardless the distribution q on �, ap has q-Expected utility
p
¯
. We argue by cases that when p

¯
< 1, q is not a local model for ap with respect to O∗.
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If p has full support (�
p
2 = φ), the q-Expected utility of a j = q j

p
p̄ j

> p
¯
. And

if j = m > k, so that p j = 0 and q(�
p
2 ) > 0, then the q-Expected utility of

p1an+2
1 ⊕ p2an+2

2 ⊕ . . . ⊕ pkan+2
k = q(�1)p

¯
+ q(�2) > p

¯
.

Hence, (q,u) is not a local Bayes model for ap. ��−claim2.

Note also that for the case p1 = p
¯

= 1, ap = 1 and then O* = H
{

1, a2
1 , . . . an+2

1

}
.

In which case, if q �= p, q is not a local Bayes model for an+1
1 , which has a q-expected

value of q1 < 1. Thus, we have

Proposition p is the sole local Bayes model for all of O∗.

Claim 3 O∗ contains all the horse lotteries in H{0,1} that have p-expected utility equal
to p

¯
.

Proof Let o be such a horse lottery with p-Expected utility p
¯
. Write o(ω j ) = αj1 ⊕

(1 − αj)0, j = 1, . . . , n.

Case 1 (p has full support.): For ωi ∈ � = �
p
1 we have that

∑
i piαi = p

¯
and

0 ≤ αi ≤ 1. The set of α-vectors satisfying these two equations is closed and convex,
with extreme points given by the acts {a j }. That is, if α∗ = < α∗1, . . . , α∗n > is an
extreme point of this set of α-vectors, then α∗ = αj for some 1 ≤ j ≤ n. Since a
closed, convex set is identified by its extreme points, this establishes that o ∈ O*.

Case 2 (There are null states under p.): The reasoning is similar to Case 1, noting
that O* spans all horse lotteries defined over �

p
2 . ��−claim3.

We complete the proof of Lemma 3, as follows. Let O be a choice set and let
φ �= Op ⊆ O be those options for which p is a local Bayes model. So, each a ∈ Op
maximizes the p-Expected utility of options in O at common value r. There are two
cases, depending upon whether r ≥ p

¯
or r < p

¯
.

In the former case, mix 0 into each act in O to form the choice set O′ = p
r̄ O ⊕

(
1 − p

r̄

)
0, with the isomorphism between O and O′ that associates each o ∈ O with

o′ ∈ O, where o′ = p
r̄ o ⊕

(
1 − p

r̄

)
0.

In case r < p
¯

then mix 1 into each act in O to form the choice set o′ = 1−p
¯1−r O ⊕

( 1−p
¯1−r

)
1, with the isomorphism between O and o′ that associates each o ∈ O with

o′ ∈ O, where o′ = 1−p
¯1−r o ⊕

( 1−p
¯1−r

)
1.

The argument continues in parallel between the two cases. By the Axiom 2, a ∈
C(O) if and only if a′ ∈ C(O′). Also evident is the fact that for each a′ ∈ O′

p the
p-Expected utility of a′ equals p

¯
. Thus, by Claim 3, for each a′ ∈ O′

p, a′ ∈ C(O∗).

Claim 4 Let o′ ∈ O′ and o′ /∈ O′
p. Then each local Bayes model q for o′ with respect

to O∗ ∪ {o′} is singular with respect to p, i.e., �
q
1 ∩ �

p
1 = φ.

Proof Because o′ /∈ O′
p then Ep(o′) < p

¯
and, trivially, p is not a local Bayes model

for o′. Fix a distribution q �= p where �
q
1 ∩ �

p
1 �= φ. We argue indirectly that q is not

a local Bayes model for o′ with respect to O∗ ∪ {o′}.
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First consider the case where �
q
1 ⊆ �

p
1 , that is where q is absolutely continuous

with respect to p. Within the n − 1 dimensional simplex of distributions on �, let Lpq
be the line determined by the two points p and q, having endpoints denoted q∗ and
q*. Identify these endpoints by placing q in the closed line segment [q*, p], and thus
p lies in the closed line segment [q, q∗], from which we know that p �= q*, though it
is possible that q = q*.

Moreover, since �
q
2 ⊇ �

p
2 we have that p �= q∗, since each endpoint of Lpq has

some null-state not shared as a null state with any other point on that line. So, p is inter-
nal to the line Lpq. And because q∗ is an endpoint of Lpq, as just argued, �q∗

2 ∩�
p
1 �= φ.

Assume then that ωk ∈ �
q∗
2 ∩ �

p
1 . Since p lies on the line [q∗, q∗], then ωk ∈ �

q*
1 .

Consider the act an+1
k (or the act ak if p has full support). Since Eq(o′) ≥ Eq(a

n+1
k )

and Ep(o′) < Ep(a
n+1
k ) = p

¯
, there exists a unique distribution rk situated on the line

Lpq and between p and q (possibly with rk = q), such that Erk(o
′) = Erk(a

n+1
k ).

Because expected utility is linear in probability, for each distribution t in the half open
interval (rk, q∗], Et(o′) < Et(a

n+1
k ). But Eq∗[an+1

k ] = 0 > Eq∗[o′], which is a con-
tradiction as no act has a negative expected value. This completes the argument when
q is absolutely continuous with respect to p.

Next, assume that �q
1∩�

p
1 �= φ and write q(•) = q(• | �p

1)q(�
p
1)+q(• | �p

2)q(�
p
2),

where q(�
p
1) > 0. So, q(•|�p

1) is absolutely continuous with respect to p.
Eq(·) = Eq(·|�p

1)q(�
p
1) + Eq(·|�p

2)q(�
p
2). Since an+2

k ∈ O∗ and Eq(o′) ≥
Eq(a

n+2
k ), it follows that Eq(o′|�p

1) ≥ Eq(a
n+2
k |�p

1) = Eq(a
n+1
k |�p

1). However, as

q(·|�p
1) is absolutely continuous with respect to p, we have the same situation involv-

ing q(·|�p
1) and p as when q is absolutely continuous with respect to p, completing

the proof. ��−claim4.
Next, we show that if there is a local Bayes model for o′ with respect to O∗ ∪ {o′},

then no element of O* becomes inadmissible by adding option o′.

Claim 5 Assume that a ∈ C(O∗), o′ ∈ O′ but o′ /∈ O′
p, and let o′ have a local Bayes

model q with respect to O∗ ∪ {o′}. Then a ∈ C(O∗ ∪ {o′}).
Proof Assume the premise. In the light of Axiom 4 we are done proving Claim 5 if
we identify an act a∗ ∈ O∗ such that a∗ weakly dominates o′. This we do as follows.

By Claim 4, q is singular with respect to p. Consider an act an+2
k for ωk ∈ �

p
1.

Definition For W ⊆ � and act o, define the “called-off” act o|W by:

o(ω)|W = o(ω) for ω ∈ W, and o(ω)|W = 0 otherwise.

Write o′ as an sum of three call-off acts o′ = o′|�q
1 + o′|(�p

2 ∩ �
q
2) + o′|�p

1, and
likewise for an+2

k = an+2
k |�q

1 + an+2
k |(�p

2 ∩ �
q
2) + an+2

k |�p
1. Because an+2

k (ω) =
1 for ω ∈ �

p
2 , then an+2

k |�q
1 weakly dominates o′|�q

1, and likewise an+2
k |(�p

2 ∩ �
q
2)

weakly dominates o′|(�p
2 ∩ �

q
2). By Claim 4, o′|�p

1 fails to have a local Bayes model
with respect to O∗ ∪ {o′|�p

1}. So, by Lemma 2, there exists an option b ∈ H(O∗) that
uniformly dominates o′|�p

1. Let a∗ = an+1
k |�p

1 + an+1
k |(�p

2 ∩ �
q
2) + b|�p

1. Then a∗
weakly dominates o′ and, as Ep[a∗] = Ep[b|�q

1] = p
¯
, we have a∗ ∈ O∗. ��−claim5.
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Assume that a′ ∈ C(O∗). Let N′ = {o′ : o′ ∈ O′ and o′ /∈ O′
p but o′ has no local

Bayes model with respect to O∗ ∪ {o′}}. Then by Lemma 2, o′ ∈ R(O∗ ∪ N′). By
Axiom 1, as a′ ∈ C(O∗) then a′ ∈ C(O∗ ∪ N′). If o′ ∈ (O′ − N′) then, using Claim
5, a′ ∈ C(O∗ ∪ N′ ∪ {o′}).

By a simple induction on a well-ordering of O′ − N′, then a′ ∈ C(O∗ ∪ N′ ∪ (O′ −
N′) = C(O∗ ∪ O′). By Axiom 1, if a′ ∈ O′ then a′ ∈ C(O′). Finally, by Axiom 2,
a ∈ C(O). ��-Lemma 3

Appendix 2—Lemma 4

Lemma 4 For each admissible option o ∈ C(O) at least one of its local Bayes models
is a global Bayes model or else there is a set of probability/almost-state-independent
utility pairs that serve as a global Bayes-model.

Proof The next claim, which we use to establish Lemma 4, extends the idea of Axiom
4 to the strict partial order 〈.
Claim 6 Suppose that for option sets A, B and D, B〈A and B ∩ C(D) �= φ. Then
A ∩ C(closure{D − (B ∪ A)}) �= φ.

Proof (indirect) Suppose that A ⊆ R(closure{D − (B ∪ A)}). By Axiom 1 applied
twice, A ⊆ R(D ∪ A) and A ⊆ R(D ∪ A ∪ B). Since B〈A, likewise B ⊆ R(D ∪ A ∪ B).
Thus, A ∪ B〈D. By transitivity, B〈D and therefore B ∩ C(D) = φ. ��-claim 6.

Given o ∈ C(O) and following the ideas we used in (1995, Definition 19), we
introduce the notion of a target set T(o, O) of probability distributions for o with
respect to choice problem O. The target set for o is a subset of the local Bayes models
for o which, we show, contains all of its global Bayes models. We demonstrate that
whenever the target set includes a boundary point, that boundary point is a global
Bayes model.

Given a probability distribution p, recall the decision problem Op = {
a p, h p

1 , . . . ,

h p
n
}

defined in Sect. 2. We state without proof that whenever C(Op) = Op then
C(O∗) = O∗ for O∗ defined with respect to p as in Lemma 3, and so p is a global
Bayes model.

Definition T(o, O) = { p : p is local Bayes model for o in choice problem O and{
h p

1 , . . . , h p
n
} ⊆ C(Op)

}

Claim 7 T(o, O) is a non-empty, convex set.

Proof Without loss of generality, and to simplify the presentation, we establish the
claim for a binary state space � = {ω1, ω2}. Convexity is shown as follows. Note that
for p defined by p(ω2) = 0, h p

2 ∈ C(Op), and for p defined by p(ω2) = 1, h p
1 ∈ C(Op).

And by Claim 6, if h p
2 ∈ C(Op), then for all distributions q with q(ω2) ≤ p(ω2) we

have hq
2 ∈ C(Oq); and if h p

1 ∈ C(Op), then for all distributions q with q(ω2) ≥ p(ω2)

we have hq
1 ∈ C(Op). In the general case, with more than 2 states, the same result

follows by noting that T(o, O) is an intersection of half-planes.
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We show that T(o, O) is non-empty by an indirect argument using the Archimedean
axiom. So, assume that for each p, C

{
h p

1 , h p
2

}
is a unit set, and by the observation

above, let q be the lub
{
p(ω2) : h p

2 ∈ C
{
h p

1 , h p
2

}
. There are two cases.

Case 1
{
hq

2

} = C
{
hq

1 , hq
2

}
So q(ω2)< 1 and then hq

1〈hq
2 and for all p(ω2)> q(ω2),

h p
2 〈h p

1 . But as p approaches q, h p
i converges to hq

i for i = 1, 2. Then by Axiom 3,
hq

1〈hq
1 , a contradiction.

Case 2
{
hq

1

} = C
{
hq

1 , hq
2

}
. So q(ω2) > 0 and then hq

2〈hq
1 and for all p(ω2) <

q(ω2), h p
1 〈h p

2 . But as p approaches q, h p
i converges to hq

i for i = 1, 2. Then by
Axiom 3, we obtain the contradiction, hq

2〈hq
2 . ��-claim 7.

To complete the proof of Lemma 4 there are two cases to consider.

Case 1 T(o, O) contains at least one of its boundary points. Suppose, e.g., that q is
the lub

{
p(ω2) : h p

2 ∈ C
{
h p

1 , h p
2

}
and that R

{
hq

1 , hq
2

} = φ. Then for each 0 ≤ x ≤
1, R

{
hq

1 , hq
2 , xhq

1 ⊕ (1 − x)hq
2

} = φ, as the following reasoning establishes.

Assume that q(ω2) < 1, or we are done. Then for all p(ω2) > q(ω2), h p
2 〈h p

1 as before.
For 0 < x ≤ 1, by Axiom 2, h p

2 〈xh p
1 ⊕ (1 − x)h p

2 . As p approaches q, by Axiom
3, then xhq

1 ⊕ (1 − x)hq
2 ∈ C

{
hq

1 , hq
2 , xhq

1 ⊕ (1 − x)hq
2

}
, on pain of contradiction,

otherwise, that hq
2〈hq

2 . The reasoning is similar if the target set T(o, O) is closed at
the other end. Then, at each point p of closure for T(o, O), R(Op) = φ and p is global
Bayes model.

Case 2 If the target set is entirely open and there is no p ∈ T(o, O) such that R(Op) =
φ, we arrive at the parallel situation studied in Sect. IV.2 of our (1995). That situation
is one where, first, a coherent choice function C is induced by a finite set P of linearly
independent probabilities on �. The convex target sets for C include subsets of P
as extreme points, i.e., R(Op) = φ for each p ∈ P. Hence, C is represented by the
set P of global Bayes models. Then, this choice function C is changed into another
C+, which is formed by adding the strict preferences, associated with finitely many
conditions of the form T(o, O) ∩ R(Op) �= φ. The results established in Section IV.2
of our (1995) show that then C+ satisfies the axioms. Also, those results show that in
a neighborhood of the extreme points of the target sets for C there are sets of prob-
ability/almost-state-independent utility pairs that are local Bayes models for C, and
which then represent the choice function C+. These almost-state-independent utilities
result by adding at least one new prize {r} to the two {0, 1} used to create the horse
lotteries studied here. ��-Lemma 4

Corollary If for each choice problem O and o ∈ C(O), the target set T(o, O) includes
at least one of its boundary points, then C is represented by a set of probability/state-
independent utility pairs.
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