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Abstract Using four examples of models and computer simulations from the
history of psychology, I discuss some of the methodological aspects involved in their
construction and use, and I illustrate how the existence of a model can demonstrate
the viability of a hypothesis that had previously been deemed impossible on a priori
grounds. This shows a new way in which scientists can learn from models that extends
the analysis of Morgan (1999), who has identified the construction and manipulation
of models as those phases in which learning from models takes place.
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1 Introduction

Models of various sorts play an essential role in psychology. Leaving aside the study
of animals as models for human beings, four different artificial models that were
introduced in the 20th century are presented in this paper: Hull’s psychic machines,
Grey Walter’s tortoises, Newell and Simon’s classical symbolic systems, and
Rosenblatt’s perceptrons with their extension to multi-layered connectionist networks
(Sect. 2). The first two are mechanical models, the others are computational models
or computer simulations.1 Mary Morgan has argued convincingly that scientist can
learn from models in two distinct phases, namely during the construction of the

1 The term “computer simulation” is used differently in psychology than in other disciplines (see Sect. 3).
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models and afterwards by using them (Morgan 1999).2 She has illustrated, on the
one hand, that setting up an adequate model requires the identification of key compo-
nents, and that it involves interpretation, conceptualization, simplification, approxi-
mation, and integration in various degrees. Using a model, on the other hand, involves
representation, autonomous functioning, and manipulation. A closer look at the four
models from the history of psychology supports this analysis (Sect. 3.1). Moreover,
it reveals that in the construction of a model a researcher can focus on replicat-
ing most accurately some given data or behavior, or on getting the most out of a
certain set of basic mechanisms that underlie the functioning of the model. These
two methodological approaches are commonly referred to as analytic and synthetic,
and they are discussed in Sect. 3.2, with particular attention to the close relation-
ships between analytic computer simulations and theories, and between synthetic
models and agent-based models. While the case studies presented in this paper con-
firm Morgan’s claims that researchers can gain valuable insights during the construc-
tion of the models as well as through manipulations, each of these models was also
employed in arguments that refute claims about necessary conditions for certain types
of behavior or in support of claims about the internal mechanisms that produce certain
behavior. These two kinds of arguments are related to the methodological distinc-
tion between analytic and synthetic models. In all of these arguments for the valid-
ity of a particular claim or the viability of an approach, which were often made in
direct response to a previously formulated claim of the contrary, the bare fact that
any of these models was exhibited was a significant contribution to scientific progress
(Sect. 3.3). This shows how scientists can learn from the existence of models, and
thus extends Morgan’s analysis of learning from models. That the above examples
are all drawn from the history of psychology should not detract from the fact that
this use of the existence of models in scientific argumentation is nevertheless very
general.3

2 Physical and computational models in psychology

2.1 Hull’s psychic machines

In reaction to the strong mechanistic tendencies in late 19th century physiology (e.g.,
Helmholtz), the early 20th century saw a revival of vitalism, in particular in biology,
but also in psychology. Driesch, for example, argued forcefully against ‘association’
and ‘mechanics’ and in favor of ‘soul’ and ‘entelechy’ as fundamental concepts of
psychology (Driesch 1925, p. 267). It was against this background that the young
American psychologist Clark L. Hull began building and studying machines that were
aimed at simulating certain aspects of human behavior. Early in life he had already

2 This analysis is also mentioned approvingly in Hartmann and Frigg (2005, p. 745).
3 See, e.g., semantic consistency proofs and the notion of ‘proof of concept’ (Sect. 3.3).
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constructed various mechanical devices and had developed a mechanistic view of the
world (Hull 1952). In his “idea books”4 Hull writes that

it has struck me more than once that so far as the thinking processes go, a machine
could be built which would do every essential thing that the body does (except
growth) so far as concerns thinking, etc. And […] to think through the essen-
tials of such a mechanism would probably be the best way of analyzing out the
essential requirements of thinking […] (Hull 1962, p. 820; entry dated March 1,
1926; see also p. 839)

A year after he wrote this passage Hull learned about Pavlov’s discovery of the
phenomenon of the conditioned reflex and he became convinced that this was the fun-
damental mechanism underlying learning. Together with collaborators Hull designed
and implemented in the course of the next four years mechanical devices to simu-
late the behavior observed by Pavlov. They experimented with various realizations
until they settled for an electric circuit with “polarizable cells and mercury–toluene
regulators” (Hull and Baernstein 1929).5

At the outset of a classical Pavlovian experiment on conditioning, presenting food
to a dog causes it to salivate (reflex), whereas the sound of a bell has no such effects.
However, after having been presented repeatedly with both food and the sound of a bell
at the same time (conditioning), the sound of the bell alone suffices to cause the dog
to salivate (conditioned reflex). Hull simulated such series of events with a machine
that had two switches as inputs and a light bulb as output. In the initial state, only one
of the switches caused the light to turn on (reflex), while switching on the other had
no visible effect whatsoever. But, turning on both switches charged the polarizable
cell, which could then later be discharged to the light bulb by turning on only the second
switch. Thus, after having repeatedly switched on both switches simultaneously
(conditioning), also the second switch, if turned on by itself, caused the light bulb
to glow (conditioned reflex). Further aspects of Pavlov’s experiments were also repro-
duced by Hull’s device, e.g., that the strength of the conditioned reflex depends on the
number of simultaneous stimulations of the inputs, and that the conditioned reflexes
decay if the stimuli are not presented together for a longer period of time.

In their presentation of the above results Hull and Baernstein emphasize two points.
First, that the existence of such a machine shows that “mental processes are indepen-
dent of the material substance,” and second, that to build such a machine one has to
identify the “essential functions” of the behavior that is being modeled. The second
point fits exactly Morgan’s observation that the building of a model can lead to impor-
tant insights (Morgan 1999), while the first point is an example of how the existence
of a model can teach us something about the necessary and sufficient conditions for
certain behavior. More on this later.

4 Hull kept extensive notebooks, which he called “idea books” and in which he recorded his thoughts
and research ideas. From the days of his graduate studies in 1916 to the end of his life in 1952 he com-
pleted at least one such book every year, 73 in total. Passages of these books have been published, with an
introduction, in Hull (1962).
5 See also Baernstein and Hull (1931) and Krueger and Hull (1931); for a detailed analysis of Hull’s
machines, see Cordeschi (1991).
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For being able to compare human behavior with that of the model, certain parts
of the organism, e.g., sense organs, responding system, and nervous system, must
be represented by corresponding components of the model, but Hull refuses to make
the additional claim that the underlying mechanisms of the model “are duplicates of
the corresponding organic processes” (Baernstein and Hull 1931, p. 99). Indeed, Hull
is very careful to point out which of the characteristics of conditioned reflexes that
Pavlov had determined experimentally are reproduced by his machines and which are
not (e.g., delayed reflexes). For the latter, he expresses the hope that further research
with more elaborated machines might eventually lead to their successful simulation.
Encouraged by his early successes of imitating very simple learning behavior Hull
also envisages the possibility of simulating more complex cognitive functions, such
that “at a not very remote date the concept of a ‘psychic machine’ may become by
no means a paradox” (Baernstein and Hull 1931, p. 106)6 as was the view of the
proponents of vitalism.

2.2 Grey Walter’s tortoises

Two decades after Hull’s work on psychic machines the neurophysiologist William
Grey Walter became one of the most well-known builders of mechanical models in
Britain.7 After having achieved groundbreaking results in his research on electro-
encephalography (EEG), he turned his attention in the early 1950s to the internal
workings of the brain. At the time it was common to assume that the brain’s perfor-
mance depends essentially on the number of its neurons. Thus, due the vast number
of brain cells, an approach based on modeling seemed to be completely out of reach.
To overcome this difficulty, and in stark contrast to the received view, Grey Walter
hypothesized that it is not so much the number of units, but the richness of their inter-
connections that is responsible for generating complex behavior, and he set out to test
this claim by building a model with a minimal number of components.

Grey Walter succeeded in devising an autonomous robot with only two functional
units, each of which simulated the behavior of a single brain cell. He built two of these
machines, which moved on three wheels and consisted only of pairs of tubes, relays,
condensers, batteries, and motors (one for moving, the other for steering), and used
a photoelectric cell and an electrical contact as inputs. To everybody’s surprise these
machines were able to exhibit complex and “remarkably unpredictable” animal-like
behavior (Grey Walter 1950, p. 44), such as finding a light source in a room and moving
towards it while getting around obstacles on their path. These machines were built to
continuously explore the environment and Grey Walter referred to them as Machina
speculatrix, or “tortoises” (Grey Walter 1950). Spurred by the success of these models,
Grey Walter went a step further and tried to endow his machines with the ability to
learn from previous experiences. Like Hull, he considered Pavlov’s conditioned reflex
to be the basic mechanism of learning, and he implemented this in a similar type of

6 See also the entry of 2 July 1930 in Hull’s idea books, where he refers to “manuscripts or ideas about the
actual design of psychic machines” (Hull 1962, p. 839).
7 For more background on Grey Walter, see Hayward (2001).
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machine, Machina docilis, which was also equipped with an additional microphone.
Its learning unit, CORA (conditioned reflex analogue), was a small electrical circuit
consisting of a handful of amplifying and discharging tubes, condensers, and resistors.
At first, the sound of a whistle did not provoke any reaction from the machine, but
by repeatedly blowing the whistle at the same time that a light source was shown, the
robot would associate the sound and the occurrence of light, such that it eventually
became attracted to sound even in the absence of light (Grey Walter 1951). Grey Wal-
ter considered his models as genuine tools for scientific inquiry, and he emphasized
that they generated unforeseen behavior (e.g., the learning of defensive reflexes) that
was nevertheless typical of the animal behavior they were intended to simulate (Grey
Walter 1953, pp. 179–181).

2.3 Classical symbolic systems

Soon after digital computers became available at research institutions psychologists
realized that these could be used as a new tool for simulating behavior.8 Thus, in the
late 1950s the first theories of cognition were developed that could be implemented
as computer programs. In this context the work of Alan Newell and Herbert A. Simon
was most influential. In particular, they introduced a new level of analysis of cognitive
processes, namely that of (symbolic) “information processes” (Newell et al. 1958).
They argued that both computers and human beings can be interpreted as informa-
tion processing systems, and that the behavior of a particular information processing
system is “explained” by a computer program that produces the same behavior.

Thus, to investigate human problem solving behavior at the level of information
processes one formulates a computer program and then compares the output generated
by the program with the behavior of human subjects. Moreover, since the program
is intended to simulate the entire dynamic reasoning process and not just its final
outcome, Newell and Simon compared the computer output during various stages of
the simulation with verbal thinking-aloud protocols obtained from subjects while they
were solving given problems.9 Finally, if the program was able to simulate human
behavior over a wide range of situations Newell and Simon proposed to regard the
program itself as “a theory of the behavior” (Newell and Simon 1961a, p. 2012):

Only when a program simulates the entire sequence of behavior—for example,
makes the same chess analysis as the human player—do we have any assur-
ance that we have postulated a set of processes that is sufficient to produce the
behavior in question. (Newell and Simon 1961a, p. 2016)

8 In fact, the computer itself became a popular model for the organization of the brain (e.g., von Neumann
1958).
9 The following is an excerpt of such a protocol, where the task was to transform a logical expression into
another using a set of given rules (clarifying questions from the experimenter are in italics): “I’m looking
at the idea of reversing these two things now. Thinking about reversing what? The R’s … then I’d have
a similar group at the beginning but that seems to be … I could easily leave something like that ’til the
end, except then I’ll…Applying what rule? Applying, … for instance, 2. That would require a sign change.
Try to keep talking if you can. Well … then I look down at rule 3 and that doesn’t look any too practical”
(Newell and Simon 1961a, Fig. 3).
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Given the fact that their program, called the General Problem Solver, had fared
quite well in imitating how subjects solved various logic problems (Newell and Simon
1961b), they took this as a validation of the fundamental assumption underlying their
approach, i.e., that it “provides an unequivocal demonstration that a mechanism can
solve problems by functional reasoning” (Newell and Simon 1961a, p. 2014). Later,
convinced by a large number of successful simulations, they formulated their famous
physical symbol system hypothesis, namely that “the necessary and sufficient condi-
tion for a system to be capable of thinking” is that it is able to perform certain symbolic
processes (Simon 1993, p. 640).10

2.4 Perceptrons and neural networks

At the same time when Newell and Simon were analyzing cognitive processes at the
information processing level, a radically different approach emerged that took recent
findings in neuroscience about the internal workings of the brain as its starting point.
Here, highly idealized analogues of neurons and their interconnections are modeled
as neural networks (or, without the emphasis on the physiological analogy, as connec-
tionist systems) consisting of interconnected layers of nodes, each of which having a
number of input connections and a single output connection. Depending on the values
of the inputs, the output can either be activated or not, thus imitating the firing of a
neuron. Due to their close structural similarity to parts of the brain, neural networks
have been considered to offer “a reasonable basis for modeling cognitive processes in
general” (Rumelhart and McClelland 1986b, p. 110).

The first models of this kind were put forward by Frank Rosenblatt, who named
them perceptrons. He aimed at “investigating the physical structures and neurody-
namic principles which underlie ‘natural intelligence.’ ” (Rosenblatt 1962, pp. v–vi).
He considered perceptrons to be brain models, by which he meant “any theoretical
system which attempts to explain the psychological functioning of a brain in terms
of known laws of physics and mathematics, and known facts of neuroanatomy and
physiology” (Rosenblatt 1962, p. 3). Perceptrons consist of only three layers of nodes:
input, hidden, and output units. Using Rosenblatt’s ‘perceptron convergence proce-
dure’ to update the connection strengths between nodes, a perceptron can be trained
to associate inputs with certain desired outputs. Moreover, Rosenblatt proved that if
the input–output relation could be learned at all by a perceptron, then this algorithm
would eventually yield the necessary connection strengths. Although perceptrons were
originally developed as theoretical models, Rosenblatt held that “a brain model may
actually be constructed, in physical form, as an aid to determining its logical potentiali-
ties and performance” (Rosenblatt 1962, p. 3), without this being one of their essential
features, however. He investigated both physical models (“hardware systems”) and
computer simulations (“digital simulations”) of perceptrons himself for testing and
comparing their behavior, since mathematical analyses of the more complex systems
were lacking. Thus, for Rosenblatt physical models and computer simulations are
on par from a methodological point of view, differing only in regard to practical

10 For the classic exposition of this hypothesis, see Newell and Simon (1972).
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matters: he notes that in comparison with hardware systems, computer simulations
are more versatile, but much slower.

In 1969 Minsky and Papert were able to prove that the tasks that the single-layered
perceptrons could learn belonged only to a restricted class, the ‘linearly separable
problems’. Furthermore, although they did not rule out in principle that Rosenblatt’s
learning algorithm could be extended to more complex networks, they contended that
“[t]here is no reason to suppose that any of these virtues [of perceptrons] carry over
to the many-layered version” (Minsky and Papert 1969, p. 232). In the wake of these
results research on connectionist models almost came to a halt and attention in cog-
nitive science was redirected to the problem of knowledge representation. In contrast
to the classical computer models, where the computational symbols are claimed to be
analogous to mental representations, connectionist models do not have any obvious
localizable representation of information. On the one hand this makes them subject
to criticisms,11 but on the other hand this fact itself indicates a further similarity with
human brains. It was only in the 1980s with the formulation of the ‘generalized delta
rule’ by Rumelhart and his colleagues that the earlier difficulty was overcome and
research on connectionist networks was intensified. Indeed, this has been hailed as
“one of the most significant contributions to connectionist research” (Medler 1998,
p. 53)12 and connectionist models have remained to this day an active field of research.

3 Learning from the existence of models

Some general features that are prominent in the above case studies from the history
of psychology are discussed next, and we shall see that representational capacity and
autonomous functioning enable these models to be used as genuine tools for scientific
inquiry (Sect. 3.1). For the construction of models psychologists have developed two
methodologies which differ in their focus on either the overall behavior or on the
internal mechanisms that generate this behavior (Sect. 3.2). However, despite the dif-
ferences between the various models and computer simulations under consideration,
we shall see that they have played very similar roles in scientific arguments (the dis-
tinction between analytic and synthetic models affecting the particular forms of these
arguments). I will show how the existence of a model can be used to refute necessity
claims and to demonstrate the viability of research programmes (Sect. 3.3), which
extends the analysis of Morgan, who has identified the construction and manipulation
of models as those phases in which learning from models takes place (Morgan 1999).

3.1 Representational capacity and functional autonomy

Hull, Grey Walter, Newell and Simon, and Rosenblatt all emphasize the predictive
power of their models, i.e., their ability to generate unforeseen behavior that the
researcher can exploit to formulate novel hypotheses. This is possible because both

11 See, for example, the debate on compositionality: Fodor and Pylyshyn (1988) and replies.
12 For a different perspective, see “Prologue: A View from 1988” and “Epilogue: The New Connectionism”
in Minsky and Papert (1988, pp. viii–xv and pp. 247–280).
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the physical and computational models have representational capacities and function
autonomously.

Representational capacity is an essential feature of models, since, in order to inter-
pret the model as a model of something, it has to latch on to either theory or the
world, i.e., certain features of the model must represent aspects of what it is intended
to model. In the case of Grey Walter’s tortoises, for example, the photoelectric cell
corresponds to a sensory organ such as a moth’s eye, and the robot’s wheels corre-
spond to means of motions such as a moth’s wings. These positive analogues13 allow
us to compare the behavior of the mechanical tortoise to that of a real moth and to
conclude that they resemble each other in the sense that both are attracted by a light
source. Hull’s machines are more primitive in this regard, using switches as input and
a light bulb as output. In the case of computational models the representational units
are usually the various means by which the computer program receives external input
and communicates its output. However, also internal states can serve a representational
function. For example, the state in which Newell and Simon’s program tries to apply a
certain symbolic rule is interpreted as representing the quest of a particular subject to
apply a corresponding logical inference. Indeed, the question of the adequateness of
knowledge representation in terms of symbolic systems and neural networks has been
the source of a long and still unsettled debate between the proponents of the different
computational models.

Using the pendulum model and Prandtl’s model of a fluid with a bounding layer
as case studies, Morrison argued convincingly for a hybrid nature of these models,
“neither theory nor simple descriptions of the world” (Morrison 1999, p. 45), which
gives rise to their functional independence. This independence in turn forms the basis
for their role as autonomous agents of scientific inquiry. In other words, Morrison has
shown that, despite having significant connections to theory, models are independent
sources of scientific knowledge. The functioning of Hull’s and Grey Walter’s mechan-
ical models goes beyond the influence of the scientist and his theory, despite their
being constructed with reliance to theoretical considerations. This autonomy of the
models is the basis for their being able to behave in unforeseen ways, such as dis-
playing particular aspects of conditioned learning that were not purposely built into
them by Hull and his collaborators, and exhibiting interesting interactive dynamics
between more than one of Gray Walter’s tortoises. Similarly, although the behavior
of the computer models is determined only by the program and the internal logic of
the computer and is thus deterministic, it still is outside the complete control of the
modelers since they are not omniscient with regard to deductive consequences. Indeed,
researchers that devise computer simulations often refer to their work as experiments
and thereby emphasize the autonomy of their models. Thus, all of the physical models
and computer simulations discussed above exemplify Morrison’s observation about
the functional autonomy of models.14 This, and their representational capacity enable
us to use them as genuine tools for scientific discovery.

13 See Hesse (1966).
14 See also Morrison and Morgan (1999), where this autonomy is employed to characterize models as
instruments.
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3.2 Analytic and synthetic models

The construction and use of models can focus on either the internal mechanisms or on
the overall behavior of the model. This distinction also plays a role in how the existence
of models is used in arguments about the viability of particular research programmes,
which addressed in the next section. The methodological distinction between ana-
lytic and synthetic models15 is orthogonal to that between physical and computational
models. For example, there are striking similarities between Hull’s use of mechanical
models of animal behavior of the 1930s and Newell and Simon’s research based on
computer programs that simulate cognitive processes of the 1960s, despite the obvious
technical differences between them.16 Both approaches take certain data that is to be
reproduced (animal behavior and verbal protocols of problem solving) as their starting
points, which is the characteristic feature of analytic, or data-driven, models. In this
connection it is interesting to notice that the methodological considerations formu-
lated by Hull and by Newell and Simon are indeed very similar, in particular their
expressed agnosticism about whether or not the particular implementations of their
models exactly replicate the mechanisms that generate the behavior that is simulated.
An alternative methodological approach, which is exemplified by Grey Walter’s robots
and by research on neural networks, is referred to as synthetic. Here, the researchers
take certain basic building blocks, whose functioning is well understood, and their
configurations as the starting point for the construction of models.17 Thus, we get the
following classification of the discussed models:

Physical Computational

Analytic Hull’s psychic machines Newell and Simon’s symbolic systems

Synthetic Grey Walter’s tortoises Perceptrons and neural networks

3.2.1 Complexity and understanding

The behavior of an agent typically depends in part on its internal mechanisms and in
part on the environment. A researcher who wants to analyze the agent’s behavior is
faced with the problem of determining exactly how much of it is due to the internal
structure. Unfortunately, experience has shown that “when we analyze a mechanism,
we ted to overestimate its complexity” (Braitenberg 1984, p. 20).18 Grey Walter’s
tortoises provide a compelling illustration of this claim, since, when they were exhib-
ited for the very first time in public, the audience was extremely surprised after it

15 See Dawson (2004), in particular pp. 3 and 98–100 for a discussion of motivations for these approaches.
16 Incidentally, one of the other psychologists who showed an interest in the use of computers for modelling
cognitive processes in the 1960s was Carl I. Hovland (Hovland 1960), who had collaborated two decades
earlier with Hull (Hull et al. 1940).
17 One also finds the term “synthetic models” to be used for artificial models in general, but this is not the
sense intended here.
18 Dawson refers to this observation as the “law of uphill analysis and downhill synthesis” (Dawson 2004,
p. 3).

123



530 Synthese (2009) 169:521–538

was informed about the internal simplicity of the robots. This observation explains a
general difficulty that analytic models (and theories) of behavior face, namely, that
in order to account for a wide range of behavior they tend to become quickly very
complex. Indeed, it is often the case that each new aspect of behavior that is to be
simulated leads to an ad hoc extension of the current model. An illustration of this
is provided by historical development of Hull’s theory of adaptive behavior, which
he turned to after his work on psychic machines, and which “just broke down in its
enormous detail, with all the exceptions to it” (Baars 1986, p. 113). (This commonality
between analytic models and theories is taken up again below.)

This methodological difficulty of analytic models is overcome, at least prima facie,
by synthetic models, since they are built from very simple and well-understood parts
(e.g., simple electronic components and connectionist units) and thus promise to lead
to simpler theories. Nevertheless, complexity is often introduced through the back
door, because often very many of these building blocks must be organized into a sin-
gle system (e.g., a neural network), whose overall behavior is again difficult to analyze
despite the fact that the behavior of the components is easily understood. In the end,
computational models, be they analytic or synthetic, can become as complex as the
process they are trying to simulate, thus yielding no immediate advance in understand-
ing.19 However, while this difficulty has serious implications on the epistemic value
of these models, it only bears very little on how we can learn from the existence of
models, which is discussed in the next section.

3.2.2 Analytic simulations as theories

It is a noteworthy observation that the use of analytic computer simulations in cognitive
psychology blurs the distinction between models and theories. Computer simulations
are often described in the literature as being based on an underlying well-developed
theory.20 However, there was no such underlying theory that supported the introduc-
tion of classical symbolic models in psychology. Instead, the simulations themselves
have been regarded as theories, for example, by Newell and Simon, who explicitly
draw an analogy between theories that are expressed by computer programs and by
mathematical equations, and they attribute the same epistemological status to com-
puter programs and mathematical formulas (Newell and Simon 1961a, p. 2013). In
fact, their methodology is in accord with that of mathematical modeling in psychology,
where the models result from cycles of theory construction from given data, deduction
of consequences by logical and mathematical operations, and verification or refutation
on the basis of newly collected data (Dawson 2004, p. 35).

19 This well-known problem is also referred to as Bonini’s Paradox (Dutton and Briggs 1971, p. 103); it is
discussed, for example, in Churchland and Sejnowski (1988), Lewandowsky (1993), and Dawson (2004,
pp. 17–18).
20 See, e.g., Humphreys (2004, pp. 107–108) and Hartmann and Frigg (2005, p. 745). Also Morrison
mentions the common view that model building starts with a background theory in Morrison (1999, p. 51).
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3.2.3 Synthetic models in other sciences

The synthetic models of the psychologists are closely related to the agent-based or
individual-based models that are mainly used in the social sciences, where the behav-
ior of an entire population is modeled via interactions of its individuals. Schelling’s
tipping model is a well-known early example, where an artificial society is modeled
in which an agent would stay put if more than one third of its neighbors are of the
same color and would move to another location on a two-dimensional grid otherwise.
These simulations show that even though each agent is somewhat tolerant segregated
neighborhoods are formed the long run (Schelling 1978).21 In these kinds of models

there is no overarching model of the social system, only rules governing the
interaction of the individuals comprising the system. […] Phenomena often
emerge within these models at the macro level that are the result of multiple
interaction at the micro level, these macro phenomena being unforeseen when
the individual-level analysis begun. (Humphreys 2004, p. 131)

The analogy to neural networks is striking: Each node in the network corresponds
to an individual and the entire network corresponds to the population. The lack of an
overarching model for the system corresponds to the lack of a well-developed under-
lying theory, and the ability of networks to recognize input-output patterns emerges
from the interactions of the single nodes, whose behavior is clearly specified.

Because of their similarity, the dangers that have been identified for the agent-based
modeling approach, like the return to a priori science and the need for a justification of
the basic mechanisms that goes beyond their ability to simulate the desired phenom-
ena, carry over to synthetic models. Due to the autonomy of computer simulations and
the ease in which they can be developed and tested, it is easily possible to sever the con-
tact with the empirical basis that motivated their development. In particular, synthetic
models can be built and studied without any reference to empirical data and completely
independently of what they are later be said to be models of. For example, connec-
tionist networks are also studied by computer scientists as an instance of “machine
learning” techniques (Mitchell 1997). The synthetic psychologists discussed above
were indeed painfully aware of the need of independent justifications of their basic
assumptions and they often cited experimental results to show that there are good
reasons to hold that the mechanisms they postulated did in fact correspond to genuine
features of the systems under investigation. For example, the importance of electricity
for brain functions was demonstrated by Grey Walter’s own research on EEGs, and the
functioning of connectionist units was explicitly motivated by independent findings
in neurophysiology.22

21 For an overview and discussion of these kinds of models, see Axelrod (1997).
22 See Grey Walter (1950, pp. 42–43), Rosenblatt (1962, p. 3), and Rumelhart and McClelland (1986b,
p. 110).
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3.3 Existence of models in scientific argumentation

In the early development of a scientific discipline one regularly encounters claims
about certain necessary conditions and about what is possible or not, of the form “H is
a necessary condition for G,” “it is impossible to obtain G without H ,” or “¬H cannot
cause G.” In the case of psychology, claims of this kind have been: “vis viva is a neces-
sary condition for intelligent behavior,”23 “it is impossible to have intelligent behavior
by purely mechanical means,” “symbolic processes alone cannot generate intelligent
behavior,” “complex mechanisms are necessary to generate complex behavior,” and
“connectionist networks can only accomplish very simple tasks.” For H to be neces-
sary for G is logically equivalent to the claim that whenever you have G, you also have
H , or, formally, ∀ x (Gx → H x).24 To refute such an assertion one has to exhibit an
instance of Gx that is not also an instance of H x ,25 in other words, an instance, say
a, that makes Ga & ¬Ha true. Incidentally, such an instance also establishes that Gx
and ¬H x are consistent with each other. Under the assumption that ‘purely mechan-
ical’ is the contrary of ‘containing some form of vital force’, a device a that exhibits
some intelligent behavior (i.e., Ga holds) and is purely mechanical (i.e., ¬Ha holds),
thus, refutes the claim that ‘to contain some form of vital force is necessary to exhibit
some form of intelligent behavior’ (i.e., that H x is necessary for Gx). In other words,
exhibiting the existence of a model of a certain kind is all that is required to falsify a
necessity claim of the form under consideration, and it is precisely in this sense that
scientists can learn something just from the bare existence of models.

The move from talk about models, be they physical, computational, or otherwise,
to talk about models in a logical sense, i.e., that interpret the primitive terms of a
language and that can satisfy statements of that language, should not be taken as an
endorsement of Suppes’ claim that the logical notion of model “is the fundamental one
for the empirical sciences as well as in mathematics” (Suppes 1962, p. 252). Rather,
for the sake of this discussion we only need to accept that any model can be under-
stood as a model in the logical sense, where the notion of a logical model is suitably
extended to include physical objects. Since every model has certain representational
capacities, we can easily consider these to interpret particular terms in our language.
For example, the term ‘auditory organ’ is so interpreted that the microphone of Grey
Walter’s tortoise counts as one.

These considerations are closely related to the use of models for semantic consis-
tency proofs and independence proofs in mathematical practice. Here models, usually
conceived as abstract mathematical structures, are also understood to interpret the
primitive terms of a theory. In particular, if a model for a theory can be exhibited one
can conclude that the theory is consistent, i.e., that it cannot lead to contradictions,
since otherwise these contradictions would be reflected in the model, too. Thus, the
bare fact that a model exists can constitute an important advance also in mathematics.
Famous examples of this use of models are the models for non-Euclidean geometries

23 ‘Intelligent’ is meant here to include typical animal-like and human-like behavior.
24 For the analysis of these simple forms of argument, the use of modal logic can be dispensed with.
25 To emphasize that G and H are predicated of something, I shall write Gx and H x from now on.
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put forward by Beltrami and Klein, which established beyond doubt that the
geometries investigated by Bolyai and Lobachevsky were consistent (in other words,
that Euclid’s parallel postulate is independent of his other axioms) and thus of genuine
mathematical interest.26

Let us now revisit the four models presented above with an eye to the way in which
their existence was used in arguments about what is possible and what is not. Hull’s
“idea books” show him becoming more and more convinced of the mechanical nature
of cognitive processes, e.g., he talks about the “human machine” in 1925, refers to his
own views as “mechanistic psychology” in 1927, and mentions “psychic machines”
in 1930.27 At the same time, he realized that his own development had been held back
“probably ten or fifteen years at least” by the wide-spread “dogma that an organism
made up of consciousless particles may not possibly manifest consciousness” and he
lamented that “the world is so hypnotized by the ancient animism” (June 16, 1930;
Hull 1962, pp. 837–838). To overcome these views, Hull speculated that he might
be most successful “especially if I construct a series of striking psychic machines to
support the theory” (February 26, 1930; Hull 1962, p. 833). Finally, Hull explicitly
replied in print to those who argued that behavior, which is characterized as involv-
ing a psyche or being intelligent, cannot be generated by purely mechanical means
in his closing remarks of Krueger and Hull (1931), in which he presents an electro-
mechanical model that imitates Pavlov’s conditioned reflex without any recourse to
any ‘psychic’ forces. He positions his work in direct opposition to the “very wide-
spread and persistent [belief] that certain complex forms of adaptation cannot take
place by any imaginable concatenation of materials without the mediation of some
nous, entelechy, soul, spirit, ego, mind, consciousness, or Einsicht” (Krueger and Hull
1931, p. 267). Thus, since his mechanical model does simulate certain aspects of the
behavior in question, it refutes the claim that any of these notions is necessary for
producing the behavior that is simulated. Moreover, since Hull’s aim was to reproduce
certain patterns of learning behavior, rather than arguing in favor of some particular
underlying mechanism that generates this behavior, his methodology is analytic and
his refutation does not depend on the specific implementation of the model he put
forward. It is interesting to note that Hull also anticipated that the more successful
the proponents of the mechanistic psychology will be, i.e., the more types of behavior
they will succeed in generating by mechanical means, the proponents of vitalism “will
gradually retreat to more and more inaccessible parts of the psychological terrain”
(Krueger and Hull 1931, p. 267), and the later development of cognitive psychology
has vindicated this prediction.

With the help of computers Newell and Simon were able to show that even more
complex forms of behavior, such as solving logical problems, could also be simu-
lated by mechanical means alone. Like Hull, they also emphasize the mechanical
character of their model and direct this against proponents of vitalism, e.g., in the
opening remarks of “Computer simulation of human thinking and problem solving”:
“It is no longer necessary to argue that computers can be used to simulate human

26 For more on the history of these models, see Bonola (1955) and Gray (2004).
27 See Hull (1962, pp. 820, 823, 828); see also the quotation from 1926 in Sect. 2.1 above.
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thinking,” since, by the various computer simulations “the proof of possibility” of a
purely mechanical simulation of cognitive processes has been accomplished (Simon
and Newell 1961, p. 137). The notion of proving the practical realizability of an idea by
providing an actual model is also referred to as “proof of concept” and it has become
a well-known technique in various fields of engineering.28

As refutations of the claim that some form of vital force is necessary to produce
certain patterns of behavior, both Hull’s and Newell and Simon’s models only had to
be purely mechanical, regardless of the particular mechanisms they were based upon.
This is different in case of the arguments of Grey Walter and the proponents of con-
nectionist networks. The claim that Grey Walter set out to refute with his autonomous
robots was the widely held belief that complex animal-like behavior must be based on
a large number of internal components. A early mechanical model that supported this
view was W. R. Ashby’s homeostat, which had a large number of different internal
states but exhibited only very rudimentary behavior, “like a fireside cat or dog which
only stirs when disturbed, and then methodically finds a comfortable position and
goes to sleep again” (Grey Walter 1953, p. 123).29 In direct opposition to this received
view, Grey Walter hypothesized that “the elaboration of cerebral functions may pos-
sibly derive not so much from the number of its units, as from the richness of their
interconnection,” and he noticed that “this speculation had the great advantage that
its validity could be tested experimentally” (Grey Walter 1953, p. 118; emphasis in
original). Such a test would consist in the construction of a “working model that would
behave like a very simple animal” with a minimal number of components (Grey Walter
1953, p. 125). Thus, by building his tortoises that consisted of only a very small num-
ber of internal components, but that exhibited rather complicated patterns of behavior,
Grey Walter was able to demonstrate the correctness of his hypothesis. The fact that
the focus of Grey Walter’s argument is on the mechanisms that generate the behav-
ior and not primarily on the behavior itself, explains his commitment for a synthetic
methodology for the construction of his models. This also holds for the computational
models of Rosenblatt and Rumelhart.

Rosenblatt’s perceptrons, which could be trained a range of different tasks, were the
first models that refuted the common view that computers cannot learn associations
between inputs and outputs other than those that have been explicitly included in their
program. Later, after showing the theoretical limitations of these networks that had
only a single hidden layer of nodes, Minsky and Papert speculated that Rosenblatt’s
learning algorithm could not be extended to multi-layered networks (Minsky and
Papert 1969, p. 232). When Rumelhart and his colleagues actually came up with an
algorithm that could solve this task they proudly announced: “we believe that we have
answered Minsky and Papert’s challenge and have found a learning result sufficiently
powerful to demonstrate that their pessimism about learning in multilayer machines
was misplaced” (Rumelhart et al. 1986a, p. 361; emphasis in original). Again, an
impossibility claim was refuted by the existence of a model.

28 See, e.g., Weston (2004, Chap. 7).
29 Indeed, Ashby’s model “could be interpreted as supporting the claim that the complexity of the behavior
of whole organisms largely emerges from (1) a large number of internal components, and (2) the interactions
between these components” (Dawson 2004, p. 83).
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One might object that the above questions were not settled definitively by the mod-
els that were put forward, as some of them are still topics of current debates. This
leads to an important issue in the discussion of the roles of models in science, namely
the question of whether something is indeed a model for what it is claimed to model.
In the present discussion the criteria of adequacy boil down to the question whether
the goal property G is in fact characteristic for the notion that it is intended to capture.
Hull’s model has shown that an electro-mechanical device can be built that exhibits
behavior which is analogous to Pavlov’s conditioned reflex. However, the question
whether that is all there is to learning is thereby not addressed. Even more problematic
has been whether solving logic problems counts as genuinely intelligent behavior,
as Newell and Simon contended. Indeed, opponents to the view that computers can
exhibit intelligent behavior can always retreat to the (admittedly dubious) position that
if behavior has been simulated by a computer it cannot be intelligent behavior.30

A debate of a different kind is whether physical symbol systems or connectionist
models are the best way to study intelligence. But, also in this debate the presence or
absence of particular models has also often been used to support one position or the
other. To illustrate: On the one hand, Simon uses the lack of concrete simulations of
complex cognitive performances as an argument against neural networks as models
for human thinking (Simon 1993, p. 640), while researchers on neural networks, on the
other hand, are keen to meet challenges of this kind, by demonstrating that their models
do indeed simulate aspects of human behavior (e.g., Shultz 2003, pp. 221–250).

The fact that the models and simulations did succeed to mirror some aspects of
human behavior is also taken by the modelers as providing some information with
regard to the mechanisms that produce the behavior in question. In general, by pro-
viding models (mechanical or computational) of certain phenomena, a step is made
towards uncovering the underlying mechanisms. Thus, in a sense the phenomena have
been stripped from the veil of mysteriousness that had covered them. This demystify-
ing role of models is a theme that is often repeated by cognitive psychologists. Hull,
for example, writes that

[i]t is believed that the construction and study of models of the type described
above will aid in freeing the science of complex adaptive mammalian behavior
from the mysticism which ever haunts it. (Krueger and Hull 1931, p. 267)

In a similar vein, Newell and Simon consider their computational model as

a good approximation to an information-processing theory of certain kinds of
thinking and problem-solving behavior. The process of thinking can no longer
be regarded as completely mysterious. (Newell and Simon 1961a, p. 2016)

The demystification of consciousness through the building of machines is mentioned
again three decades later by the neuroscientist Francis Crick:

If we could build machines that had these astonishing characteristics [of the
brain], and could follow exactly how they worked, we might find it easier to

30 See Hull’s anticipation of this move in Krueger and Hull (1931, p. 267). An excellent overview of the
debate whether computers can exhibit intelligence or not can be found in Dreyfus (1992).
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grasp the workings of the human brain. The mysterious aspects of conscious-
ness might disappear, just as the mysterious aspects of embryology have largely
disappeared now that we know about the capabilities of DNA, RNA, and protein.
(Crick 1994, pp. 256–257)

Finally, a word of caution is appropriate regarding the limits of what can be estab-
lished by the existence of models. Having refuted an alleged claim of necessity by
exhibiting a model a that satisfies Gx & ¬H x also entitles one to the claim of hav-
ing established the statement Ha → Ga. This means that for the instance a, the
property of being a H is sufficient for also being a G, but not that this is the case in
general, i.e., that ∀ x (H x → Gx). In particular, it could be that the property H has
nothing to do with G (this is related to the problem of irrelevance in the context of
Hempel’s D-N account of explanation). Moreover, having shown that the necessity
claim ∀ x (Gx → H x) is false by exhibiting a model for Gx & ¬H x , does not in
the least amount to the converse necessity claim ∀ x (Gx → ¬H x), i.e., that ¬H
is necessary for G. This is why Newell and Simon formulate their later view that
the ability of performing certain symbolic processes is sufficient and necessary for
thinking, which is motivated, but not conclusively established by their work, only as
an hypothesis (Simon 1993, p. 640).

4 Conclusion

I this paper I illustrated by means of examples of classical and connectionist computer
simulations and of two earlier mechanical models that psychologists have learned
certain lessons (e.g., that learning is independent of vital forces, that few simple com-
ponents can generate complex behavior, that symbolic processing can imitate the
problem solving behavior of human beings, and that networks formed of very simple
building blocks can be trained to solve complex tasks) from the bare existence of
these models. In this respect physical models, computer simulations, and even purely
theoretical models can perform an important function in the quest for scientific knowl-
edge, namely to demonstrate the viability of a particular approach, to validate or refute
certain hypotheses, and to demystify a domain of inquiry. In addition, I have shown a
close connection between these arguments and the particular methodology (analytic
or synthetic) that is adhered to in the construction of the respective models. Thus, by
taking a closer look at the history and the practice of modeling in psychology, novel
aspects of the use of models and computer simulations in scientific practice have been
brought to light.
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