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Abstract It is often claimed that artificial society simulations contribute to the
explanation of social phenomena. At the hand of a particular example, this paper
argues that artificial societies often cannot provide full explanations, because their
models are not or cannot be validated. Despite that, many feel that such simulations
somehow contribute to our understanding. This paper tries to clarify this intuition by
investigating whether artificial societies provide potential explanations. It is shown that
these potential explanations, if they contribute to our understanding, considerably dif-
fer from potential causal explanations. Instead of possible causal histories, simulations
offer possible functional analyses of the explanandum. The paper discusses how these
two kinds explanatory strategies differ, and how potential functional explanations can
be appraised.

Keywords Agent-based simulations · Complex systems · Explanation

1 Introduction

Artificial societies are often claimed to be explanatory (Axtell et al. 2002; Cederman
2005; Dean et al. 1999; Epstein 1999; Sawyer 2004; Tesfatsion 2007). Often these
claims are ambiguous about how agent-based simulations are explanatory, and what
they explain. In this paper, I show that an important class of agent-based simulations
cannot fully explain a phenomenon. I further argue that agent-based simulations do not
contribute to our understanding of a phenomenon by presenting its possible causal his-
tories. Instead, I develop an account of possible functional explanations, and show how
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agent-based simulations can provide such potential explanations by offering possible
functional analyses of a phenomenon.

Artificial societies simulate social phenomena. Phenomena are things in the world
that are identifiable by the data they produce, but which are rarely observable them-
selves. For example, the history of a tribe is a large-scale social phenomenon that is
evidenced by all sorts of documents: written record, eyewitness reports, pottery shards,
ruins, etc. To simulate such a phenomenon is to construct a process whose output in
relevant ways imitates the ‘target’ data that represents this phenomenon.1

Artificial societies simulate social phenomena with agent-based models. In such
models, an aggregate state of the simulating system is determined by the states of
individual agents. Each agent (which may represent people, firms, nation-states, etc.)
is characterised by a number of attributes and a set of behavioural rules. Agents are
heterogeneous, because the model can specify different attributes for different agents.2

Agents are autonomous, because their interactions are determined by their individual
behavioural rules (e.g. when to migrate, or how to estimate a future parameter), not by
any global rule covering all simultaneously. Agents influence the environment through
their actions, but are in turn influenced by the environment they and their peers create.
The simulation imitates the target data by computing the individual agents’ behav-
iour in response to some input environmental data, by computing the effects of the
individual behaviours on the environment, and by computing the repercussions these
environmental effects have on individual agents.

Epstein and Axtell (1996), who popularised the term ‘Artificial Societies’, showed
how manipulating the attributes and behaviour rules of the model agents allows the
generation of patterns akin to migration, markets, wars, etc. However, the similar-
ity is fleeting and can be seen only by abstracting from many features of real-world
phenomena. Because these simulations do not imitate the target data of any partic-
ular phenomenon, it seems implausible to claim that they would explain any such
phenomenon.

This changed with the publication of papers that explicitly purported to simulate
particular real-world phenomena by imitating their target data. Such simulations, it
is claimed, explain the phenomena or essentially contribute to their explanation. By
essential contribution, it is meant that generation is necessary for explanation, accord-
ing to the motto ‘If you didn’t grow it, you didn’t explain its emergence’ (Epstein
1999, p. 43).

Section 2 presents an example of such a purported explanation. Section 3 argues
that the example, as well as simulations of its kind, lacks the evidential support neces-
sary for full causal explanations. Section 4 discusses the claim that simulations offer
potential explanations. It argues that they do not contribute to our understanding of
the phenomenon by providing possible causal histories; but instead may contribute to
our understanding by providing possible functional analyses. The difference between

1 The underlying aim of the simulation is therefore to imitate the real-world process that produced this data
(cf. Hartmann 1996; Humphreys 2004).
2 Of course, even homogeneous agents may be in different states at any given time: for example, they
will be at different spatial locations. Heterogeneity of agents, in contrast, implies that agents differ in their
fundamental propensities—e.g. they rate of fertility, fission or death.
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potential functional and potential causal explanation is investigated, and criteria for the
appraisal of the right possible functional analyses for potential functional explanations
are given. Section 5 concludes.

2 An example of generative explanation

The chosen example purports to generatively explain the history of a pre-historical
settlement of Ancestral Puebloans (often called Anasazi) in Long House Valley, north-
ern Arizona, from 800 to about 1300 AD. The computation takes as input paleo-
environmental data, including meteorological, groundwater and sediment deposition
and fertility estimates for the reconstructed kinds of farmland. On the basis of this
input, it reproduces the main features of the settlement’s actual history, as witnessed
by archaeological evidence—including population ebb and flow, changing spatial
settlement patterns, and eventual rapid decline.

The computation from input to output is performed through two kinds of interven-
ing variables. First, a dynamic resource landscape of the studied area is theoretically
reconstructed from the paleo-environmental data. In particular, annual potential maize
production per hectare is estimated for five different categories of potential farming
land. Secondly, annual decisions of (re-)settlement, land cultivation and procreation, as
well as annual deaths of household-agents are computed on the basis of the estimated
maize crop, agents’ attributes and behavioural rules. Agents’ attributes (like lifespan,
vision, movement capacities, nutrition requirements and storage capacities) are

derived from ethnographic and biological anthropological studies of historic
Pueblo groups and other subsistence agriculturalists throughout the world (Dean
et al. 1999, p. 187).

Agents’ behavioural rules, governing movement and selection of farming and settling
sites are modelled as ‘anthropologically plausible rules’ (Dean et al. 1999, p. 180)—in
effect optimization under very limited information.3

The original model (Dean et al. 1999) employs fairly homogenous agent attributes.
It reproduces ‘the qualitative features of the history’, but yields populations that were
substantially too large. Attempts to reduce the population in that model by changing
agent attributes result in premature population collapse.

In a follow-up paper (Axtell et al. 2002), greater levels of both agent and landscape
heterogeneity are incorporated. Individual agents’ onset of fertility, household fission
and death, and harvest per hectare are drawn from uniform distributions. Increasing
heterogeneity improves the ‘fit’ of the model to the historical record. Fit is measured
by calculating the differences between simulated households and historical record

3 In particular, the behavioural rules are: Agents cease to exist if they cannot secure 800 kg of maize
for themselves annually, or if they reach a threshold age. Food intake is determined by harvest yields from
farmed plot, and storage from previous years. Households choose to change their farmed plots when harvest
estimates (based on current year harvests) and storage combined are insufficient for survival. Households
choose most productive available (unfarmed & unsettled) plots that are within 1.6 km of a water source.
Households settle on available (unfarmed) locations closest to farmed plots. Households procreate annually
(after a maturing period of 16 years) with probability of 0.125.
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Fig. 1 Best single run of the model according to the L1 norm. (c) Nature 2002

for each period. Differences are cumulated according to a stochastic norm (a variant
of the standard deviation measure). Depending on which norm is used, optimizing
the model with respect to the distribution parameters yields a ‘best-fitting’ model.
The ‘best fitting’ single run of the model is depicted in Fig. 1.

As shown, this ‘best fit’ still does not accurately replicate the historical findings. In
particular, it simulates a higher population early on, and does not replicate the com-
plete eclipse of the settlement in around 1300. The authors point out that better fits can
be achieved by increasing the number of household attributes and their heterogeneity,
possibly introducing non-uniform distributions.

The authors of both papers are convinced that their research contributes to the
explanation of Anasazi population dynamics:

Close fit [of the generated data to the observed data] indicates explanatory power
(Dean et al. 1999, p. 180).

Ultimately, “to explain” the settlement and farming dynamics of Anasazi
society in Long House Valley is to identify rules of agent behaviour that account
for those dynamics (Dean et al. 1999, p. 201).

To “explain” an observed spatiotemporal history is to specify agents that
generate—or grow—this history. By this criterion, our strictly environmental
account of the evolution of this society during this period goes a long way
toward explaining this history (Axtell et al. 2002, p. 7278).

According to these quotes, generating the history of the Ancient Puebloan settlement
in an agent-based simulation either explains it or at least contributes to its explana-
tion. Crucially, the simulation itself is claimed to carry the central explanatory role:
it is the fit of the generated data, or the identification of generating agents and their
rules of behaviour, that purportedly does the explaining. In the following, I investigate
a number of possible accounts for this explanatory potential of artificial societies.
The Anasazi example is helpful in this, because it lacks, as will be shown in Sects. 3
and 4, certain features that make other kinds of models explanatory.
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3 Causal explanation

There are some indicators that the simulation researchers believe they are striving for
causal explanation. First, the authors of the Anasazi project suggest that the simula-
tion explains what it generates: a singular event, or a series of singular events in time
(i.e. a history). The view that the generandum is the explanandum is expressed in the
above Axtell et al. (2002, p. 7278) quote that growing the history of this society goes
a long way toward explaining that history. One of the co-authors is even more explicit
in another paper:

This data set [the settlement’s history] is the target—the explanandum (Epstein
1999, p. 44).

It is widely accepted that to explain an event requires identifying its predominant
causes. Hence, the claim that the generandum is the explanandum implies that artifi-
cial societies strive for causal explanation.

Second, some proponents of generative explanation have explicitly claimed that
social scientists do and should employ agent-based simulations to

seek causal explanations grounded in the repeated interactions of agents oper-
ating in realistically rendered worlds (Tesfatsion 2007, p. 9, my emphasis).

This view is shared by some philosophers:

The parallels [of artificial society simulations] with causal mechanism approaches
in the philosophy of science are striking (Sawyer 2004, p. 222).

While striving for causal explanations with artificial societies is a legitimate goal, the
chances of reaching this goal are small. To clarify why, let’s compare the present case
to a kind of simulation that does provide causal explanations: vehicle crash simula-
tions. These analyze an actual vehicle ‘system’ into its components, by imposing a
three-dimensional grid onto the vehicle and by measuring the relevant properties of
each grid cell. Postulating specific impacts, they then calculate the behaviour of these
components on the basis of the equations of motion. The macro-effect of the impact on
the whole car is thus constituted by its micro-effects on the individual cells. Because
the computation of these micro-effects is strictly governed by (well-confirmed) causal
regularities, the simulation offers a good causal explanation of specific crash deforma-
tions: given the impact, it accounts for how the mechanical forces travelled through
the vehicle to the specific area, and what effects they witnessed there. Further, it details
the material properties of the specific area, so that it accounts for the fracturing of the
relevant area of the windshield, given the impacting forces.

Now, doesn’t the same account apply to the Anasazi model? No. Any account of
causal explanation requires that the causal regularities included in the explanans must
be true, or at least well-confirmed. The above car crash simulation bases its explanatory
potential on the laws of kinematics, which are well-confirmed and widely believed to
be true. Further, it precisely measures the actual vehicle properties. In analogy, agent-
based simulations would have to derive their explanatory potential from the agents’
behavioural rules applied in a precisely specified environment. The decisive question
is what evidence one has to judge these rules to be true.
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I think we have little evidential support for them. The fact that they generate the
explanandum doesn’t count much, as many other rules generate it similarly well. For
example, similar results are obtained by using individuals of varying ages instead of
households as the agents in the model (Axtell et al. 2002, p. 7278). Hence evidential
support has to come from sources different than the simulation itself. I consider three
potential sources: direct observation, well-confirmed theory, or results from externally
valid behavioural experiments. The Ancient Puebloan society has long ceased to exist,
and no documents concerning the behavioural rules of their members have been pre-
served. Direct observation of Ancient Puebloans’ behaviour is therefore impossible.
The authors instead claim that ‘detailed regional ethnographies provide an empiri-
cal basis for generating plausible behavioural rules for the agents’ (Dean et al. 1999,
p. 181). Unfortunately, they do not detail the nature of these ethnographical studies,
so that it remains unjustified why the results from these studies may be transferable
to the agents under study. Recent research has shown that behavioural rules vary
widely among small-scale agricultural societies (Henrich et al. 2004). In particular,
this research shows that agents of different contemporary small-scale societies have
widely differing attitudes towards mutual help, cooperation and sharing. Behavioural
dispositions of this sort may well have significant influences on variables included in
the simulation, like fertility, migration and death, particularly in times of crisis. It is
therefore questionable whether the similarity in settlement features (e.g. its ‘small-
scale’ property) justifies the transfer of behavioural regularities found in other tribes
to the Ancient Puebloans.

This leaves behavioural experiments as a source of evidence for the required causal
regularities. Some researchers indeed advocate using experiments this way:

If we took two microspecifications as competing hypotheses about individual
behaviour, then … behavioural experiments might be designed to identify the bet-
ter hypothesis (microspecification) and, in turn, the better agent model (Epstein
1999, p. 48).

Obviously, there is again a problem of external validity here. The Ancient Puebloans
are dead, and who could stand in for them in experiments so that the experimental
results would legitimately cover this historical people as well? For the moment, let’s
bracket this issue in order to see another issue with experimental validation that applies
to all artificial societies. Behavioural experiments are performed under strict control of
the agent’s environment. While this feature insures the exactness of the experimental
results, it also limits the applicability of the results to agents in environments different
from those controlled for in the experiment.

To ensure the external validity of the relevant experiments, one has to have good
grounds to believe that the differences between the experiment and the target system
do not create an error in the transfer of results from one to the other. This is a problem
for agent-based simulations, because they employ the same behavioural rules under
extremely changing environments. Take again the Anasazi model. The agents’ behav-
ioural rules are assumed to remain stable throughout (at least) four fundamentally
different environments: (i) in a situation where a small group of settlers colonises
an unpopulated valley; (ii) in a situation of rapid population increase, where farm-
ing density forces new households to occupy low-fertility lands or migrate; (iii) in a
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situation of stagnation and slow decline, where environmental factors (draught, strong
winters) are perceived as a threat and cultivated plots are given up; and finally (iv) in
a situation of cataclysmic decline, where most of the population leaves the settlement
area or dies. To transfer results of the experiment to the target system, it would have
to be shown that none of these differences mattered.

Beyond the considerable practical problems of performing such experiments, this
constitutes a methodological problem. Results from behavioural experiments have
up to today not been synthesised to anything like a grand theory with regularities
of large scope. Rather, experiments ‘contribute to the library of phenomena that the
applied scientists will borrow and exploit on a case-by-case basis’ (Guala and Mittone
2005, p. 511). However, such piecemeal insights, while instructive for specific cases,
do not provide decisive evidence for behavioural regularities required for artificial
societies.

For the sake of the argument, let’s imagine that experiments could provide deci-
sive evidence for such broad-scoped regularities. What sort of experiments would that
have to be? Experiments that would differentiate environments ‘finely enough’ and
test the behavioural rules under all these environmental conditions. But such a gigantic
test series, while providing the necessary evidence, would also trivialise the role of
agent-based simulations: Because the experiments would have to be run in the all the
relevant social environments, experimental design would construct in vivo what sim-
ulation would reproduce in silico. All the interesting information could then already
be gleaned off the experiments, and there would be no need for simulations anymore
at all. Hence, there is little evidential support for the behavioural rules of the Anasazi
model at present, and there even are some reasons to believe that such evidence may
not be available in principle.

4 Potential explanation

If an agent-based simulation cannot be a full explanation for the reasons spelled out
above, it may still contribute to an explanation. Some proponents suggest as much:

If a microspecification, m, generates a macrostructure of interest, then m is a
candidate explanation (Epstein 1999, p. 43)

This suggestion gives a new meaning to the claims about the simulations’ explan-
atory potential reviewed in Sect. 2. That projects like the Anasazi simulation have
‘explanatory power’, or that they ‘go a long way toward explaining’ then does not
mean anymore that they provide an explanation. Instead, it is now suggested that they
offer a contribution towards an explanation.

It is important to be very clear about this distinction. An explanation does very
important things for us: it answers our question about relevant causes, it increases
our belief in the explanandum in the right way, or it provides a deductive argument
for the explanandum, etc. To be sure, it is sometimes difficult to adequately describe
what exactly an explanation does; but in each particular case, most of us will be able
to identify whether a certain cognitive procedure gives an explanation or not. If it
does, then the procedure does something that is important to us and therefore merits
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our attention. However, once one admits that a certain procedure only contributes to
an explanation, or provides a candidate explanation, it is not clear anymore that this
procedure merits our attention. The contribution, after all, may be insignificant, or the
candidate not worthy of further thought. Interpreting agent-based simulations as only
providing contributions or candidates, instead of full explanations, therefore raises the
question: why bother? At least for explanatory purposes, these simulations may be
insignificant, and their explanatory potential is equal to nil. It is therefore important
to clarify what sort of contributions agent-based simulations like the Anasazi model
make, and what kind of candidates they offer.

One way to interpret the above claims sympathetically is to see a candidate expla-
nation as an incompletely developed full explanation. This interpretation matches well
with the concept of a potential explanation, as it is sometimes used in the philosophy
of science. Unfortunately, what makes a procedure a potential explanation is either
not investigated at all; or, where proposals are made, they remain controversial. I will
therefore try to clarify this notion to the extent that it can be made useful for the present
discussion.

Hempel provided the first and best-developed notion of potential explanation. He
defined a potential explanation as a set of propositions having all the characteristics of
an explanation except, possibly, for their truth (Hempel 1965, p. 338). This definition
leant on his deductive-nomological account of explanation: a cognitive procedure is
a potential explanation, if the explanandum is deducible from a set of lawlike state-
ments. Statements are lawlike if they are (i) exceptionless, (ii) if they contain purely
qualitative predicates, and (iii) if they have a very wide scope. The problems with
this account are well known and need not be rehearsed here (for a concise sketch, see
Woodward 2003, pp. 154–161). But its rejection leaves us with the problem that it
takes away the formal condition for a potential explanation.4

The obvious alternative is to account for the simulations’ contribution as providing
potential causal explanations. Modifying Lewis (1986), one may say that agent-based
simulations contribute to the explanation of a social phenomenon by providing infor-
mation about its possible causal histories—specifically, about the possible causes that
operate on the micro-level: agents’ properties and their behavioural rules. Simulations,
one could argue, are particularly good at such a task, because they force researchers
to be explicit about all factors and conditions, and because many inconsistencies in
the model will become obvious when writing the code.

According to this interpretation, simulations are rigorous practices of articulating
the ways a phenomenon could have possibly been produced. Following Lipton (2001,
pp. 59–60), such articulations may contribute to our understanding of the phenomenon.
Thus, agent-based simulations may be explanatorily worthwhile projects.

4 In any case, the Anasazi model would satisfy neither criterion (i) nor criterion (iii). Regarding criterion
(i), there is no reason to believe that any of these rules are exceptionless. For example, additional criteria
like kinship proximity may have been an important criterion of farmland choice. Regarding criterion (iii),
the purported scope of the behavioural rules is narrow: it only applies to small-scale subsistence maize
agriculturalists in an arid region of the American continents. According to the D-N account, therefore, the
Anasazi model would not provide potential explanations, which is explicitly acknowledged by some of the
artificial society researchers (e.g. Epstein 1999, fn. 12).
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However, from an explanatory point of view, such an articulation has shortcomings.
Any collection of such possible histories will be very large. As Axtell et al. (2002,
p. 7278) point out, for example, substituting random variables for the current fixed
parameters of nutrition needs, birth and death rates, etc., yields simulation results with
a fit as close as the original model. Just by varying the parameters, one obtains a
large set of possible causal histories. Variation of the agents’ behavioural rules further
enlarges this set. But the larger the pool of potential explanations, the smaller the
contribution to a full explanation. Singling out two or three ways an event could have
been produced gets us a big step closer to actually explaining it—all that is needed is
to decide between these options, may be by empirical evidence, or by the explanatory
virtues they have. Identifying thousands of ways the event could have been produced,
however, doesn’t get us closer to full explanation at all—all the explanatory work is
still left to be done by making a selection from this huge set. The generative richness
of agent-based models is thus not an asset, but an embarrassment, as it in fact reduces
their explanatory potential.

One may wonder whether there are ways to pre-select potential explanations from
the vast pool of possibilities generated by the simulation. The use of empirical research
may help in some cases, but as argued in Sect. 3, our capacity to perform the necessary
research in cases like the Anasazi simulation is very limited. Instead, what is needed
is a ‘filter’ that selects possible causal histories through criteria that are independent
from our evidence for certain causes. If such a filter existed, the resulting small set of
alternative possible causal histories might significantly contribute to our understand-
ing of the phenomenon. Alas, the most natural places to look for such a filter turn out
to be barren.

Lipton (2001, pp. 83–84) has argued that sometimes the pragmatics of the question
to be explained may yield such a selection criterion. Most of our why-questions explic-
itly or implicitly come with a class of contrastive cases. When answering the question
‘why did you shout?’, it is important to know whether the inquirer implies ‘. . . and
not whistle?’, or ‘…instead of remaining quiet?’. To explain the contrast in which the
inquirer is interested, one has to identify in which causes the contrasting events differ.
Only these differentiating (possible) causes have explanatory relevance for explaining
the contrast. From the set of all possible causal histories of the contrasting events, all
those histories that do not contain these differentiating possible causes can therefore
be eliminated; what remains is a refined set of the potential causal explanations of this
specific contrast.

The problem with this selection technique is that it requires the explanatory pro-
ject to be at least implicitly contrastive. Most why-questions have that form, but the
researchers who developed the agent-based simulations commonly do not ask such
questions. Rather, as shown in Sect. 2, they want to explain the settlement and farm-
ing dynamics, the history and the archaeological data. They use their simulations to
answer the question how that history developed, how the data was generated, and they
do not have any contrast in mind beyond the ‘how so, and not in any other way?’. This
renders the Lipton’s selection technique inapplicable here.

Another approach would invoke formal criteria for potential causal explanations. In
the style of Hempel, we may hope to describe what causal explanations are, and then
specify potential causal explanations as causal explanations, minus, possibly, truth.
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However, this approach is fraught with various problems. First, we do not have
an uncontroversial descriptive account of causal explanation. Various proposals exist
(for example, Salmon’s mark-transmission account, and Woodward’s counterfactual
account), but each of them has its shortcomings, and, importantly, there are many
cognitive procedures that fall under none of the theoretical accounts but are widely
accepted intuitively as causal explanations.

But even if one could agree on some such conditions, a second problem arises—
namely that these conditions are either too wide to perform any selection, or too nar-
row to allow any possible causal histories to be selected. A common if controversial
claim is, for example, that causal explanations identify relevant causal mechanisms.
Early attempts to characterise genuine mechanisms are the mark-transmission account
(Salmon 1984) and the preserved-quantity account (Salmon 1998). These characteri-
sations, however, use criteria most adept for physical processes. Although the behav-
iour of agents is realised by physical processes, the agent-based simulations do not
describe these physical processes, but instead describe processes on a behavioural and
intentional level. It is therefore unclear whether any possible history generated by the
simulation satisfies the proposed criteria; hence these criteria are not helpful for the
selection task at hand.5

More recent accounts of causal-mechanical explanation adopt a much wider account
of mechanism. Machamer et al. (2000, p. 3) for example, define mechanism as organ-
ised collections of entities and activities that produce regular changes. Under such an
account of mechanism, it seems that all possible histories generated by the simulation
would pass the selection task. Thus, such accounts are not useful for the selection task
at hand, because they are too permissive.

Woodward’s counterfactual account characterises causal explanation as a matter of
exhibiting systematic patterns of counterfactual dependence. Counterfactuals describe
the outcomes of interventions: not only do they show that the explanandum is to be
expected given the initial conditions, but they also show how these explananda would
change if the initial conditions were changed (Woodward 2003, p. 191). Whether a
set of propositions is a potential causal explanation depends on the invariance of the
counterfactual statement. A generalising statement is invariant across certain changes
if it holds up to some appropriate level of approximation across these changes. As
Cartwright (2002) showed, such a condition must not be expected to hold universally.
Instead, we need independent evidence for the invariance of the relevant counterfactual
statements in order to say whether they function as potential explanations. Given that
such evidence is hard to come by—as argued in Sect. 3—Woodward’s counterfactual
account is not useful for the selection task, either.6

5 Salmon explicitly acknowledged this difficulty, but gave it a particular twist. In ‘Explanation in Archae-
ology’, for example, he argues that causal explanation in archaeology may be difficult because getting to
the details of causal mechanism is a problem—in particular, because ‘causal explanations often appeal to
entities such as atoms, molecules or bacteria’ (Salmon 1998, p. 359). So he interprets the inapplicability of
his account to archaeology as a sign that archaeology does not offer causal explanations. This would hold
similarly for the Anasazi simulation (which essentially deals with archaeological data), and each and every
one of its possible causal histories. Salmon’s account, thus, seems far too narrow for the purpose at hand.
6 In addition, we have good reasons to believe that in the Anasazi simulation, the modelled behavioural
rules are not invariant. Recent research into social norms shows that agents’ choices strongly depend on
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Of course, other accounts of causal explanations may exists or may be developed
in the future that would provide better selection criteria for possible causal histories.
But in the current state of agent-based simulations, no attempts are made to justify
any selection procedure—neither by the discussed nor by any other criteria. Instead,
the possible causal histories that are generated by agent-based simulations are little
more than ‘Just So Stories’ with little or no explanatory potential.7

In accordance with this conclusion, some authors see the role of simulation in
‘explor[ing] the theoretical structure of the data’ (Küppers and Lenhard 2005, p. 9),
or in ‘computational theorising’ (Axtell, quoted in Epstein 1999, p. 46). From that
vantage point, of course, agent-based simulations are but sophisticated ways of formu-
lating hypotheses, and are not in the business of explanation or potential explanation.
But closer investigation of simulation practice shows that this is not its commonly
pursued goal. Pursuing the formulation of hypotheses with the help of simulations
would require identifying all the models that simulate the target data. In particular,
as Axelrod has argued, researchers should seek to replicate one model’s simulation
results with another model (Axelrod 1997, pp. 33–34). But, as he points out further,
this is not at all common practice amongst researchers in the field. Instead, they pro-
vide a single simulation of a data set, and argue—as shown in Sect. 2—that this one
simulation contributes to explanation.

Instead of rejecting this practice as simply misguided, I will now try to develop
a (non-causal) account of simulations’ explanatory potential. Let’s start with another
simulation example (from climate research), where the authors deliberately falsify a
specific causal relation in their simulation models (cf. Küppers and Lenhard 2005).
The relevant model was first built using only six basic equations, which express well-
accepted laws of hydrodynamics. It reproduced the patterns of wind and pressure of
the entire atmosphere for a simulation period of about four weeks. After that period,
the system ‘exploded’—the stable flow patterns dissolved into chaos. Consecutive
attempts to correct supposed ‘errors’ of the model—inaccurate deviations of the dis-
crete model from the true solution of the continuous system—remained fruitless.
Consequently, the modellers gave up on modelling the causal process. Instead, they
focussed on imitating the dynamics alone, trying to find a stable simulation proce-
dure. Assumptions were introduced that partly contradicted experience and physical
theory. For example, it was assumed that the kinetic energy in the atmosphere would
be preserved. This is definitely not the case in reality, where part of this energy is

Footnote 6 continued
the social context in which they are made. Different social norms will be activated depending on how a
situation is understood (Bicchieri 2006, pp. 93–96). Bicchieri’s research indicates that some of the variable
changes which the simulation performs on are likely to influence the activation of social norm scripts. Take
for example the rule of farm plot choice, which specifies that households choose available plots if avail-
able, and otherwise migrate. It is, however, plausible that under dense cultivation conditions, households
disregard the availability condition and fight over land plots. In these cases, a change in availability will
affect the choice rule itself, thus undermining its invariance. Hence Woodward’s invariance criterion would
be violated.
7 ‘Just So Stories’ are fanciful origin stories by Rudyard Kipling, first published in 1902. They are fantastic
accounts of how various natural phenomena came about, for example how the elephant got its trunk or the
Leopard got its spots.
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transformed into heat by friction. Moreover, dissipation is an important factor for
the stability of the real atmosphere. In assuming the preservation of kinetic energy,
the blow-up of instabilities was ‘artificially’ limited, for the purpose of reproducing
the data over a longer period than in the original model.

Clearly, this simulation does not improve our understanding of the causes that pro-
duced the climate, because it incorporates at least one relevant causal relationship that
we know is not true. Therefore, it does not provide a potential causal explanation.
However, I think that one still can attribute explanatory power to this and similar
simulations, if one uses a different notion of potential explanation.

The trick is in seeing these simulations not as providing possible causal histories,
but possible functional analyses. In the climate model, using the relevant causal regu-
larities alone did not yield a successful simulation of the actual climate data. Instead,
some well-supported causal regularity had to be falsified in order to achieve generative
success. That move damaged the simulation’s causal explanatory power. But it did not
damage the simulations contribution to a functional analysis of the climate system.
The simulation showed that for some reason (e.g. omission of factors, measurement
errors, etc.) the included causal regularities did not suffice to dampen the dynamic
instabilities of the system. By including an artificial ‘instability-dampener’, the sim-
ulation introduced a functional component into the simulation system that in the real
climate system is fulfilled by one or many separate causal factors. The simulation
model does not identify these factors (for all we know, the lack of dampening may be
the result of slight misspecifications of all of the included factors). Instead, it identifies
a functional component missing in the existing model, and it specifies the role of this
element in the generation of the target data, in the context of the existing model. The
simulation therefore cannot be interpreted as providing a possible causal history of the
target data. However, it can be interpreted as providing a possible functional analysis
of its production process.

This argument can be made clearer with the help of Cummins’ account of functional
analysis. Functional analysis proceeds by analysing a capacity ψ of a system into a
number of other capacities ϕ of the system or its parts such that their organisation
amounts to the manifestation of ψ (Cummins 1975). Cummins’ account differs sub-
stantially from standard views on functional explanation, which purport to explain the
presence of an entity by reference to its effects (Hempel 1965; Little 1991; Kincaid
1996). Cummins claims that functional analysis explains a capacity ψ of a system by
reference to the capacities ϕ of the system’s components. The explanandum of the
analysis is thus the system’s ψ ing. The explanans consists of three parts:

i. An analytical account A of the system’s ψ ing
ii. The claim that A involves a component x’s ϕing

iii. The claim that x can ϕ

To employ the above example again, the climate researchers constructed a compu-
tational system that performed ψ . They built this system from a number of compo-
nents x, y, z, each of which they designed with a specific capacity ϕ in mind (e.g.
‘instability-dampener’). They wrote a program such that the capacities ϕx , ϕy , ϕz,

when interacting properly, resulted in the system’s ψ ing. The program then could be
used as a possible functional analysis of the real-world climate system. It suggests

123



Synthese (2009) 169:539–555 551

Fig. 2 Computer and target
system share the same
organisational properties
specified by the computer
program

an analogy between the organisational structure of the simulator and the real-world
system. This analogy claims that a computational process, which imitates a system’s
behaviour, also shares its organizational properties. Due to their different constitutions
(symbols and functions vs. human agents and institutions) the two systems’ disposi-
tions will analyse into different simpler operations. But on some level of description,
both systems’ simpler operations may be governed by the same organizational prop-
erties in order to constitute the same dispositions, as depicted in Fig. 2.

It is correct, as Kincaid (1996, p. 106) has pointed out, that Cummins-style func-
tional explanations—if they are full explanations—are just a kind of causal expla-
nation. To validate the organisation of the system and the effects its components
have would be to validate a causal relation between a component and its effect. But
as a potential functional explanation—improving our understanding without giving
a full explanation—providing a possible functional analysis differs from providing
a possible causal history in at least three aspects.

First, functional analysis individuates not according to possible factors or mecha-
nisms, but according to possible functions. In the climate simulation, for example, the
dampening of the accumulating instability is performed by a single component. By
suggesting the simulation as a possible functional analysis of the real-world climate
system, the researchers do not suggest that the stability of the real-world system is
produced by a single component, factor or mechanism. Rather, when attributing the
function to the system, they admit that there are many ways the real-world system
could realise this function.

Potential causal explanations, in contrast, purport to give possible individuations
of the relevant causal factors producing the explanandum. Causal explanation often
requires getting into the details of the causal mechanisms involved that produced the
event to be explained. This puts tighter constraints on potential causal explanations
than on potential functional ones: given what is known about the causal relationships
in the real-world climate system, a single component that preserves kinetic energy in
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the atmosphere (and hence dampens dynamic instabilities) can be excluded as a pos-
sible causal factor. Thus, while the climate simulation provides a potential functional
explanation that contributes to our understanding of the functional organisation of the
real-world climate system, it does not provide a potential causal explanation of it.

Second, possible functional analyses are transferable across different causal con-
texts. To illustrate this point, let me give another example—the Ising model, which is
often employed in simulations both of the natural and the social sciences. The Ising
model is used both for analysing ferromagnetic systems—with reference to the behav-
iour of interacting atom magnetic moments—as well as to analyse market dynamics—
with reference to socially influenced individual decisions (Brock and Durlauf 2001).
Presumably, a ferromagnet and a financial market do not behave according to the same
causal mechanisms. However, their possible functional organisation (on some level of
description) can be analysed with the same model, and this model may improve our
understanding of how each system acquires the capacities it has through the interac-
tions of its subsystems.

Third, the driving power behind potential function explanations is the constitutive
relationship between capacities on different levels. Functional analysis shows how
lower-level capacities constitute higher-level capacities. The capacity of the Anasazi
population to disperse in times of draught, for example, is constituted by the capacities
of the household agents to optimise under constraints, and their capacity to move. The
dispersion is nothing but the individual movings. Thus it is wrong to claim that the
movings cause the dispersion. A functional analysis of the population dynamics is a
potential explanation because it identifies these constitutive relationships, not because
it identifies any causal relationships. Of course, the simulation always has to make
causal assumptions about the influence on the lower-level variables as well; otherwise
it cannot generate a dynamic. This is why any full functional explanation, Cummins-
style, is a variant of a causal explanation. But potential functional explanations propose
only constitutional relationships between capacities of different levels, while potential
causal explanations propose causal relationships between capacities of the same level.

With the notion of potential functional explanation just developed, I can now clar-
ify the explanatory potential of the Anasazi simulation. The Anasazi modellers con-
structed a computational system that generated the data set ‘population dynamic’
from the data set ‘meteorological and soil conditions’ (the system’sψ ing). The model
on which the simulation is based specifies its subsystems x, y, z (the households,
settlement areas and farming plots) and their capacities ϕx , ϕy , ϕz (movement, fer-
tility, housing, crop yields, etc.). It organises these capacities in a specific ‘program’
(the behavioural rules of the households, the yield functions of the farming plots) so
that their combined operation, when fed with the meteorological and soil data, produce
the population data. Thus, the program could provide a possible functional analysis
of the Anasazi settlement system.

However, as discussed in Sect. 2, the program of the 1999 and 2002 simulations
alone did not yield a perfect fit; in particular, they did not replicate the complete eclipse
of the settlement in around 1300. The authors therefore concluded that a further func-
tional component had to be introduced into the model:
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The fact that environmental conditions may not have been sufficient to drive out
the entire population suggests that additional push and pull factors impelled the
complete abandonment of the valley after 1300. (Axtell et al. 2002, p. 7278,
my emphasis)

The authors argue for ‘push and pull factors’ from a functional perspective: they do
not cite independent causal regularities demanding such factors, but rather argue that
the capacities of the system components alone are not sufficient to produce the system
capacity.

Because they do not actually provide a simulation that includes such a functional
‘pull’ component, and that generates results close enough to the observation data, I
conclude that the Anasazi simulations do not provide potential functional explanations.

Had the ‘pull’ factors been included, and had the simulation then been successful,
it would have provided a potential functional explanation. But would any form of
inclusion have provided equally good functional explanations? If that were the case,
one could object that potential functional explanation suffered from the same deficit
as potential causal explanations: there would be a large number of possible functional
analyses, and the provision of such a large set of possibilities would not significantly
increase our understanding of the explanandum. Hence providing possible functional
explanations would not amount to potential explanations, either.

Fortunately, this conclusion is unwarranted, as we have criteria for the quality of
functional analyses. It is useful to go back once more to Cummins, who argues that:

the explanatory interest of an analytical account is roughly proportional to (i) the
extent to which the analyzing capacities are less sophisticated than the analysed
capacities, (ii) the extent to which the analysing capacities are different in type
from the analyzed capacities, and (iii) the relative sophistication of the program
appealed to. (Cummins 1975, p. 764)

The original Anasazi models do quite well on all three counts. The agents’ behav-
ioural rules are very simple and few, but they nevertheless create a complex population
dynamic. Most of this difference is attributable to the particular way the simulation has
them interact. However, simply plucking in a ‘pull’ component (e.g. assuming that the
number of emigrants pulls with them an exponentially related number of other agents)
would deteriorate the explanatory quality considerably, as it would be too close in
kind to the population dynamic itself. Instead, some simple behavioural rule must be
found that accounts for this component. This is where the difficulty of finding a good
potential functional explanation lies.

Thus, the quality of its functional analyses can be assessed by the formal properties
of the simulation. This gives us a good handle for selecting the best possible functional
analyses, which in turn will constitute potential functional explanations.

5 Conclusion

Most full explanations elucidate the causes of the explanandum. On the way towards
such full explanations, however, scientists use different strategies to build their expla-
nations. Often, the way to full explanations is delayed or even blocked. This is
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the case with the Anasazi simulation and similar examples: their models are not
and may never be sufficiently validated. Therefore, they may never mature to a full
explanation. Despite this, many feel that such simulations contribute to our
understanding. They provide potential explanations of some sort, which identify
possible explanantia. Because of the differences in explanatory strategies, these poten-
tial explanations may differ considerably, and may have to be appraised in different
ways, too. I argued that the Anasazi simulation and similar models do not provide
potential causal explanations. Instead, simulations of the Anasazi kind contribute to
our understanding because they provide potential functional explanations. These differ
from potential causal explanations in at least three ways. Understanding this difference
will help to explain how simulations qua simulations can contribute to our understand-
ing, even if their underlying models are not validated; and it will help to apply the
right appraisal criteria, and hence to weed out good from deficient potential functional
explanations derived from agent-based simulations.
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