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Abstract We investigate the discrete (finite) case of the Popper–Renyi theory of
conditional probability, introducing discrete conditional probabilistic models for
knowledge and conditional belief, and comparing them with the more standard plau-
sibility models. We also consider a related notion, that of safe belief, which is a weak
(non-negatively introspective) type of “knowledge”. We develop a probabilistic version
of this concept (“degree of safety”) and we analyze its role in games. We completely
axiomatize the logic of conditional belief, knowledge and safe belief over conditional
probabilistic models. We develop a theory of probabilistic dynamic belief revision,
introducing probabilistic “action models” and proposing a notion of probabilistic
update product, that comes together with appropriate reduction laws.
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1 Introduction

In this paper, we present an original semantical setting for belief dynamics, by combin-
ing three commonly-used approaches to belief change: (1) the Bayesian approach in
its extended Popper–Renyi (-de Finetti) version (based on Popper functions, allowing
conditionalization on events of probability zero), (2) the classical AGM-style Belief
Revision approach in its semantic presentation (based on plausibility models and plau-
sibility ranking) and (3) the “Dynamic Epistemic Logic” (DEL) approach1 (based on
the distinction between “static” belief revision, represented using conditional belief
operators, and “dynamic” revision, represented using epistemic/doxastic action mod-
els, dynamic modalities and some notion of product update).

Some connections between the first two approaches were already studied, most
thoroughly in VanFraassen (1995), Boutilier (1995), Halpern (2003), and Arlo-costa
and Parikh (2005), where it was shown that a correct probabilistic understanding of
belief revision and conditional beliefs requires an extension of classical probability
theory, along the lines of the Popper–Renyi axioms. The connections between the
second and the third approach are investigated in a number of recent papers (Aucher
2003; van Ditmarsch 2005; van Benthem 2006; Baltag and Smets 2006a,b,c, 2008),
while van Benthem (2003), van Benthem et al. (2006a), and Kooi (2003) relate the
first and the third approach only briefly (using only classical probabilistic models).

Combining these approaches into one, we introduce a “qualitative” dynamic logic
of conditional beliefs, knowledge, safe belief and belief-updating actions, which is
decidable and complete with respect to (Popper-style) conditional-probabilistic
models. The syntax and the proof system for this logic are the same we introduced in
Baltag and Smets (2006b,c, 2008), but the semantics is probabilistic (instead of using
plausibility models). We develop a theory of dynamic belief revision over probabilis-
tic models, by introducing “action models” and a notion of conditional-probabilistic
product update, which generalizes to a belief-revision context the corresponding
notion introduced in Kooi (2003), and van Benthem et al. (2006a) for probabilis-
tic epistemic actions. One can also extract from the probabilistic update product a
corresponding qualitative update notion for plausibility models; this last notion co-
incides with the “Action-Priority Update,2 introduced in Baltag and Smets (2006b,c,
2008), as a way of combining the “update product” from Baltag et al. (1998), and
Baltag and Smets (2006a) with ideas from Belief Revision theory.

This paper assumes the general distinction, made in van Ditmarsch (2005),
Baltag and Smets (2006a), and van Benthem (2006), between “dynamic” and “static”
belief revision. To summarize it: “static” belief revision, corresponding closely to the
classical AGM theory (Alchourrón et al. 1985; Gärdenfors 1988) and embodied in our
setting by the conditional belief operators B P

a Q, captures the agent’s changing beliefs
about an unchanging world. But since in fact, in a modal logic setting, the world
is always changed by our changes of beliefs, the best way to understand a doxastic

1 I.e. in the tradition of Gerbrandy (1999), Baltag et al. (1998), Baltag and Moss (2004), Baltag (2002) and
of the work of J. van Benthem and the “Amsterdam school”.
2 This name was proposed by J. van Benthem. In Baltag and Smets (2006b,c), this was called
“anti-lexicographic product update”.
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conditional B P
a Q is as saying that after learning P, agent a believes that Q was the case

(before the learning). In contrast, “dynamic” belief revision uses dynamic modalities
to capture the agent’s revised beliefs about the world as it is after revision: [P!]Ba Q
says that after learning P, agent a believes that Q is the case (in the world after the
learning). The standard alternative (Katsuno and Mendelzon, 1992) to the AGM the-
ory calls this belief update, but like the AGM approach, it only deals with “first-level”
beliefs (about ontic facts) from a non-modal perspective, neglecting any higher-order
“beliefs about beliefs”. As a result, it completely misses the changes induced in the
world (including in the other agents’ epistemic states) by our belief-updating ac-
tions (e.g. the learning of a Moore sentence). This is shown by the acceptance in
Katsuno and Mendelzon (1992) of the AGM “Success Axiom”: in dynamic notation,
the setting in Katsuno and Mendelzon (1992) validates the axiom [P!]Ba P (which
cannot accommodate Moore sentences). Instead, the authors of Katsuno and Mendel-
zon (1992) exclusively concentrate on the possible changes of (ontic) facts that may
have occurred during our learning. In contrast, our approach to belief update (following
the DEL tradition) may be thought of as “dual” to the one in Katsuno and Mendel-
zon (1992): we completely neglect here the ontic changes,3 considering a world in
which the only changes are induced by “purely doxastic” actions (such as learning,
discovery, communication etc.).

As in Baltag and Smets (2006b) (but now with a probabilistic semantics), we
introduce a “weak” (non-negatively introspective) notion of “knowledge”, notion we
call safe belief, to distinguish it from the standard S5-type “knowledge”
(Aumann’s partition-based knowledge). Safe belief corresponds to Stalnaker’s “knowl-
edge” (Stalnaker 1996), itself a modal formalization of Lehrer’s conception of “knowl-
edge as in-defeasible belief” (Lehrer 1990). In the context of probabilistic models, we
refine this notion by introducing a quantitative scale of “degrees of safety” of a given
belief, giving examples from Game Theory to illustrate the usefulness of this notion.

2 Conditional doxastic logic over probabilistic models

It is well known that simple probability measures yield problems in the context of
describing an agent’s beliefs and how they can be revised.

First, it seems natural to assume (and it is usually assumed) that beliefs are closed
under finitary conjunctions (and that moreover the belief operator satisfies Kripke’s
axiom K ). But then the so-called Lottery Paradox (van Fraassen 1995) shows that no
probability other than 1 can capture this notion of belief.

The paradox goes as follows. In a fair lottery composed of 1,000 tickets, an agent
assigns probability 0.999 to the event that any particular ticket is not the winning one.
If we identify “belief” with having subjective probability ≥0.999, then it follows that,
for any given ticket, the agent “believes” that this ticket is not the winning one; if
moreover we accept that beliefs are closed under finite conjunctions, it follows that
the agent “believes” that no ticket is the winning one! But this is obviously absurd (and

3 But our approach can be easily modified to incorporate ontic changes, along the lines of van Benthem
et al. (2006b).
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it contradicts the above probabilistic reading of belief): obviously, the agent will not
assign probability 0.999 to the belief that no ticket is the winning one! On the contrary,
he should assign probability 0 to this belief: some ticket will definitely be winning.

The same argument applies to any other probability p < 1. What this means is
that (if we accept the closure of beliefs under finitary conjunctions, then) we cannot
identify “belief ” with “subjective probability ≥ p” for any p < 1: none of these is
closed under finitary conjunctions.

The only probability left to be assigned to events that are “believed” is probability 1.
So it seems that “belief ” must imply “(subjective) probability 1”. But then, assuming
that beliefs can sometimes be false (which seems natural and unavoidable if we want
to distinguish “belief” from “knowledge”), it follows that Bayesian updating is not an
appropriate model for “learning”, at least not in the case of agents having any such
prior false “beliefs” (in the sense of subjective probability 1).

Indeed, the received wisdom in Bayesianism is that learning new information cor-
responds to probabilistic conditionalization. But once “belief” is accepted to imply
“probability 1 ”, any non-trivial belief revision (triggered by learning that one of the
agent’s beliefs was false) will correspond to conditioning on events of measure 0: an
impossible task in the classical (Kolmogorovian) theory, in which conditional proba-
bility is defined as a ratio (whose denominator will be 0 in this case). In probabilistic
applications, e.g. in Game Theory, this problem is sometimes preempted by requir-
ing that only impossible events are assigned probability 0. But this, in effect, is a
way of eluding the problem by simply stipulating that agents never have any wrong
beliefs. In fact, this collapses belief into knowledge: in a finite discrete probabilis-
tic space4 satisfying this stipulation,5 the “belief” operator becomes equivalent to a
quantifier over all the states of the space; but this is the standard definition of knowl-
edge in Game Theory! The unavoidable conclusion is that Bayesian belief update,
based on standard Probability Theory, simply cannot deal with any non-trivial belief
revision.

There are several possible solutions to this problem. In this paper we adopt the
Popper–Renyi theory of conditional probabilities (Popper 1968; van Fraassen 1976,
1995; Renyi 1964, 1955; Halpern 2001) which takes conditional probability as basic
instead of simple probability, and which was already applied to belief revision in
van Fraassen (1995), Arlo-Costa and Parikh (2005), and Halpern (2003). We focus here
on the discrete finite case, which gives us a simplified, unique, “canonical” setting,6

that can be easily compared with the qualitative (plausibility-based) settings for belief
revision.

A discrete conditional probability space (dcps, for short) is a pair (S, µ), where S
is a finite set of states and µ: P(S)× P(S) → [0, 1] is a so-called “Popper function”,
i.e. it satisfies the following axioms:

4 I.e. a finite state space such that all its subsets are measurable.
5 In the finite discrete case, this says that every state has a non-zero probability.
6 The various axiomatic settings proposed in Popper (1968), Renyi (1964), van Fraassen (1976) become
equivalent in the discrete case, and moreover they are equivalent in this case with the conditional lexico-
graphic probability spaces proposed by researches in Game Theory.
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1. µ(A | A) = 1,
2. µ(A ∪ B | C) = µ(A | C)+ µ(B | C), if A ∩ B = ∅, C �= ∅,
3. µ(A ∩ B | C) = µ(A | B ∩ C) · µ(B | C).

In fact, a discrete Popper function µ on a finite space is completely characterized by
its behavior on pairs of states, i.e. by all the quantities

(s, t)µ := µ( {s} | {s, t} ),

with s, t ∈ S. We skip the subscript when the measure is understood, and call (s, t)
the priority degree of s with respect to t .

Observation 1 To see that priority degrees do capture indeed all the information
about the original Popper function µ, it is enough to observe that, for every A and
every B �= ∅, we have

µ(A|B) =
∑

s∈A∩B

1
∑

t∈B
(t,s)
(s,t)

(where we use the usual conventions: 1
0 = ∞, 1

∞ = 0, ∞+∞ = ∞ and ∞+ x = ∞
for all real numbers x).

This gives us an alternative description of dcps’s as priority spaces:
A priority space is a pair (S, (•, •)), where S is a finite set of states and

(•, •) : S × S → [0, 1] is a probabilistic assignment on S, satisfying the axioms:

(s, s) = 1,

(t, s) = 1 − (s, t) for s �= t,

(s, w) = (s, t) · (t, w)
(s, t) · (t, w)+ (w, t) · (t, s)

for s �= w and denominator �= 0.

Proposition 2.1 Every dcps (S, µ) gives rise to a (unique) priority space (S, (•, •)),
satisfying (s, t) = (s, t)µ for all s, t ∈ S. Conversely, every priority space (S, (•, •))
uniquely determines a dcps (S, µ) satisfying (s, t) = (s, t)µ, for all s, t ∈ S.

Proof For the first direction, we can easily check that, if we are given a dcps, then the
operation defined by (s, t) := (s, t)µ = µ({s}|{s, t}) satisfies the axioms of a priority
space. (Indeed, each of the axioms follows from the corresponding dcps axiom.)

For the converse, given a priority space (S, (•, •)), we put µ(A|B) :=∑
s∈A∩B

1∑
t∈B

(t,s)
(s,t)

, and we verify that this satisfies the axioms of a dcps and that

in addition we have (s, t)µ = (s, t). 	

The (non-strict) priority relation ≤⊆ S × S, defined on states by putting s ≤ t iff
(s, t) �= 0, is a special case of (the converse of) the “superiority” relation introduced in
van Fraassen (1995) (following De Finetti). In fact, the strict priority relation, which
can be easily seen to be given by

s < t iff (t, s) = 0 iff both (s, t) = 1 and s �= t,
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was introduced in Arlo-Costa and Parikh (2005) under the name of “ranking ordering”.
It is easy to see that (in the finite discrete case to which we are confined here) the priority
relation is a total preorder.7 By arranging the states of a finite space of size n in a
list of non-decreasing priority s1 ≤ s2 ≤ · · · ≤ sn , we see that in order to specify a
discrete space of size n it is enough to give n − 1 independent (non-zero) conditional
probabilities, namely the priority degrees (si , si+1) for 1 ≤ i ≤ n − 1.

In a dcps, there is a straightforward way to define (conditional) belief and knowl-
edge, by simply identifying “belief” with “probability 1”8 and “knowledge” with “true
in all states”. In other words, for a “proposition” P ⊆ S, we put:

B P Q iff µ(Q|P) = 1,

K P iff P = S.

“Belief” is defined as “belief conditional on a tautology”, i.e. we put

B P := BS P.

But these definitions assume that the state space S is already restricted to all the
states that the (implicit) agent considers as epistemically possible. In a more general
context (as the multi-agent case considered below), knowledge has to be defined by
quantifying only over epistemically possible states, while in the definition of belief we
have to conditionalize µ on the set of epistemically possible states.

Conditional probabilistic frames. Given a (finite) set A of “agents”, a discrete con-
ditional probability frame (or dcpf, for short) is a structure (S, µa,�a)a∈A, such that,
for each a ∈ A, (S, µa) is a discrete conditional probability space and �a is a parti-
tion (the “information partition”) of S. Equivalently, we can of course use equivalence
relations ∼a instead of partitions �a . For a state s, denote by s(a) the information
cell of s in the partition �a (or the ∼a−equivalence class of s). Knowledge and
(conditional) belief become now dependent on the (information the agent possesses
about the) state:

B P
a Q := {s ∈ S : µ(Q|P ∩ s(a)) = 1},

Ka P := {s ∈ S : s(a) ⊆ P}.

We interpret the conditional belief statement s ∈ B P
a Q in the following way: if the

actual state is s, then after “learning” that P is the case (in the state s), agent a will
believe that Q was the case (at the same state s, i.e. before the learning). We abbreviate
(s, t)µa as (s, t)a . We denote by ≤a the induced priority relation.

Conditional probabilistic models. For a given set � of atomic sentences
(intuitively denoting “ontic facts” about the world), a discrete conditional probability

7 Arlo-Costa and Parikh (2005) extends this to countably additive probability measures.
8 Van Fraassen (1995) and Arlo-Costa and Parikh (2005) consider more subtle distinctions (such as “full
belief” and “plain belief”), but it is easy to see that in the case of discrete spaces all these notions become
equivalent with “belief” as defined here.
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model (dcpm, for short) is, as usually in modal logic, a structure S = (S, µa,�a, ‖•‖)
consisting of a dcpf (S, µa,�a) together with a valuation ‖ • ‖ : � → P(S).

In fact, for the doxastic-epistemic logic (i.e. for computing Ka , Ba and B P
a ), only

the priority degrees between distinct, but epistemically indistinguishable states are
relevant. So it is enough to know {(s, t)a : s ∼a t}. One can thus consider the local
priority relation �a , defined as the intersection of the relations ≤a and ∼a . We denote
by �a the corresponding strict relation. It is easy to see that, for s �= t , we have

s �a t iff t ∈ B{s,t}
a {s}.

In other words, the (local) priority relation actually captures a notion of priority of
beliefs: given the information that the actual state is one of two different states s or t ,
agent a will believe it is s (with probability 1) iff s �a t . So in representing a dcpm,
we will only give the priority degrees between successive distinct states in the same
partition cell (listed in non-decreasing local priority order). This provides a way to
encode the information partition itself into the probabilistic information, so we do not
have to represent the indistinguishability relations as well.

Example 1 Alice, Bob and Charles play the following simple game: (it is common
knowledge that) one million dollars is put in a box and Bob is first invited in the room.
He has only two options: he can either take the money (T) or leave it (L). If he takes
the money, then he gets to keep it, otherwise he ends the game with no money. The
box is then covered, and Alice and Bob are invited in the room. They can see each
other and see the covered box, so they see that none of them can see inside the box.
Separately and independently, each of them has guess if Charles took the money or
not. If either one guesses correctly, then he or she is also awarded one million dollars.
We assume Alice and Bob are a team, so they are interested to maximize their joint
income (the sum of their profits). E.g. if they both make correct guesses, they end up
with a joint income of two million dollars; in contrast, if none of them makes a correct
guess, they end up with nothing.

In such a game, it is clearly very important what each player knows or believes about
the other players, including about the other players’ beliefs etc. Let us assume Alice
and Bob announced their beliefs before entering the room (since they are a team, so it
is in their common interest to reach common knowledge!), and that it is now common
knowledge that they both believe that Charles is a “rational” player (in the sense of
Game Theory): they believe he took the money. In fact, they’re right: Charles did take
the money. We model this situation as a dcpm with two possible states, one in which
Charles takes the money (so that the atomic sentence T is true) and one in which
Charles leaves the money in the box (so that the sentence L is true):

�� ��

�� ��

T
�� ��

�� ��

L
a,b: 1��

Let us denote by t the state on the left (in which Charles took the money) and by l
the state on the right (in which Charles left the money in the box). So the valuation
map has ‖T‖ = {t} and ‖L‖ = {l}. The arrows represent the doxastic/epistemic
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information. As announced, we only represent the agents’ priority degrees between
distinct indistinguishable states. So the fact that there are no c-arrows means that
the all states are distinguishable for Charles: Charles’ information partition �c has
only single singletons t (a) = {t} and l(b) = {l}. This captures the fact that Charles
knows whether or not he took the money. In contrast, Alice and Bob don’t know for
sure what happened, but they only have beliefs about this: this is captured by the
existence of a-arrows and b-arrows between the two states. This means they cannot
distinguish epistemically between the two states (since they cannot see inside the
box), so the information partitions of Alice and Bob consist of only one information
cell: the whole state space t (a) = t (a) = l(b) = l(b) = {t, l}. Finally, the fact that
both the a-arrows and b-arrows are labeled with the number 1 and they go from state
l to state t means that the priority degree of state t with respect to l is 1 for both
Alice and Bob: (t, l)a = (t, l)b = 1, so they indeed believe (with probability 1) that
Charles took the money. It is not necessary to represent the converse arrows (from t
to l), since their numerical values can be deduced from the axioms of a priority space:
(l, t)a = 1 − (t, l)a = 0, and similarly for (l, t)b.

Example 2 Compare this with the case in which Alice and Bob are not completely cer-
tain that Charles is “rational”. Instead, let us suppose that it is now common knowledge
that they both assign a probability of 0.99 to the event of Charles taking the money
(and a probability of 0.01 to the event of Charles leaving the money in the box). As
before, such a situation could be realized by Alice and Bob first announcing what they
believe about Charles, and with what probability. The resulting model is the following:

�� ��

�� ��

T
�� ��

�� ��

L
a,b: 0.99��

Example 3 The situation is as in Example 2, except that it is now common knowledge
that, after entering the room, Bob can privately see inside the box (since he’s allowed
to briefly lift the cover and take a look inside). Not only his probabilities become trivial
(0 or 1, depending on what he sees), but his information partition will now consist
of singletons. So, as for Charles, we will not even have to represent Bob’s priority
degrees anymore: in each case, he knows the real state of the system.

�� ��

�� ��

T
�� ��

�� ��

L
a: 0.99��

3 Relating probabilistic and relational models of conditional belief

To compare probabilistic models with qualitative (relational) ones, we introduce
Kripke models for knowledge and conditional belief based on plausibility relations.
A finite (epistemic-doxastic) plausibility frame9 is a structure (S,≤a,∼a)a , where S

9 The notion here is the one we introduced in Baltag and Smets (2006a), Baltag and Smets (2006b,c), but
it is closely related to other notions in the literature: “Grove models”, “Lewis spheres”, “Spohn ordinal
plausibility ranking”.
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is finite and, for each a, ≤a is a total (i.e. “connected”, or “complete”) preorder and ∼a

is an equivalence relation on S. A plausibility model is a plausibility frame together
with a valuation. In a plausibility model, knowledge Ka is defined in the standard way
(as a Kripke modality) using ∼a , while conditional belief is defined as:

B P
a Q := {s ∈ S : Min≤a P ∩ s(a) ⊆ Q}

where we used the notations Min≤a T := {s ∈ T : s ≤a t for all t ∈ T } and
s(a) := {t ∈ S : s ∼a t}.

Note that (as in the case of probability models) only the plausibility relation
between states in the same information cell are relevant; in other words, only the “local”
plausibility relation �a :=≤a ∩ ∼a is needed. In fact, this relation encodes the epis-
temic relations ∼a as well. So, as before, we only represent �a , and for convenience
we skip all the loops (since � is reflexive anyway). Now, Example 1 above becomes:

�� ��

�� ��

T
�� ��

�� ��

L
a,b��

For both the (“global”) plausibility relations s ≤a t and for their “local” correspondent
s �a t , we can also consider their “strict” versions s <a t and s �a t . Finally, the
relation of “equi-plausibility” is the equivalence relation ∼=a induced by the preorder
�a : s ∼=a t iff s �a t and t �a s.

One usually reads s ≤a t as saying that state s is “at least as plausible” as state
t. But, as shown by the counterexample below, we cannot identify “more plausible”
with “higher probability”: if we accept the identification of (conditional) belief with
“(conditional) probability 1”, then we cannot have s ≤a t iff µa(s) ≥ µa(t). For the
same reason, the plausibility preorder is not given by the order of conditional degrees
of belief: we do not have s ≤a t iff (s, t)a ≥ (t, s)a .

Counterexample Consider for instance the situation in Example 2 above, where
we have µa(t) = (t, l)a = 0.99 and µa(l) = (l, t)a = 0.01. If higher probabil-
ity (or higher conditional degree of belief) would imply “more plausible”, then we
would have t <a l (since µa(t) > µa(l) and (t, l)a > (l, t)a), then by the definition
of belief in a plausibility model we would have that BaT is true in both states t and l
(since T is true in all the “most plausible” states, i.e. in t). But this contradicts the prob-
abilistic definition of belief (as “probability 1 ”): indeed, µa(T|t (a)) = µa(T|{t, l} =
µa(T) = 0.99 �= 1, and hence (according to the probabilistic definition of belief) the
sentence BaT is not true at state t .

So, since the plausibility relation cannot be identified with the relation of “hav-
ing higher probability than” (nor with “having higher conditional degree of belief
than”), the question is: how can we relate the two (probabilistic and plausibility-based)
accounts for belief?

The answer is given by the following result:

Proposition 3.1

1. Every discrete conditional probability model S = (S, µa,�a, ‖ • ‖) gives rise
to a plausibility model S = (S,≤a,∼a, ‖ • ‖), having the same state space, the
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same valuation and the same notions of knowledge and (conditional) belief as the
original model S.

2. Conversely, every finite plausibility model S can be “probabilized”: we can define
conditional probability measures µa for each agent at, that will give rise to the
same conditional beliefs as S.

For the proof, we need a useful preliminary result:

Lemma 3.2 If µ is a discrete Popper function on a finite set S and ≤ is the corre-
sponding priority relation (defined as above by putting s ≤ t iff (s, t)µ �= 0), then the
following holds for all events A, B ⊆ S:

µ(A|B) = 1 ⇔ Min≤B ⊆ A.

Proof of Lemma 3.2 For all events A, B, we have the following chain of equivalen-
cies:µ(A | B) = 1 iffµ(B \ A|A) = 0 iff

∑
s∈B\A

1∑
t∈B

(t,s)
(s,t)

= 0 (by Observation 1 in

the previous section) iff ∀s ∈ B \ A 1∑
t∈B

(t,s)
(s,t)

= 0 iff ∀s ∈ B \ A
∑

t∈B
(t,s)
(s,t) = ∞ iff

∀s ∈ B \ A∃t ∈ B (t,s)
(s,t) = ∞ (since B ⊆ S is finite) iff ∀s ∈ B \ A∃t ∈ B (s, t) = 0

(since (t, s) �= ∞ for any s, t) iff ∀s ∈ B ((∀t ∈ B(s, t) �= 0) ⇒ s ∈ A) iff ∀s ∈
B ((∀t ∈ B s ≤ t) ⇒ s ∈ A) iff Min≤B ⊆ A. 	


Proof of Proposition 3.1

1. For the first direction, given a dcpm S = (S, µa,�a, ‖ • ‖), we take the cor-
responding priority order as our plausibility: i.e., for all agents and all states,
we put

s ≤a t iff (s, t)a �= 0.

We keep the same valuation, and take the epistemic indistinguishability relation
∼a induced by the partition �a :

s ∼a t iff s(a) = t (a).

This gives us a plausibility model S, which by construction has the same state space,
same valuation and same notion of knowledge as the original dcpm. To check that
the notions of conditional belief are also the same, we note that: a sentence B P

a Q is
true at a state s in the dcpm S iff µa(Q|P ∩ s(a)) = 1 iff Min≤a P ∩ s(a) ⊆ Q (by
Lemma 3.2) iff B P

a Q is true at the corresponding state s in the plausibility model S.
2. For the converse, given a plausibility model S = (S,≤a,∼a, ‖ • ‖)a , define binary

maps (•, •)a : S × S → [0, 1], by putting: (s, t)a = 1 if either s ≤a t or s = t ;
(s, t)a = 0 if s ≥a t ; and (s, t)a = 0.5 otherwise. It is straightforward to check
that each such map satisfies the axioms of a priority space. By Proposition 2.1, this
gives us a Popper measure µa on S. So we obtain a dcpm S = (S, µa,�a, ‖ • ‖),
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where the valuation ‖•‖ is the same as in the plausibility model S and the partition
�a is given by the indistinguishability relations ∼a of the model S.
By construction, the dcpm S has the same state space, same valuation and same
notion of knowledge as the original plausibility model S. To check that the notions
of conditional belief are also the same, we simply note that the priority order corre-
sponding to the Popper functionµa coincides with the original plausibility relation
≤a : in other words, we have s ≤a t iff (s, t)a �= 0, for all s, t . Using now the first
part of our proof (the proof of part 1), we conclude that the notions of conditional
belief are the same. 	


Proposition 3.1 is the main result of this section, showing that “plausibility” is in-
deed a qualitative notion, which can only capture “firm”10 (though conditional) beliefs,
but no degrees of belief: all intermediary binary degrees can be assumed to be equal
to 0.5. An immediate consequence of Proposition 3.1 is the following completeness
theorem:

Corollary 3.3 The (decidable) logic C DL introduced in Baltag and Smets (2006a,b,c,
2008), and presented in Appendix1 is sound and complete for dcpm’s.

The proof is in Appendix 1.

4 Safe belief and degrees of safety

The defeasibility analysis of knowledge (Lehrer 1990), formalized in Stalnaker (1996),
is based on the idea that “if a person has knowledge, than that person’s justification
must be sufficiently strong that it is not capable of being defeated by evidence that he
does not possess” (Pappas and Swain 1978). Lehrer and Stalnaker interpret “evidence”
as “true information”, and thus their “knowledge” differs from ours. Moreover their
notion has various non-standard features, e.g. negative introspection fails: a rational
agent may believe that she “knows” something (in their sense), without knowing it!
This non-standard conception may be common among philosophers, but it is unfamil-
iar to logicians.

In contrast, our notion of knowledge Ka (as defined in Sect. 2) is just the standard,
partition-based concept of knowledge (“Aumann knowledge”), as it is commonly used
in Logic, Artificial Intelligence and Game Theory. In particular, our knowledge is fully
introspective (S5-like), and it is more robust than the one of Lehrer and Stalnaker: it
is an “absolute”, un-revisable knowledge, that cannot be defeated by any evidence
(including false evidence), and it thus satisfies a stronger version of the defeasibility
analysis (obtained by interpreting “evidence” in the above quote as meaning “any in-
formation, be it truthful or not”). Nevertheless, we consider Lehrer’s weaker concept
to be equally important, and so in Baltag and Smets (2006b,c, 2008) we introduced it
in the context of plausibility models, under the name of “safe belief ”.

10 I.e. believed with (conditional) probability 1.

[153] 123



190 Synthese (2008) 165:179–202

Since dcpm’s are plausibility models (with “priority” as the plausibility relation),
we can use the same definition: the “safe belief” operator is the Kripke modality �a

associated to the converse �a of the local priority relation,11 i.e. given by

�a Q := [�a]Q = {s ∈ S : ∀t ∈ S(t �a s → t ∈ Q)},

for all S-propositions Q ⊆ S. We read s ∈ �a Q as saying that: at state s, agent a’s
belief in Q (being the case) is safe; or at state s, a safely believes that Q. An important
observation is that this notion does indeed capture the Lehrer-Stalnaker non-standard
concept of “knowledge”:

s ∈ �a Q iff s ∈ B P
a Q for all P ⊆ S such that s ∈ P.

So safe beliefs are precisely the beliefs which are persistent under revision with any
true information.

Another important observation, made in Baltag and Smets (2006b) and (2008), is
that conditional belief can be defined only in terms of knowledge and safe belief: if
K̃a P = ¬Ka¬P is the Diamond modality for K , then

B P
a Q = K̃a P → K̃a(P ∧ �A(P → Q)).

Example 4 (Dangerous Learning) This starts with the situation in Example 1, but in-
volves a form of “cheating”. When Alice doesn’t pay attention, Bob quickly raises the
cover of the box and takes a peek inside, seeing that Charles took the money. Alice
doesn’t notice this, and she doesn’t even suspect this can happen: say, because taking a
peek is against the rules of the game, and so she trusts Bob not to do that. The ensuing
situation is given by the following model S′

�� ��

�� ��

T

a:1

���
��

��
��

��
��

��
��

�

a:1

��

�� ��

�� ��

L

a:1

��

a:1

����
��

��
��

��
��

��
��

a: 1��

�� ��

�� ��

T
�� ��

�� ��

L
a,b: 1

��

in which we’ll denote by t and l the lower nodes (representing the situations in which
no “cheating” occurs), and we’ll denote by t ′ and l ′ the corresponding upper nodes
(representing the situations in which Bob “cheats” as described above).

In both Examples 1 and 4 above, Alice holds a true belief (at the real state) that
Charles took the money: the actual state satisfies T ∧ BaT. In both cases, this true

11 A similar notion was defined in van Benthem and Liu (2004) in a different context, under the name of
“preference modality”.
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belief is not knowledge (since Alice doesn’t know for sure that he took the money);
nevertheless, in Example 1, this belief is safe (although it is not known by the agent
to be safe): no additional truthful information (about the real state s) can force her to
revise this belief. To see this, note that any new truthful information would reveal to
Alice the real state s, thus confirming her belief that Charles took the money. So in
the model S from Example 1, we have s |� �aT. In contrast, in Example 4, Alice’s
belief, though true, is not safe. There is some piece of correct information which, if
learned by Alice, would make her change this belief: we can represent this piece of
correct information as the doxastic proposition T → KbT. Since T → KbT is true
only at states l, t ′, l ′, we have Min≤a t ′(a)∩ (T → KbT) = Min≤a {l, t ′, l ′} = {l}; so
BT→KbT

a L holds at state t ′; i.e., at state t ′, if given the information that “if Charles took
the money, then Bob knows it”, Alice would come to wrongly believe that the state
l is the real one, i.e. that Charles left the money in the box! This is an example of a
dangerous truth: a piece of true information whose learning can lead to wrong beliefs.

Degree of safety of a belief. In dcpm’s, we can use the probabilistic information to
refine our analysis of safe belief, by defining “degrees of safety” of a belief (similarly
to the probabilistic degrees of belief). For any number x ∈ [0, 1], we say that a’s belief
in Q has a degree of safety of (at least) x at state s, and write s ∈ �x

a Q, if a’s degree
of conditional belief in Q given P is at least x for all true conditions P:

�x
a Q = {s ∈ S : µa(Q|P ∩ s(a)) ≥ x for all P such that s ∈ P}.

If we define the degree of safety of a’s belief in Q at state s by

ds
a(Q) := min

s∈P⊆s(a)
µa(Q|P),

then we have:

�x
a Q = {s : ds

a(Q) ≥ x}.

Note that “safe belief” is the same as belief with degree of safety=1.

Weak safety. A belief is “weakly safe” if it has degree of safety > 0: such a belief
might be lost due to truthful learning, but it is never reversed (into believing the op-
posite). Indeed, it is easy to see that a’s belief in Q is weakly safe iff ¬B P

a ¬Q for all
true propositions P .

Strongly unsafe beliefs are the ones which (even if true) are not weakly safe (but
have a null degree of safety). It is easy to see that, in Example 4 above, Alice’s belief
that Charles took the money is strongly unsafe. In many situations, it is enough to have
a high enough degree of safety to pre-empt the potential dangers of learning.

Degree of common safe belief. The standard notion of common belief can be
extended to define a concept of “common safe belief of degree x ” (for 0 ≤ x ≤ 1):

C�x P =
∧

a1,a2,...,an

�x
a1

�x
a2
. . .�x

an
P
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(where the infinite conjunction ranges over all sequences a1, . . . , an of agents). As
for safe belief, we define common safe belief C�P simply as “common safe belief of
degree 1” C�1 P . One could argue that the above notions should play an important
role in games: for instance, Aumann’s theorem (Aumann 1995) about backwards in-
duction still holds if we weaken his condition of “common knowledge of rationality”
to “common safe belief of rationality”. Aumann’s celebrated result says that, if a state
s satisfies common knowledge of rationality Ck R, then s is the backwards induction
solution. It is well-known that the theorem does not hold in the weaker assumption
of common true belief in rationality. The reason is that players’ beliefs about the
other players’ rationality may change during the game: they may lose belief in others’
rationality if some “surprising” moves are made.

Example (The Centipede Game) As an example of what can go wrong, consider the
following Centipede Game:

	
�����1
L1 ��

T1

��

	
�����2
L2 ��

T2

��

	
�����1
L3 ��

T3

��

4, 5

3, 0 2, 3 5, 2

We denote the nodes by the sequences of moves leading to them, e.g. the original node
is ∅, where player 1 is to move. A model for a game G is a dcpm S, whose states
are strategy profiles for G. Thus, a state s uniquely determines the set of nodes Gs

that are reachable during a play at state s. We say that in state s, player i will come
to prefer (another strategy) ti (to his current one si ) at node v if there is a reachable
node v′ ∈ Gs, v

′ ≤ v such that for all reachable nodes v′′ ∈ Gs with v′ ≤ v′′ ≤ v, the
expected utility of playing ti at v conditioned by the information that v′′ is reached
is bigger than the expected utility of playing the current strategy si at v, conditioned
by the same information. A player is rational in state s if he knows that he will not
come to prefer any other strategy (to his current one) at any node. “Rationality” is the
sentence R saying that all players are rational.

Board provides a good analysis of the above game in terms of conditional
beliefs (Board 2004). In a nutshell, there exist models for this game such that the
state (L1T3, L2) satisfies in the same time B2T1, BL1 L2

2 L3 and common true belief
in rationality. Intuitively, this is because player 2’s original belief that player 1 will
play T1 (belief which is fully consistent with common true belief in rationality) is
challenged by the surprising move L1. To respond to this challenge, 2 must revise his
beliefs, and it is perfectly possible (and consistent with 2’s rationality) that after this
revision, 2 starts to believe that 1 is so “irrational” that he will play L3, if the node
L1L2 is reached. Given this belief, 2’s best response at node L1 is to play L2. This
explains the failure of backwards induction solution at the state (L1T3, L3).

To warrant the backwards induction solution, we would need common belief in
rationality at all nodes that are actually reachable. To make this concept robust, the
only uniform assumption that we can make at the original node ∅ seems to be common
safe belief of rationality. Using degrees of safety, we can refine this somewhat:
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Proposition 4.1 If common safe belief in rationality holds at the initial state of a game
of perfect information, then the backwards induction solution is played. Moreover, for
any game of perfect information G, there exists a number x > 0 such that: if at the
initial state of game G the degree of common safe belief in rationality is strictly bigger
than x, then the backwards induction solution is played.

The proof is given in detail in the Masters Thesis (Mihalache 2007) of the first author’s
graduate student Dan Mihalache. Here, we only mention this result as an example of
application of our notions.

Safety level. The smallest such x is called the safety level of game G, and is computable
in terms of the game tree G. For instance, common belief in rationality corresponds to
a safety level of 1. In the Centipede Game above, the safety level is 2/3: it is enough
for player 2’s initial belief in 1’s rationality to have a degree of safety of more than 2/3
(i.e. he would always be cautious enough to assign only a probability of less than 1/3 to
other player’s irrationality, no matter what new information he learns). This would give
player 2 an expected utility strictly less than 4/3+5/3 = 3 if he plays L2, i.e. less then
the expected utility for playing T2, thus motivating him to play the backwards induction
solution. (But, for all he knows, player 2 might still be wrong: player 1 might actually
be irrational, in which case player 2 misses a good opportunity to make a lot of money!)

Proposition 4.2 The logic K� of knowledge and safe belief, introduced in Baltag and
Smets (2006c, 2008) and presented in Appendix2, is sound and complete with respect
to dcpm’s.

The proof is sketched in Appendix 2.

5 Action models and conditional probabilistic update

We now improve on the work in Aucher (2003), van Ditmarsch (2005), Baltag and
Smets (2006b,c) by introducing action models, of both the conditional-probabilistic
and the plausibilistic type, in order to represent uncertain forms of multi-agent
belief-updating actions:

A (discrete conditional-probabilistic, or finite plausibility) action model is just
a (discrete conditional-probabilistic, or finite plausibility) frame �, together with a
precondition map

pre: � → Prop

associating to each element of� some doxastic sentence preσ . As in Baltag and Smets
(2006b,c), we call the elements of � (basic) doxastic actions, and we call preσ the
precondition of action σ . Intuitively, the precondition defines the domain of applica-
bility of σ : this action can be executed on a state s iff s satisfies its precondition. The
basic actions σ ∈ � are taken to represent some deterministic actions of a particularly
simple nature. As mentioned in the Introduction, we only deal here with pure “belief
changes”, i.e. actions that do not change the “ontic” facts of the world (but only the
agents’ beliefs). The conditional probabilitiesµa , or the plausibility pre-orderings �a ,
give the agent’s (probabilistic, conditional) beliefs about the current action.
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Example 4′ Let us revisit Example 4, and think of the action leading to it: Bob takes
a peek inside the box, when Alice doesn’t pay attention. In the Dynamic Epistemic
Logic literature, this action is usually called a private announcement to a subgroup:
the “insider” (Bob) learns what is in the box, while the outsider Alice believes that
“nothing” is happening. In the action model �, the two nodes on top represent the
actions of Bob taking a peek into an empty box or him peeking at the million dollars.
These actions have as preconditions the sentences T (saying that Charles took the
money), and respectively L. The node on the bottom represents the action in which
“nothing is happening” (whose precondition is any tautology true):

�� ��

�� ��

T

a:1 ����
��

��
��

�� ��

�� ��

L

a:1����
��

��
��

a: 1��

�� ��

�� ��

true

Example 5 (Fully Successful Lying) Suppose now that, after Bob secretly took a peek
in the box (i.e. in the situation from Example 4), Bob sneakily announces: “Look, I
took a peek and saw the money inside”. For our purposes, we can formalize the con-
tent of this announcement as KbL (“Bob knows Charles left the money in the box”).
This is a public, but un-truthful announcement: a lie! Let’s assume that it is a fully
successful lie: (it is common knowledge that) Bob’s speech act is so persuasive that
Alice believes him. This action is given by the left node in the model �′ below:

�� ��

�� ��

¬KbL a: 1 ��
�� ��

�� ��

KbL

Example 5′ (Partially Successful Lying) In contrast, if Bob’s speech is not fully
persuasive, so that Alice only assigns probability 0 < x < 1 to him telling the
truth, then the action model is:

�� ��

�� ��

¬KbL a: x ��
�� ��

�� ��

KbL

Probabilistic update product. To compute the output state model from the orig-
inal (input) state model and the model of the action, we need a binary ‘update’
operation ⊗, taking any state model S = (S,�a, ‖ • ‖)a∈A and any action model
� = (�,�a, pre)a∈A into a new state model S⊗�, representing the possible output-
states of executing some action from � on some input-state from S. We call this the
update product of the two models. As in Baltag and Moss (2004), we take the set of
states of the new model12 to be a subset of the Cartesian product of the two models,
given by the consistent pairs:

12 The justification is that: (1) basic actions are deterministic, so we can identify their outputs with pairs
(s, σ ) of an input and an action; and (2) an action is executable only on inputs that satisfy its precondition.
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S ⊗� := {(s, σ ) : s |�S pre(σ )}.

For simplicity, we denote by sσ the pair (s, σ ) seen as an output-state in S ⊗ �. As
in Baltag and Moss (2004), the valuation is left unchanged13:

sσ |� p iff s |� p ;

the new indistinguishability relation is the product of the two old relations14

sσ ∼a s′σ ′ iff σ ∼a σ
′, s ∼a s′;

and the new conditional probability is given by putting

(sσ, tτ) = lim
x→(s,t)

x · (σ, τ )
x · (σ, τ )+ (1 − x) · (τ, σ ) ,

where the limit is taken over x’s such that the denominator is �= 0.

Justification. This last clause can be justified by thinking of what doxastic actions
do: they are actions that are meant to change the prior beliefs, via new, independent
evidence that may possibly override the prior beliefs (when they are contradicted by
the new evidence). The prior probability is not to be necessarily kept unchanged, since
it reflects past beliefs, while the action probability represents the agent’s current be-
liefs. Independence implies multiplication of probabilities, except that in the case of
contradiction (denominator 0), the prior beliefs are not assumed to be firmly held, but
are prone to small errors: so we extend the definition by continuity to the case that the
denominator is 0. As in the AGM theory, an agent keeps as much as possible of his
prior (certain) beliefs, as long as they are not contradicted by the new (certain) beliefs:
prior certainty can only be overridden if it is contradicted by current certainty; in ad-
dition, current certainty always overrides prior uncertainty; while prior uncertainty
is “weighted” using the current uncertainty.15

Spelling out the effect of the last clause in detail, we obtain the following equivalent
definition by cases:

If (σ, τ ) = 0, then

(sσ, tτ) = 0;

if (σ, τ ) = 1, σ �= τ , then

(sσ, tτ) = 1;

13 This is because we only consider “purely doxastic” actions, so the ontic “facts” are left unchanged.
14 This encodes the intuition that the initial uncertainty about actions is independent of the initial uncertainty
about states.
15 A different justification can be provided using a generalization of Jeffrey’s Rule to Popper probabilities.
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otherwise

(sσ, tτ) = (s, t) · (σ, τ )
(s, t) · (σ, τ )+ (1 − (s, t)) · (1 − (σ, τ ))

.

In particular, the first two cases above give us the Action-Priority Update from Baltag
and Smets (2008) (also called anti-lexicographic product update in Baltag and Smets
(2006b)): this says that the plausibility relation on the Cartesian product S × � is the
anti-lexicographic preorder induced by the two plausibility preorders.

Example 5, 5′ revisited We can see the qualitative difference between “fully successful
lying” (which may completely overturn the agent’s prior beliefs) and the only “partially
successful lying” (which only “weights” these prior beliefs), by comparing the way the
actions in Examples 5 and 5′ update the model S′ in Example 4: the first action yields
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a:1

���
��
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��
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��
��

�

a:1
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a: 1 ��
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T

a:1

������������������
�� ��

�� ��

L
a,b: 1

��

a:1

		

while the second action leaves model S′ essentially unchanged! So a “partially suc-
cessful” lie can enhance the hearer’s doubts only when she already had some doubts
to start with. It cannot override the hearer’s prior certainty; but a “fully successful”
lie always does!

Other examples of update products. It is easy to see that the update product of the
state model in Example 1 and the action model in Example 4′ is indeed (as expected)
the state model in Example 4.

Public announcements of “ hard facts” = conditionalization. A truthful public
announcement P! of some “hard fact” P establishes common knowledge that P was
the case. The action model consists of only one node, whose precondition is P . Its
effect on a state model S (via the update product) is to delete all the non-P states,
keep the indistinguishability relations between the surviving states and change the
probabilities by conditionalizing with P: i.e. µ′

a(Q|R) := µa(Q|R ∩ PS), where
PS = {s ∈ S : s |�S P}. A concrete example of this is publicly announcing, in
the situation from Example 4, that if Charles then Bob knows it. This corresponds to
(T → KbT)!, and the updated model is:
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�� ��
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L

Public announcement of “soft” facts. Suppose an announcement P!?x is made, in
such a way that all the agents believe with probability x it is truthful, although they
don’t know for sure that it is truthful.

�� ��

�� ��

¬P
a,b,c,...: x ��

�� ��

�� ��

P

Note that the effect of such a “soft” announcement is different from the previous “hard”
announcement, even when x = 1. The case x = 1 has in fact been considered by other
authors, who proposed a notion of “soft update” for it. But it is easy to see that its effect
matches what we get by updating any given state model S with the action P!?1 using
our notion of product update: The new state model S⊗ P!? can be thought of as being
obtained from S by keeping the same information cells, and keeping the same priority
order s ≤ t between any two states s, t ∈ P , and similarly between states s, t �∈ P ,
while in the same time giving to all P-states priority with respect to all non-P states.

Discovery of deceit. Suppose that, in fact, when Bob thinks that he is “secretly” taking
a peek, Alice does pay attention, so that she notices that Bob is taking a peek. Sup-
pose it is common knowledge that Bob doesn’t know that she noticed his peeking, but
that he does consider this as a (very remote) possibility. More precisely, he believes
with some high probability x that there is Alice didn’t notice anything, and so he as-
signs the very small probability 1 − x to the possibility of her noticing his peeking.
The action model is:
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T

b:x
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�� ��

�� ��

L

b:x
��

�� ��

�� ��

T �� a: 1 ��
�� ��

�� ��
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�� ��

�� ��

T rue
�� a:1



����������a:1

����������

Interception of messages. If secret learning (Bob taking a peek in the box) is replaced
by a secret communication (from Charles to Bob, telling him that he took the money),
then the above action model for “discovery of deceit” by Alice (as above) can also be
interpreted as a secret interception (wiretapping) by Alice of the secret message.
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Proposition 5.1 The dynamic logic of belief-changing actions presented in
Appendix 3, and having the same syntax and proof system as the one in Baltag and
Smets (2006b, 2008), is sound and complete with respect to dcpm’s.

The proof is briefly sketched in Appendix 3.

Future work. We list here only three important open problems: (1) Axiomatize the
corresponding logics for infinite conditional probability models. (2) Study the logics
obtained by adding quantitative modal operators �x

a Q (and B P,x
a Q) expressing that

the degree of safety of the belief in Q (or the degree of conditional belief in Q given P)
is at least x . (3) Axiomatize the logic of common safe belief C�Q and its quantitative
version C�x Q.
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Appendix 1: A complete proof system for CDL

The syntax of CDL is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕa ϕ

while the semantics over dcpm’s is given by the obvious compositional clauses (us-
ing the operators B P

a Q and K Q defined in the paper). Note that here, the knowledge

modality is a derived operator, defined by putting Kaϕ := B¬ϕ
a ϕ.

A doxastic proposition is a map P assigning to each dcpm S some S-proposition,
i.e. a set of states PS ⊆ S. So the interpretation map for the logic CDL associates to
each sentence ϕ of CDL a doxastic proposition ||ϕ||. We denote by Prop the family
of all doxastic propositions.

In addition to the rules and axioms of propositional logic, the proof system of CDL
includes the following:

Necessitation Rule: From � ϕinfer � Bψa ϕ.
Normality: � Bθa (ϕ → ψ) → (Bθaϕ → Bθaψ)
Truthfulness of Knowledge: � Kaϕ → ϕ

Persistence of Knowledge: � Kaϕ → Bθaϕ
Full Introspection: � Bθaϕ → Ka Bθaϕ, � ¬Bθaϕ → Ka¬Bθaϕ
Hypotheses are (hypothetically) accepted: � Bϕa ϕ
Minimality of revision: � ¬Bϕa ¬ψ → (Bϕ∧ψ

a θ ↔ Bϕa (ψ → θ))

Proof of Corollary 3.3 (Soundness and Completeness) In Baltag and Smets (2008),
we proved the soundness, completeness and finite model property of CDL with respect
to plausibility models, and hence completeness over finite plausibility models. This,
together with part 2 of Proposition 3.1, gives us completeness with respect to dcpm’s,
while part 1 of Proposition 3.1 gives us soundness on dcpm’s. 	
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Appendix 2: The logic of knowledge and safe belief

The syntax of the logic K� of knowledge and safe belief is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | �aϕ | Kaϕ

while the semantics over dcpm’s is given by the obvious compositional clauses.
Note that in this logic, (conditional) belief is a derived operator, defined as
Bϕaψ := K̃aϕ → K̃a(ϕ ∧ �A(ϕ → ψ)), where K̃aϕ := ¬Ka¬ϕ is the Diamond
modality for K .

In addition to the rules and axioms of propositional logic, the proof system for K�
includes the following:

Necessitation Rule for K and �: From � ϕ infer � Kaϕ and � �aϕ;
K -axiom for Ka and �a ;
S5-axioms for Ka ;
S4-axioms for �a ;
Ka P → �a P;
Ka(P ∨ �a Q) ∧ Ka(Q ∨ �a P) → Ka P ∨ Ka Q.

Proof of Proposition 4.2 (Soundness and Completeness) Soundness results from
putting together the soundness proof on plausibility models in Baltag and Smets (2008)
with part 1 of Proposition 3.1. Completeness similarly follows from the results in Bal-
tag and Smets (2008) (completeness and finite model property for plausibility models)
together with part 2 of Proposition 3.1 above. 	


Appendix 3: The dynamic logic of belief-changing actions

Dynamic Modalities. Given a doxastic action σ (living in some action model �, we
can define a corresponding dynamic modality, capturing the weakest precondition of
σ : for every proposition P, the proposition [σ ]P is given by

([σ ]P)S := {s ∈ S : (s, σ ) (if defined) ∈ PS⊗�}

Syntax of dynamic logic of doxastic actions. This was briefly sketched in Baltag and
Smets (2006c): As in Baltag and Moss (2004), we consider a doxastic signature, i.e.
a finite (fixed) plausibility frame �, together with an ordered list without repetitions
(σ1, . . . , σn) of some of the elements of �. Each signature gives rise to a dynamic-
doxastic logic L(�), as in Baltag and Moss (2004): one defines by double recursion
a set of sentences ϕ and a set of program terms π ; the basic programs are of the form
π = σ �ϕ = σϕ1 . . . ϕn , where σ ∈ � and ϕi are sentences in our logic; program
terms are generated from basic programs using non-deterministic sum (choice) π ∪π ′
and sequential composition π;π ′. Sentences are built using the operators of the logic
K� above, and in addition a dynamic modality [π ]ϕ, taking program terms and sen-
tences into other sentences. As in Baltag and Moss (2004), the plausibility preorders
on the signature � induce in a natural way plausibility preorders on basic programs
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in C DL(�): we put (σ �ϕ)� �ϕ
a := {σ ′ �ϕ : σ ′ ∈ σ�a }. The given listing can be used to

assign syntactic preconditions for basic programs, by putting: pre(σi �ϕ) := ϕi , and
pre(σ �ϕ) := � (the trivially true sentence) if σ is not in the listing. Thus, the basic
programs of the form σ �ϕ form a (finite) syntactic plausibility model16 � �ϕ. Every
given interpretation || • || : L(�) → Prop of sentences as doxastic propositions will
convert this syntactic model into a “real” (semantic) plausibility model, called � �||ϕ||.

To give the semantics, choose any dcpf (�, µ) whose priority frame is isomorphic
to �. We define by induction two interpretation maps, one taking any sentence ϕ
to a doxastic proposition ||ϕ|| ∈ Prop, the second taking any program term α to a
(possibly non-deterministic) doxastic “program”, i.e. a set of basic actions in some
dcpf. The definition uses the obvious semantic clauses and is completely similar to
the one in Baltag and Moss (2004).

The proof system is obtained by adding to the logic K� the following “Reduction
Axioms”:

[α]p ↔ preα → p

[α]¬ϕ ↔ preα → ¬[α]ϕ
[α](ϕ ∧ ψ) ↔ preα → [α]ϕ ∧ [α]ψ

[α]Kaϕ ↔ preα →
∧

β∼aα

Ka[β]ϕ

[α]�aϕ ↔ preα →
∧

α�aβ

Ka[β]ϕ ∧
∧

α∼=aγ

�a[γ ]ϕ

[π ∪ π ′]ϕ ↔ [π ]ϕ ∧ [π ′]ϕ
[π;π ′]ϕ ↔ [π ] [π ′]ϕ

where p is any atomic sentence, π, π ′ are programs and α is an action, i.e. a basic
program in L(�), ∼a is epistemic indistinguishability between actions, �a is strict
plausibility order on actions, while ∼=a is equi-plausibility of (indistinguishable)
actions: α ∼=a β iff both α �a β and β �a α.

Proof of Proposition 5.1 (Soundness and Completeness) Soundness is an easy
exercise. Completeness follows from the completeness of the K� logic (Proposition
4.2) together with the results in Baltag and Smets (2008), where the above Reduc-
tion Laws were used inductively to show that any formula in the logic L(�) can be
“reduced” (i.e. it is provably equivalent) to a formula in the K�-logic. 	
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