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Abstract A common aim of elimination problems for languages of logic is to
express the entire content of a set of formulas of the language, or a certain part of it,
in a way that is more elementary or more informative. We want to bring out that as the
languages for logic grew in expressive power and, at the same time, our knowledge of
their expressive limitations also grew, elimination problems in logic underwent some
change. For languages other than that for monadic second-order logic, there remain
important open problems.
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Elimination problems that arise in pure logic mostly differ from those that arise when
tools from logic are used in the study of certain mathematical theories, such as the
elementary theory of real numbers. Nevertheless, as we shall see, their history is to
some extent intertwined and work on the former provided some guidance, or at least
sense of direction, to work on the latter.

Let A = A(R, S) be a sentence, or conjunction of sentences, and let R and S be
sets of predicate symbols such that R �= ∅, S �= ∅, and R ∩ S = ∅, and such that every
predicate symbol that occurs in A belongs to R ∪ S. Quite often it is desirable to find
a sentence, or conjunction of sentences, A∇ = A∇(S) that satisfies the following two
conditions, where � is the relation of logical consequence.
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(1) (i) A(R, S) � A∇(S) and (ii) every predicate symbol that occurs in A∇(S) belongs
to S (and not to R).

(2) If C(S) is any sentence such that (i) A(R, S) � C(S) and (ii) every predicate
symbol that occurs in C(S) belongs to S, then A∇(S) � C(S).

Let C(S) be an S-consequence of A(R, S) if and only if it satisfies conditions (i)
and (ii) in (2). Then (1) is the condition that A∇(S) is an S-consequence of A(R, S).
Thus, the conjunction of (1) and (2) can be rephrased as follows:

A∇(S) axiomatizes the set of S-consequences of A(R, S).

Perhaps Aristotle is the first logician to obtain what, in effect, is an axiomatization
of this kind, although he may not have been aware of this. Consider any syllogism. Let
A(R, S) be the conjunction of its premises, let R consist of its middle term and S of the
other two terms, and let A∇(S) be its conclusion. Then in many cases, although not in
the case of subalternation, any S-consequence C(S) of A(R, S) is also a consequence
of A∇(S).

This aspect of syllogisms was recognized and emphasized by George Boole. He
devised a system of logic which was intended not only to deal with a much larger and
more varied class of arguments but also to allow one, given any argument in that class
whose premises form a conjunction of the form A(R, S), to find a conclusion A∇(S)

that axiomatizes the set of S-consequences of A(R, S).
Boole’s discussion, on pages 8–10 Boole (1916), of “the requirements of a general

method in logic”, begins as follows. “As the conclusion must express a relation among
the whole or among a part of the elements involved in the premises, it is requisite that
we should possess the means of eliminating those elements which we desire not to
appear in the conclusion, and of determining the whole amount of relation implied
by the premises among the elements we wish to retain”. In Schröder’s writings there
occur similar passages (e.g. on page 198 of Schröder, vol. II).

Boole obtains his A∇(S) from his A(R, S) by a process that ends with eliminating
in a certain way the symbols in R (Cf. Chap. VII and VIII in Boole 1916). For many
years, many logicians expressed doubts about his argumentation. Although in Burris’
recent work (Burris 2001), he seems to have succeeded in clarifying and justifying
Boole’s line of thought, Schröder’s modification of Boole’s work seems easier to
present and will be followed here.

Schröder’s main change from Boole, a change first suggested by Jevons, is from
a partial union or sum operation that is only defined for pairs of disjoint arguments
to one that is defined for any pair of arguments. Other changes made by Schröder,
in particular giving a prominent role to the inclusion relation and making use of its
intuitive appeal, were suggested to him by the writings of C. S. Peirce. Like Boole’s
algebraic theory of logic, Schröder’s theory abstracts from sets or classes and from
laws that are satisfied by certain operations on these and deals with algebraic struc-
tures B whose primitive functions satisfy the same formal laws. These structures B are
complemented distributive lattices (cf. Sects. 1, . . . ,17 in Schröder, vol. I) and thus
Boolean algebras in the present-day sense.

Henceforth, BA will be the class of Boolean algebras in this sense. Thus, a struc-
ture B in BA will be of the form 〈B, ·,+,−, 0, 1〉, where B is a nonempty set and
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where the five primitive functions · , +, −, 0, 1 of B operate on 2, 2, 1, 0, 0 arguments
respectively. If B is a Boolean algebra of sets, then these five functions are the follow-
ing set-theoretic operations respectively: intersection; union; complementation (with
respect to 1); the null set ∅; the largest set in B (Boole’s “universe of discourse”).

Henceforth, L shall be the first-order language that will be used here in talking
about the algebras B in BA. Since it should be apparent from the context whether a
function of B or the symbol for it in L is involved, the function symbols of L shall
be: ·, +, −, 0, 1. The terms of L shall be formed in the usual way from these and
from (individual) variables v,w, x, y, . . . (regarded as ranging over B). The atomic
formulas shall be the equalities t = t ′, where t and t ′ are terms. Other formulas shall
be formed from atomic formulas in the usual way, using ∧, ∨, ¬, ∀, and ∃. For brevity
or suggestiveness, t ≤ t ′ will often be used instead of t ·t ′ = t , and t �= t ′ instead of
¬ t = t ′. The set of variables of L shall be Vb. For any subset S of Vb, an S-formula
shall be any formula C such that any v in Vb that has a free occurrence in C belongs
to S. Thus, if S = Vb ∩ −{x}, then C is an S-formula if and only if x does not occur
free in C .

In changing from everyday language to the language L for Boolean algebras, one
replaces the use of predicate symbols referring to sets by the use of individual variables
intended to refer to these. The original problem of axiomatizing those consequences
of a conjunction A of sentences in which the predicate symbols in R do not occur
changes accordingly. Given a truth functional combination of formulas of L , one now
wants to axiomatize those Boolean consequences in which certain chosen individual
variables, such as x, y, . . . , have no free occurrence.

Consider any B in BA and any mapping µ of the set Vb of variables into the set
B of elements of B. There is a natural extension of µ to a mapping µB of the set of
terms into B. This mapping induces a unique mapping, which will also be denoted by
µB, of the set of atomic formulas into the set {�,⊥} of truth-values. Specifically, if
µB(t) = µB(t ′) then µB(t = t ′) = �, and if µB(t) �= µB(t ′) then µB(t = t ′) = ⊥.
This mapping of the atomic formulas into {�,⊥} has a natural extension, which will
also be denoted by µB, of any formula C of L into {�,⊥}. If µB(C) = � then C
shall be true under µB. For any term t and any formula C , µB(t)and µB(C) shall be
the interpretation (in B) of t or of C , respectively.

A formula C shall be a BA consequence of a set {Ai : i ∈ I } of formulas, symbol-
ically {Ai : i ∈ I } �BA C , if and only if, for any B in BA and any interpretation µB
in B, if every Ai is true under µB, then so is C . Also, two formulas A and C shall be
BA equivalent if and only if A �BA C and C �BA A. Further, a formula C shall be BA
valid if and only if it ∅ �BA C .

For 1 ≤ n < ω, let A be a conjunction of the equalities in a set {ti = t ′i : 0 ≤ i < n}.
Let R be a subset of Vb such that every v in R has a free occurrence in A, and let
S = Vb ∩ −R. To obtain by the Boole-Schröder method an equality that axiomatizes
the set {C: A �BA C , C is an S-formula} one proceeds as follows. First, one replaces
every equality ti = t ′i by the equality (ti ·−t ′i )+ (t ′i ·−ti ) = 0, which is BA equivalent
to it. Next, one replaces the conjunction of these equalities by the following single
equality, which is BA equivalent to this conjunction

F1: (t0 · −t ′0) + (t ′0 · −t0) + · · · + (tn−1 · −t ′n−1) + (t ′n−1 · −tn) = 0.
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To describe the final steps, let us first assume that R is the singleton {x}, so that
s = Vb ∩ −{x}. Using various laws for transforming terms r into terms r ′ such that
r = r ′ is BA valid, including de Morgan’s law, which allows one to lessen the scope
of – , and a distributive law, which allows one to factor out the term x and also the term
−x , one transforms the term t that constitutes the left of the equality F1 above into the
term t ′ that constitutes the left of the equality F2 below, where s and s′ are terms that
do not contain x . The term t ′ is called by Boole and by Schröder the development of t
(with respect to x), while s and s′ are called the coefficient of x or of −x , respectively.
Since t = t ′ is BA valid, therefore F1 and F2 are BA equivalent. (Cf. Schröder, vol. I,
p. 409, Theorem 44+.)

F2 : (s · x) + (s′ · −x) = 0.

F3 : s · s′ = 0.

F2,≤ : s′ ≤ x ∧ x ≤ −s.
F4 : (s · s′) + (s′ · −s′) = 0.

∃ x F2 : ∃ x((s · x) + (s′ · −x) = 0.

As one can see, F2 and F2,≤ are BA equivalent and F2,≤ �BA F3. Since x does not
occur in F3, there follows that F3 is in the set {C : F2 �BA C, x does not occur free
in C}. Now consider any C in this set. Since x does not occur free in C and since
F2 �BA C , therefore ∃ x F2 �BA C . Since F3 �BA F4 and F4 �BA ∃ x F2, therefore
F3 �BA C . There now follows that each of F3, F4, ∃ x F2 axiomatizes {C : F2 �BA C, x
does not occur free in C}. Each of them also axiomatizes {C : A �BA C, x does not
occur free in C}, since A and F2 are BA equivalent.

The same conclusions are obtained in Sect. 21 of Schröder, vol. I and in Sect. 130
of Müller (1910) by arguments that are largely similar. The formula F3 is called there
a full resultant of eliminating x from F2.

In the case where, for some k > 1, R is a set {x1, . . . , xk} of k variables, one can
axiomatize the set {C : A �BA C , none of x1, . . . , xk occur in C} by k successive uses
of the above process of eliminating one variable. Any two different orders of thus
eliminating the variables in {x1, . . . , xk} result in Vb ∩ −{x1, . . . , xk} formulas that
are BA equivalent.

The statement that some R are S, where R and S are sets, can be rendered thus:
R ∩ S �= 0. In order to also take into account statements of this kind, Schröder consid-
ers, in Sects. 36, 41, and 49 of Schröder, vol. II, an arbitrary quantifier-free formulas
A, so that A is logically equivalent to a disjunction A1 ∨ · · · ∨ A j , where each Ai is
a conjunction formed from equalities and negations of equalities.

Concentrating on the case where a single variable x is to be eliminated from A, he
observes that since ∃ x A is logically equivalent to the disjunction ∃ x A1 ∨· · ·∨∃ x A j ,
it is sufficient to consider separately, for each i , 1 ≤ i ≤ j , elimination of x from
Ai . Moreover, on pages 380–381 of Schröder, vol. II, and also in Sect. 161 of Müller
(1910), the problem is reduced to the case where every component of this conjunction
Ai is a formula t �= t ′. As we saw earlier, t = t ′ is BA equivalent to a formula (r · x)+
(s · − x) = 0, where neither r nor s contains x . Also, as one can see, every formula
r ′ + s′ �= 0 is BA equivalent to the disjunction r ′ �= 0 ∨ s′ �= 0. Now assume that Ai

is a conjunction of n disjunctions of the form r · x �= 0 ∨ s · −x �= 0, where neither
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r nor s contains x . Then, from the distributivity of ∧ over ∨ there follows that Ai is
logically equivalent to a disjunction of 2n formulas Ai,1, . . . , Ai,2n , each of which, for
some m such that 0 ≤ m ≤ n, is of the form F5 below, where r0, . . . , rm, sm+1, . . . , sn

do not contain x . Since ∃ x(Ai,1 ∨ · · · ∨ Ai,2n ) and ∃ x Ai,1 ∨ · · · ∨ ∃ x Ai,2n are logi-
cally equivalent, the problem of eliminating x from a quantifier-free formula A is thus
reduced to the problem of eliminating x from formulas of the form F5.

F5: r1 · x �= 0 ∧ · · · ∧ rm · x �= 0 ∧ sm+1 · −x �= 0 ∧ · · · ∧ sn · −x �= 0.

F6: r1 �= 0 ∧ · · · ∧ rm �= 0 ∧ sm+1 �= 0 ∧ · · · ∧ sn �= 0 .

Let ∃ x F5 be the formula that results from F5 by prefixing ∃ x . Then F5 � ∃ x F5
and x does not occur free in ∃ x F5. Moreover, if F5 �BA C and x does not occur free
in C , then ∃ x F5 �BA C . There follows that ∃ x F5 axiomatizes the set

{C: F5 �BA C, x does not occur free in C} .

Evidently, F6 belongs to this set. In Sects. 41 and 49, Schröder shows that there
are certain Boolean algebras B and interpretations µB in B such that, if F6 is true
under µB, so is ∃ x F5. He calls F6 a rough-and-ready resultant or crude resultant
(“Resultante aus dem Rohen”) of eliminating x from F5, to indicate that in some, but
not in all, cases F6 can serve as an axiomatization of the above set. He probably also
wanted to suggest that F6 not only readily comes to mind, but also may serve as a
useful first step toward finding a resultant that is full.

Let B be any Boolean algebra. As usual, an atom of B will be any element a of B
such that, for any b in B, if b ≤ a and b �= a, then b = 0. (In Sect. 47, Schröder calls
an atom of B an indivisible element or individuum.) Also, B will be atomic (atomless )
if and only if, for every b �= 0 in B, there is some a (no a) such that a is an atom and
a ≤ b. An element b of B shall be small (in B) if and only if either b = 0 or there is
a finite nonempty set {a1, . . . , a j } of atoms of B such that b = a1 + · · · + a j .

Let B be any Boolean algebra and let µB be any interpretation in B. Let µB(r1) =
b1, . . . , µB(rm) = bm , µB(sm+1 = cm+1, . . . , µB(sn) = cn . Then ∃ x F5 or F6 is true
under µB if and only if there holds, respectively, (5)∃ or (6) below.

(5)∃ There are b′
1, . . . , b′

m , c′
m+1, . . . , c′

n such that

(i) 0 �= b′
1 ≤ b1, . . . , 0 �= b′

m ≤ bm , 0 �= c′
m+1 ≤ cm+1, . . . , 0 �= c′

n ≤ c, and
(ii) (b′

1 + · · · + b′
m) · (c′

m+1 + · · · + c′
n) = 0.

(6) b1 �= 0, . . . , bm �= 0, cm+1 �= 0, . . . cn �= 0.

As one can see, if B is atomless, then (6) implies (5)∃. More generally, the answer
to when (6) implies (5)∃ depends only on those b1, . . . , bm, cm+1 . . . cn that are small.
Thus, without loss of generality, it will be assumed in what follows that each of
b1, . . . , bm, cm+1 . . . cn is small. If (6) holds, then this assumption is equivalent to the
following condition.

(7) There are atoms a1, . . . , ak such that b1 + · · · + bm + cm+1 + · · · + cn =
a1 + · · · + ak .
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Assume (7). Then (5)∃ is equivalent to the following condition

(5)+∃ There are a j1 , . . . , a jm , a jm+1 , . . . , a jn in {a1, . . . , ak} such that

(i) a j1 ≤ b1, . . . , a jm ≤ bm , a jm+1 ≤ cm+1, . . . , a jn ≤ cn , and
(ii) {a j1 , . . . , a jm } ∩ {a jm+1 , . . . , a jn } = ∅.

If (i) holds, then 〈a j1 , . . . , a jm , a jm+1 , . . . , a jn 〉 shall be an instantiation (by atoms)
of 〈〈b1, . . . , bm〉, 〈cm+1, . . . , cn〉〉. If also (ii) holds, then this instantiation shall satisfy
the disjointness condition. It may be suggestive, if (i) holds, to think of a j1 , . . . , a jm ,

a jm+1 , . . . , a jn as the chosen representatives from the n sets of atoms below b1, . . . , bm,

cm+1, . . . , cn respectively. Then (ii) is a disjointness condition on the sets {a j1 , . . . , a jm}
and {a jm+1 , . . . , a jm } of the chosen representatives.

The question of when the conjunction of (6) and (7) implies (5)+∃ can be narrowed
further. Evidently, condition (ii) in (5)+∃ is trivially satisfied if either m = 0 or m = n.
In what follows, it will therefore be assumed that 0 �= m �= n. Also, whether or not
the disjointness condition (ii) in (5)+∃ can be satisfied depends only on those bm′ such
that bm′ ≤ cm+1 +· · ·+ cn and those cn′ such that cn′ ≤ b1 +· · ·+ bm . (Cf. Schröder,
vol. II, pp. 391–392.) In what follows it will therefore be assumed that the following
hold.

(7)+ There are atoms a1, . . . , ak such that b1 + · · · + bm = cm+1 + · · · + cn =
a1 + · · · + ak .

Among the cases where (6) and (7)+ hold but where (5)+∃ and hence (5)∃ does
not, so that the rough-and-ready resultant F6 of eliminating x from F5 is not a full
resultant, are those of the following kind. (Cf. Schröder, vol. II, p. 395.)

(8) Either some bm′ is a sum ai1 + · · · + aik′ of atoms, each of which is some cn′ , or
some cn′ is a sum ai1 + · · · + aik′ of atoms, each of which is some bm′ .

There are also cases other than those just described where, among the instantiations
of 〈〈b1+· · ·+bm〉, 〈cm+1+· · ·+cn〉〉 there is none that satisfies the disjointness condi-
tion. On pages 395–396 of Schröder, vol. II, Schröder lists several where m = n−m = 2
and k = 3, and also several more where m = 3, n−m = 2, and k = 4. He leaves it
open whether his list is complete.

As an example where there is no instantiation that satisfies the disjointness condition
but where none of b1, . . . , bm, cm+1, . . . , cn is an atom, Schröder gives the following

(9) b1 = a1 + a2, b2 = a2 + a3, b3 = a3 + a4, b4 = a1 + a4 + a5,
c5 = a1 + a3, c6 = a1 + a4, c7 = a2 + a4, c8 = a2 + a3 + a5.

One can verify that there is no instantiation satisfying the disjointness condition by
verifying that there is none with a j1 = a1 and also none with a j1 = a2.

In order to describe instantiations and also presence or absence of disjoint instanti-
ations, Schröder, in essence, resorts to a 2-sorted language. The 2-sorted language L2
that will be used here results from the (one-sorted, first-order) language L for Boolean
algebras B that has hitherto been used by adjoining variables of a disjoint second sort.
Each variable of this second sort will have i as a subscript, which may or may not be
followed by a second subscript. Thus, they are of the form vi , wi , xi , vi,1, xi,3, . . . .
These variables are intended to range over the atoms or individua of the Boolean

123



Synthese (2008) 164:321–332 327

algebra B concerned. (Schröder uses i, i1, i2, . . . for his variables of the second sort.)
Since their range is more restricted than the range of the variables of L , they shall be
the restricted variables of L2. A quantifier of L2 shall be restricted if and only if its
variable is restricted. Also, a formula shall be restricted if and only if it is a formula of
L2 in which every quantifier is restricted. The sublanguage of L2 whose formulas are
the restricted formulas shall be L2,r . Note that while both L and L2,r are sublanguages
of L2, neither one is a sublanguage of the other.

In order to interpret L2, µB will now be extended from variables, terms, and for-
mulas of L to those of L2. This will be done only for those Boolean algebras B that
are not atomless, since, as was noted earlier, if B is atomless, then a formula such
as ∃F5 and its rough-and-ready resultant have the same truth-value under µB, so that
there is no need for going beyond L . Also, this will avoid the problem of what value
µB should assign to restricted variables when there are no atoms. Regarding Boolean
algebras B that are not atomless, it will be assumed that µB has been extended to the
terms and formulas of L2 in the obvious way.

Note that for every formula A of L2 there is a formula A′ of L such that for every
µB such that B is not atomless, µB(A) and µB(A′) have the same truth-value. For
example, consider a formula ∃ vi C where C results from a formula C ′ of L by replac-
ing every free occurrence of v by an occurrence of vi . Then, for any non-atomless
B, the truth-value under µB of the formula ∃ vi C is the same as that of the following
formula:

∃ v(v �= 0 ∧ ∀w(v · w �= 0 ∨ v · −w �= 0) ∧ C ′) .

Thus, L2 is in certain respects more versatile than L but, in at least one sense of the
phrase, does not have greater expressive power.

As Schröder noted, one can sometimes use a restricted formula to rule out certain
cases where (6) and (7) hold but (5)+∃ does not, i.e., cases where the rough-and-ready
resultant is not a full resultant. For example, there is a quantifier-free formula F9 of
L2 among whose variables are vi,1, . . . , vi,5 that expresses condition (9). Let ∃F9 be
the restricted formula that results from F9 by prefixing ∃vi,1 . . . ∃vi,5. Then, for any
Boolean algebra B that is not atomless, if m = n−m = 4 and F5 is true under µB,
then so is ¬∃F9 (in addition to F6). Thus the conjunction ¬∃F9 ∧ F6 is also a resultant
of eliminating x from F5 (with respect to Boolean algebras B that are not atomless).
It “comes closer” than does F6 to being a full resultant.

Schröder’s aim was to obtain for formulas such as F5 enough restricted formulas
K that, like ¬∃F9, rule out certain cases where for 〈〈b1, . . . , bm〉, 〈cm+1, . . . , cn〉〉
there is no instantiation that satisfies the disjointness condition, so that conjunction
K1∧· · ·∧K p of these formulas rules out all such cases and hence K1∧· · ·∧K p∧F6 �BA

∃ x F5. To this intended conjunction Schröder applied the term “Klausel” (clause). He
made clear that in only a few cases he was able to find one and expressed his hope that
others would continue the work.

Despite this lack of success, by providing a deeper and more nuanced understand-
ing of what was to be achieved by solving his elimination problem, Schröder made
an important contribution to it and to logic in general. Schröder was well aware that,
for any formula A, if C is a formula without free occurrences of x , then A � C if
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and only if ∃ x A � C , so that ∃ x A axiomatizes {C : A �BA C, x does not occur
free in C}. Nevertheless, he seems to have regarded axiomatization by means of ∃ x A
to be, at best, of limited value and, as we have seen, spent much effort in finding axi-
oms that would be more useful or informative. Specifically, whereas ∃ x A quantifies
over arbitrary elements of the Boolean algebra B under consideration, Schröder tried
to find axiomatizations by means of formulas whose quantifiers, if any, are restricted
and hence only range over the atoms of B. In the case where B is a Boolean algebra
of sets, the truth-value of ∃ x F5, for example, depends on which sets b are elements
of B. In contrast, if moreover B is atomic and complete, then the atoms of B are the
singleton sets, so that the restricted quantifiers are essentially individual quantifiers.
Schröder’s distinction between a 2-sorted language such as L2 and its restricted sub-
language thus anticipates the distinction between monadic second-order logic with
equality and monadic first-order logic with equality.

It should be noted for the record that both Boole and Schröder were interested in
elimination of x not only for its own sake, but also for the help they thought it might
provide in connection with problems of another kind that they thought to be important,
namely, problems of solving for x . For example, assuming that there holds the equality
F2 listed earlier, formula F2,≤ seems to solve for x in their sense (Cf. Couturat 1914,
Sect. 38 and Müller 1910, Sects. 122–150.). This complex topic in logic will not be
discussed further.

The most important elimination result in logic concerns monadic second-order logic
with equality. Given any formula A in the language L2

1 for this logic, one can find a
formula A′ in its sublanguage L1

1 for monadic first-order logic with equality such that
A and A′ are logically equivalent. This result was first sketched by Löwenheim (1915)
in Sect. 3. Detailed proofs were given by Skolem (1919) in Sect. 4 and by Behmann
(1922). These proofs also yield a decision method for L2

1 and for L1
1. Useful discus-

sions can be found in Sect. 5 of volume 1 of Hilbert-Bernays (1934) and in Church’s
book (1956). A more recent examination of Behmann’s work is provided by Richard
Zach (2007).

Skolem begins his work on the elimination problem, in the last section of Skolem
(1919), with an assertion to the effect that he will work within the framework of
Schröder’s calculus of classes and relations. To be more precise, the main body of
his work is concerned with the subclass BAat of BA that consists of those B that are
atomic. However, his final theorem, Theorem 18, a reformulation of his main theo-
rem, Theorem 15b, is a statement of what is now known as the elimination theorem
for monadic second-order logic with equality.

Skolem’s argument that his Theorem 18 is a reformulation of his Theorem 15(b)
makes use of the fact that the subject matter of monadic second-order logic with equal-
ity may be viewed in two ways. In accord with a tradition originating with the theory
of types, we nowadays think of monadic second-order logic as concerned with indi-
vidual objects and with sets of these, where none of these sets is an individual object.
However, one can also think of monadic second-order logic as concerned with sets
only. Instead of individual objects, one then considers sets of a special kind, namely,
sets that have only one member, that member being an individual object. If one deals
with sets as elements of a Boolean algebra, then the sets of this special kind are atoms
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of the algebra. It it then natural to think of monadic second-order logic as dealing with
Boolean algebras that satisfy the further condition of being atomic and complete.

Although, at his time, monadic second-order logic had not yet become a clearly
defined topic of investigation, Schröder approached elimination problems with an atti-
tude close to this second point of view. As mentioned earlier, he made use of a 2-sorted
language where one sort, that of atoms, forms a subset of the other.

It is important to note that Skolem’s proof, outlined below, applies to arbitrary
atomic Boolean algebras, not only to those that are both atomic and complete. Thus,
the elimination theorem for standard monadic second-order logic also applies to inter-
pretations of second-order logic that admit general models in the sense of Henkin’s
(1950).

Let B be any Boolean algebra that is atomic. For any set X , let ‖X‖ be the car-
dinality of X . Then, for any element b of B, b �= 0 if and only if ‖{a : a ≤ b, a is
an atom}‖ ≥ 1. Also, for any elements b and c of B, the condition that b �= c, which
plays a prominent role in Schröder’s study of elimination, is equivalent to

‖{a: a ≤ (b · −c) + (c · −b), a is an atom}‖ ≥ 1.

For any non-negative integer n and for any term t of L2, Skolem makes use of two
formulas ∃≥nvi t and ∃≤nvi t of L2,r that have the following property: For any Boolean
algebra B that is atomic and any interpretation µB, ∃≥nvi t or ∃≤nvi t , respectively, is
true under µB if and only if there holds, respectively,

‖{a: a ≤ µB(t), a is an atom}‖ ≥ n,

‖{a: a ≤ µB(t), a is an atom}‖ ≤ n.

(Löwenheim made use of formulas of L2,r that expressed both a cardinality condi-
tion on µB(t) and a cardinality condition on its complement −µB(t). These uses by
Löwenheim and by Skolem may be the first use in logic of cardinality quantifiers other
than ∃ = ∃≥1 and its dual.)

Let A be a formula of L2 and let x be a variable that is not restricted. Skolem first
shows that the formula ∃ x A is BAat equivalent to a disjunction ∃ x A1 ∧ · · · ∧ ∃ x Ak

where, for each j , there is some term s j not containing x such that A j is a conjunction
of formulas, each of which is of one of the four forms ∃≥n x(s j · x), ∃≤n x(s j · x),
∃≥n x(s j · −x), ∃≤n x(s j · −x). Moreover, each s j can be chosen to be a product
which, for every variable v other than x that occurs in A, contains as factor either v

or −v. Skolem then shows that, if A j is the conjunction A j1 ∧ · · · ∧ A jp then ∃ x A j

and ∃ x A j1 ∧· · ·∧∃ x A jp are BAat equivalent. If n ≥ n′, then ∃≥x(s j ·x), ∃≥x(s j ·−x),
∃≤n′ x(s j · x), and ∃≤n′ x(s j · −x) implies ∃≥n′ x(s j · x), ∃≥n′ x(s j · −x), ∃≤n x(s j · x),
∃≤n x(s j · −x), respectively. Hence every conjunction A jp′ is BAat equivalent to a
conjunction C jp′ of either 4, 3, 2, or 1 factors of one of the above four forms, with no
two factors being of the same form.

Skolem verifies that, in any of these four cases, ∃ xC jp′ is BAat equivalent to a
conjunction of formulas that are of the form ∃≥n xs j or ∃≤n xs j . There now follows
that ∃ x A is BAat equivalent to a truth-functional combination A′ of formulas of the
form ∃≥n xs or ∃≤n xs, where s is a product that, for every variable v other than x that
occurs in A, contains as factor either v or −v. Thus, A′ is a formula of L2,r . Similarly,
the formula ∃x¬A′ is BAat equivalent to a formula A′′ of L2,r . There follows that
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¬∃x¬A and hence also ∀x A is a formula of L2,r . There follows by induction that
every formula of L2 is BAat equivalent to a formula of the restricted language L2,r .

We can now see that, as logic evolved, so did ideas about elimination. The original
problem concerned axiomatizations of a certain kind: Given a set or conjunction A
of statements about certain classes, how to axiomatize the set of those logical conse-
quences C that involve only certain designated ones among these classes. Boole saw
that there are advantages in an algebraic approach where statements about classes are
made by means of equalities between terms that denote these classes. The problem
thus became one of axiomatizing, for a given conjunction A of equalities, the set of
those consequences C of A that are an equality in which there occur none of the
variables x, y, . . . that serve to denote a non-designated class. Because of syntactical
similarities between his procedure for obtaining suitable axioms and procedures that
were being used in algebra for solving equations, Boole applied to his procedures the
same name: elimination of variables.

Boole, Schröder, and others approached their work from two different, to some
extent complementary, points of view. On the one hand, at the center of their interest
was logic. As a problem in logic, the elimination problem was therefore a certain prob-
lem concerning the relation � of logical consequence. On the other hand, they saw the
advantage of sometimes adopting a more abstract point of view and of considering
interpretations of their system by mathematical structures that are not algebras of sets
but satisfy the same or similar laws. This led them to consider consequence relations
such as �BA, where A �BA C if and only if C is a logical consequence of the con-
junction of A and the axioms for the class BA of Boolean algebras. Thus, practically
from the start, elimination problems concerning logic were accompanied by related
elimination problems concerning certain mathematical theories.

It was all along understood that elimination of x from A should result in an axi-
omatization of {C: A �BA C, x does not occur free in C} that is useful and informative.
Boole’s procedure of eliminating x from a conjunction A of equalities of L yields a
formula E that satisfies this condition. As we saw, if BA� is the class of Boolean alge-
bras that are atomless, A is any truth-functional combination of equalities of L , and
E is the rough-and-ready resultant of eliminating x from A, then E axiomatizes the
set {C : A �BA� C, x does not occur free in C}. This axiomatization also seems to be
reasonably informative. In contrast, as Schröder realized, although ∃ x A axiomatizes
{C : A �BA C, x does not occur free in C}, this axiomatization is, in general, not very
informative. This is why he tried to find an E that is BA equivalent to ∃ x A, not only
a BA consequence of ∃ x A, and that, in some sense, provides more insight. The task
of eliminating a variable from A thus became the task of eliminating a quantifier
from ∃ x A.

This reformulation of the task, made explicit by Löwenheim and Skolem, but
restricted from BA to BAat , makes the task more demanding but has certain advanta-
ges. In the first place, it provided suggestions of how one could try to obtain E from
∃ x A by an inductive argument. More importantly, since ∀x A is logically equivalent to
¬∃ x¬A, therefore from the BAat equivalence of ∃ x¬A and a formula E ′ of L2,r there
follows the BAat equivalence of ∀x A and the formula ¬E ′ of L2,r . Thus, whereas the
elimination procedures originally envisaged were intended to apply to those formulas
A of L that are quantifier-free, the procedures described by Skolem and Behmann are
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applicable to any A in the larger class of all formulas of L2. Among formulas in this
larger class are formulas A with free occurrences of restricted variables such as vr

and wr . Formulas A of this kind are often used to denote a relation, rather than to
make a statement. Quantifier elimination applied to A then tends to yield a description
of the relation that is simpler. Thus, when one can carry it out, quantifier elimination
achieves more than the axiomatization procedures from which it evolved.

It should be emphasized that, in the present case, as in many others, quantifier
elimination does not, in general, yield formulas E without quantifiers. In the present
case, instead of the unrestricted quantifiers such as ∃ x and ∀y in A, one ends up with
restricted quantifiers. In many other cases of quantifier elimination, use of quantifiers
in an arbitrary context is replaced by use in a more circumscribed context that is more
manageable or easier to comprehend.

Whereas quantifier elimination has been successfully applied to a variety of axi-
omatic theories, there are severe limitations to where it can be applied in logic. There
are fairly simple formulas of second-order logic that express an axiom of infinity. One
of these is a formula ∃R A that asserts of the universe U under consideration that there
is a binary relation R that is single-valued which maps a proper subset of U onto
U . Since any first-order consequence of ∃R A is logically equivalent to a first-order
formula whose only predicate symbol is one for equality, therefore every finite set of
first-order consequence of ∃R A is true in some universe U that is finite. Hence, no
finite set of first-order formulas is logically equivalent to ∃R A.

Examples of this kind led Ackermann to consider, in Ackermann (1935), weaken-
ing the requirements on elimination by widening the notion of resultant. Instead of
obtaining a single first-order formula E that is logically equivalent to ∃R A, one was
to obtain a set {En : 0 ≤ n < ω} of such formulas such that ∃R A and the set are
logically equivalent. In Sect. 4, he succeeded with regard to those formulas ∃R A that
are of the form ∃ P∀x1 . . . ∀xn M , where M is quantifier-free, x1, . . . , xn are individual
variables, and P is 1-ary. In Sects. 5 and 6 he obtained resultants in his widened sense
for certain further formulas.

If A is a first-order formula, then the class of models of ∃R1 . . . ∃Rm A is nowa-
days called a pseudo-elementary class, or PC-class. Also, the class of models of a set
{En : 0 ≤ n < ω} of first-order formulas is an elementary class in the wider sense,
or an EC�-class. It has been known, at least since 1950, that there are PC-classes
that are not an EC�-class. Thus, there are second-order formulas ∃R1 . . . ∃Rm A for
which there exists no set {En : 0 ≤ n < ω} of first-order formulas that is logically
equivalent. For formulas of this kind the elimination problem does not have a solution
in Ackermann’s sense.

In light of this situation, it makes sense to return to the more modest demands that
originated with Boole and that are of the kind sketched at the beginning of this article.
Even when A(R, S) is a first-order formula such that no set of first-order formulas is
logically equivalent to ∃R A(R, S), there are many times when it would be useful to
have available a set {En: 0 ≤ n < ω} that in an informative way axiomatizes the set
of those first-order logical consequencese C of A(R, S) that do not contain R.

A method of axiomatizing this set of consequences C of A(R, S) by means of an
axiom scheme is described in Craig (1960). However, the notion of scheme employed
there is much wider than what would ordinarily be understood by that term. The
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axiomatizations resulting from this method are unlikely to be useful. Perhaps some
future refinements of the method will, in some cases, yield better axiomatizations and
perhaps, in some other cases, will show that there exists no axiomatization that is
essentially better.
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