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Abstract After showing how Deborah Mayo’s error-statistical philosophy of
science might be applied to address important questions about the evidential sta-
tus of computer simulation results, I argue that an error-statistical perspective offers
an interesting new way of thinking about computer simulation models and has the
potential to significantly improve the practice of simulation model evaluation. Though
intended primarily as a contribution to the epistemology of simulation, the analysis
also serves to fill in details of Mayo’s epistemology of experiment.

Keywords Computer simulation · Evidence · Error statistics · Climate models

1 Introduction

Computer simulation models have emerged as an important research tool in many
scientific fields. Painting with a broad brush, we can identify at least two epistemic
functions that computer simulation models might serve. First, they might serve as
heuristic tools: interaction with computer simulation models might help scientists to
arrive at novel hypotheses to be subjected to further investigation via observation and
experiment. There seems to be broad agreement among scientists and philosophers
alike that computer simulation models can have this heuristic value.

Second, computer simulation models might serve as evidential resources: they
might be used in investigations that are meant to provide good evidence for hypothe-
ses about real-world target systems. Surveying actual modeling practice, it seems
clear that computer simulation models sometimes are developed with this goal in
mind. Obvious examples, which will be revisited below, include the development of
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computer models of earth’s atmosphere and climate system, which scientists hope will
be able to provide accurate information regarding tomorrow’s weather and the next
century’s climate (respectively). But can weather and climate models, or computer
simulation models in other fields, really deliver good evidence regarding hypotheses
about real-world target systems? If so, when? When it comes to questions like these,
little or no consensus has been reached; indeed, there is a widely-recognized need for
more discussion and analysis (e.g. Oreskes et al. 1994; Rykiel 1996; Winsberg 1999a;
Beck 2002).

The present paper aims to contribute to the discussion by grappling with two
fundamental questions about the evidential status of computer simulation results:

(a) What is required for computer simulation results to constitute good evidence for
hypotheses about real-world target systems?

(b) How do we go about determining whether the results of some simulation study
constitute such evidence in any particular case?

The approach taken involves viewing computer simulation modeling through the lens
of a particular account of scientific evidence, namely, the error-statistical account
recently developed by Deborah Mayo (1996, 2000, 2005). After drawing on this
account to provide preliminary answers to (a) and (b), I explain why adopting an
error-statistical perspective could be particularly valuable when it comes to under-
standing and using computer simulation models as evidential resources.

Section 2 introduces the error-statistical framework and its key notion of severe
testing and explains why Mayo’s discussion itself requires an analysis of the evidential
status of computer simulation models. In Sect. 3, I apply the error-statistical framework
to computer simulation modeling to arrive at preliminary responses to (a) and (b)
and then offer some remarks on the prospects for using computer simulation results
as evidence for hypotheses about real-world target systems. Throughout, key points
are illustrated in the context of weather and climate modeling. Despite remaining
questions about the use of simulation results as evidence, Sect. 4 argues that adopting
an error-statistical perspective on computer simulation modeling would be valuable for
at least two reasons: it would offer an interesting new way of thinking about computer
simulation studies and it would promote important and healthy changes in the practice
of simulation model evaluation. Section 5 offers some concluding remarks.

2 Mayo’s error-statistical philosophy of science

Mayo’s (1996, 2000, 2005) account of scientific evidence is built around the notion
of a severe test. A severe test of some hypothesis H is a procedure that has a high
probability of rejecting H , if and only if H is false. We say that H passes a severe test
with results e just in case: (i) e fit H , for some suitable notion of fit; and (ii) it is very
unlikely that the test procedure would produce e that fit so well with H , if H is false.
If H does pass a severe test with results e, then e are good evidence for—or a good
indication of—H. Put more informally: we have good evidence for H just in case a
procedure that almost surely would have indicated H to be in error, were H actually
erroneous, nevertheless does not indicate that H is in error (For more details on these
definitions and requirements, see Mayo 1996, 2000, 2005).
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In conjunction with her account of evidence, Mayo has offered an extended analy-
sis of how traditional experimental inquiry can provide good evidence for scientific
hypotheses. In a nutshell, it is because scientists have become shrewd inquisitors of
experimental error—they have identified canonical sources of error that can impact
experimental results and have developed a variety of tests that probe for the presence
of those sources of error. Such sources of error include, but are not limited to: a fail-
ure to meet the design assumptions of the experiment, a malfunctioning experimental
apparatus, a biased data processing technique, and a failure to adequately control for
confounding factors (see Mayo 1996, Chap. 5 for more details). On Mayo’s view, we
must be able to argue that such sources of experimental error were absent from our
experiment and thus have not impacted our results (or, if some of them were present,
that they have not impacted the results by more than a specified amount), before we
can claim that our results constitute good evidence regarding some primary hypothesis
of interest (e.g., a hypothesis about the efficacy of a drug in a clinical trial). To be in a
position to make such an argument, we typically must conduct a battery of lower-level
severe tests, each of which is designed to probe for the presence of one or more specific
sources of error, such as an instrument malfunction or the presence of a confounding
factor.

The statistical part of Mayo’s error-statistical approach is tied to the details of severe
testing, and it is grounded in a frequentist interpretation of probability. She argues that
formal statistical tools and concepts are especially useful when it comes to probing for
error, not least because they can help us to determine what we would be more and less
likely to observe when carrying out some test procedure, if a particular source of error
were present (1996, p. 164). With this information, we may be in a position to draw
conclusions about the presence and/or impacts of that source of error. To take a very
simple example, if we know that 99% of the time the temperature registered by the
thermometer used in our experiment is within 1◦ F of the true temperature, then we can
estimate how likely it is that random measurement error would lead us to erroneously
accept, on the basis of the particular experimental results we obtained, a particular
hypothesis that we set out to test concerning the temperature of a substance. As the
example illustrates, statistical tools and concepts don’t give us answers “from thin air”
(Mayo 1996, p. 96)—we have to draw on our knowledge of the subject-matter at hand
as well—but in conjunction with that knowledge, statistical concepts and tools can
play a valuable role in helping us to design severe tests and to decide whether they
have been passed (see also Mayo 1996, pp. 449–462). It is important to recognize,
however, that although formal statistical analysis has particular value on Mayo’s view,
she does not claim that it is essential in severe testing for error. Instead, sometimes
more qualitative arguments about what it would (and wouldn’t) be like if a particular
source of error were present in an experiment can be perfectly appropriate—what
Mayo refers to as “informal” arguments from error (see e.g., Mayo 1996, pp. 12–13
and p. 138).

It is in discussing the need to model error in traditional experimental contexts that
Mayo makes reference to computer simulation studies. In order to argue that some
source of error was almost surely absent from an experiment, scientists sometimes
carry out computer simulations to help them estimate what they would be more and less
likely to observe if that source of error were present in the experiment. Mayo illustrates
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with the example of the discovery of neutral currents. Repeated observation of neutrino
events without muons fit well with the hypothesis that neutral currents exist, but there
was also the possibility that muons were actually present and simply not being detected
due to inadequacies in the experimental apparatus. Computer simulations were carried
out to estimate how many neutrino events without muons would be more and less
likely to be observed if there were particular inadequacies in the muon detection
apparatus, and the results of these simulations were used to reject the hypothesis that
muons were present but simply escaping detection, on the grounds that the actual
experimental results fit so poorly with what would be expected if the muons were
really just escaping (see Mayo 1996, pp. 92–99 and pp. 162–164). Mayo’s acceptance
of the use of simulations in this way seems to commit her to the view that computer
simulations sometimes do provide good evidence for hypotheses about the real-world
systems they are chosen to represent. For, presumably, simulation results could be
used in the way Mayo suggests—i.e. to argue that some source of error was absent
from an experiment—only if they constituted good evidence for a hypothesis about
what it would be like if that source of error were present in the experiment, and such
a hypothesis is a hypothesis about a real-world target system, namely, the particular
system that constitutes the experimental set-up.

So it seems that some understanding of how computer simulation results can con-
stitute evidence for hypotheses about real-world target systems is needed even in the
context of Mayo’s analysis of traditional experimentation, because of the role that com-
puter simulation studies sometime play in providing information about what it would
be like if particular sources of error were present in a given experiment. As indicated
previously, however, not all computer simulation studies are undertaken with the goal
of aiding arguments in traditional experimental contexts; sometimes computer simula-
tion studies are carried out on their own (unconnected with any traditional experiment)
with the aim of providing evidence regarding natural systems outside of the laboratory,
e.g., when computer simulation models are used to forecast tomorrow’s weather. In
both kinds of situation, it is hoped that computer simulation studies will provide good
evidence regarding hypotheses about real-world target systems. An analysis of when
computer simulation results constitute such evidence is needed.

3 Computer simulation through an error-statistical lens

Turning first to question (a): What is required for computer simulation results to
constitute good evidence for hypotheses about real-world target systems? Viewing
computer simulation studies as putative test procedures, Mayo’s account of evidence
can be applied directly to deliver the following answer. Simulation results constitute
good evidence for some real-world hypothesis H just to the extent that:

(i) the results fit H ; and
(ii) it is unlikely that the simulation study would deliver results that fit so well with

H , if H is false.

Importantly, this implies that the procedure constituted by the simulation study must
have a high probability of indicating that H is false, if H is in fact false; if the
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procedure that constitutes a simulation study has little chance of revealing H to be
in error even if it is in fact in error, then the simulation study cannot provide good
evidence regarding H .

To illustrate, we can consider an example involving computer simulation models
of earth’s climate system. Suppose that these climate models project that at least
moderate global warming will occur by the middle of the next century; does this count
as good evidence for the hypothesis that at least moderate global warming will occur?
According to the view just presented, the projections count as good evidence only
if it is highly unlikely that climate models would deliver results that fit so well with
the moderate-warming hypothesis, were it a false hypothesis about the next century’s
climate.

Reflecting on the climate modeling example leads us rather directly to (b): How do
we go about determining whether the results of some simulation study constitute good
evidence for a particular hypothesis? That is, how do we go about determining whether
the simulation study and its results are such that, if H is false, then the simulation study
almost surely would have delivered results that fit less well with H than the actual
simulation results do? The strategy that Mayo presents for the case of traditional
experimentation suggests one possibility, namely, by appeal to the results of lower-
level severe tests that probe for specific sources of error. In the context of computer
simulation modeling, this strategy would involve showing that standard sources of
error that can arise in simulation studies either were absent from our simulation study
or, if present and unable to be “subtracted out”, were unlikely to have impacted the
simulation results by more than a specified amount.

To implement this strategy, we would need an understanding of the canonical
sources of error that can impact computer simulation results as well as procedures
that severely test for the presence of those sources of error and/or reliably estimate the
magnitude of their impact. Do we have either of these?

3.1 Sources of error in computer simulation studies

Scientists have formulated taxonomies of error sources that affect computer simulation
results (e.g., Oberkampf et al. 1995; Roache 1998), and some philosophers have,
too (e.g., Winsberg 1999b). Box 1 presents my own preliminary attempt at such a
taxonomy.1

Study design error is typically an issue when the aim is to simulate repetitions
of a procedure (as in the Monte Carlo simulation performed for the neutral currents
experiments discussed by Mayo) or when multiple runs of a simulation model are being
performed to explore the implications of uncertainty associated with the modeling
assumptions. Both kinds of study involve sampling, and error can arise due to the
limited number of simulation runs/trials performed or because the methods used to
generate the sample of runs/trials are in some way inadequate. Substantive modeling
error occurs when the equations or initial/boundary conditions chosen to represent

1 My taxonomy draws upon but also differs somewhat from those offered by the authors mentioned above;
there is not space to compare and contrast our taxonomies here.
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Study Design Error 
Error due to limited number of simulation runs / trials 

Inadequate sampling method 

Substantive Modeling Error 

Overly simplified/erroneous initial and/or boundary conditions 

Data Processing Error

   Solution Algorithm Error 
Inapplicable solution algorithm 

Unstable solution algorithm 

Numerical Error 
Discretization error 

Iterative convergence error 

Truncation error 

Programming Error
Inadequate/faulty program design 

Coding typo/mistake  

Hardware-related Error 
Round-off error 

Internal malfunction 

External interference 

Error in equations for modeled processes (form, parameter values) 

No representation of relevant processes 

Error introduced by processing of raw simulation results

  Solut

Box 1 Sources of error in computer simulation studies

the target system are inappropriate, given the goals of the modeling study. Substantive
modeling error includes errors of omission—cases in which relevant features of the
target system are simply not given any representation in the model. Data processing
errors are distortions or other errors that are introduced by the procedures (if any) used
to process raw simulation data before they are delivered as simulation output/results.
For instance, such processing might involve interpolating raw data from the regular
grid of the simulation to points of interest that do not lie at the nodes of the grid
(as when forecasts of weather conditions are generated for cities that lie between the
points for which the model makes calculations).

Solution algorithm error occurs when a simulation study makes use of solution
methods that are not capable of solving the equations of the model to the desired
degree of accuracy. Closely related is numerical error, which occurs anytime the
chosen solution algorithms employ numerical solution methods, since these methods
deliver only approximate solutions to equations of interest; for these errors, the goal is
usually to estimate and/or minimize their magnitude. Programming error occurs when
the computer program in which the solution algorithms and processing procedures are
embedded has not been properly designed or implemented. As model developers know
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all too well, even the most minor of typos made when programming can significantly
impact simulation results. Lastly, hardware-related error occurs if the computer that
runs the program is not functioning properly or suffers some external interference,
such as a power surge; in addition, some hardware-related error is always present in
the form of round-off error, as a result of the finite storage precision of the computer.

3.2 Probing severely for error in computer simulation studies

While there is clearly plenty of opportunity for further analysis, the preceding discus-
sion suggests that we do have some understanding of the different sources of error
that can impact computer simulation results.2 But are there procedures that we can use
to severely test for their presence and/or to reliably estimate the magnitude of their
impacts? While I cannot hope to provide a comprehensive answer to this question
here, there are several remarks I would like to make.

First, as I will emphasize again in Sect. 4, explicit concern with severe testing for
error is surprisingly rare in the context of computer simulation modeling. Nevertheless,
something like severity considerations do sometimes appear. Examples can be found
in discussion of simulations that involve estimating solutions to differential equations,
especially in the area of computational fluid dynamics. For instance, Salari and Knupp
(2000) and Roy (2005) describe a variety of tests for detecting coding mistakes that
impact the order of accuracy of solutions and recommend the most “rigorous” and
“sensitive” of the available tests. Although exactly what it means for a test to be rigorous
or sensitive is not made explicit, Salari and Knupp say that when the recommended
tests are passed “the probability of a coding mistake is deemed small” (2000, p. 18).
Similarly, Roache (2002, pp. 9–10) claims that, for at least some types of equations,
it is “highly unlikely” that a computer code passing one of these recommended tests
would be “wrong”, by which he seems to mean that it is highly unlikely that the code
would contain errors that prevent it from solving the equations of the model to the
order of accuracy that the chosen solution method, if implemented properly, is capable
of delivering.3

Another example can be found in discussions of the reliability of proposed proce-
dures for estimating the magnitude of errors that are known to be present in simula-
tions that involve estimating solutions to differential equations. Roache (1994, 1997)
describes a procedure for estimating the magnitude of discretization error—the error
that occurs because solutions to continuous equations are being estimated on a spatial
grid with finite rather than infinitesimal spaces between grid points. He indicates that
his goal in developing this estimation procedure was to ensure that, in approximately
95% of the cases in which the procedure is used, the true discretization error will
lie within the interval generated by the procedure (see Roach 2003, p. 731). From

2 Salari and Knupp (2000), for instance, present a taxonomy of coding mistakes that could in principle be
embedded within my taxonomy. Similar expansions might be performed for the other kinds of error.
3 These recommended tests involve exercising the code on complex solution tasks and checking whether
refinement of the spatial grid on which solutions are calculated leads to expected changes in the order
of accuracy of the solutions; the expected changes are found via formal analysis of the exact solutions
(see e.g., Roache 2002; Roy 2005).
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the point of view of using simulation results as evidence, having this sort of reliable
procedure for estimating the magnitude of discretization error would clearly be useful,
since in order to sustain an argument concerning the likelihood that some simulation
results would agree so well with a given hypothesis, were the hypothesis false, we
need to take into account how sources of error known to be present are likely to have
impacted the simulations results. Whether Roache’s estimation procedure really does
provide reliable information concerning the magnitude of discretization error, how-
ever, remains a topic of debate; he reports that in a suite of tests his procedure did
achieve something like the 95% reliability for which he was aiming (Roache 2003),
but other modelers have suggested that the results of those tests were insufficient for
establishing confidence intervals, both because no underlying error distribution was
specified and because the analysis nevertheless sometimes seemed to assume a nor-
mal distribution of errors, when there are reasons to think that such an assumption is
unwarranted (see Wilson et al. 2004).

Second, I note that it remains to be seen whether formal statistical analysis can
have as large a role (or the same role) to play in arguments for the evidential value
of computer simulation results as Mayo suggests it has in arguments for the eviden-
tial value of results from traditional experiments.4 Recall that, according to Mayo,
one major use of formal statistical analysis in traditional experimental contexts is in
developing arguments about the presence or absence of errors. Whether formal statis-
tical models can be used this way in the context of computer simulation would seem
to depend in part upon the nature of the sources of error that can impact simulation
results—e.g., do coding mistakes of a certain type, discretization errors, etc. impact
simulation results in patterns that can be captured with standard statistical models,
such as Gaussian distributions? In the examples presented above, although the mod-
elers were concerned with the reliability of their test procedures and collected data
on the procedures’ successes and failures in detecting particular errors, they did not
investigate whether the observed distributions of errors could be assimilated to any
particular formal models. (As just indicated, however, this issue did arise in critical
discussion.) But even if it turns out that formal statistical analysis cannot play the same
role as it does in the context of traditional experimentation, informal arguments from
error might still be possible. For example, an experienced modeler might be prepared
to argue informally that a problem known as numerical instability is unlikely to have
significantly impacted simulation results of interest, because not only have all runs
of the simulation model managed to complete (while numerical instability can cause
a simulation to crash), but graphical displays of the simulation results have failed to
show any of the other telltale signs that typically appear when numerical instability is
present.

Third, I want to flag what seems to be a particularly difficult error-probing task,
namely, that which involves testing for substantive modeling error. When thinking
about this task, we should remember that what we are really interested in detect-
ing is problematic substantive modeling error—i.e., substantive modeling error that
renders the model inadequate for our purposes. We need not care if our simulation

4 Berk et al. (2002) illustrate some of the roles that statistical concepts and tools might play in the evaluation
of computer simulation models, but much work remains to be done in this regard.
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model assumes that boundary conditions are rather simpler than they are in reality,
for instance, as long as the model can still be used to provide evidence regarding
hypotheses of interest about the target system. How difficult it is to devise severe tests
for problematic substantive modeling error may be a function of, among other things,
the extent to which we can intervene on and observe the real-world target system of
interest. For example, if our simulation model reflects the assumption that an object
has a particular shape or that a field has a particular structure, we may be able to test
the accuracy of that assumption via traditional experimentation and/or observation and
perhaps even to estimate via mathematical analysis how the results of our simulation
are likely to be impacted by our assumptions being inaccurate in particular ways. I
take the misspecification testing discussed by Mayo and Spanos (2004) to be closely
related to, if not an instance of, this sort of testing of substantive model assumptions.

Lastly, I want to explore the possibility that we sometimes can circumvent the task
of devising severe tests that specifically target substantive modeling error. The alter-
native approach envisioned here would involve establishing empirically the broader
claim that particular kinds of results from simulation studies of a specified type (e-type
results) can be used as reliable indicators of the truth/falsity of hypotheses of a partic-
ular sort (H -type hypotheses). Implementing this approach would require collecting
data on how frequently H -type hypotheses are false when various degrees of fit
between a pair consisting of an H -type hypothesis and an e-type result occur. Suppose
we find that, when the degree of fit between e-type results and H -type hypotheses is at
least as great as �, the H -type hypotheses are only very rarely false. We might invoke
this finding, along with evidence that a simulation study had been run in the usual way
and without any new signs of error, to argue that e, the particular e-type simulation
result generated in that study, constitutes good evidence for H , some particular
H -type hypothesis whose degree of fit with e is at least as great as �. Such an argument
would be analogous to one that invoked empirical evidence of the high reliability of a
type of home pregnancy test, along with evidence that the test was correctly deployed
in the case at hand, in defending the conclusion that the test’s delivering a result of
“pregnant” constituted good evidence of pregnancy in the individual tested.5

Obviously, this approach could be implemented only if a number of requirements
were met. A good estimate of the error statistics associated with the use of e-type
results to test H -type hypotheses is needed, and obtaining this requires both that there
exist a relatively stable distribution of errors from which we can sample and that we
take an adequate sample from that distribution when we collect data on how frequently
a given fit between an H -type hypothesis and an e-type result correctly indicates the
truth/falsity of the H -type hypothesis.6 In addition, even if we do have a good estimate

5 The recognition that results of “pregnant” from a dozen different but reliable home pregnancy tests
provides even stronger evidence of pregnancy raises interesting questions about the evidential value of
agreement among results generated from several different computer simulation models. Though there is not
space to address such questions in detail here, I note that the evidential value of such agreement in the case
of simulation results will depend on the extent to which each of the models is reliable individually and on
the extent to which the models’ errors for such results are uncorrelated (just as in the case of the pregnancy
tests).
6 What counts as an adequate sample depends on several things, including the estimation procedure used,
which may require a random sample from the error distribution.
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of the relevant error statistics, we will be able to invoke it in arguing that some particular
e-type results constitute good evidence for some particular H -type hypothesis only if
the error statistics indicate that it is highly unlikely that there would be such a good
fit between an e-type result and an erroneous H -type hypothesis.

Given these and other requirements, it is unclear how often this approach could be
implemented in practice. There seems little prospect of doing so for model predictions
of long-term climate change, for instance. Since climate predictions concern conditions
decades from now, it would take a long, long time to collect statistics on how well
the models perform on such prediction tasks (assuming some stable distribution of
error exists—see below). Looking at model performance in simulating past climatic
conditions will not suffice either, at least not for today’s models; given that some
observations of past climatic conditions have been used in constructing and tuning
today’s climate models, and recognizing the possibility that earth’s climate is evolving,
we cannot assume that errors in simulations of past climate are sampled from an error
distribution identical to that associated with predictions of future climate. Indeed, if
earth’s climate is evolving, while our models are to some degree tuned to the climate
of the recent past, then there may be no stable error distribution from which to sample!

On the other hand, it might be possible to implement this approach for short-term
weather forecasts, since for these we can collect a significant amount of data on how
well the models perform on particular prediction tasks of interest. We might check, for
instance, how frequently over the last five years, when this simulation model predicted
that the next day’s high temperature at Chicago’s O’Hare International Airport would
be above average, the high temperature observed there on the next day turned out to
actually be above average. Performance information like this for weather forecasting
models is in fact collected and studied (e.g., Nachamkin (2004)) and is the sort of
information that in principle might provide a basis for arguing for the evidential value
of particular simulation results (e.g., that this model’s predicting that the temperature
tomorrow at O’Hare will be above average is good evidence that the temperature will
be above average).

Still, there are many complications to be dealt with before this approach could
be used even in the case of weather forecasting. For one thing, at most forecasting
centers, the forecast procedure itself is constantly evolving; adjustments are made to
the weather forecasting models and to the observing networks that supply data that are
needed to initialize the models, suggesting that it would be a mistake to simply assume
that data collected over a few years were sampled from a single error distribution. There
is also the question of which class of predictions should be considered when using
error statistics to argue for the evidential value of particular simulation results. For
example, do we need error statistics for the class of predictions consisting of daily
high temperatures in a particular temperature range for a single location in a single
season of the year, or will statistics for the class consisting of predictions of daily
high temperatures in any range for any of many locations in all seasons of the year
suffice?7 Presumably the answer depends in part on whether the error distributions
associated with different prediction classes differ significantly from one another, but

7 This issue is touched upon in Taylor and Leslie (2005).
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for very narrowly-defined classes we may lack sufficient data to draw key conclusions
about the distributions from which they are drawn. The importance of this question
about the relevant prediction class should not be overlooked; in any given situation,
the answer determines which hypotheses (if any) we can claim to test severely with
particular simulation results.

4 Value of an error-statistical perspective on computer simulation modeling

Though much work remains to be done to understand the prospects for using simulation
studies to severely test hypotheses of scientific interest, I contend that adopting an
error-statistical perspective on computer simulation modeling would be valuable for
at least two reasons: it would offer an interesting new way of thinking about computer
simulation studies, and it would promote important and healthy changes in the practice
of simulation model evaluation.

Adopting an error-statistical perspective would offer an interesting new way of
thinking about computer simulation studies, namely, as procedures that may be capable
of severely testing hypotheses of interest. On such a view, what is of fundamental
interest (at least when it comes to providing evidence) is not whether a model can
produce “realistic-looking” simulations of various real-world target systems, but rather
the space of hypotheses about those target systems that can be severely tested using that
model; simulation models are conceived of less as imitating or mimicking devices and
more as putative hypothesis-testing tools. Instead of always focusing on the question of
whether simulation results are true of a real-world target system, we can shift attention
to the question of which range of hypotheses about that target system can be rejected
or accepted in light of the production of those results by that model. For instance,
instead of asking whether it is true that tomorrow’s high temperature will be 70◦ F,
as our weather model predicts, we might ask the slightly different question of which
hypotheses about tomorrow’s high temperature can be accepted or rejected in light of
the production of a prediction of 70◦ F by our model.

Adopting an error-statistical perspective on computer simulation models also would
promote important and healthy changes in the practice of simulation model evaluation.
At present, this practice often lacks rigor and structure. Which tests or checks are
performed is sometimes determined largely by convenience—how much time and
computing power are available, past experience with evaluation techniques, the nature
of the available visualization tools, etc. This would not be so worrisome if simulation
models were being used only for heuristic purposes, but that is not the situation. In
many cases, even when the ultimate aim is to use simulation models as evidential
resources, model evaluation consists of little more than side-by-side comparisons
of simulation output and observational data, with little or no explicit argumentation
concerning what, if anything, these comparisons indicate about the capacity of the
model to provide evidence for specific scientific hypotheses of interest. Moreover,
conclusions drawn in such discussions often come in the form of qualitative judgments
of the extent to which some set of simulation results correspond with observational data
(e.g., “the simulation results agree reasonably well with the observations”), perhaps
accompanied by some statement concerning the evaluator’s “confidence” in the model
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in light of that correspondence. This has largely been the situation, for instance, when
it comes to the evaluation of computer simulation models used to project how earth’s
climate will change over the next century.8

An error-statistical perspective on computer simulation would provide some of the
rigor and structure that is often missing from the practice of simulation evaluation at
present. As discussed in the last section, an error-statistical approach would call for
identifying potential sources of error and performing a series of tests designed to probe
severely for the presence of those sources of error. Importantly, in order to claim that
simulation results provide good evidence for some hypothesis of interest, we would be
required to show that the potential sources of error were unlikely to have been present
or to have impacted the results by more than a specified amount, rather than just that
the evidence collected so far is consistent with their absence or their having minimal
impact. With this requirement in mind, it becomes obvious that displaying side-by-
side comparisons of model output and observational data is not enough—though the
appearance of a good fit between model output and observational data is consistent
with the absence of standard sources of error in simulation studies, it by no means
establishes that such sources of error are unlikely to be present; for one thing, issues
such as model-data dependence (which is common in the context of climate modeling,
for instance) must be addressed. An error-statistical perspective, with its explicit focus
on the nature of the test procedure, pushes us to confront such issues.

Such a perspective could be expected to have additional, related benefits as well.
It would work against overconfidence in simulation results, not only by setting a
demanding standard for good evidence but also by forcing us to consider what we know
(and don’t know!) about the impacts of potential sources of error on our simulation
results; in the process, we may come to realize either that there are important sources of
error for which we have not yet probed at all or that some sources of error are indeed
impacting our simulations, despite our having judged the results to look realistic.
Such realizations are particularly valuable, not least because they can direct and focus
our attempts to improve our simulation models. In addition, since an error-statistical
perspective would encourage us to formulate not just any old tests, but tests that probe
severely for error, we might be less likely to waste our limited resources on tests of
our models that are actually rather uninformative. The same focus on severe testing
might also lead us to take more seriously issues of simulation study design, which are
often overlooked at present but which impact what we can even possibly claim to have
learned from our simulations.

5 Concluding remarks

The foregoing is a preliminary discussion of how Mayo’s error-statistical framework
might be applied to address important questions about the evidential status of computer

8 Admittedly, evaluation of climate models is very difficult, for a variety of reasons. Also, of late there is
growing recognition of the need to consider what side-by-side comparisons of climate model output with
observational data really indicate, if anything, about climate models as predictive tools (see IPCC 2007,
Chap. 8). Still, there remains much room for improvement when it comes to the practice of climate model
evaluation.
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simulation results. It is clear that much work remains to be done to flesh out, and even
to determine the real prospects for, an error-statistical epistemology of simulation. It
is possible that further analysis will reveal that, given the stringent requirements of
the error-statistical account of evidence, we rarely are warranted in taking simulation
results to be good evidence for hypotheses of the sort that typically interest us in
science. I have not attempted to make any arguments about the likelihood of such
an outcome. Regardless, it seems better that we work hard to identify the capacities
and limitations of our models as evidential resources, as the error-statistical approach
with its emphasis on severe testing prompts us to do, than that we simply hope that a
“reasonably good fit” between model output and observational data indicates that our
models can be trusted to tell us what we want to know.
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