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Abstract We investigate the research programme of dynamic doxastic logic (DDL)
and analyze its underlying methodology. The Ramsey test for conditionals is used
to characterize the logical and philosophical differences between two paradigmatic
systems, AGM and KGM, which we develop and compare axiomatically and seman-
tically. The importance of Gärdenfors’s impossibility result on the Ramsey test is
highlighted by a comparison with Arrow’s impossibility result on social choice. We
end with an outlook on the prospects and the future of DDL.

Keywords Dynamic doxastic logic · Theory change · Belief revision ·
Belief update · Ramsey test · Arrow’s theorem

1 Introduction

A new and extremely influential theory of belief change was introduced by Alchourrón
et al. (1985) (from now on AGM) and defended and developed by Gärdenfors (1988)
as a formal theory in which belief change on the basis of new evidence is studied
axiomatically. In particular, AGM introduced a revision operator ∗, regarded as a
mapping from a set of formulæ and a formula to another set of formulæ. The result
of revising the so-called belief set K by evidence A, denoted K ∗ A, was supposed to
be the “minimal mutilation” of K that would include A.

Dynamic doxastic logic (DDL) was introduced with the aim of representing the
meta-linguistically expressed belief revision operator ∗ as an object-linguistic sentence
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operator [∗_] in the style of dynamic modal logic (Segerberg, 1998, 1999; see also
van Linder et al., 1995). If φ and ψ are formulæ of an object language, then the for-
mula [∗φ]ψ is meant to express that after the revision by φ it is the case that ψ , where
[∗φ]ψ is located on the same language level asφ andψ . Also other doxastic actions can
be studied in terms of the modal-logical systems they give rise to. The main examples
are belief contraction and expansion, which are closely related to AGM style belief
revision. Other examples are found in a theory developed by Grahne, Katsuno and
Mendelzon in response to the AGM paradigm and referred to in this paper as KGM
(see in particular Grahne, 1991; Katsuno and Mendelzon, 1992).1

In the following we will consider the current “state of the art” of DDL, investigate
its underlying motivation and guiding ideas, and look at its future prospects. In Sect. 2
we will analyze the research programme of DDL, and we will enumerate what we
think are the main reasons for pursuing it over and above the traditional theory of
belief revision. Section 3 starts by focusing on the logical problems that are associ-
ated with the Ramsey test for conditionals while highlighting the rôle which these
problems have played for the bifurcation of DDL into two logical base systems that
correspond to AGM and KGM. After giving a brief sketch of a new result which
indicates that Gärdenfors’ impossibility result for belief revision with conditionals
is logically related to Arrow’s impossibility result on social choice, we outline the
basic axiomatic and semantic DDL analogues of AGM and KGM in detail and com-
pare the two from the viewpoint of DDL. We close with an outlook in Sect. 4 on
the future of DDL (for example, considering its relationship to dynamic epistemic
logic (DEL) along the lines of Baltag et al., 1998, and subsequent approaches as
van Benthem, forthcoming).

2 Why: object-linguistic vs. meta-linguistic treatments of belief change

Why should we express doxastic actions such as belief revision on the object lan-
guage level, that is, on the same language level as, for example, alethic modalities in
traditional modal logic?

In order to see clearly where the advantages of this strategy lie, let us have a look
first at how standard claims about revision can be translated into the language of
DDL. Instead of saying meta-linguistically that

θ ∈ K ∗ φ,

a dynamic object-linguistic sentential operator [∗_] and a static sentential belief
operator B are introduced and applied to two formulæ φ and θ :

[∗φ]Bθ
According to the intended reading of [∗_] and B, the resulting formula conveys the
same information as the meta-linguistic statement; that is, θ is believed after the revi-
sion by φ. Thus the difference between employing expressions on the object and on
the metalanguage level is negligible so far. But now let us assume we do not just
intend to study the logic of belief revision itself but also the logical laws and rules
that govern our beliefs about belief revision. Using the standard syntactic machinery

1 The KGM-paradigm is called the KM-paradigm in Lindström and Segerberg (2006). However, the
more inclusive term employed here seems more appropriate.
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of modal logic it is obvious how to do that: for example,

B[∗φ]Bθ (1)

expresses that our cognitive agent—the one whose doxastic states and actions we
investigate—believes that after the revision by φ she is going to believe that θ . The
traditional theory of belief revision on the other hand lacks the syntactic resources to
express a corresponding claim. The theory was simply never designed to handle belief
sets K′ that include sentences of the form ‘θ ∈ K ∗ φ’ as elements (where K might be
identical to K′ or distinct from it). Accordingly, instances of nested revision such as

[∗[∗φ]Bθ ]Bχ (2)

are syntactically unproblematic from the “modal” viewpoint of DDL. What this latter
example formula says is: the agent believes that χ is the case after revising her belief
state by the information that a revision by φ leads to a belief in θ .2 Again the classic
theory of belief revision does not offer the necessary syntactic machinery to deal with
sentences of such form. The only way to make such statements accessible to tradi-
tional belief revision would be by means of quotational or other syntactic devices, for
example, by expressing claim (2) in terms of: χ ∈ K′ ∗ �θ ∈ K ∗φ�. Here, ‘�θ ∈ K ∗φ�’
would be a singular term denoting a formula, in correspondence with ‘φ’ in ‘K ∗ φ’
being a singular term that denotes a formula. But just as formalizations of modal logic
on the basis of sentential operators are preferable to the more complex formalizations
in terms of modal predicates as long as quantification over formulæ or propositions
is not of central importance, the DDL way of handling such claims seems like a viable
alternative.3

So we find that the language of DDL is, in an important respect, more expres-
sive than the language of traditional belief revision. In a different respect, the latter
turns out to be more expressive than the former and indeed overly expressive: this is
because standard belief revision uses variables such as ‘K’ to denote sets of formulæ,
it employs the binary predicate for set membership, and it presupposes predicates for
proof-theoretic and semantic concepts such as consistency and logical truth which are
usually defined within the language of set theory. While it is certainly convenient to
have these resources at one’s linguistic disposal, they leave the proof-theoretic control
of the axiomatic system of belief revision severely affected. Moreover, presupposing
such set theoretic resources proves to be unnecessary in view of the parsimonious
vocabulary of DDL. Basically, the language of propositional logic extended by a few
unary or binary sentential operators is all that is needed in order to state the laws
of belief revision and of other doxastic operations formally. As well-known results
on the metatheory of modal logic show, such languages can express fragments of
first- or higher-order logic while still remaining feasible from a proof- and complexity
theoretic viewpoint.

2 We speak here of the revision of a belief state rather than of a belief set, since the analysis of the
doxastic structure of an agent in terms of belief sets K turns out to be too weak for the semantics of
DDL. It was one of the insights of research done on iterated belief revision that the doxastic state of
an agent should not be considered to be given by a belief set, i.e., by a set of believed formulæ, but
rather by a preference ranking of formulæ that encodes both a belief set and a disposition of how to
change beliefs in the light of new evidence.
3 For the development of modal logic in terms of modal predicates and its advantages or disadvantages
over the standard operator approach, see Leitgeb (Forthcoming).
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Another difference between the language of standard belief revision and the lan-
guage of DDL lies in the indexical character of the latter. Reconsider example (2)
from above: [∗[∗φ]Bθ ]Bχ tells us that, in the agent’s present state of belief, she would
believe χ , if it were revised by the information that the revision of her then present
belief state by φ would lead to a belief in θ . All of this can be expressed in DDL with-
out making the reference to the underlying belief states explicit. This is particularly
useful in cases where a formula is intended to describe the changing of belief states
on the basis of doxastic actions, such that the different parts of the formula refer to
different belief states, but where at the same time no further specification of the belief
states involved is necessary—for example, if a formula is supposed to occur within a
logical law that is meant to hold for every belief change whatsoever. In contrast, even
if the standard theory of belief revision were extended in a way such that it would be
applicable to formulæ like χ ∈ K′ ∗ �θ ∈ K ∗ φ�, one would still be forced to make
the reference to belief states explicit; additionally, the formal quotation marks � and
� would have to be Quine corners, that is, syntactical operations, rather than proper
quotation marks, since we would need to quantify into them. As the great success of
possible worlds semantics shows, it proves to be useful to avoid all these problems by
treating object language operators such as [∗_] indexically, thereby eliminating one of
the argument places of the traditional revision operator ∗, and to push the reference
to worlds, accessibility relations, and other semantic objects up to the metalanguage
level.

So far we have argued that several of the advantages of the language of modal
logic carry over to the language of DDL. But actually the mere fact that DDL is to
some extent like modal logic is in itself a good reason for pursuing the logical study of
doxastic change in this manner. In the last few decades modal logic has developed into
a mature logical framework of immense richness, and the possibility of transferring
some of its classic metatheoretical results and techniques to the investigation of belief
revision, belief update, and the like is certainly attractive. Moreover, the analogy with
modal logic might also be useful for the further conceptual development of belief revi-
sion. For example, once a correspondence between � and ∗ in terms of the sentential
operator [∗_] is established, it is clear that there must be an equally interesting “dual
revision operator” 〈∗_〉 that stands to [∗_] as ♦ stands to � and which can be defined
in terms of [∗_], namely, as ¬[∗_]¬.

Summarizing, we end up with the following list of points that establish DDL as an
interesting alternative to traditional belief revision:

Dynamic doxastic logic is useful or even necessary for

• studying beliefs about revision and studying nested revision
• proof- and complexity theoretic control over linguistic expressiveness
• indexical treatment of doxastic actions
• developing belief revision in analogy to modal logic

This is not to say that DDL is preferable to standard belief revision in each and
every context. For some purposes the study of nested revision is not needed, and in
such cases the higher degree of expressiveness of DDL with respect to nesting does
not show up as an advantage. For example, compare the theoretically and practi-
cally successful formalization of default information by computer scientists in terms
of meta-linguistic non-monotonic consequence relations |∼, the properties of which
are inter-translatable with properties of the standard belief revision operator (as was
shown by Gärdenfors and Makinson, 1994). In that context, standard belief revision
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and DDL would simply fare equally well. The general upshot of the discussion in this
section is rather that, while DDL does not do worse than AGM style revision in most
contexts, in some contexts the further development of belief revision within DDL has
a clear payoff.

The areas in which DDL goes beyond traditional belief revision are more or less
new logical territory. While there are various suggestions of AGM type accounts of
iterated belief revision as in

θ ∈ (K ∗ φ) ∗ ψ ,

there is no established standard of iterated belief revision, let alone a DDL counter-
part of such a standard (though DDL can be seen to supply a minimal logic of iterated
revision). The situation is even worse with respect to the logic of doxastic attitudes
towards belief revision (as for example (1) above) or the logic of nested belief revision
(as for example (2)). Accordingly, we will limit ourselves to restricted fragments of
the full and unrestricted language of DDL when we turn to the development of DDL
in terms of axiomatic and semantic systems in the next section.

3 How: axiomatic and semantic systems of DDL

3.1 The Ramsey test: a division of paradigms

As explained in the previous section, the driving idea of DDL is that formulæ such as
[∗φ]θ are used to express doxastic actions on the same linguistic level on which also
the arguments and the outcomes of these doxastic actions are expressed. Since DDL
is furthermore motivated by the strong analogy of the operators [∗φ] with standard
modal operators, the intended semantics of DDL will be a possible worlds semantics,
according to which a set of possible worlds or points is assigned to each such formula
[∗φ]θ .4 Thus, not just factual formulæ such as φ and θ will be regarded as expressing
sets of possible worlds but also doxastic formulæ as [∗φ]θ . For this reason DDL is
bound to face a serious logical challenge: the danger of getting entangled in the poten-
tially paradoxical consequences of combining belief revision for an object language F
with a representation of the revision operator in terms of formulæ in F.

The possibly devastating effects of such a combination first showed up when
Gärdenfors considered a doxastic interpretation of conditionals in terms of the
so-called Ramsey test for conditionals:

Ramsey test φ ⇒ θ ∈ K iff θ ∈ K ∗ φ
The problem is that if the AGM axioms are formulated for a belief revision operator
that applies to a propositional language with a new conditional sign ⇒, and if these
axioms are subsequently extended by the Ramsey test for ⇒, a contradiction can be
derived in the resulting system:

Theorem 1 (Gärdenfors, 1986) The AGM axioms of ∗ are inconsistent with the Ramsey
test for conditionals in any modelling allowing for at least three propositions which are
pairwise consistent but jointly inconsistent.

4 Actually, each of these “possible worlds” will be regarded as consisting of two independent
components, namely a doxastic component and an environmental one; compare Sects 3.3 and 3.4.
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(Cf. Segerberg, 1989 for a logical reconstruction, and Lindström and Rabinowicz, 1995
for an analysis and overview of possible responses to Gärdenfors’s result.)

The relevance of Gärdenfors’s theorem for DDL lies in the fact that, in order to
maintain consistency, either

(i) the logical axioms and rules for B and [∗_] must not allow the derivation, for all
φ and θ , of a formula of the form

B(χ[φ, θ ]) ↔ [∗φ]Bθ
where χ[φ, θ ] is some formula that is built syntactically from φ and θ ,

or

(ii) the logical axioms and rules for [∗_] must not conform to the AGM postulates
(assuming that the doxastic logic of B is fixed).

In both cases, by the guiding idea of DDL, all formulæ of the form [∗φ]Bθ should
still lie on the same linguistic level as φ and θ . But while in case (i) not all formulæ of
the form [∗φ]Bθ express propositions that can be expressed by static belief formulæ,
in case (ii) not all formulæ of the form [∗φ]Bθ express belief revision in the sense
of AGM.

The alternative (i) can be seen to be a consequence of the DDL account of AGM
that we introduce in Sect. 3.3. In contrast, the DDL version of KGM, which we focus
on in Sect. 3.4, is an instance of the alternative (ii) (and consequently its dynamic
operator will be denoted by ‘[�_]’ rather than by ‘[∗_]’). In this sense, the acceptance
or denial of Ramsey test-like postulates corresponds to the division of DDL into
the two paradigmatic systems that we are going to explain and compare in the next
sections. We will return to the Ramsey test and its plausibility from the viewpoint of
AGM and KGM at the end of Sect. 3.5. Before we turn to the DDLs underlying AGM
and KGM, we will compare Gärdenfors’s theorem on the Ramsey test with another,
even more famous impossibility result: Arrow’s theorem on social rankings.

3.2 Gärdenfors vs. Arrow

The comparison between, on the one hand, Gärdenfors’s limitative result on belief
revision and the Ramsey test, and on the other hand, Arrow’s limitative result on
social choice and the Non-Dictatorship condition, would of course merit a much
more detailed discussion than we are able to give in view of the overall aims of this
paper [but see Leitgeb (2005, unpublished manuscript), for a more thorough devel-
opment of their logical relationship and for the proof of theorem 2 below]. We will
restrict ourselves merely to a motivation of the claim that the two results seem to
reflect a common underlying formal pattern.

Let us start with standard belief revision. According to Grove’s (1988) well-known
representation theorem, revision operators ∗ can be put into one-to-one correspon-
dence to spheres models or to ranked models of possible worlds, that is, semantic
objects of the following kind (Fig. 1).

Instead of proper spheres, we use a graphical representation in terms of layers or
ranks: the lowest layer corresponds to the innermost sphere, taking the union of the
lowest layer with the second layer from below corresponds to the next larger sphere,
and so forth. K is the set of formulas that are true in all worlds which are members
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Fig. 1 Spheres models
for belief revision

Fig. 2 Spheres models
for conditionals

Fig. 3 Spheres models
for conditionals and belief
revision

of the lowest layer; K ∗ α is the set of formulas which are satisfied by all those worlds
that have minimal rank among the worlds that satisfy α.

Accordingly, the logic of subjunctive conditionals was proved valid by Lewis (1973)
with respect to a sphere semantics that is similar to the semantics for ∗. Such sphere
models can be depicted as shown in Fig. 2.

Hence, the counterfactual conditional α ⇒ β is true in the world w the spheres
system of which we are looking at, as β is satisfied by all those worlds that are most
similar to w among the worlds that make α true.

Now let us assume that we intend to apply the belief revision operator to formulæ
in a language with non-material conditionals where these conditionals obey a Lewis-
style semantics. In such a case, the ranked models for ∗ actually look more like this
(Fig. 3).

Every world is “surrounded” by a sequence of Lewis’ spheres by which condition-
als can be evaluated in these worlds. (In order to keep the diagram concise we did not
actually draw all the worlds that populate these spheres.)

While the left-hand side of the Ramsey test expresses a constraint on the “small”
rankings of worlds given by the spheres around the worlds in the lowest layer, the
right-hand side of the Ramsey test tell us something about the “big” ranking that
defines the semantics of the revision operator. Gärdenfors’s impossibility theorem
may thus be seen to express the fact that the “small” rankings cannot correspond to
the “big” ranking along the lines suggested by the Ramsey test. But this sounds famil-
iar in view of Arrow’s theorem (Arrow, 1963), which says that there is no function
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that extends any given set of individual rankings �i ⊆ A × A (for fixed individuals
i ∈ N = {1, . . . , n} and a set A of alternatives) to a social ranking � ⊆ A × A, such
that certain axioms are satisfied (e.g., the Pareto condition: if x �i y for all i, then
x � y; the non-existence of a “dictator” i; and so forth). In fact one can show that this
is more than just an analogy.

In what follows, let L be a classic propositional language with at least two and
at most finitely many propositional variables. Let L⇒ be the language L extended
by (and closed under) a new conditional sign ⇒. The expansion operator + takes
subsets of L⇒ and formulæ in L⇒ as arguments, i.e., for all K ⊆ L⇒, for all α ∈ L⇒:
K + α := Cn(K ∪ {α}), where Cn is logical closure in conditional logic (which we
also refer to as: L⇒-deductive closure). The conditional logic in question can be
much weaker than Lewis’s standard system; for example, the axiomatic counterpart
of the “centeredness” condition on spheres is not needed. (That is why we did not use
Lewis’s symbol ‘�→’ but rather ‘⇒’ to denote our non-material conditional sign.) We
also speak of L-consistency and L⇒-consistency: the former is consistency in classic
propositional logic, the latter consistency in the chosen system of conditional logic.
Accordingly, an L-world ω is a maximally L-consistent set of formulæ in L, whereas
an L⇒-world w is a maximally L⇒-consistent set of formulæ in L⇒. Hence, an L⇒-
world w can be an extension of an L-world ω, in the sense that w ∩ L = ω. Worlds are
assumed to satisfy formulas if and only if they contain these formulas as members.

We will now reconstruct Arrow’s theorem in a system of belief revision for a lan-
guage with the conditional operator ⇒. The rôles of the set A of alternatives and the
set N of individuals in Arrow’s social choice account will be played by sets of L-worlds;
for simplicity, we choose these sets to be both identical to the set of all L-worlds. Since
L was assumed to contain at least two and at most finitely many propositional vari-
ables, both A and N are finite sets with at least four members. The ordering of the
set of “alternatives” by an “individual” ω can be represented by a spheres system
around ω, or, equivalently: by extending ω to an L⇒-world w, as the set of condition-
als satisfied by w encodes a spheres system in light of Lewis’s completeness theorem.
Finally, the social ranking of “alternatives” corresponds to the ranking of L⇒-worlds
as being given by the belief revision operator, where belief sets have to be understood
as L⇒-deductively closed subset of L⇒ accordingly. Since N is intended to be the
set of all L-worlds, no belief set is allowed to contain a non-tautological formula of
L—therefore, distinct belief sets differ only in terms of the conditionals they contain.
The ranking of alternatives by an individual ought to be determined uniquely, so
there should not be a belief set K and an L-world ω, such that there are two distinct
L⇒-worlds w and w′ with K ∪ ω ⊆ w, w′. Furthermore, as we want A to be the set
of all L-worlds as well, if γω ∈ L is the state description of an L-world ω, then no
belief set shall include an L⇒-formula of the form γω → (α ⇒ ⊥) with α ∈ L being
L⇒-consistent and ⊥ being L⇒-inconsistent. These are the constraints on belief sets
that we are going to presuppose.

Keeping in mind the intended identifications between items of the social choice
setting and those in the belief revision framework for conditionals, one can show that
Arrow’s assumptions in his Dictator theorem have the following revision counterparts:

• (Independence of Irrelevant Alternatives; IIA)
For all L⇒-consistent belief sets K, K′, for all α ∈ L:
If
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– for all L⇒-worlds w, w′, such that (i) w is L⇒-consistent with K, (ii) w′ is L⇒-
consistent with K′, and (iii) w and w′ satisfy precisely the same formulæ in L,
it holds that
for all L-worlds ω,ω′ which are L-consistent with α,
w |� (ω ∨ ω′) ⇒ ω iff w′ |� (ω ∨ ω′) ⇒ ω,

then for all β ∈ L: β ∈ K ∗ α iff β ∈ K′ ∗ α.
• (Pareto; P)

For all L⇒-consistent belief sets K, for all α,β ∈ L:
if α ⇒ β ∈ K, then β ∈ K ∗ α.

• (Non-Dictatorship; ND)
There is no L-world ω, such that:
for all consistent belief sets K, for all L⇒-worlds w which are L⇒-consistent with
K and which satisfy ω, for all α,β ∈ L:
if w |� α ⇒ β, then β ∈ K ∗ α.

It follows that there is a belief revision counterpart of Arrow’s theorem:

Theorem 2 K ∗ 1–K ∗ 8 (see Gärdenfors, 1988), IIA, P, ND are jointly inconsistent
(given our background assumptions on belief sets and on the number of possible
worlds involved).

The Pareto condition P that was introduced above is just the left-to-right direction
of the Ramsey test for conditionals. Independence of Irrelevant Alternatives and
Non-Dictatorship are harder to interpret from the revision-theoretic point of view,
but the result by itself should be sufficient to confirm that Gärdenfors’s and Arrow’s
Impossibility theorems are related logically, which should mutually strengthen the
importance that these two theorems had in the fields from which they originated, and
also beyond.

3.3 Basic iterative belief change I: the AGM paradigm

3.3.1 Basic language

In DDL we encounter several object languages, depending on what abilities the agent
or the agents are supposed to have. In the case studied in this section two assump-
tions are made: (i) the agent is able to hold beliefs only about the environment in
which he moves, an environment that is not supposed to include his beliefs, and (ii) he
will change his beliefs only with regard to information about the environment. These
assumptions explain the cumbersome definitions that follow.

The set pB of pure Boolean formulæ are those formulæ that are built exclusively
from propositional letters and truth-functional connectives (which are also called
Boolean operators). The set F of all formulæ is the smallest set to satisfy the following
constraints:

pB ⊆ F,
F is closed under Boolean operators,
if φ ∈ pB then Bφ ∈ F and Kφ ∈ F,
if φ ∈ pB and θ ∈ F then [∗φ]θ ∈ F.

Thus in addition to truth-functional operators we have modal operators: on the one
hand the static doxastic operators B and K, on the other hand for every Boolean

[13]
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formula φ the dynamic operator [∗φ]. The static operators B and K are intended to
formalize revisable and nonrevisable belief, respectively. To coin a slogan: K stands for
“knowledge”, not for ‘knowledge’. (What we call knowledge in ordinary life situations
is often just that: beliefs that we are not prepared to revise, at least not then and there.)
Note that there are no nestings of doxastic operators in basic DDL. (In so-called one-
shot DDL there are no iterations of dynamic operators either; cf. Segerberg, 1999.)
We write b and k for the duals of B and K, and 〈∗φ〉 for the dual of [∗φ]. Thus b and k
may be seen as short for ¬B¬ and ¬K¬, respectively, while 〈∗φ〉 is short for ¬[∗φ]¬.

Convention: Throughout this paper, whenever we display formulæ or formula
schemata we assume, without necessarily saying so explicitly, that the expressions
displayed represent well-formed formulæ. For example, if we discuss an expression
[∗φ](ψ → Bθ), we take it for granted that φ and θ are pure Boolean.

3.3.2 Basic axiom system

Our axiom system consists of four blocks: classical, modal, AGM proper, and extra.
Each block contains certain postulates, that is, axioms (described by means of axiom
schemata), and rules of inference.

The axioms of the classical block are the tautologies of classical propositional logic;
the single rule is modus ponens (MP). The postulates of the modal block should yield,
for each modal operator � ∈ {B, K, [∗φ]: φ ∈ pB}, the smallest normal modal logic
K. For example, it is a standard fact about normal modal logics that the following
postulates would suffice:

�(φ ∧ ψ) ↔ (�φ ∧ �ψ),
��,
if φ ↔ ψ is a theorem, then �φ ↔ �ψ is also a theorem.

The block AGM proper corresponds, clause for clause, to the original AGM-
postulates into DDL language (our numbering follows that of the original list of
postulates):

(∗2) [∗φ]Bφ,

(∗3) [∗�]Bφ → Bφ,

(∗4) b� → (Bφ → [∗�]Bφ),

(∗5) [∗φ]B⊥ → K¬φ,

(∗6) K(φ ↔ ψ) → ([∗φ]Bθ ↔ [∗ψ]Bθ),

(∗7) [∗(φ ∧ ψ)]Bθ → [∗φ]B(ψ → θ),

(∗8) 〈∗φ〉bψ → ([∗φ]B(ψ → θ) → [∗(φ ∧ ψ)]Bθ).

The final extra block consists of postulates that seem to be (more or less) implicit in
the original AGM theory:

(∗0) θ ↔ [∗φ]θ , if θ is pure Boolean,

[14]
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(∗DF) 〈∗φ〉θ ↔ [∗φ]θ ,

(∗KB) Kφ → Bφ,

(∗KK) Kθ ↔ [∗φ]Kθ .

Revision by tautology, the doxastic action denoted by ∗� (called “consolidation”
by Sven Ove Hansson), makes a difference only if the agent’s belief set is inconsistent.
The postulate (∗DF) reflects the fact that AGM-style belief revision commits itself to
a total-functional notion of revision according to which every input leads to unique
revision output; as Rabinowicz and Lindström (1994) have shown, it is possible to
develop belief revision without adopting this constraint. The postulate (∗KK) reflects
another assumption that may or may not have been held by the founding fathers of
AGM: that what they called the background theory (our nonrevisable beliefs) is not
modified by ordinary belief change.

A formula φ is provable in this system if there is a sequence ψ0, . . . ,ψn of formulæ
such that, for all i � n, either (i) ψi is a postulate, or (ii) there are j, k < i such that
ψk = (ψj → ψi), or (iii) there are θ and θ ′ such that ψi = (�θ ↔ �θ ′) and, for some
j < i,ψj = (θ ↔ θ ′), where � is B or K or [∗τ ], for some τ ∈ pB. Furthermore, φ is
derivable in this system from a set� of formulæ if there are formulæ σ0, . . . , σn−1 ∈ �
such that (σ0 ∧ · · · ∧ σn−1) → φ is provable.5 Finally, a set � of formulæ is consistent
in the system if ⊥ is not derivable from �.

3.3.3 Semantics

In his extraordinary book (Lewis, 1973), David Lewis suggested several types of
modellings—among them sphere systems, selection functions and entrenchment
orderings—that can be used for the semantical analysis of important kinds of con-
ditional logic. Given the connexion between conditionals and belief change, it is not
surprising that Lewis’s modellings can be adapted to the analysis of belief change
logic. Here we choose the sphere systems modelling as being (in our subjective view)
the most visual.

We employ the rudiments of topology. A topological space (U, T) is a set U together
with a topology T, that is, a set of subsets of U that is closed under finite intersection
and arbitrary union. (Since

⋂
Ø = U and

⋃
Ø = Ø, it follows that both U and Ø are

elements of T.) One may refer to U by itself as a topological space if it is clear which
topology T one has in mind. A so-called Stone topology (U, T) satisfies two further
conditions:

If u ∈ U and v ∈ U and u �= v, then there is set X ⊆ U such that both X and U − X
are elements of T and furthermore u ∈ X and v ∈ U − X. (total separation)
If S ⊆ T and U = ⋃

S, then there is a finite subset S0 ⊆ S such that U = ⋃
S0.

(compactness)

The elements of a topology T are said to be open. A closed set is subset of U whose
complement in U is open. If X is any subset of U, then we write CX for the closure
of X, that is, the smallest closed set that includes X. A subset of U can be open and
closed at the same time, and if it is, it is said to be clopen. It can be shown that every

5 If n = 0 the conjunction σ0 ∧ · · · ∧ σn−1 is empty and is identified with �.
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open set in a Stone space is the union of a set of clopen sets, and hence that every
closed set is the intersection of a set of clopen sets.

To bring out the connexion with finitary logic, in this paper we will refer to the
clopen sets as the propositions of (U, T) and the closed sets as the (semantic) theories
of (U, T). The reference to (U, T) may be omitted if it can be done without causing
confusion.

A sphere system in a Stone space in (U, T), here called an onion, is a nonempty
set O of theories in (U, T) that is linearly ordered by set inclusion and is also closed
under arbitrary nonempty intersection:

X ⊆ Y or Y ⊆ X, for all X, Y ∈ O,
if C is a nonempty subset of O, then

⋂
C ∈ O.

A revision frame is a structure (U, T, H, R) such that (U, T) is a Stone space, H is a
set of onions, R is a function from the set of propositions to H ×H, and the conditions
(o1)–(o4) below are satisfied. We say, after Lewis, that a proposition P is entertainable
in O if P intersects some element of O; that is, if P ∩ ⋃

O �= Ø. Write O • P for the
family of elements of O that intersect with P; that is, O • P = {X ∈ O : P ∩ X �= Ø}.
Thanks to compactness, if P is entertainable in O, then O • P contains a smallest
element.

(o1) For every proposition P, if (O, O′) ∈ RP, then either P is entertainable in O
and

⋂
O′ = P∩Z, where Z is the smallest element of O•P, or else

⋂
O′ = {Ø}.

(onion revision)
(o2) C

⋃
O = C

⋃
O′, for all O, O′ ∈ H. (onion commitment)

(o3) For every O ∈ H there is some O′ ∈ H such that (O, O′) ∈ RP.
(onion seriality)

(o4) If (O, O′) ∈ RP and (O, O′′) ∈ RP, then O′ = O′′. (onion functionality)

The singleton set {Ø} is an onion, and it called the trivial onion. Notice that because
of condition (o2) onion commitment, if the onion set of a revision frame contains the
trivial onion, then it has no other elements; in this degenerate case, the frame is itself
trivial: the trivial frame. Note that the trivial onion always results when an onion is
revised by a nonentertainable proposition.

A valuation in a Stone space is a function from the set of propositional letters to the
set of clopen subsets of the space. A valuation V can always be lifted by the obvious
conditions to a function V defined on the set of all pure Boolean formulæ (with the
range still included in the set of clopen sets):

V(P) = V(P), for all propositional letters P,
V(φ ∧ ψ) = V(φ) ∩ V (ψ),
V(φ ∨ ψ) = V(φ) ∪ V (ψ),
V(¬φ) = U − V(φ), etc.

When it is clear what valuation V is understood, we will write [[φ]] for V(φ). Note that
this notation (in which the reference to V is tacit) is meaningful only if φ is a pure
Boolean formula.

A revision model is a revision frame together with a valuation. In other words,
(U, T, H, R, V) is a revision model if (U, T, H, R) is a revision frame and V is a valua-
tion in (U, T). The notion of truth of a formula in a revision model, symbolized by the
symbol �, is defined relative to a pair (O, u), where O is an onion and u is a point (that
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is, O ∈ H and u ∈ U). (Intuitively, O is, or represents, the belief state of the agent;
u is the state of the environment.) Truth-conditions:

(O, u) � P iff u ∈ V(P), for every propositional letter P,
[conditions for the Boolean operators]
(O, u) � Bφ iff

⋂
O ⊆ [[φ]],

(O, u) � Kφ iff
⋃

O ⊆ [[φ]],
(O, u) � [∗φ]θ iff, for all O′, if (O, O′) ∈ R[[φ]] then (O′, u) � θ .

Because of conditions (o3) onion seriality and (o4) onion functionality there
is, for every onion O and pure Boolean formula φ, a unique onion O[[φ]] such that
(O, O[[φ]]) ∈ H. In the AGM setting it would therefore be possible to replace the last
truth-condition by one that is more specific:

(O, u) � [∗φ]θ iff (O[[φ]], u) � θ .

A formula is valid in a revision frame if it is true relative to all pairs of onions and
points. A set � of formulæ is satisfiable in a revision frame (U, T, H, R) if there is an
onion O ∈ H and a point u ∈ U such that, for all φ ∈ �, (O, u) � φ, where the turnstile
refers to some model on (U, T, H, R).

One can show that our axiom system is complete in the following sense:

Theorem 3 A formula is provable in our axiom system if and only if it is valid in all
revision frames.

In fact, our system is even strongly complete in the following sense:

Theorem 4 A set of formulæ is consistent in our axiom system if and only if it is
satisfiable in some revision frame.

For proofs of these results, see Segerberg (2005, unpublished manuscript).

3.3.4 Extensions

Basic AGM can be extended in various directions. For example, it should be possible
to take higher-order belief into account, to give a substantial theory of iterated belief
change (the modelling presented here allows iteration but has nothing interesting to
say about it beyond what is contained implicitly in basic AGM), to include several
agents, and perhaps to combine belief revision with action (on the last topic, however,
see the following section). But in spite of much discussion, particularly of the problem
of iteration, progress has been slow. For some recent efforts, see Segerberg (2003) on
higher order belief, Rott (2006) and Segerberg (2005, unpublished manuscript), on
iteration. See also van Ditmarsch (2005) for revision in multi-agent settings and with
action operators.

3.4 Basic iterative belief change II: the KGM paradigm

3.4.1 Basic language

One notable difference between AGM and KGM is apparent already in their under-
lying languages. While the language of AGM is based on that of the classical prop-
ositional calculus, KGM extends the classical, truth-functional connectives by a new
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conditional operator for which we will use David Lewis’s symbol �→. Let pc be the
set of all pure conditional formulæ, that is, the set of formulæ generated from the
set of propositional letters by �→ and the truth-functional operators. (The truth-
functional connective → is of course also a conditional operator: the material con-
ditional. Nevertheless, when we speak of the conditional operator in the sequel, it is
always the nonmaterial �→ we have in mind.)

The set of all update formulæ is defined as the smallest set F satisfying the following
constraints:

pc ⊆ F,
F is closed under Boolean operators,
if φ ∈ pc then Bφ ∈ F and Kφ ∈ F,
if φ ∈ pc and θ ∈ F then [�φ]θ ∈ F.

As before, B and K are static doxastic operators, while [�φ] is a dynamic operator
for every pure Boolean formula φ. We use the following abbreviations: φ ♦→ ψ for
¬(φ�→ ¬ψ), �φ for ¬φ�→ ⊥, and ♦φ for ¬(φ�→ ⊥).

3.4.2 Basic axiom system

Our axiom system consists of four blocks: classical, conditional, modal, and KGM. The
classical block is as before. The conditional block consists of postulates that together
are sufficient for David Lewis’s logic VCU: for example, the inference rule

(RC′) if φ ↔ φ′ and ψ ↔ ψ ′ as well as φ�→ ψ are theorems,
then φ′�→ ψ ′ is also a theorem

and the axiom schemata

(NN′) (φ�→ (ψ ∧ θ)) ↔ ((φ�→ ψ) ∧ (φ�→ θ)),

(N′) φ�→ �,

(�1) φ�→ φ,

(�2) (φ♦→ ψ) → ♦ψ ,

(�3) φ → (��→ φ),

(�4) φ → (�♦→ φ),

(�5) ((φ ∧ ψ)�→ θ) → (φ�→ (ψ → θ)),

(�6) (φ♦→ ψ) → ((φ�→ (ψ → θ)) → ((φ ∧ ψ)�→ θ)),

(�7) �φ → ��φ,

(�8) ♦φ → �♦φ.

The modal block is as before. Finally the KGM block: the rule
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(RC′′) if φ ↔ ψ is a theorem, then [�φ]θ ↔ [�ψ]θ is also a theorem,
for all pure conditional formulæ φ and ψ ,

and the axiom schemata

(�0) θ ↔ [�φ]θ , if θ is a pure conditional formula,

(�DF) 〈�φ〉θ ↔ [�φ]θ ,

(�RR) B(φ�→ ψ) ↔ [�φ]Bψ ,

(�KB) Kφ ↔ B�φ.

The schema (�RR) is a counterpart of what Grahne (1991) called Ramsey’s Rules,
that is, the belief update version of the Ramsey test for conditionals.

We did not introduce any non-material conditional sign into the language of AGM-
style DDL, let alone a Ramsey-test axiom schema for such new conditionals and the
sentential belief revision operator. As mentioned at the beginning of this section, if
we had done so, then by Gärdenfors’s theorem this would have led to an inconsistent
system (given some very mild assumptions).

3.4.3 Semantics

For the semantics of our DDL system of KGM, an approach in terms of selection
functions is convenient. Suppose that (U, T) is a Stone space and f is a function from
the set of propositions to the set of theories. Then f is a selection function if the
following conditions are satisfied: for all propositions P and Q,

(i) fP ⊆ P,

(ii) if P ⊆ Q and fP �= Ø, then fQ �= Ø,

(iii) if P ⊆ Q and P ∩ fQ �= Ø, then fP = P ∩ fQ.

An update frame is a triple (U, T, F) such that (U, T) is a Stone space and F is a
function assigning to each element u ∈ U a selection Fu and, furthermore, T is closed
under the binary operations � and �, where for all propositions P and Q,

P � Q =df {u ∈ U : FuP ⊆ Q},

P � Q =df {u ∈ U : FuP ∩ Q �= Ø}.
It is clear that if (U, T, F) is a given update model and V is a valuation in (U, T),

then V can be extended to a function V by the usual conditions for the truth-functional
connectives plus the new condition

V(φ�→ ψ) = {u ∈ U : V(φ)�V(ψ)} = {u ∈ U : Fu(V(φ)) ⊆ V(ψ)}.
It follows that

V(φ♦→ ψ) = {u ∈ U : V(φ) � V(ψ)} = {u ∈ U : Fu(V(φ)) ∩ V(ψ) �= Ø}.
[19]
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As in the preceding section we will employ the notation [[φ]] for the set V(φ). Note,
however, that this time the notation covers not just pure Boolean formulæ but all
pure conditional formulæ.

An update model is an update frame together with a valuation. The notion of truth
of a formula φ in an update model (U, T, F, V) relative to a pair (B, u), where B is a
theory and u is a point—in symbols, (B, u) � φ—is defined as follows:

(B, u) � P iff u ∈ V(P), for every propositional letter P,

[conditions for the Boolean operators]

(B, u) � Bφ iff B ⊆ [[φ]],

(B, u) � Kφ iff K ⊆ [[φ]], where K = ⋃
v∈B{FvP : P is a proposition},

(B, u) � φ�→ ψ iff, for all v ∈ Fu[[φ]], (B, v) � ψ ,

(B, u) � [�φ]θ iff (B′, u) � θ , where B′ = C
⋃

v∈B Fv[[φ]].
Concepts of validity and satisfaction are defined in the KGM context in the same

way as in the AGM context above. There are also similar completeness theorems:

Theorem 5 A formula is provable in our axiom system if and only if it is valid in all
update frames.

Theorem 6 A set of formulæ is consistent in our axiom system if and only if it is
satisfiable in some update frame.

Proofs of these results, which generalize those of Grahne (1991), are given in Segerberg
(2005, unpublished manuscript).

3.4.4 Doxastic actions and real events

David Lewis’s official reading of φ�→ ψ was “if it were the case that φ, then it would
be the case that ψ”. For [�φ]ψ a natural reading is “after the agent has updated his
beliefs by (the information that it is now the case that) φ, it is the case thatψ” or more
briefly “after update by φ,ψ”. The term �φ was not given an independent meaning in
the semantics above, but it would be possible to do so by defining (with respect to a
given model)

[[�φ]] = {(X, Y) : X, Y are theories in (U, T) & Y = C
⋃

x∈X

Fx[[φ]]}.

Notice that with this definition [�φ] behaves like a normal modal box operator. Seman-
tically [[�φ]] represents the updating by the proposition [[φ]], what may be called a
doxastic action (or a doxastic event—in this paper we make no distinction between
actions and events).

The validity of the Ramsey schema (�RR) suggests a correlation between beliefs,
conditionals and doxastic actions. In order to examine this correlation more closely,
let us extend our object language by introducing a notation for a limited class of real
events, namely, “resultative” events: events describable in terms of their results. Let ∂
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be a new operator that operates on pure conditional formulæ to produce terms with
which we can form modal box operators of the type [∂φ]. The intended meaning of
a term ∂φ would be “the event resulting in (its being the case that) φ”. Accordingly,
the intended reading of a formula [∂φ]ψ would be “after the event resulting in (its
being the case that) φ, it is the case that ψ” or more briefly “after φ has just been
realized,ψ”. There is a connexion between conditionals and real actions and a related
connexion between beliefs and doxastic actions. It will be instructive to explain this
claim in some detail.

Consider a certain update model. Define, for pure Boolean φ,

[[∂φ]] = {(u, v) : v ∈ Fu[[φ]]},
(B, u) � [∂φ]ψ iff, for all v, if (u, v) ∈ [[∂φ]] then (B, v) � ψ .

A notable consequence of these definitions is the validity of the schema

(φ�→ ψ) ↔ [∂φ]ψ . (3)

In typical applications of belief change theory, we assume some regularity in the way
the environment may change—in a physical context there are laws of nature, in games
there are rules. In general there have to be describable limits to how things can change,
or theorizing would be futile. Let us introduce some (perhaps euphemistic) terminol-
ogy: we say that the agent is knowledgeable (with respect to the way the environment
can change) if the schema

(φ�→ ψ) → B(φ�→ ψ)

is valid, and correct if the schema

B(φ�→ ψ) → (φ�→ ψ)

is valid. Furthermore, let us say that the agent is well-educated if both knowledgeable
and correct. Thus for well-educated agents the schema

(φ�→ ψ) ↔ B(φ�→ ψ)

is valid, making the distinction between truth of and belief in conditional statements
invisible. And just as the schemata (3) and (�RR) are valid, so is the schema

B[∂φ]ψ ↔ [�φ]Bψ .

This is a precise sense in which beliefs, conditionals, and real and doxastic actions
correlate in KGM.

3.5 Comparing AGM and KGM

We collect our remarks under four headings.

3.5.1 Revision and update

In the literature on belief change the distinction between static and dynamic environ-
ment has become important. Ignoring the fact that belief change can take other forms
than the relatively simple form of adding new data that we have been dealing with
here, it seems right to say that belief change due to new information in an unchanging
environment has come to be called belief revision (the static case, in the sense that
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Fig. 4 Doxastic preference

the “world” remains unchanged), while it is fairly generally accepted to use the term
belief update for belief change that is due to reported changes in the environment itself
(the dynamic case, in the sense that the “world” changes; compare our analysis in the
last subsection). It has been held for some time that these cases support different
logics, with AGM recognized as the logic of revision and KGM as the logic of update.
This tradition is reflected in the terminology of this paper where revision frames and
update frames play the leading semantic rôles in the sections on AGM and KGM,
respectively.

The established tradition notwithstanding, it would be interesting to see a really
convincing argument for tying AGM revision to static environments. We saw in the
previous section how easily real change mixes with doxastic change in the KGM
modelling, and it is certainly not clear today how to make AGM onions cope with
real change. But it is also not clear that belief date update has to be interpreted
as reflecting a proper change in the environment. We think the actual difference
between the intended interpretation of revision and update is given by the fact that
the former belief change follows a doxastic order of “fallback positions” (Lindström
& Rabinowicz, 1990) while the latter conforms to a worldy similarity order of states
of affairs—the one “rides” on a subjective structure, the other on an objective one,
but neither is necessarily tied to either invariances or changes in the environment. Let
us argue for this in more detail.

According to the intended interpretation of belief revision, belief states are analyzed
in terms of onions: for example, we might consider an onion that determines a belief
(simpliciter) in φ, as well as two fallback positions: one that includes a point u1 with
u1 � ¬φ such that there is no smaller fallback position that includes a point that sat-
isfies ¬φ, and a larger fallback position which both includes u1 and a different point
u2 with u2 � ¬φ. By the intended reading of the subset relation, the former fallback
position is doxastically preferable to the latter. If the belief in φ is to be revised by
¬φ with respect to this onion, then this preference shows up in the way that the agent
does not believe u2 to be possible after the revision but he believes u1 to be possible
(see Fig. 4).

The intended interpretation of the semantics for belief update depends crucially
on the manner in which selection functions f are interpreted. The standard inter-
pretation is in terms of environmental change; but there is another plausible way
of interpreting selection functions, one that enables us to demonstrate that update
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does not necessarily correspond to environmental changes. Lewis famously consid-
ered objective similarity relations between possible worlds to be determinable from
the objective spheres systems that in turn can be defined in terms of given objective
selection functions: for example, the point u2 with u2 � ¬φ could be determined to
be most similar to the actual world among the set of points that satisfy ¬φ, while the
point u1 with u1 � ¬φ would be less similar to the actual world than u2. Consequently,
with respect to such a selection function, if the actual world satisfies a Lewis-type
conditional ¬φ�→ θ then θ must be satisfied by u2 though not necessarily by u1; in
fact, given weak additional assumptions, there will be such a formula θ such that θ is
not satisfied by u1. Since belief update is explained semantically in terms of the same
selection function that determines the truth condition of �→, if the agent’s belief in
φ is to be updated by ¬φ with respect to this selection function then the objective
similarity relation that is determined by it shows up in the way that the agent does not
believe u1 to be possible after the update but he believes u2 to be possible (see Fig. 5).

Thus, given new evidence, we find that in the case of belief revision the agent tries
to change his beliefs in a manner such that the worlds that he subsequently believes
to be in comprise the subjectively most plausible deviation from the worlds he origi-
nally believed to inhabit. However, when confronted with the same evidence in belief
update, the agent tries to change his beliefs in a way such that the worlds that he
subsequently believes to be in are as objectively similar as possible to the worlds he
originally believed to be the most plausible candidates for being the actual world.

It is tempting to relate these different views on belief change to the traditional
distinction of indicative and subjective conditionals. Using the stock example: every-
one considers the indicative ‘If Oswald did not kill Kennedy somebody else did’
as acceptable, but many regard the subjunctive ‘If Oswald had not killed Kennedy
somebody else would have’ as false. The latter seems to imply that there is a world
u2 in which Kennedy was not killed at all, such that u2 is regarded by many to be
maximally similar to the actual world among those worlds in which Oswald did not
kill Kennedy. At the same time, the most plausible worlds in which Oswald did not
kill Kennedy are still considered to be worlds in which Kennedy was killed by some-
one—the latter belief would be preserved if the new information ‘Oswald did not kill
Kennedy’ were added to one’s current belief set. Let u1 be one of the “maximally
plausible” worlds just mentioned: then we could actually have a situation of precisely
the form described above, that is, while u2 is regarded objectively more similar to the

Fig. 5 Objective similarity
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actual world than u1, the latter is nevertheless considered subjectively more plausible
than the former. According to this interpretation, belief revision would correspond
to belief change “in the indicative mood”, whereas belief update would correspond
to belief change in “the subjunctive mood”, where in both cases the corresponding
“changes” that apply to the actual world are merely hypothetical. (Our discussion
of the indicative vs. subjunctive distinction and the Oswald-Kennedy conditionals is
of course oversimplified and not much more than schematic; in particular, temporal
aspects have been disregarded completely.)

3.5.2 Types of beliefs

While we are waiting for a clear theoretical account of these issues, let us reflect on the
different types of belief that are involved in the two paradigms. Let us presuppose the
“environmental change” interpretation of update: then the KGM case seems compar-
atively straightforward. The immediate concern here is beliefs about the current state
of the environment; let us call this particular belief. But the agent is also able to hold
beliefs about the ways in which the environment may change; let us call such belief
about environmental regularity systematic belief. It is striking that, given a body of
systematic beliefs and an initial set of particular beliefs, in KGM all future particular
beliefs are determined by reports about what happens. So KGM, unlike basic AGM,
is a theory of iterated belief change. For example,

[�φ][�ψ]Bθ ↔ B(φ�→ (ψ�→ θ))

is a theorem schema of KGM. So if you understand conditionals (of this kind), you
understand iterated belief change.

In AGM the situation with regard to types of belief is different. Again we have
particular beliefs. But how the agent reacts in the face of new data is different. His
behaviour is not determined by his beliefs about any standard operating procedures
that regulate the environment but in some completely different way. In Lindström and
Rabinowicz’s apt terminology, onion elements represent possible “fallback” theories.
Their terminology spells out the point of the AGM approach: that the belief state of
an agent must not be identified with his belief set, that is, set of particular beliefs—one
must also take into account what may be called the agent’s doxastic dispositions. If
the agent is challenged to give up his current belief set, then in the normal case he has
already prepared a collection of backup or default theories: “if I cannot believe A, at
least I will believe B; and if that, too, is not possible, at the very least I will believe
C; …” (and so on). But the agent’s choice of fallbacks need not have anything to do
with the environment. For example, in an economic or political context, the structure
of a belief state (onion) may be rooted in value judgements or tactical considerations.
(This is particularly common in the case of complex agents consisting of lower-level
agents.) The beliefs behind such doxastic dispositions (the layers of the onion) may
perhaps be glossed as default beliefs.

3.5.3 Minimality

The notion of minimality is common to Stalnaker/Lewis type conditional logic and
belief revision; it was found already in Ramsey (1978), the inspiration of both tradi-
tions. But exactly what is minimized in a theory is sometimes difficult to say. Intuitively,

[24]



Synthese (2007) 155:167–190 187

in a theory of belief change it is usually loss of information that should be minimized.
Technically, in a modelling of the sort considered in this paper, this is achieved by
minimizing “distance”, going for points that are as “close to” a point of reference as
possible. Lewis achieves minimality by maximizing what he calls similarity between
worlds. But what counts as similarity in a given application remains to be explained.

In the KGM paradigm the notion of minimality may perhaps be said to be implicit,
but it does not show up in an explicit way. To say, with respect to a certain update
frame and the “environmental change” interpretation of KGM, that there is a sense
in which a point v is close to a point u if (u, v) ∈ [[∂φ]] would be misleading: v is simply
one of those points at which the system may land if the event [[∂φ]] is initiated at u.
Furthermore, what B′ minimizes, if B and B′ are belief sets and B′ = ⋃

x∈B Fx[[φ]], is
too obvious to deserve a special name: B′ is simply the smallest set containing all pos-
sible end-points if the event [[∂φ]] is initiated at a point in B. It is easier to explain the
“subjunctive mood” interpretation of KGM in terms of minimality, since according to
such an account the task of belief update is rather to minimize what is believed to be the
“objective distance” between the current belief set and the belief set after the update.

The question of minimality makes clear sense in the case of the AGM paradigm.
The fallbacks in an onion represent theories that the agent is willing, under certain cir-
cumstances, to endorse at least tentatively. Those theories are all “close” to the theory
he currently holds, the theory corresponding to the innermost element (the belief set).
Confronted with unassailable evidence adverse to his current theory, the agent will
fall back on his strongest alternative; that is, on the “closest” theory available to him.

3.5.4 The Ramsey test again

Finally let us return to the Ramsey test which we used at the beginning of Sect. 3
to distinguish the two paradigms of AGM and KGM. Given what was said above
about the logical and philosophical properties of the two paradigms, it is perhaps
now clearer why the Ramsey test ought not to be expected to hold for belief revision
while a Ramsey-test-like logical law should be expected to hold for update. The lat-
ter reflects, on the level of belief, an objective change of environmental states or an
objectively given similarity relation for such states; therefore, every result of a belief
update corresponds logically to a previously held belief in some sort of factual law.
In contrast, belief revision conforms to a ranking of environmental states in terms
of their subjective plausibility as fallback positions: there is no reason to believe that
this doxastic structure could be “read into the environment” in the way expressed
by the Ramsey test for conditionals. Gärdenfors’s Theorem (given a weak auxiliary
hypothesis) even proves the impossibility of such a reading.

4 Where to: an outlook

We end with a tentative list of aims that we think might inspire the future development
of DDL.

• Axiomatization of specific methods of iterated revision: Every semantically for-
mulated suggestion for an iterated revision scheme ought to be characterized
logically in DDL on the basis of a corresponding soundness and completeness
theorem (much as various specific assumptions on modal accessibility relations
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can be represented adequately by an extension of the minimal modal logic K).
What do these systems look like? In addition to special older suggestions in the
literature, some very preliminary but more systematic answers to these questions
can be found in Rott (2006), Segerberg (2005, unpublished manuscript), and van
Benthem (Forthcoming).

• Axiomatization and semantics of doxastic attitudes towards revision and update:
What are the proper logical systems that govern formulæ such as (1) on p. 3

• Axiomatization and semantics of nested revision: What are the proper logical
systems that govern formulæ such as (2) on p. 3

• Axiomatization and semantics of revision and update in a framework with more
than one agent: What are the proper logical systems for formulæ that express
belief changes of an agent x (or a group g) induced by an agent y (or a group g′)?
(For some progress on this front, see van Ditmarsch, 2005.)

• Philosophical interpretation of revision and update: In what ways can and should
the axiomatic and semantic differences between revision and update be inter-
preted? How do these differences relate to the differences between axiomatic and
semantic systems for iterative and subjunctive conditionals?

• Comparison of belief update and probabilistic imaging: Results by Adams (1998)
and Gärdenfors (1988) support the view that AGM type belief revision can be
understood as the qualitative counterpart of probabilistic conditionalization. The
question remains how to solve the equation

KGM: AGM = x : conditionalization

for the variable x. We hypothesize the answer to be Lewis’s (1976) method of
probabilistic imaging which was generalized later by Gärdenfors (see Sect. 5.3. of
Gärdenfors, 1988).

• Combinations of logical systems for qualitative belief change (such as DDL) with
systems of probabilistic logic: See Kooi (2003) for recent progress in this direction.

• Comparison of limitative results for DDL with limitative results in other areas: As
demonstrated above (see Leitgeb, 2005, unpublished manuscript for details), there
is a close logical relationship between Gärdenfors’s impossibility result for belief
revision with conditionals and Arrow’s classic impossibility result for social choice.
Indeed, both the assumptions and the conclusion of the latter can be expressed
in a system of belief revision for conditionals and Arrow’s proof can be carried
out within that system. Most remarkably, the Pareto assumption of Arrow’s result
translates into the left-to-right direction of the Ramsey test for conditionals. This
raises the question of whether responses to Arrow’s theorem in the theory of social
choice can be related to responses to Gärdenfors’s theorem in the theory of belief
revision and if so, whether this yields additional information on the interpretation
of AGM vs. KGM and their formal treatment in DDL. There is also a recent rise
of interest in limitative results on judgment aggregation and their representation
in logical systems (see e.g. Pauly and van Hees, 2006) which is likely to lead to
equally interesting results in DDL with operators for both individual and social
belief change.

• Unification of DDL and DEL: Simultaneous to the introduction of DDL, systems
of so-called Dynamic Epistemic Logic (DEL) emerged in which belief change is
studied in the same way as in DDL, that is, in terms of axiomatic and seman-
tic system for dynamic sentential operators (Baltag et al., 1998; van Benthem,
1996; Gerbrandy, 1999; cf. Plaza, 1989; for an overview, see: van Ditmarsch et al.,
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2006). For example, Baltag et al. (1998) showed how a dynamic logic of public
announcements operators could be developed; public announcement is regarded
as one among many possible types of belief update, where ‘update’ is not used
as a name for � from above but rather as a general term for all sorts of belief
changes (so-called “Amsterdam update”). While DDL focused on the logic of
belief revision operators in a single agent framework, DEL concentrated on the
logical study of belief expansion in a multi-agent framework (e.g., applications of
the public announcement operator [φ!] correspond semantically to shrinking a
possible worlds model to its set of φ-worlds, where the logical outcomes of this
process can be investigated in terms of a static common knowledge operator for a
group of agents). We predict that the two research programmes of DDL and DEL
will merge in the long run into the single logical endeavour of DBC: dynamic logics
of belief change.
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