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ABSTRACT. Logic programs under answer set semantics have become popular as a
knowledge representation formalism in Artificial Intelligence. In this paper we investigate
the possibility of using answer sets for qualitative decision making. Our approach is based
on an extension of the formalism, called logic programs with ordered disjunction (LPODs).
These programs contain a new connective called ordered disjunction. The new connective
allows us to represent alternative, ranked options for problem solutions in the heads of
rules: A × B intuitively means: if possible A, but if A is not possible then at least B. The
semantics of logic programs with ordered disjunction is based on a preference relation on
answer sets. We show that LPODs can serve as a basis for qualitative decision making.

1. INTRODUCTION

Logic programs under answer set semantics (Gelfond and Lifschitz 1991)
have become popular as a knowledge representation formalism in Artificial
Intelligence (AI). There are several reasons for this:

1. On one hand logic programs are expressive enough to model many of
the typical knowledge representation problems in AI. For instance, the
availability of default negation in the body of rules makes it possible
to represent defeasible information.

2. On the other hand, the syntax of logic programs is restrictive enough to
allow for efficient implementations, and indeed several highly efficient
answer set provers have been implemented, for instance the Smod-
els system developed at Helsinki University of Technology (Niemalä
and Simons (1997) or dlv (Either et al. 1998) developed at Technical
University of Vienna.

3. Answer sets (respectively stable models for programs without classi-
cal negation) provide an intuitive semantics for logic programs which
avoid the pitfalls of procedural systems like Prolog. For instance, loops
in programs are handled properly and results do not depend on the
order in which rules are written.

4. It turned out that many problems, for instance in planning and con-
figuration, can be elegantly formulated in a way such that models
rather than theorems correspond to problem solutions. If we use such
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representations in logic programming then the answer sets correspond
to models and give the solutions we are looking for (Lifschitz 2002;
Soininen 2000).

In spite of this success, standard logic programs lack a property which is
essential for qualitative decision making: there is at least no easy way of
expressing user preferences. For this reason we will use an extension of
logic programs which allows us to state such preferences.

In a recent paper (Brewska et al. 2002a) a propositional logic called
Qualitative Choice Logic (QCL) was introduced. The logic contains a new
connective× representing ordered disjunction, a prioritized version of dis-
junction. Ordinary disjunction allows us to represent alternative options.
For instance, if we plan how to spend a free evening we may use

cinema ∨ pub ∨ tv

to describe our different options. Ordered disjunction additionally ex-
presses a preference order among the options:

cinema × pub × tv

intuitively says: if possible I would like to go to the cinema, if this is not
possible then I go to the pub, if this is also not possible I will watch tv.

The semantics of QCL is based on degrees of satisfaction of a formula
in a classical model. The degrees, intuitively, measure disappointment and
induce a preference relation on models. Consequence is defined in terms
of most preferred models. It is argued in that paper that there are numerous
useful applications, e.g. in configuration and design.

The extension of logic programs used in this paper adds ideas under-
lying QCL to logic programming. More precisely, we use logic programs
based on rules with ordered disjunction in the heads. Such programs, called
LPODs for short, were first investigated in Brewka (2002). The semantics
of LPODs is based on a suitable generalization of answer sets together with
a preference ordering on the answer sets. The basic intuition is as follows:
we use the ordered disjunctions in rule heads to define a preference relation
on the answer sets of a program. Consider a program containing the rule

A × B ← C.

If S1 is an answer set containing C and A and S2 is an answer set containing
C and B but not A, then – ceteris paribus (other things being equal) – S1 is
preferred over S2. Of course, we have to give precise meaning to the ceteris
paribus phrase. Intuitively, ceteris paribus is to be read as: S1 and S2 satisfy
the other rules in the program equally well.
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This preference structure on answer sets can be used as a basis for
qualitative decision making, as we will demonstrate in this paper. However,
for this purpose several additional notions are necessary: in particular, we
need to distinguish between choices which are under the control of the
agent and possible states which depend on nature and cannot be influenced
by the agent. Moreover, we need to fix a strategy towards risk which is
used to pick a decision on the basis of the preferences on answer sets.

We will restrict our discussion in this paper to propositional pro-
grams. However, as usual in answer set programming, we admit rule
schemata containing variables bearing in mind that these schemata are just
convenient representations for the set of their ground instances.

The rest of the paper is organized as follows. In the next section we
recall the definition of answer sets for extended logic programs with two
kinds of negation and give some motivation which may be helpful for
readers unfamiliar with this notion. In the subsequent section we define
syntax and semantics of LPODs. For a more detailed discussion and addi-
tional examples we refer the reader to Brewka (2002). Section 4 discusses
how to use LPODs for qualitative decision making. We will use Savage’s
famous rotten egg example to illustrate our approach. Section 5 discusses
hybrid decision making systems which are based on a mixed qualitative
and quantitative representation of preferences. Section 6 concludes.

2. ANSWER SETS

In this section we recall the definition of answer sets as introduced by
Gelfond and Lifschitz (1991). We consider extended logic programs which
have two kinds of negation, classical negation ¬ and default negation not .
Intuitively, not a is true whenever there is no reason to believe a, whereas
¬a requires a proof of the negated literal.

An extended logic program (program, for short) P is a finite collection
of rules r of the form

c← a1, . . . , an, not b1, . . . , not bm,(1)

where the ai , b j and c are classical literals, i.e., either positive atoms or
atoms preceded by the classical negation sign ¬. We denote by head(r ) the
head of rule r . We will call a1, . . . , an the prerequisites of the rule and use
pre(r ) to denote the set of prerequisites of r .

We say a rule r of the form (1) is defeated by a literal �, if � = bi for
some i ∈ {1, . . . , m}, and we say it is defeated by a set of literals X , if
X contains a literal that defeats r . Moreover, a rule r is applicable in X
whenever it is not defeated by X and its prerequisites are in X .
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An answer set of a program P is a set of literals S satisfying two
conditions:

1. if r ∈ P is applicable in S then r is applied, that is, head(r) ∈ S, and
2. all literals in S have a non-circular derivation using only rules unde-

feated by S.

We can make this precise as follows:

DEFINITION 1. Let P be an extended logic program, and let X be a set of
literals. The X -reduct of P , denoted P X , is the collection of rules resulting
from P by

1. deleting each rule which is defeated by X , and
2. deleting all weakly negated literals from the remaining rules.

This reduction is often called Gelfond–Lifschitz reduction, after its inven-
tors.

DEFINITION 2. Let R be a collection of rules without weak negation.
Then, Cn(R) denotes the smallest set S of literals such that

1. S is closed under R, i.e., for any rule c ← a1, . . . , an in R, if
a1, . . . , an ∈ S, then a ∈ S; and

2. S is logically closed, i.e., either S is consistent or S = Lits, the set of
all literals.

DEFINITION 3. Let R be a collection of rules. Define an operator γR(X)
on the set literals as follows:

γR(X) = Cn(RX ).

Then, a set S of literals is an answer set of R iff S = γR(S).
The collection of answer sets of R is denoted by AS(R).

Here is an example involving both types of negation. The example de-
scribes the strategy of a certain college for awarding scholarships to its
students. It is taken from Baral and Gelfond (1994):

(1) eligible ← highGPA
(2) eligible ← minority, fairGPA
(3) ¬eligible ← ¬fairGPA(x),¬highGPA
(4) interview(x) ← not eligible, not ¬eligible.
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Assume in addition to the rules above the following facts about Anne are
given:

fairGPA, ¬highGPA.

We obtain exactly one answer set, namely

{fairGPA, ¬highGPA, interview}.

Anne will thus be interviewed before a decision about her eligibility is
made. If we use the above rules together with the facts

minority, fairGPA

then the single answer set contains eligible.

3. LOGIC PROGRAMS WITH ORDERED DISJUNCTION

In this section we show how ordered disjunction can be added to logic
programs with two kinds of negation (default and strong negation) Gelfond
and Lifschitz (1991). The new connective × representing ordered disjunc-
tion is allowed to appear in the head of rules only. A (propositional) LPOD
thus consists of rules of the form

C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

where the Ci , A j and Bl are ground literals.
The intuitive reading of the rule head is: if possible C1, if C1 is not

possible then C2, . . . , if all of C1, . . . , Cn−1 are not possible then Cn . The
literals Ci are called choices of the rule. Extended logic programs with two
negations are a special case where n = 1 for all rules. As usual we omit
← whenever m = 0 and k = 0, that is, if the rule is a fact. Moreover, rules
of the form← body (constraints) are used as abbreviations for p← body,
not p for some p not appearing in the rest of the program. The effect of
the rule is that no answer sets containing body exist.

As mentioned earlier we want to use the ranking of literals in the head
of rules to select some of the answer sets of a program as the preferred
ones. But what are the answer sets of a program among which to make this
selection?

Our semantics is based on so-called split programs. This notion was
first introduced in Sakama and Inoue (1994). Our definition is stronger
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than the one in Sakama and Inoue (1994) since we require exactly one
option of each rule to be contained in a split program.

DEFINITION 4. Let r = C1 × · · · × Cn ←body be a rule. For k ≤ n we
define the kth option of r as

rk = Ck ← body, not C1, . . . , not Ck−1.

DEFINITION 5. Let P be an LPOD. P ′ is a split program of P if it is
obtained from P by replacing each rule in P by one of its options.

Here is a simple example. Let P consist of the rules A × B ← not C and
B × C ← not D. We obtain 4 split programs

A← not C A← not C
B ← not D C ← not D, not B

B ← not C, not A B ← not C, not A
B ← not D C ← not D, not B

Split programs do not contain ordered disjunction. We thus can define:

DEFINITION 6. Let P be an LPOD. A set of literals A is an answer set of
P if it is a consistent answer set of a split program P ′ of P .

We exclude inconsistent answer sets from consideration since they do not
represent possible problem solutions. In the example above we obtain 3
answer sets: {A, B}, {C}, {B}. Note that one of the answer sets is a proper
subset of another answer set. Not all of the answer sets satisfy our most
intended options. Clearly, {B, A} gives us the best options for both rules,
whereas {C} gives only the second best option for (2) and {B} the second
best option for (1). To distinguish between more and less intended answer
sets we introduce the degree of satisfaction of a rule in an answer set:

DEFINITION 7. Let S be an answer set of an LPOD P . The satisfaction
degree of the rule

r = C1 × . . .× Cn ← A1, . . . , Am, not B1, . . . , not Bk

in S, denoted degS(r) is defined as follows

degS(r) = 1 if r is not applicable in S,

degS(r) = j where j = min{r | Cr ∈ S} otherwise.



ANSWER SETS AND QUALITATIVE DECISION MAKING 177

It can be shown Brewka (2002) that an answer set of P satisfies all rules
of P to some degree. Degrees can be viewed as penalities: the higher the
degree the less satisfactory the answer set. Since inapplicable rules do not
lead to any kind of dissatisfaction they get the best possible degree 1.

We use the degrees of satisfaction of a rule to define a preference
relation on answer sets. Each rule ranks all answer sets according to its
satisfaction degree. From the rankings of the different rules we have to
generate a global ranking based on all rules of the program. There are
different ways of doing this. For instance, we can simply add up the sat-
isfaction degrees of all rules and prefer those answer sets where the total
sum is minimal. Although this may be reasonable in certain applications,
this approach makes quite strong assumptions about the commensurability
of choices in different rule heads. In Brewka et al. (2002a) a lexicographic
ordering of models based on the number of premises satisfied to a par-
ticular degree was proposed. This lexicographic ordering has a somewhat
syntactic flavour. Therefore, we will use here a more cautious preference
relation (in the sense that fewer answer sets are considered better than
others) based on set inclusion of the rules satisfied to certain degrees. For
a discussion of alternative preference relations see Brewka et al. (2002b).

DEFINITION 8. For a set of literals S, let Si (P) = {r ∈ P | degS(r) = i}.
Let S1 and S2 be answer sets of P . S1 is preferred to S2 (S1 > S2) iff there
is an i such that

1. Si
2(P) ⊂ Si

1(P), and
2. for all j < i , S j

1 (P) = S j
2 (P).

DEFINITION 9. A set of literals S is a preferred answer set of an LPOD
P iff S is an answer set of P and there is no answer set S′ of P such that
S′ > S.

Consider again the program with rules (1) A×B ← not C and (2) B×C ←
not D. As discussed before, we obtain the 3 answer sets: S1 = {A, B},
S2 = {C} and S3 = {B}. S1 satisfies both rules with degree 1, {C} satisfies
(1) to degree 1 but (2) to degree 2. {B} satisfies (1) to degree 2 and (2) to
degree 1. The single preferred answer set is thus S1, as intended.

It turns out that LPODs have interesting applications, for instance in
configuration and design. LPODs allow us – like normal logic programs –
to express incomplete and defeasible knowledge through the use of default
negation. In addition, they provide means to represent preferences among
intended properties of problem solutions. Moreover, these preferences may
depend on the current context. An implementation of LPODs on top of a
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standard answer set prover for non-disjunctive programs is described in
Brewka et al. (2002b).

4. DECISION MAKING USING LPODS

In decision making settings it is not sufficient to consider only the most
preferred answer sets since this amounts to an extremely optimistic view
about how the world will behave (this view is sometimes called wishful
thinking). As is well-known in decision theory, for realistic models of
decision making it is necessary to clearly distinguish what is under the
control of the agent (and thus may constitute the agent’s decision) from
what is not. We will do this by distinguishing a subset of the literals in a
program as decision literals.

In this section we describe a general methodology for qualitative deci-
sion making based on LPODs. The basic idea is to use LPODs to describe
possible actions or decisions and their consequences, states of the world
and desired outcomes. The representation of desires induces, through or-
dered disjunction, a preference ordering on answer sets representing their
desirability. Based on this preference ordering an ordering on possible de-
cisions can be defined based on some decision strategy. Let us describe the
necessary steps more precisely:

1. Among the literals in the logical language distinguish a set of decision
literals C . C is the set of literals the agent can decide upon. It’s the
agent’s decision which makes them true. A decision is a consistent
subset of C .

2. Represent the different alternative decisions which can be made by the
agent. Standard answer set programming techniques can be used here.
Note that certain options may lead to additional choices that need to
be made.

3. Represent the different alternative states of the world. Again standard
answer set programming techniques apply.

4. Represent relationships between and consequences of different alter-
natives.

5. Represent desired properties. This is where ordered disjunction comes
into play. Of course, desires may be context-dependent.

6. Use the preference relation on answer sets derived form the satis-
faction degrees of rules to induce a preference relation on possible
decisions. Of course, there are different ways to do this corresponding
to different attitudes of the agent towards risk.

7. Pick one of the most preferred decisions.
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Let us describe these ideas more formally.

DEFINITION 10. A decision scenario is a quadruple D = (C, S, P , Strat)
consisting of

1. a set of literals C representing possible choices of the agent,
2. a set of literals S representing possible states of the world,
3. an LPOD P such that each answer set A of P has a non-empty

intersection with S and C .
4. a decision strategy Strat, that is, a function which takes as input a

partial order on answer sets and produces a partial order on C .

DEFINITION 11. Let D = (C, S, P , Strat) be a decision scenario.
c ∈ C is an acceptable choice in D iff c is maximal wrt the partial order
Strat(ASP ) where ASP is the partial order on the answer sets of P .

We will use Savage’s famous rotten egg example (Savage 1954) to il-
lustrate this methodology. An agent is preparing an omelette. 5 fresh eggs
are already in the omelette. There is one more egg. It is uncertain whether
this egg is fresh or rotten. The agent can

1. add it to the omelette which means the whole omelette may be wasted,
2. throw it away, which means one egg may be wasted, or
3. put it in a cup, check whether it is ok or not and put it to the omelette

in the former case, throw it away in the latter. In any case, a cup has to
be washed if this option is chosen.

In the example the choices correspond to the actions and the states to the
possible states of the egg, that is C = {in-omelette, in-cup, throw−away},
and S = {fresh, rotten}. Here are the rules which generate the possible
decisions and states of the world:

in−omelette← not in−cup, not throw−away
in−cup← not in−omelette, not throw−away
throw−away← not in−cup, not in−omelette
rotten← not fresh
fresh← not rotten

For our example it is not necessary to specify that the different actions and
states of the egg are mutually exclusive. It is guaranteed by the rules that
only one of the exclusive options is contained in an answer set. We next
define the effects of the different choices:

5−omelette← throw−away
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6−omelette← fresh, in−omelette
0−omelette← rotten, in−omelette
6−omelette← fresh, in−cup
5−omelette← rotten, in−cup
¬wash← not in−cup
wash← in−cup

For the different omelettes we must state that they are mutually inconsis-
tent. We omit the 6 rules necessary for representing this. They are of the
form ¬x−omelette ← y−omelette with x �= y. We finally represent our
desires:

¬wash× wash
6−omelette× 5−omelette× 0−omelette

This logic program has the following 6 answer sets

S1 = {6−omelette,¬wash, fresh, in−omelette}
S2 = {0−omelette,¬wash, rotten, in−omelette}
S3 = {6−omelette, wash, fresh, in−cup}
S4 = {5−omelette, wash, rotten, in−cup}
S5 = {5−omelette,¬wash, fresh, throw−away}
S6 = {5−omelette,¬wash, rotten, throw−away}

The preference relation among answer sets is as follows: S1 is the single
maximally preferred answer set. S5 and S6 are preferred to S2 and S4 but
incomparable to S3. S3 is preferred to S4 but incomparable to S5, S6 and
S2. S2 and S4 are incomparable. Figure 1 illustrates these relationships:

S2 S4

S5, S6 S3

S1

�
��

�
��

�
��

Figure 1. Preferences among answer sets.

We next define possible strategies. An optimistic agent might reason
from maximally preferred answer sets, that is she might use the strategy
defined as

c1 >o c2 iff the most preferred answer set(s) containing c1 are better than
the most preferred answer set(s) containing c2.
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In the example this would yield in−omelette as the single acceptable
choice. Obviously, in the example this extremely optimistic attitude to-
wards decision making amounts to simply assuming the egg will be fresh.

A pessimistic decision maker might choose the action whose worst
outcome is most tolerable, that is

c1 >p c2 iff the least preferred answer set(s) containing c1 are better than
the least preferred answer set(s) containing c2.

In the example the answer sets containing throw−away, that is S5 and
S6, are preferred to the least preferred answer set containing in−omelette,
S2, and to the least preferred answer set containing in−cup, S4. Thus, a
pessimistic decision maker would choose throw−away.

An extremely cautious strategy could be defined as follows:

c1 >c c2 iff the least preferred answer set(s) containing c1 are better than
the most preferred answer set(s) containing c2.

This is a very strong requirement and in the egg example no action is
preferred to another one according to this strategy. All possible actions
are acceptable.

Finally, we can compare answer sets statewise:

c1 >sc c2 iff for each state s ∈ S the least preferred answer set(s) contain-
ing c1 and s are better than the most preferred answer set(s) containing c2

and s.

Also this strategy does not favour any of the choices in the egg example.
In many situations agents consider some of the possible outcomes of

a certain choice as completely unacceptable. Assume a set of literals Cat
is given characterizing these “catastrophic” outcomes. We can pick any of
the strategies <k, k ∈ {o, p, c, sc} as defined above and add catastrophy
avoidance as follows:

c1 >k,ca c2 iff c1 >k c2 or there is an answer set S such that c2 ∈ S and
S ∩ Cat �= ∅, and for each answer set S′, c1 ∈ S′ implies S′ ∩ C at = ∅.
If we consider 0−omelette as catastrophic in the egg example and add
catastrophy avoidance to >sc we obtain throw−away and in−cup as
acceptable choices.

Intuitively, S2 in our example seems far less desirable than S4 and both
S5 and S6 less desirable than S3. This is not reflected in our preference rela-
tion on answer sets. To express this it is necessary to represent preferences
between sets of literals rather than single literals.

Within our framework this can be done by introducing new atoms rep-
resenting conjunctions of literals. However, it would probably be more
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elegant to apply orderd disjunction directly to sets of literals (read as
the conjunction of these literals). Extending LPODs in such a way is
straightforward.

Another useful extension of LPODs are rankings between the different
criteria (that is, rules with ordered disjunction in the heads) themselves.
This can be done by splitting a program P into levels P1, . . . , Pn , where
Pi is more important than Pj iff i < j . The intuitive idea is to maximize
the degree of satisfaction of more important criteria first, and to use less
important criteria only to discriminate between those answer sets satisfy-
ing the important ones equally well. Rather than presenting the technical
details, we want to illustrate this idea using our example. Assume the rule

6−omelette× 5−omelette× 0−omelette

is considered more important than

¬wash× wash.

This leads to a situation where S3 is preferred over S5 and S6. In gen-
eral, introducing preferences between criteria makes more answer sets
comparable which in turn may reduce the number of acceptable choices.

5. TOWARDS HYBRID DECISION MAKING

Classical decision making assumes a complete specification of numerical
utility and probability functions. Given these functions maximum expected
utility is used to select among the possible actions. In many cases these
functions are difficult to obtain, and users are unwilling to come up with
quantified specifications of their preferences. This is the main motivation
behind qualitative decision making where qualitative preference state-
ments are used instead of numerical functions. On the other hand, there
is a price to pay: as illustrated in our treatment of the rotten egg example, a
purely qualitative approach is often not fine grained enough to sufficiently
discriminate between the available choices.

It is, therefore, a natural idea to explore the middle ground between
classical, quantitative approaches on one hand and qualitative approaches
on the other. Our long term goal is a hybrid system that is able to handle
quantitative information if it is available together with qualitative prefer-
ence information. The idea is to start with the available mixed information
and to compute the set of acceptable choices. If the user is happy with the
set, we are done. If she wants further discrimination among this set the
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system should be able to generate questions about user preferences which
are relevant for discrimination in the current case. The system would thus
be hybrid in a double sense: (a) because it uses qualitative and quantitative
information, and (b) because it is a decision making and at the same time
a preference elicitation system.

As a first step towards such a system consider an extension of our
framework with numerical penalties. We can use integers for this and write,
say:

¬wash−cup× wash−cup (1)
6−omelette× 5−omelette (5)× 0−omelette (50)

to express that having to wash the cup gets penalty 1, getting 5 eggs only
penalty 5 and getting nothing to eat penalty 50. The overall penalty for an
answer set S is obtained by adding up the penalties for all rules, where the
penalty of c1 × c2(n2)× . . . × ck(nk)← body is 0 if body is not satisfied
in S or c1 ∈ S, n j otherwise, where j is the smallest integer such that
c j ∈ S. The preference relation among answer sets is obtained through
their overall penalty. In the example we would obtain the following overall
penalties:

S1 : 0 S3 : 1 S5 : 5
S6 : 5 S4 : 6 S2 : 50

Choices could then be ordered on the basis of the average penalties of
answer sets they contain. This strategy would thus choose in−cup as the
single acceptable action.

Every approach to qualitative decision making has to combine pref-
erences among outcomes of choices with a treatment of uncertainty. In
our approach the preferences are described through ordered disjunction.
But what about the uncertainty? Different possible states of the world are
represented as different answer sets. As usual in nonmonotonic reason-
ing states of the world which are not normal in some respect are totally
disregarded (this is what John McCarthy called jumping to conclusions).
All states which have to be taken into account are considered plausible.
Further distinctions between the generated answer sets are not possible.
For instance, it is not possible to express, say, that fresh is more probable
than rotten in the omelette example. If, however the possibility of rotten is
negligible and fresh is true by default we can make sure that only answer
sets containing fresh are generated by using adequate rules.

Our general qualitative attitude towards uncertainty can thus be de-
scribed as: states are either negligible or plausible; in the latter case no
distinction between the degree of plausibility of the states is made.
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If additional information about the relative plausibility of the states is
available we can take this into account by considering a weighted aver-
age of penalties, where the weight of an answer set corresponds to the
plausibility of the state it contains.

A further elaboration of hybrid decision making is a topic of further
study.

6. CONCLUSION

In this paper we investigated the applicability of logic programs under an-
swer set semantics to qualitative decision making. In particular, we studied
programs containing a new connective, ordered disjunction, which can be
used to represent context dependent preferences in a simple and elegant
way.

There are numerous papers introducing preferences to logic program-
ming. For an overview of some of these approaches see the discussion
in Brewka and Eiter (1999) or the more recent (Schaub and Wang 2001).
Only few of these proposals allow for context dependent preferences. Such
preferences are discussed for instance in (Brewka 1996; Brewka and Eiter
1999). The representation of the preferences in these papers is based on
the introduction of names for rules, the explicit representation of the pref-
erence relation among rules in the logical language, and a sophisticated
reformulation of the central semantic notion (answer set, extension, etc.)
with a highly self-referential flavour. Alternative approaches (Delgrande
et al. 2000; Grasof 1999) are based on compilation techniques and make
heavy use of meta-predicates in the logical language. Nothing like this
is necessary in our approach. All we have to do is use the degree of
satisfaction of a rule to define a preference relation on answer sets directly.

For an overview of recent work in qualitative decision theory see Doyle
and Thomason (1999). Poole (1997) aims at a combination of logic and
decision theory. His approach incorporates quantitative utilities whereas
our preferences are qualitative. Interestingly, Poole uses a logic without
disjunction whereas we enhance disjunction.

In Boutilier et al. (1999) C P-networks, a graphical representation,
somewhat reminiscent of Bayes nets, for conditional preferences among
feature values under the ceteris paribus principle is proposed, together
with corresponding algorithms. In the boolean case where features have
values true or false the graphs correspond to sets of rules of the form

a1, . . . , an : c 
 c̄,
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where c and ai are literals and c̄ is the complement of c. Such a rule has an
obvious translation to the LPOD rule

c × c̄← a1, . . . , an

which shows that LPODs are syntactically more general: they allow heads
of a more general form and default negation in the bodies. However, the se-
mantics of rules in CP-nets is different from the semantics of the translated
LPOD rules. Consider the example (from Boutilier et al. 1999):

a 
 ¬a; a : b 
 ¬b; ¬a : ¬b 
 b.

In the CP approach {a,¬b} is preferred over {¬a,¬b}. Both sets are an-
swer sets of the translation to LPODs, but none is preferred over the other.
The meaning of the rules is slightly different: a 
 ¬a means: world w1 is
better than w2 if both agree on all atoms except a, and w1 makes a true, w2

makes a false. In the LPOD approach a×¬a is more like a soft constraint
expressing: there is reason to prefer a over ¬a. Here an answer set S1 is
preferred over S2 whenever a ∈ S1, ¬a ∈ S2, and the other rules of the
program are satisfied at least as well in S1 as in S2.

Several models of qualitative decision making based on possibility the-
ory are described in Debois et al. (1999) and Benferhat et al. (2000). They
are based on certainty and desirability rankings. Some of them make rather
strong commensurability assumptions with respect to these rankings. In a
series of papers (Lang 1996; van der Torre and Weydert 2001), originally
motivated by Boutilier (1994), the authors propose viewing conditional
desires as constraints on utility functions. Intuitively, D(a|b) stands for:
the b-worlds with highest utility satisfy a. Our interpretation of ranked
options is very different. Rather than being based on decision theory our
approach can be viewed as giving a particular interpretation to the ceteris
paribus principle.

Our discussion of hybrid decision making in this paper was quite pre-
liminary. A further elaboration of such systems is a topic of future work.
We also plan to investigate generalizations of LPODs. Ordered disjunction
requires the literals in the head of a rule to be totally ordered. In many
situations total preference information is not available, or different alter-
natives may be equally preferred. Using ordered disjunction one is forced
to introduce arbitrary preferences in such a situation. We will therefore
investigate rules whose heads are partially rather than linearly ordered.

In any case, we hope to have convinced the reader that exploring the
range between purely qualitative and purely quantitative approaches is
promising, and that answer sets of prioritized variants of logic programs
may have an interesting role to play in this area.
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