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MATHEMATICAL METHOD AND PROOF

ABSTRACT. On a traditional view, the primary role of a mathematical proof is
to warrant the truth of the resulting theorem. This view fails to explain why it
is very often the case that a new proof of a theorem is deemed important. Three
case studies from elementary arithmetic show, informally, that there are many cri-
teria by which ordinary proofs are valued. I argue that at least some of these cri-
teria depend on the methods of inference the proofs employ, and that standard
models of formal deduction are not well-equipped to support such evaluations.
I discuss a model of proof that is used in the automated deduction community,
and show that this model does better in that respect.

1. INTRODUCTION

It is generally acknowledged that at least one goal of mathematics is
to provide correct proofs of true theorems. Traditional approaches to
the philosophy of mathematics have therefore, quite reasonably, tried
to clarify standards of correctness and ground the notion of truth.

But even an informal survey of mathematical practice shows that a
much broader range of terms is employed in the evaluation of math-
ematical developments: concepts can be fruitful, questions natural,
solutions elegant, methods powerful, theorems deep, proofs insightful,
research programs promising. Insofar as judgments like these channel
the efforts and resources we devote to the practice, it is both a philo-
sophical and pragmatic challenge to clarify the meaning of such terms.1

Value judgments applied to mathematical proofs provide partic-
ularly interesting examples. For, on a traditional view, the role of a
proof is to demonstrate that a theorem is true; but it is very often
the case that new proofs of an old theorem are valued, a fact that is
rendered utterly mysterious by the standard characterization. Salient
examples of the phenomenon are Dedekind and Weber’s algebraic
proofs of the Riemann–Roch theorem, the Selberg–Erdös proofs
of the Hadamard–de la Vallée Poussin prime number theorem, or
the 150 or so proofs of the law of quadratic reciprocity that have
been published since Gauss’s Disquisitiones Arithmeticae;2 but the
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phenomenon is ubiquitous, from the most elementary mathematical
proofs to the most complex.3

Put simply, the challenge is to explain what can be gained from
a proof beyond knowledge that the resulting theorem is true. Of
course, one sense in which a proof may be viewed as constituting
an advance is that it may actually establish a stronger or more gen-
eral statement, from which the original theorem easily follows. But
even in cases like these we need to account for the intuition that the
proof can also augment our understanding of the original theorem
itself, providing a better sense of why the theorem is true.

Such proofs are sometimes called explanatory in the philosoph-
ical literature, and there is a small but growing body of work on
the notion of explanation in mathematics (e.g., Steiner 1978; Man-
cosu 2000, 2001). I will use the term here only gingerly, for two
reasons: first, the term is not so very often used in ordinary math-
ematical discourse; and, second, it is certainly not the only term
which is used to voice positive judgments about proofs. Here, I
would prefer to remain agnostic as to whether there is a single over-
arching concept that accounts for all such positive judgments, or
rather a constellation of related notions; and also as to whether the
particular virtues considered here are best labeled “explanatory”.
A further difficulty with respect to obtaining a satisfactory theory
is that judgments often vary as to the relative merits of different
proofs; this is why it is common to find a dozen specialists in a
subject writing 13 introductory textbooks. The best we can there-
fore hope for is a theory that clarifies the factors that underly such
judgments and helps explain the differences, e.g. ascribing them to
differences of context, purpose, or emphasis.4

We do have some fairly good intuitions as to some of the rea-
sons that one may appreciate a particular proof. For example, we
often value a proof when it exhibits methods that are powerful and
informative; that is, we value methods that are generally and uni-
formly applicable, make it easy to follow a complex chain of infer-
ence, or provide useful information beyond the truth of the theorem
that is being proved. As a philosophical thesis, however, this claim
is lacking. For one thing, it is vague: I have not said what it means
for a proof to “exhibit” a “method”. let alone what it means for
a method to be general and uniformly applicable; nor have I said
anything about how methods help render a proof intelligible, or the
types of information they can convey. A second objection is that the



MATHEMATICAL METHOD AND PROOF 107

claim is rather toothless: few would deny that the attributes indi-
cated are generally desirable.

My goal here is to suggest that the first objection can be reason-
ably addressed. In other words, it is possible to develop an analytic
theory of proof and method that can do philosophical work, and, in
particular, can be used to clarify such evaluatory terms. To that end,
I will discuss a model of proof that is currently used in the field of
automated deduction, and attempt to enlist the corresponding ter-
minology and framework for a more conceptual analysis. If this is
successful, the second objection noted above will, instead, become
an asset: insofar as the terms can be made sense of, the result will
be a philosophical claim that stands a good chance of being correct.

The analysis begun here rests on the central assumption that
at least some of the value judgments that are commonly applied
to mathematical proofs are actually derivative of value judgments
applied to associated methods. This association can happen in at
least two ways. Sometimes new methods are introduced in the course
of a proof; for example, Gauss’s sixth proof of the law of quadratic
reciprocity introduced the method of Gauss sums, which paves the
way to higher-order generalizations; and the Dedekind–Weber proof
of the Riemann–Roch theorem was ground-breaking in its introduc-
tion of algebraic methods to the study of function spaces (cf. the
discussion in Corfield 2003). Sometimes, in contrast, old results are
reproved in order to illustrate the benefits of methods that have been
introduced in the development of a more general theory. For exam-
ple, Dedekind often went out of his way to show how the new meth-
ods developed in his theory of ideals result in perspicuous proofs
of established theorems of number theory, from Fermat to Kummer
(see, for example, Gauss 1801, Sections 26–27). In both situations,
praise for the proofs can be read, at least in part, as praise for the
associated methods.

The project begun here should be situated with respect to the
much broader program of developing a theory of mathematical
understanding. This can involve characterizing various mathemati-
cal activities (e.g., computing, conjecturing, problem solving, theory
building), as well as characterizing the complex network of mathe-
matical goals and subgoals (e.g., proving certain theorems, classify-
ing structures, understanding mathematical phenomena, discovering
important truths). This larger program is dauntingly vague, broad,
and open-ended, and my hope is to make incremental progress by
isolating a small, interesting, and more manageable subtopic. Such
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a separation, however, will make my account in some ways unnatu-
ral and in very many ways incomplete, and so some reference to the
broader context will help clarify the scope of the restricted endeavor.

What I hope to begin to understand here are those features of
mathematical practice that make a proof intelligible, for example,
enabling us to see that a conclusion Y follows from hypotheses
X1,X2, . . . ,Xn in a “straightforward” way. In other words, the kinds
of methods I will focus on are best characterized as methods of infer-
ence. This way of setting things up blurs the distinction between the
context of discovery and the context of justification: we verify that
Y follows from X1,X2, . . . ,Xn by searching for an appropriate jus-
tification, using appropriate methods. A more significant difference
is one of scale: in this essay I will focus on the process of under-
standing relatively small inferential steps. This leaves out the more
complex, creative, and heuristic processes involved in finding com-
plex proofs ab initio, attacking open problems, or developing theo-
retical machinery to support such efforts. Attention has been given
to such higher processes in the automated deduction literature (see,
for example, the literature on proof planning and rippling, in which
Bundy 1988 was seminal). Understanding the lower-level processes
that I address is certainly relevant to understanding the higher-level
ones, but I will not speculate here as to whether the difference is pri-
marily one of scale, or whether a qualitatively different type of anal-
ysis is needed.

The notion of a method can, and has, been fruitfully used to
characterize other types of mathematical activity as well. That is
to say, there is also a literature on methods of solving mathemati-
cal problems (see, for example, Schoenfeld 1985), methods of form-
ing new concepts and conjectures (Lenat’s Ph.D. thesis (1976) was
an early and important contribution, and Colton et al. (1999) is a
more recent one), and so on. Although I will not consider these here
either, it will become clear in the discussion below that such issues
lurk nearby. For example, we will see informally that some proofs
are informative because they show us how an associated problem
can be solved; thus methods of proof are related to methods of
problem solving. At times we will even find that higher-order meth-
ods are called for: for example, we often wish to speak of methods
of proof that can be generalized, talk which can naturally be under-
stood to imply that there are second-order methods that transform
specific proof methods into more general ones.
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The structure of this essay is as follows. In Section 2, I will pres-
ent three basic yet important theorems from elementary number the-
ory, and discuss, informally, some of the benefits of various proofs
of each. In Section 3, I will call attention to some of the features
of proofs that seem to be relevant to this discussion. After showing
that standard models of formal deduction fail to make these features
apparent, I will discuss the model of proof alluded to above, and
show that it fares better in this regard. The passage from Sections 2
to 3 will be seen to be a move from language that is vague to language
that is overly specific. The challenge, then, is to formulate a frame-
work that abstracts away features that are “implementation specific”,
yet remains concrete enough to be informative. In Section 4, I will
speculate as to how we can develop such a theory.

To be clear, then, this essay does not offer a general theory of
mathematical understanding, or even a fragment of one. It does not
go so far as to provide a framework that explains how mathemat-
ical proofs are evaluated. It does, however, take some initial steps
towards developing such a framework, using informal case studies
to identify some features of proofs that a satisfactory theory must
take into account.

It will become apparent that the approach I am advocating is res-
olutely syntactic. An anonymous referee has reasonably questioned
whether such an approach will be able to deliver philosophical
explanations that we will find satisfying, with respect to a gen-
eral theory of mathematical understanding or even the narrower
issues addressed here; or whether alternative, semantic approaches
are more appropriate. Although this is the kind of question that
cannot be resolved at the outset, it should be kept in mind through-
out the inquiry. I return to this issue briefly in Section 4.

2. CASE STUDIES

In this section, I will discuss three theorems of elementary num-
ber theory, none of which require mathematical background beyond
elementary algebra and arithmetic. We will see that all three were
known to Euler in the 18th century, and were historically important
to the development of the subject. In each case, I will present three
distinct proofs. An informal discussion of the various advantages of
each will provide us with a starting point from which to begin a
more careful analysis.
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Historical details beyond those mentioned here can be found in
Edwards (1996), Goldman (1998), Scharlau and Opolka (1985), Weil
(1984) and Stillwell’s introduction to Dedekind (1877). Ultimately,
Dickson’s exhaustive (1966) is the definitive reference for develop-
ments in number theory through the end of the 19th century.

2.1. Fermat Primes

If x and y are integers, we say that x divides y, written x|y, if there is
an integer z such that xz=y. The integers ±1 are called “units”, and,
since they divide 1, they divide every integer. An integer x not equal
to ±1 is called irreducible if it has no nontrivial divisors, that is, no
divisor that is neither a unit nor a unit multiple of x. An integer x

not equal to ±1 is called prime if whenever x|yz, then x|y or x|z.
What I have called “irreducible” is what often goes by “prime”

in an elementary mathematics education. Fortunately, when it comes
to the integers, there is no difference: every irreducible number
is prime, and vice-versa. The harder direction, i.e. the fact that
every irreducible number is prime, is a consequence of the fact that
the greatest common divisor of any two positive integers can be
expressed as a linear combination of these two integers. The Euclid-
ean algorithm yields an explicit means of doing so, and that algo-
rithm, in turn, relies on the division algorithm: given any integer x

and nonzero dividend y, we can write x = qy + r, where q is the
“quotient” and r is the “remainder”, the latter satisfying 0≤ r < |y|.

You should note that on the definition above, both 5 and −5 are
considered prime. In fact, they are essentially the same prime, since
they differ by a multiplicative factor of a unit. Below, however, it
will be more convenient to use the word “prime” to denote the pos-
itive primes. Let us therefore adopt this convention.

It turns out that the numbers 220 +1, 221 +1, 222 +1, 223 +1, and
224 +1 are all prime. As early as 1640, Fermat conjectured that 22n +1
is prime for every natural number n, and in 1659 he hinted that he
had a proof. The statement, however, was refuted by Euler (1738).

THEOREM 2.1. 225 +1 is not prime.

Proof 1. A calculation shows that

225 +1=232 +1=4294967297=641 ·6700417,

as required.
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Sometimes a proof is nothing more than a calculation. In some
contexts, this is optimal: it can provide a straightforward verifica-
tion, requiring little thought or background knowledge.

Some ingenuity, however, makes it possible to shorten the calcu-
lation considerably. The next proof 5 is naturally expressed using a
notation for congruence that was introduced by Gauss (1801), and
was therefore unavailable to Euler. Two integers x and y are said
to be congruent modulo a third integer z, written x ≡y (mod z), if z

divides x −y. In other words, all the following statements are equiv-
alent:

• x ≡y (mod z),
• z|(x −y),
• x −y =kz, for some integer k.

It will be convenient below to pass between these various represen-
tations freely. The relation of being congruent modulo an integer z

is an equivalence relation, which is to say, it is reflexive, symmetric,
and transitive. Furthermore, it respects addition and multiplication;
that is, if x1 ≡ y1 (mod z) and x2 ≡ y2 (mod z), then x1 + y1 ≡ x2 +
y2 (mod z) and x1y1 ≡ x2y2 (mod z). These facts make it possible to
transfer valid forms of reasoning about arithmetic equations to con-
gruences.

Proof 2. First, note that 641=5×27 +1, so

5×27 ≡−1 (mod 641).

Raising both sides to the fourth power, we have

54 ×228 ≡1 (mod 641).

On the other hand, we also have 641=54 +24, that is,

54 ≡−24 (mod 641).

Multiplying both sides by 228, we have

54 ×228 ≡−232 (mod 641).

From the second and fourth congruences, we have

1≡−232 (mod 641).

In other words, 641|232 +1=225 +1, as required.
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The use of congruence notation is by no means essential to the
proof; for example, the second congruence, which is equivalent to
the assertion that 641|54 ×27×4 −1, can be obtained using the iden-
tity

(54 ×27×4 −1)= (5×27 +1)(5×27 −1)(52 ×27×2 +1).

This identity lies hidden in the appeal to the properties of the con-
gruence relation in the proof above; the notation is effective in
removing such clutter.

One thing that can be said immediately about this proof is that
it requires less tedious calculation than the first. One can certainly
make sense of this in terms of the number of computation steps,
given certain algebraic and arithmetic operations as “basic”. But we
can find additional virtues in the second proof. It can be said, per-
haps, to partially explain what is special about 641, i.e. the fact that
it can be written both as 5×27 +1 and 54 +24. It also makes good
use of properties of exponentiation, thereby explaining why that
operation is relevant in the statement of the theorem. The proof
also suggests a more general method by which other Fermat num-
bers can be shown to be composite; this method, and a precise sense
in which it can be viewed as a generalization of the calculation
above, is given by Baaz (1999).

The previous proof may leave one wondering, however, how Eul-
er initially hit upon 641. A later paper gives a clue: Euler (1747)
showed that if x and y are relatively prime (that is, have no com-
mon factor other than ±1), then every factor of x2n + y2n

is either
2 or of the form 2n+1k + 1; he also noted that (taking x = 2 and
y = 1) this implies that any factor of 225 + 1 must have a factor of
the form 64k +1. The proof relies on Fermat’s little theorem, which
asserts that if p is prime and x is any integer not divisible by p,
xp−1 ≡ 1 (mod p). Taking this theorem for granted, the following
proof encapsulates Euler’s observation.

Proof 3. Suppose we are looking for a prime divisor p of 232 + 1,
that is, a solution to

232 ≡−1 (mod p).

Squaring both sides, we wish to find a p satisfying

264 ≡1 (mod p).
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By Fermat’s little theorem we know

2p−1 ≡1 (mod p).

Let d be the least positive integer satisfying 2d ≡1 (mod p). Then d

must divide p−1; otherwise, we could write p−1=qd + r with 0≤
r <d, in which case

2p−1 ≡2qd2r ≡ (2d)q2r ≡2r ≡1 (mod p),

contrary to the choice of d. By the same reasoning, d must divide
64, and so must be a power of 2. But d cannot be less than or
equal to 32, because otherwise we would have 232 ≡ 1 (mod p); by
the first congruence, this would imply −1 ≡ 1 (mod p), that is, p|2,
contradicting the hypothesis that p is a prime dividing 232 + 1. So
d has to be 64, and p has to be of the form 64k + 1. The first few
primes of this form are 193,257,449,577, and 641. Trial and error
shows that 641 is the first one that works.

As far as verification is concerned, this proof is certainly no sav-
ings over the first; in fact, the net result is that one has to do the
same calculation (and more). But the proof is explicitly designed to
show how 641 could have been discovered in practice. Here, too, the
proof displays ideas that are useful in related contexts; for example,
the same method can be used to show that 224 +1 is prime.

In principle, the fact that 232 + 1 is composite could have been
discovered by a brute force enumeration. Proofs that provide more
palatable alternatives in situations like these can provide interest-
ing case studies. Consider, for example, the following special case of
Ramsey’s theorem, which is often given to students as an exercise.6

Suppose any two people at a party are assumed to either mutually know each
other or not. Then at any party with six people, there will either be a group of
three people all of whom know each other, or a group of three people all of
whom do not know each other.

Once again, this can be shown, in principle, by enumerating all 215

possibilities, but exploiting symmetries inherent of the formulation
cuts down on the number of cases dramatically. Label the six people
a, b, c, d, e, and f . Then of the other five, either there will be three
people that a knows, or three people that a does not know. Assume,
without loss of generality, the former, and, relabeling if necessary,
call them b, c, and d. If none of these three know each other, we
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are done; otherwise, two of them, say b and c, know each other, and
a, b, c is the desired triple.

There are reasons to prefer such a proof over a computer-assisted
verification, beyond the savings in time. For example, the proof
above gives hints as to how one may easily find a counterexam-
ple among five people (start by picking two people for a to know,
and two for a not to know); and it can, perhaps, be said to explain
“why 6” (roughly, because 6 = 1 + (2 × 2 + 1)). Most importantly, it
conveys ideas that will help prove generalizations; for example, for
every k there is an n big enough such that the statement above holds
with “6” and “3” replaced by “n” and “k”.

The examples we have just considered also show that sometimes
the additional information valued in a proof can involve methods of
solving an associated problem. Consider the following three:

• show that 225 +1 is composite,
• determine whether or not 225 +1 is composite,
• find a nontrivial factor of 225 +1.

I will take it that, in each case, a satisfactory solution has to include
an explicit or implicit proof that the answer is correct. (We tell our
students ad infinitum that in mathematics one must always justify
one’s answer.) But the three instructions request different sorts of
information: the first asks for a proof; the second for a decision; the
third for a factor. Thus viewing the theorem in terms of an associ-
ated problem often makes it clearer what additional information one
might want, and what types of generalizations may be sought.

Finally, let us take note of the role played by the definitions of
divisibility and congruence in the proofs above. We have already
observed that such definitions can allow one to transfer methods of
reasoning that are effective in other contexts, or are subsumed under
a more general framework. For example, we have seen that congru-
ence modulo an integer is an equivalence relation, inheriting some of
the properties of ordinary equality; and divisibility is a partial order,
which is to say, the relation x|y has some of the same properties of
the ≤ relation on the integers, or the ⊆ relation on sets.

Notice also that the definition of divisibility involves an exis-
tential quantifier, and thus, derivatively, the notion of congruence
does also. The fact, for example, that x|y and y|z implies x|z, or
that x ≡ y (mod z) implies xw ≡ yw (mod z), expand to first-order
implications with existential quantifiers in the antecedents and the
conclusion; and their proofs show how witnesses in the conclusion
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are instantiated, given witnesses to the hypotheses. Later appeal to
these general lemmas then eliminates the need to exhibit witnesses
explicitly in the proof. We have already seen this at play in the dis-
cussion following the second proof above. The use of definitions to
facilitate quantificational reasoning is an important one in mathe-
matics; in fact, Tappenden (1995) suggests that Frege’s notion of a
fruitful definition rests precisely on the use of quantifiers.

2.2. Products of Sums of Squares

In the Arithmetic, Diophantus notes that the product of 5=22 +12

and 13=32 +22 is 65, which is again a sum of two squares. (In fact,
65 is equal to both 82 + 12 and 72 + 42.) This is an instance of the
following.

THEOREM 2.2. If x and y can each be written as a sum of two
integer squares, then so can xy.

Proof 1. Suppose x =a2 +b2, and y = c2 +d2. Then

xy = (ac−bd)2 + (ad +bc)2,

a sum of two squares.

Writing xy as (ac+bd)2 + (ad −bc)2 works just as well, account-
ing for the two representations of 65 indicated above. These equa-
tions are implicit in Diophantus, and according to Dickson (1966,
vol. 2, p. 226), can be found explicitly in Leonardo Pisano’s Liber
Quadratorum of 1225. The simplicity of the calculation has an
added payoff: the proof uses only the commutativity and associa-
tivity of addition and multiplication, the distributivity of multiplica-
tion over addition and subtraction, and the fact that subtraction is
an inverse to addition; hence it shows that the theorem is true much
more generally in any commutative ring.

Our second proof of Theorem 2.2 involves a detour through the
theory of Gaussian integers Z[i], that is, complex numbers of the
form a + bi, where a and b are integers, and i is a square root
of −1. If α = u + vi is any complex number, its conjugate, α, is
defined to be u−vi. It is easy to check that conjugation is an auto-
morphism of the field of complex numbers, which is to say, it pre-
serves addition and multiplication. (Roughly speaking, this reflects
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that from the point of view of the real numbers and the field oper-
ations, the elements i and −i are indistinguishable.) In particular,
α ×β =α ×β for any α and β.

The norm N(α) of a complex number α is defined to be αα.
From the definition it is easy to see that the norm is multiplicative
as well, i.e.

N(αβ)=αβ ×αβ =α ×β ×α ×β =αα ×ββ =N(α)N(β).

Notice that if α=a +bi is a Gaussian integer, then N(α)=a2 +b2 is
an ordinary integer. Conversely, we can always write a2 +b2 =N(a+
bi). In other words, the integers that can be written as the sum of
two squares are exactly those that are norms of Gaussian integers.
This gives a remarkably short proof of Theorem 2.2.

Proof 2. Suppose x =N(α) and y =N(β) are sums of two squares.
Then xy =N(αβ), a sum of two squares.

This brevity is in a sense misleading, since, in the final account-
ing, the relevant properties of the norm function have to be proved
as well. But this is tempered by the fact that the notion of the norm
of a complex number is much more generally useful. The (posi-
tive) square root of the norm is usually called the modulus or abso-
lute value, and corresponds to the distance from the origin to the
associated point in the Euclidean plane. As a result, the norm and
modulus have useful geometric significance, the latter playing a role
similar to the usual absolute value on the real numbers. For exam-
ple, the Gaussian integers also satisfy a form of the division algo-
rithm: any two Gaussian integers α and β can be written α=βη+ρ,
where N(ρ) < N(β). Thus one can show, just as for the integers,
that the notions “prime” and “irreducible” coincide for the Gauss-
ian integers. We will make use of this important fact below.

In short, one can argue that the expense incurred in deriving
properties of the norm should be entered as a capital improvement,
and not charged against our particular application. Only with this
understanding does it make sense to say that the second proof is
shorter than the first.7

Our second proof also leads to interesting generalizations. The
complex numbers, C, are an example of a two-dimensional associa-
tive division algebra over the real numbers, R. A theorem of Frobe-
nius from 1877 asserts that aside from R itself, there is only one other
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finite-dimensional structure of this sort, namely, Hamilton’s four-
dimensional algebra H, the quarternions. Indeed, the corresponding
notion of quarternion norm yields a product rule for four squares,
originally due to Euler. The structures R,C,H all have the technical
properties of being alternative and quadratic real algebras, with no
zero divisors. If one is willing to give up associativity, a theorem by
Zorn from 1933 shows that there is only one more structure of this
sort: Cayley’s eight-dimensional algebra O, the octonians. And, sure
enough, the octonian norm yields a product rule for sums of eight
squares. Zorn’s structure theorem can be used to prove a theorem due
to Hurwitz in 1898, to the effect that these are the only product laws
for sums of squares of this sort.8 Thus, our second proof yields gen-
eralizations that not only explain other product laws and bring them
under a uniform framework, but, in fact, lead to an algebraic classi-
fication that explains why there are no others. A lovely presentation
of the mathematical and historical details can be found in chapters
by Koecher and Remmert in Ebbinghaus et al. (1990).

The proof has generalizations in other directions, as well. Below
we will consider Euler’s use of Gaussian integers to prove
Theorem 2.2. This use was a harbinger of what is probably the most
significant trend in 19th century number theory: the use of finite
algebraic extensions of the rational numbers, like the Gaussian inte-
gers, to address questions about the ordinary integers. The notions
of conjugate and norm generalize to such number fields, and are
useful there for exactly the same reason they are useful in our proof;
namely, they exploit symmetries and relate properties of the exten-
sion to properties of the ground field. Even today we share in the
19th century fascination at the fruitfulness of this transfer. In 1860,
in his Report on the theory of numbers, H. J. S. Smith wrote that

. . . the complex numbers of Gauss, Jacobi, and M. Kummer force themselves
upon our consideration, not because their properties are generalizations of the
properties of ordinary integers, but because certain of the properties of integral
numbers can only be explained by a reference to them. (Smith (1859–1865, Art.
64), quoted in Corry (1996, 91–92).)

This language is compelling and mysterious: what can it mean for
mathematical objects to “force themselves upon us”, and wherein
lies their explanatory power? Our second proof of Theorem 2.2, as
simple as it is, provides an illustrative example.

There is another sense in which this proof is historically signifi-
cant. Much has been written about the late 19th century emphasis
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on “conceptual methods” over calculation, forcefully advocated by
Riemann in his development of the theory of complex functions,
and by Dedekind in his development of algebraic number theory.
(See Stein 1988; Gray 1992; Ferreirós 1999; Laugwitz 1999, for
characterizations of this emphasis, as well as Edwards 1980, 1992
for less sanguine views as to the effects on algebraic number theory.)
For example, Dedekind writes:

Even if there were such a theory, based on calculation, it still would not be of
the highest degree of perfection, in my opinion. It is preferable, as in the modern
theory of functions, to seek proofs based immediately on fundamental character-
istics, rather than on calculation, and indeed to construct the theory in such a
way that it is able to predict the results of calculation . . . (Dedekind (1877, Sec-
tion 12), quoted by Stein (1988, p. 245))

This language is equally mysterious: what can it mean to base
proofs on “fundamental characteristics rather than calculation”, yet
somehow “predict the results of calculation”? Once again, an analy-
sis of our second proof of Theorem 2.2 can serve as a starting point
for attempts to understand the phenomenon.

There is a proof that is intermediate between the two we have
seen so far:

Proof 3. Suppose x =a2 +b2 and y = c2 +d2. Then

xy = (a2 +b2)(c2 +d2)

= (a +bi)(a −bi)(c+di)(c−di)

= (a +bi)(c+di)(a −bi)(c−di)

= ((ac−bd)+ (ad +bc)i)((ac−bd)− (ad +bc)i)

= (ac−bd)2 + (ad +bc)2,

a sum of two squares.

This is the proof given by Euler in his Algebra (1770). Cauchy
gave essentially the same proof in his Cours d’analyse (1821 VII Sec-
tion 1), after introducing the term “conjugate”, and before launch-
ing into a detailed presentation of the complex numbers and their
properties. Our third proof is more or less the result of “unwind-
ing” our second proof, expanding the definition of norm and includ-
ing the steps needed to establish the supporting lemmas. To the
extent to which we recognize this proof as different, we see that
these aspects of the presentation are important. In other words, the
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ways in which information and inferential steps are encapsulated in
definitions and lemmas has at least some bearing on what we can
say about a proof.

Even such a minor rewriting can make a difference. Presenting
the proof this way, one is apt to note that the terms can be grouped
differently into conjugate pairs,

xy = (a +bi)(c−di)(a −bi)(c+di),

yielding a second representation of (a2 + b2)(c2 + d2) as a sum of
squares, (ac+bd)2 + (ad −bc)2. In Section 2.3, we will consider the
question as to exactly which integers can be represented as a sum of
two squares. Having both representations of a product is relevant to
determining the number of ways such integers can be represented, a
problem of equally longstanding concern in number theory.

2.3. Representability by Sums of Squares

In this section we will consider three proofs of the following theorem.

THEOREM 2.3. Every prime number congruent to 1 modulo 4 can
be written as a sum of integer squares.

Remember that saying that p is congruent to 1 modulo 4 is equiva-
lent to saying that p is of the form 4k+1, or that p−1 is a multiple
of 4.

In contrast to the theorems of Sections 2.1 and 2.2, proving The-
orem 2.3 requires some sophistication. I have included a discussion
of some of the proofs here because I felt that the subsequent anal-
ysis would be bolstered by an example of a “nontrivial” theorem of
mathematics. On the other hand, most of the themes that arise have
already made an appearance in the previous examples, and the con-
clusions I wish to draw will be summarized at the beginning of Sec-
tion 3.1. Therefore, the reader who is eager to get to the point may
well wish to skip this section on a first reading, and leave the more
extended case study for a rainy day.

Note that every odd number is congruent to either 1 or 3 modulo
4, and so the square of an odd number is congruent to 1 modulo 4.
Similarly, the square of any even number is congruent to 0 modulo
4, and so the sum of any two squares is always congruent to either
0, 1, or 2 modulo 4. This shows that no prime congruent to 3 mod-
ulo 4 can be written as a sum of squares. Since 2 is the only even
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prime, and 2=12 +12, Theorem 2.3 yields a precise characterization
of the primes that can be written as sums of two squares.

In fact, it yields more. Suppose a positive integer n>2 is written
as a product of powers of distinct primes,

n=p
a1
1 p

a2
2 . . . p

ak

k .

The preceding theorem and discussion, combined with Theorem 2.2,
tells us that if those primes pi that are congruent to 3 modulo 4 (if
any) occur to an even power (and so, are perfect squares), then n

can be written as a sum of squares. In fact, the converse also holds;
which is to say that if a prime congruent to 3 modulo 4 occurs with
an odd exponent in the prime factorization of n, n cannot be writ-
ten as a sum of squares. Proving this fact is somewhat easier than
proving Theorem 2.3.9 Thus, Theorem 2.3 is the most difficult com-
ponent in the following characterization of the integers that can be
written as the sum of two squares.

THEOREM 2.4. A positive integer n can be written as a sum of
two squares if every prime congruent to 3 modulo 4 occurring in
the factorization of n occurs to an even power.

Theorem 2.4 was stated, without proof, by Girard in 1632. We
have seen that an interest in the types of integers than can be writ-
ten as sums of two squares traces back to Diophantus, and, indeed,
Theorem 2.3 appears as one of Fermat’s marginal notes to his copy
of Bachet’s edition of the Arithmetic. In letters to Pascal, Digby,
and Carcavi, in 1654, 1658, and 1659, respectively, Fermat claimed
to have a proof of Theorem 2.3; in the last, he said he used the
“method of infinite descent”, of which more will be said below.
(Further historical details can be found in (Weil 1984, Scharlau
and Opolka 1985, Edwards 1996, Goldman 1998), and there is an
exhaustive historical account in Dickson (1966, Vol. II Chap. VI).)
All the proofs we will consider rely on the following lemma:

LEMMA 2.5. If p ≡ 1 (mod 4), there is a natural number m such
that m2 ≡−1 (mod p).

Note that by the observations above, the hypothesis is, e.g. equiv-
alent to saying that p is of the form 4n + 1, and the conclusion is
equivalent to saying that p divides m2 + 1. For completeness, I will
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sketch various proofs of Lemma 2.5 in a footnote,10 but these will
not be needed in the discussion that follows.

The first proof we will consider is adapted from Euler’s original
proof from 1747.11

LEMMA 2.6. Let x =a2 +b2 and p=c2 +d2 each be a sum of two
squares, with p prime. If p|x, then x/p is also a sum of two squares.

Proof. By hypothesis, p divides x, so it also divides

a2p − c2x =a2(c2 +d2)− c2(a2 +b2)

=a2d2 −b2c2 = (ad −bc)(ad +bc).

Since p is prime, it must divide one of these two factors. Suppose
it divides (ad − bc). Using one of the formulas for the product of
sums of squares, write

px = (a2 +b2)(c2 +d2)= (ad −bc)2 + (ac+bd)2.

Since p divides the left-hand side and ad − bc, it must also divide
ac+bd. Dividing both sides of the equation by p2 yields

x/p = ((ad −bc)/p)2 + ((ac+bd)/p)2,

as required. If, instead, p divides (ad +bc), use the product formula

px = (ad +bc)2 + (ac−bd)2

and proceed similarly.

Proof 1. By Lemma 2.5, it suffices to show that every prime number
p dividing a number of the form m2 + 1 can be written as a sum of
two squares. Suppose otherwise; then there is a smallest prime p that
divides a number of the form m2 +1 and cannot be written as a sum
of two squares. Pick such an m corresponding to this p, and by the
division algorithm, write m=qp + r, with 0≤ r <p. Then p divides

m2 +1= (qp + r)2 +1=q2p2 +2pqr + r2 +1.

Since p divides the first two terms on the right, it must also divide
r2 + 1. Write r2 + 1 = py; since r < p we have r2 < p2, and so r2 +
1<p2. (If r2 +1 were exactly equal to p2, we would have p2 − r2 =
(p + r)(p − r) = 1, contradicting the fact that p ≥ 2.) Hence y < p.
Factor y into primes q1, . . . , ql; then each qi is less than p, and so,
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by our assumption on p, can be written as a sum of squares. Apply-
ing Lemma 2.6 l times, we conclude that p can be written as a sum
of squares, contrary to our hypothesis.

As I have presented it, the proof is nonconstructive; instead of
showing how p can be written as a sum of squares, it shows that
the contrary assumption is contradictory. Of course, if one believes
the conclusion, one can find a sum of squares by a methodical
search. But the argument above can easily be turned into a direct
proof. Given a prime p of the form 4n+ 1, the second and fourth
proofs sketched in footnote 4 show, explicitly, how to obtain an m

such that p divides m2 + 1. The next lemma and the proof of the
theorem then show, explicitly, how to reduce the problem of writ-
ing the prime p as a sum of two squares to the problem of writ-
ing the smaller primes q1 . . . ql, which divide r2 +1, as sums of two
squares. (In fact, the algorithm can be improved; see the discussion
in Edwards 1996, Section 2.6).

This proof, then, has a lot going for it; it is elementary, straight-
forward, and computationally informative. It also illustrates Fer-
mat’s oft used “method of descent”, that is, showing how a putative
counterexample in the positive integers can be repeatedly replaced
by a smaller one.

The formula x2 +y2 is an instance of a binary quadratic form with
integer coefficients, which are expressions of the form ax2 + bxy +
cy2, with a, b, c integers. I will call these “forms” for short, and use
(a, b, c) to denote the form with with given coefficients. The values
one obtains by substituting integer values for x and y are called
the integers represented by the form. Thus Theorem 2.4 solves one
instance of the problem of determining which integers can be repre-
sented by a given form. The second proof we will consider uses the
notion of equivalence of forms, which was introduced by Lagrange
and further developed by Gauss, and used by both to address the
more general problem.

Consider what happens when we make the substitutions

x = rx ′ + sy ′,
y = tx ′ +uy ′.

The reader can check by straightforward calculation that the form
ax2 +bxy +cy2 becomes a new form a′x ′2 +b′x ′y ′ +c′y ′2 in the vari-
ables x ′, y ′, where



MATHEMATICAL METHOD AND PROOF 123

a′ =ar2 +brt + ct2,

b′ =2ars +b(ru+ st)+2ctu,

c′ =as2 +bsu+ cu2.

I will say that the form (a, b, c) has been transformed into (a′, b′, c′)
by the transformation

S =
(

r s

t u

)
.

Clearly, any integer represented by (a′, b′, c′) can be represented by
(a, b, c); if a′x ′2 +b′x ′y ′ +c′y ′2 =n, then x =rx ′ +sy ′ and y = tx ′ +uy ′

is a solution to ax2 +bxy + cy2.
Under what conditions can (a′, b′, c′) be transformed back into

(a, b, c)? A bit of algebraic manipulation shows that if δ = ru− ts is
nonzero, the transformation(

u/δ −t/δ

−s/δ r/δ

)

brings x ′, y ′ back to x, y. If δ = ±1, the entries above will be inte-
gers, in which case the argument above shows that the two forms
will represent exactly the same values. One can check that the pro-
cess works the other way round: applying the second transformation
to a quadratic form and then the first brings one back to the ini-
tial starting point; and the value δ′ = (ru− ts)/δ2 associated with the
second transformation is also ±1. Two forms that are related this
way are said to be equivalent, and the associated transformations
are said to be unimodular. Clearly every form is equivalent to itself,
and we have just seen that if (a, b, c) is equivalent to (a′, b′, c′), then
(a′, b′, c′) is equivalent to (a, b, c). Another straightforward calcula-
tion shows that the result of composing two unimodular transfor-
mations is again a unimodular transformation, so that equivalence
is transitive as well. In other words, equivalence really is an equiva-
lence relation.

We need one last ingredient. The discriminant of the form
(a, b, c) is defined to be the integer b2 −4ac. A straightforward cal-
culation shows that if (a, b, c) and (a′, b′, c′) are equivalent forms,
they have the same discriminant; in other words, the discriminant is
an invariant of the equivalence relation.

LEMMA 2.7. Every form is equivalent to a form (a, b, c) in which
|b|≤ |a|≤ |c|.
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Proof. Notice that the unimodular transformation(
1 s

0 1

)

transforms (a, b, c) into a form (a′, b′, c′) in which a′ = a and b′ =
2as + b. By a suitable choice of s, we can always guarantee that
|b′| ≤ |a′| = |a|. (To do so, first note that without loss of generality,
we may assume that a is positive; otherwise, solve the problem with
−a in place of a and then replace s by −s. Assuming a is positive,
use the division algorithm to write −b= (2a)s + r, where 0≤ r <2a.
If r >a, replace s by s +1 and r by r −2a, so −b= (2a)s + r, with
|r|≤a. Then b′ =−r = (2a)s +b satisfies |b′|= |r|< |a|, as required.)

If |a′|≤ |c′|, we are done. Otherwise, the unimodular transforma-
tion (

0 −1
1 0

)

transforms (a′, b′, c′) into a form (a′′, b′′, c′′) in which a′′ =c′, so that
now |a′′|= |c′|< |a|. We now return to the first step with (a′′, b′′, c′′)
in place of (a, b, c); the fact that |a| decreases at each step guaran-
tees that the algorithm must ultimately terminate successfully.

A form (a, b, c) satisfying the conclusion of the lemma is said to
be reduced. Note that in any reduced form we have

c2 =|c|2 ≥|a||c|≥ |a|2 =a2 ≥|b|2 =b2.

If ac is positive, then 4ac−b2 is positive, and we have

4ac−b2 ≥4a2 −a2 =3a2.

If ac is negative, then 4ac−b2 is negative, and we have

b2 −4ac=b2 +4|ac|≥4|ac|≥4a2 >3a2.

Either way, we have shown that in any reduced form, 3a2 is less than
or equal to the absolute value of the discriminant, |b2 − 4ac|. This
tells us that there are only finitely many reduced forms with a given
discriminant, since there are only finitely many values of a and b that
are small enough in absolute value, and these determine c.

Now consider the reduced form x2 + y2, which has discriminant
−4. Note that if ax2 +bxy +cy2 is also in reduced form and has dis-
criminant −4, then 3a2 ≤ 4, so a can only be −1, 0, or 1. Trying
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these same possibilities for b shows that the only reduced forms with
discriminant −4 are x2 +y2 and −x2 −y2. In other words, any form
with discriminant −4 that represents a positive integer is equivalent to
x2 +y2. This gives us an easy proof of our main theorem:

Proof 2. Suppose p is of the form 4n+1. By Lemma 2.5, choose m

so that p|m2 + 1. Then p is clearly represented by the form px2 +
2mxy + (m2 +1/p)y2, taking x = 1 and y = 0. This form has dis-
criminant −4, and so, by the preceding discussion, is equivalent to
x2 +y2.

There is a lot to like about this proof. The argument shows,
straightforwardly, how one can transform the form px2 + 2mxy +
(m2 +1/p)y2 to x2 + y2, and hence how to transform the integers
1,0 representing p in the first form into integers representing p in
the second. As in the first proof, it is easy to see what is getting
smaller at each stage. This provides us with not just an explicit algo-
rithm, but also a strong sense as to why the theorem is true.

It also provides a general strategy for studying other forms.
Indeed, the argument generalizes immediately to forms like x2 +2y2

and x2 +3y2, where one can again show that all positive-valued forms
with the corresponding discriminants are equivalent. The fact that
there are inequivalent forms with the same discriminant as x2 + 4y2

helps explain comparatively anomalous behavior of numbers repre-
sented by this latter form. (See, for example, the helpful discussion in
Stillwell’s introduction to Dedekind 1877.) It also raises the question
of determining the number of inequivalent forms of a given discrimi-
nant. For suitable discriminants, this is known as the class number of
an associated finite field extension of Q, the determination of which
plays a central role in modern number theory.

But there is more we can say. The notion used above to represent
transformations may call to mind the matrices one encounters in an
introductory course in linear algebra. This is no coincidence. If one
associates to the form (a, b, c) the symmetric matrix

A=
(

a b/2
b/2 c

)
,

then for every x and y the value ax2 +bxy +y2 can be obtained by
the matrix product
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(
x y

) (
a b/2

b/2 c

)(
x

y

)

involving A. The discriminant of the form is just −4 times the
determinant of A. The form corresponding to the transformation
S described above is just the one associated to the matrix prod-
uct StAS, where St denotes the transpose of S, that is, the result of
exchanging entries of S across the main diagonal. The composition
of two transformations corresponds to the product of the associated
matrices; unimodular transformations correspond to matrices with
determinant ±1; and the fact that equivalent forms represent the
same integers simply reflects the fact that the corresponding matri-
ces have inverses with integer entries. In short, the proof can be
recast as a perspicuous and fruitful application of the methods of
linear algebra, which, by the end of the 19th century, had become a
central tool in arithmetic, algebra, geometry, and analysis. In fact,
Gauss’s implicit use of ideas from linear algebra in his analysis of
forms was instrumental in the development of the theory of matri-
ces and determinants (see Knobloch 1994). Thus, we appreciate our
second proof because it makes effective use of linear algebra, and,
indeed, played a part in the historical development of this very use-
ful collection of tools.

But the importance of our second proof runs even deeper
than that. The argument exploited a number of general strategies:
introducing an equivalence relation that filters out representational
features that are subordinate to the solution of the problem, assign-
ing a suitable invariant to the associated equivalence classes, and
choosing canonical representatives whenever possible. These strate-
gies are pervasive in modern mathematics, and 19th century math-
ematicians were eminently conscious of this fact. In this respect as
well, our second proof is commonly viewed as an early and impor-
tant archetype. Thus we can admire the proof for exhibiting one of
the most generally valuable strategies in modern mathematics, and,
indeed, for being instrumental in the development thereof.

The last proof we will consider makes use of the Gaussian inte-
gers, and, in particular, the following key fact.

LEMMA 2.8. Every irreducible element of Z[i] is prime.

We have already noted in Section 2.2 that given the notion of
the norm of a Gaussian integer, the lemma can be proved much the
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same way one proves the corresponding statement for the integers.
With this in hand, we have a quick proof of Theorem 2.3.12

Proof 3. By the lemma, let m be such that p|m2 +1. Passing to the
Gaussian integers, we have

p|m2 +1= (m+ i)(m− i).

On the other hand, p does not divide either of m+ i or m− i, since
the quotients m/p + i/p and m/p − i/p are not Gaussian integers.
So p, when considered as a Gaussian integer, is not prime. Hence,
by Lemma 2.8, it is not irreducible. Hence, it can be written p =xy,
where x and y are Gaussian integers that are not units. Taking norms,
we have p2 =N(p)=N(xy)=N(x)N(y). But now this is an equation
in the positive integers; since neither of N(x),N(y) is equal to 1, we
have N(x)=N(y)=p, so p is a sum of two squares.

Proof 3 is remarkably short. To be sure, it requires Lemma 2.8,
which is the key component in showing that the Gaussian inte-
gers satisfy the unique factorization property; and the proof of this
lemma requires work. But as Dedekind was fond of pointing out,
once one is careful to identify the properties of the integers that are
used to prove unique factorization there, the generalization to the
Gaussian integers comes at little extra cost. The axiomatic charac-
terization of a Euclidean domain makes it possible to account for
both these instances by subsuming them under a more general the-
orem, and makes our third proof seem like a bargain.

This proof is, in fact, constructive; the greatest common divisor
of m + i and p can be computed by the Euclidean algorithm, and
yields a nontrivial factor x of p satisfying p=N(x). But the details
of the algorithm are relegated to more fundamental aspects of the
theory, leaving the focus of the proof on the algebraic properties of
the Gaussian integers.

Finally, our proof fares well with respect to generality and fruit-
fulness. Similar methods can be used in any finite extension of the
rationals satisfying unique factorization. This makes it possible to
transfer intuitions about the natural numbers to intuitions about the
rings of “integers” in these more general fields, and use these intu-
itions to understand complex phenomena in the ordinary integers.
The fact that there are such extensions for which unique factor-
ization fails was the primary impetus to the theory of ideal divi-
sors, which began with Kummer and received fuller, though distinct,
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treatments in the hands of Kronecker and Dedekind. This theory,
which managed to restore the phenomenon of unique factorization
through the creation of an enlarged domain of “ideal” prime fac-
tors, was the most important 19th century development in algebraic
number theory, and many natural questions about quadratic forms
and the like can usefully be posed in this general framework. For
example, the problem of determining the class number of a form,
described above, translates to the problem of determining the car-
dinality of an associated group of ideal divisors. In (1877, p. 27)
Dedekind shows how our Theorem 2.3 follows from a much more
general theorem, typical of the theory, due to Kummer.

There are many other proofs of Theorem 2.3, including proofs
using continued fractions, by Hermite (1848) and Smith (1855).13

A proof using Minkowski’s important geometric methods can be
found e.g. in Hardy and Wright (1979). In recent years, Conway
(1997) has provided an intuitive and visual representation of the
Gauss-Lagrange reduction procedure. Aigner and Ziegler provide a
proof by Don Zagier (1990) in their Proofs from the Book, the title
of which is a reference to Paul Erdös’ oft-repeated claim that God
has a book with the most elegant proof of every mathematical the-
orem. Whether or not one agrees with their assessment of Zagier’s
argument, their choice shows that mathematicians can still wax
enthusiastic at the appearance of new proof, more than 350 years
after the theorem was apparently first proved by Fermat, and almost
250 years after a proof was published by Euler.

3. TOWARDS A BETTER UNDERSTANDING OF PROOF

3.1. Reflection on the Case Studies

Our case studies have provided us with a corpus of examples, in which
we have discerned a grab bag of virtues that mathematical proofs
can enjoy. Some of these virtues may be classified as explanatory: a
proof can explain how it might have been discovered, how an asso-
ciated problem was solved, or why certain features of the statement
of the theorem are relevant. Proofs may also establish stronger state-
ments than the theorem they purport to prove; they may introduce
definitions and methods that are useful in other contexts; they may
introduce definitions and methods that can fruitfully be generalized;
or they may suggest solutions to more a general problem. They can
also suggest related theorems and questions. We can add a few more
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fairly obvious virtues to the list: a good proof should be easy to
read, easy to remember, and easy to reconstruct. Sometimes our cri-
teria are at odds with one another: for example, we may value a proof
for providing explicit algorithmic information, whereas we may value
another proof for downplaying or suppressing calculational detail.14

This informal analysis should be viewed as a starting point
for philosophical inquiry, rather than as a satisfactory conclusion.
What, exactly, does it mean to say that a proof shows us how
a problem is solved? How, exactly, do proofs reveal or suppress
algorithmic information? Precisely what features of a mathematical
presentation make it easy to follow? The challenge now is to clarify
what it is that we think proofs are doing, and understand the mech-
anisms by which they do it.

If we are to take the informal discussion in Section 2 seriously,
the general character of the remarks will put serious constraints on
the way we try to account for the data. For example, all of the fol-
lowing were implicit in the informal analysis:

1. A proof is some kind of communicable text (which may involve
diagrams) that, in particular, provides sufficient information to
establish that the purported theorem is true.

2. Beyond correctness, proofs can be evaluated with respect to
differing (and sometimes competing) desiderata.

3. Higher-level features of the presentation of a proof, such as the
organizational role of lemmas and definitions, are relevant to the
evaluations.

4. The evaluations, with respect to both correctness and other stan-
dards of merit, are carried out with respect to appropriate back-
ground contexts.

This list clarifies what a general philosophical theory of proof should
do. Among other things, it should spell out the various standards by
which proofs are evaluated, as well as the types of contextual infor-
mation that are relevant to the evaluations. First and foremost, how-
ever, it should provide an understanding of “proof” that is robust
enough to support such a study. The remainder of this essay takes
some initial steps towards developing such an understanding.

The model of proof standardly used in mathematical logic today
is that of formal axiomatic deduction.15 This formal notion is sup-
posed to provide an explication of the informal notion of proof, one
that explains the virtue by which an informal proof is judged to be
correct, as well as what it means for a theorem to be a deductive
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consequence of some assumptions. I take this theory to be one of
the true mathematical and philosophical success stories of the late
19th and early 20th centuries; it provides a solid basis for mathe-
matical and philosophical theorizing, one that is more robust than
anyone before Frege could expect. However, the theory of deduction
was not designed to address the broader epistemological issues we
are concerned with here, and, in that respect, we can identify ways
in which the model falls short.

Consider, for example, the role of definitions in a proof. Our
informal discussion called attention to the ways in which notions
like divisibility, congruence, and norm aid our understanding of
a proof. More extensive historical narratives support this point of
view. In his book, The emergence of the abstract group concept
(Wussing 1984), Hans Wussing traces the rise of the notion of a
group in algebra, number theory, and geometry, in the 19th century.
The text distinguishes between early, implicit uses of group-theoretic
reasoning, to conscious, explicit uses of the group concept by the
century’s close. This strongly presupposes that there is an important
difference between the former and the latter, that is, between consid-
ering particular instances of groups and using certain types of rea-
soning, and explicitly labeling the instances as such and identifying
the patterns of reasoning in use. To support this type of analysis we
need a model of proof that clearly distinguishes between the two.

In standard logic textbooks, however, definitions are usually
treated outside the deductive framework; in other words, one views
definienda as meta-theoretic names for the formulas they stand for,
with the understanding that in the “real” formal proof it is actu-
ally the definientia that appear.16 If one is working in the language
of set theory, for example, occurrences of the group notion become
buried in a haze of quantifiers, connectives, and epsilons; and it
is hard to differentiate “explicit” uses of the notion from undistin-
guished appearances of the defining formula, or any of its logical
equivalents.

Similarly, it is not clear how to analyze the role of contextual
background knowledge in the standard logical model. Our discus-
sion shows that proofs are evaluated not just with respect to a par-
ticular set of goals and values, but also with respect to a set of
resources that are assumed to be generally available. From the point
of view of axiomatic deduction, however, a proof is a self-contained
warrant, whose correctness is judged solely in the context of the rel-
evant axiomatic system.
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In short, standard models of deduction currently used in mathemat-
ical logic cannot easily support the type of analysis we are after, for the
simple reason that they were not designed to. Thus we need a model of
proof that is better suited to the work we are now asking of it. In the
next section, I will consider a model that rises better to the task.

3.2. The View from Automated Deduction

On the formal notion of deduction, a proof is (more or less) a
sequence of assertions, each one of which is a principle of logic
or a basic mathematical axiom, or which follows from previous
assertions by a logical rule of inference. But proofs in an ordinary
mathematical text don’t look much like these formal derivations.
For example, in a standard undergraduate textbook one often finds
phrases like the following:

“ . . . the first law may be proved by induction on n.”
“ . . . by successive applications of the definition, the asso-
ciative law, the induction assumption, and the definition
again.”
“By choice of m, P(k) will be true for all k <m.”
“Hence, by the well-ordering postulate . . . ”
“From this formula it is clear that . . . ”
“This reduction can be repeated on b and r1 . . . ”
“This can be done by expressing the successive remainders
ri in terms of a and b . . . ”
“By the definition of a prime . . . ”
“On multiplying through by b . . . ”
“ . . . by the second induction principle, we can assume
P(b) and P(c) to be true . . . ”
“Continue this process until no primes are left on one side
of the resulting equation . . . ”
“Collecting these occurrences, . . . ”
“By definition, the hypothesis states that . . . ”
“ . . . Theorem 10 allows us to conclude . . . ”

These examples are taken from actual proofs in A Survey of
Modern Algebra (Birkhoff and MacLane 1965). In fact, they are all
found in Chapter 1, which develops the basic properties of the inte-
gers needed in Section 2 above. What these snippets indicate is that
“real” proofs often contain more elaborate instructions as to how one
can “see” that an assertion follows from its predecessors. The usual
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story is that such proofs are simply higher-level, informal texts that
indicate the existence of the lower-level formal ones; i.e. they are rec-
ipes, or descriptions, that provide enough information, in principle,
for a fastidious formalizer to fill in every last detail.

The observation I would like to make here is that these two fea-
tures of ordinary proofs – the informality, and the level of detail –
are independent of one another. On one hand, one can imagine a
tedious informal proof in which every inferential step is spelled out
in complete detail. On the other hand, and more interesting for our
purposes, it is also possible to imagine higher-level proofs that are
nonetheless presented in a language that has been fully specified, so
that the resulting proofs can be checked by purely mechanical pro-
cedures.

The evidence that it is possible to imagine such languages, proofs,
and verification procedures is that, in fact, they exist. The last few
decades have seen the advent of mechanized proof assistants, which
are designed to facilitate the development of formally verified axi-
omatic proofs. These include systems like Mizar, HOL, Isabelle,
PVS, Coq, NuPrl, and ACL2, and many others. (Some of these were
designed with the goal of formalizing specifically mathematical theo-
ries, others with the goal of proving the correctness of various hard-
ware and software specifications; and, whatever the origins, most
of the systems have been adapted and developed to support both
purposes.) Proof development is an interactive process between the
user, who has some informal proof in mind, and the machine, which
keeps the user painfully honest. Though systems incorporate differ-
ent interface enhancements to help the user along, the final products
are always “proof scripts”. From the user’s point of view, a proof
script provides a (semi-)intelligible representation of the proof he or
she had in mind; from the machine’s point of view, the proof script
provides explicit instructions for constructing a low-level axiomatic
proof of the traditional sort.

Most proof assistants support a type of interaction based on
goal refinement. First, one specifies the theorem that one intends to
prove; this is tantamount to declaring a certain goal. Then one iter-
atively applies methods that reduce a current goal to others that are
hopefully simpler. At any point in the process, the set of goals to be
met constitute the state; when this set is empty, the theorem in ques-
tion has been proved. The most basic types of methods are those
that invoke a logical inference or a previously proved theorem, or
expand a definition. More complex methods are built up from these.
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Correctness is guaranteed by the fact that ultimately the only way a
complex method is allowed to modify the system’s state is by apply-
ing the basic ones.

Using the system known as Isabelle (Nipkow et al. 2002), for
example, one can construct proofs in a version of Church’s higher-
order logic. Goals are natural deduction sequents of the form
X1,X2, . . . ,Xn ⇒Y , representing the task of deriving Y from hypoth-
eses X1,X2, . . . ,Xn.17 The command apply (rule andI) applies the
logical “and introduction” rule, which reduces a goal of the form:

X1,X2, . . . ,Xn ⇒Y ∧Z

to the two subgoals

X1,X2, . . . ,Xn ⇒Y,

X1,X2, . . . ,Xn ⇒Z.

Applying the command apply (erule andE) applies the logical “and
elimination” rule, which reduces a goal of the form:

X1,X2, . . . ,Xn, Y ∧Z ⇒W

to the subgoal

X1,X2, . . . ,Xn, Y,Z ⇒W.

A branch of reductions is completed when one is reduced to a triv-
ial subgoal of the form:

X1,X2, . . . ,Xn, Y ⇒Y,

which is finished off by the command apply (assumption). Thus,
even though one is always working backwards from goals, the
sequent form allows one to reason both forwards from hypotheses
and backwards from a conclusion.

In Isabelle, one may also apply more powerful, automated meth-
ods. For example, each of the commands on the following list is
paired with an informal translation:
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apply (induct-tac x) “Use induction on x”.
apply (unfold Definition-2a) “Expand Definition 2a”.
apply (simp add: Equation-a) “Simplify, using

Equation a”.
apply (auto add: Lemma-3) “Straightforward,

using Lemma 3”.
apply (arith) “Use arithmetic reasoning”.

To illustrate, the following proof script shows that for every inte-
ger x and y, and every natural number n, if x|y, then xn|yn.

theorem (a::int) dvd b ==> a∧n dvd b∧n

apply (induct-tac n)
apply (subst power-0)+
apply (rule zdvd-1-left)
apply (subst power-Suc)+
apply (rule zdvd-zmult-mono)
apply (assumption)+
done

When writing proofs in Isabelle, one uses expressions like
a∧n dvd b∧n in place of an|bn. At the risk of causing some confusion,
I will use Isabelle notation when displaying proof commands, but
ordinary mathematical notation when describing the resulting states.
The theorem command declares the initial goal,

a|b⇒an|bn,

representing the theorem to be proved. In the command, the nota-
tion (a :: int) specifies that the variable a is supposed to range over
integers, whereas the fact that b ranges over integers as well is
then inferred from the context. The first command declares that the
proof is to proceed by induction on n, resulting in two subgoals:

a|b⇒a0|b0,

a|b, an|bn ⇒an+1|bn+1.

The theorem power-0 states that x0 = 1 for any integer x, and so
the next command repeatedly substitutes 1 for terms of the form x0.
This reduces the first goal to

a|b⇒1|1.

This is polished off by the theorem zdvd-1-left, which asserts that
1|x for any integer x. The next command replaces an+1 by a × an

and bn+1 by b×bn in the second goal. The theorem zdvd-zmult-mono
asserts
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x|y,w|z⇒x ×w|y × z,

and applying it to the current goal yields two subgoals,

a|b, an|bn ⇒a|b
a|b, an|bn ⇒an|bn.

Each of these is finished off simply by noting that the desired con-
clusion is one of the hypotheses.

You may reasonably object that the script above looks nothing
like an ordinary proof. Even a seasoned Isabelle veteran will have a
hard time determining the outcome of each instruction, without the
computer’s interactive responses or the kind of play-by-play account
provided above. This is even more true when one uses more advanced
methods, whose behaviors are complex and open-ended. Perusal of
any math text quickly reveals the problem: the substance of an ordi-
nary proof invariably lies in the statements, rather than the instruc-
tions. In other words, an ordinary proof is essentially a sequence of
assertions; the instructions provide the minimum guidance needed for
a competent reader to verify that each assertion follows from previ-
ous ones, but these instructions play a supporting role, and may be
left out entirely when the appropriate justification can be inferred.

The good news is that that there are proof languages that are
designed to capture this style of proof. Andrzej Trybulec’s Mizar
language (Rudnicki and Trybulec, 1999) is an early and impor-
tant example. More recently, Wenzel (1999, 2002) developed a sim-
ilar proof language, called Isar, and implemented it in the Isabelle
framework. Here is an Isar proof of the theorem above:

theorem (a::int) dvd b ==> a∧n dvd b∧n

proof −
assume a dvd b

show a∧n dvd b∧n

proof (induct n)
show a∧0 dvd b∧0
proof −

have a∧0 = 1
by (rule power-0)

moreover have (1 dvd b∧0)
by (rule zdvd-1-left)

ultimately show ?thesis
by simp

qed
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next
fix n

assume a∧n dvd b∧n

show a ∧ Suc n dvd b ∧ Suc n
proof −

from prems have a ∗ a∧n dvd b ∗ b∧n

by (intro zdvd-zmult-mono)
moreover have a ∧ Suc n = a ∗ a∧n

by (rule power-Suc)
moreover have b ∧ Suc n = b ∗ b∧n

by (rule power-Suc)
ultimately show ?thesis
by simp

qed
qed

qed

The proof proceeds by induction on n. The base case, and the
inductive hypothesis, are established by appeal to the same theorems
as before; the difference is that the outcomes are made explicit. (In
the proof, the word ?thesis refers to the claim being justified; thus,
in the first instance, it refers to the base case a0|b0, and, in the sec-
ond, it refers to the claim that an+1|bn+1. The word prems refers to
the local premises, that is, the assumptions that are in place in the
current proof context.) With respect to readability, this presentation,
although not perfect, is a step in the right direction. Concerning
proof style, the Isar tutorial (Nipkow 2003) advises:

Do not manipulate the proof state into a particular form by applying tactics but
state the desired form explicitly and let the tactic verify from this form that the
original goal follows.

Here, “tactic” is just Isabelle terminology for “method.” The tutorial
continues to note that following the advice “yields more readable and
also more robust proofs”. This readability has a lot to do with the fact
that the resulting formal proofs are closer to ordinary, informal ones.

In fact, Wenzel’s implementation works by translating each proof
written in the Isar language into a sequence of applications of
Isabelle’s methods. The philosophical advance embodied in this
achievement is that ordinary mathematical texts can be under-
stood in terms of the goal-refinement model. Wenzel’s thesis and
the Isar documentation show how this can be done; roughly,
a simple finite state model does the bookkeeping, and various
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mathematical buzzwords (“hence”, “thus”, “have”, “from”, “with”,
“show”, “moreover”, and so on) provide flexible ways of specifying
which hypotheses and assertions are relevant at each point in the
text. It is surprising how far one can get with this model.

Incidentally, it turns out that the theorem that I have chosen as
an example has a one line proof:

theorem (a::int) dvd b ==> a∧n dvd b∧n

by (induct n, auto intro: zdvd-zmult-mono)

This translates, roughly, to the following informal proof: “Use
induction on n. The verification is straightforward, using theo-
rem zdvd-zmult-mono” Thus, here we are in the fortuitous situation
where a proof that is easy for us is also easy for the system. Alas,
all too often, this is not the case.

In any event, since its syntax is fully specified, the Isabelle/Isar
proof language is an example of a formal language, and we have
seen that it provides a higher-level characterization of a mathe-
matical proof. Whether one chooses to make the assertions or the
intermediate states more prominent, the two types of formal text
rest on the same model of proof at the core: a proof is a specifi-
cation of a sequence of methods of inference, each of which trans-
forms (reduces) the epistemic requirements needed to verify that the
purported theorem follows from the relevant axioms and definitions.
It is important to emphasize that this characterization extends the
standard notion of correctness in a conservative way: what makes
a proof script valid is simply that it is an effective warrant for the
kind of low-level axiomatic deduction that logicians know and love.
From the point of view of correctness, then, the new notion is just
an embellishment of the standard logical model. The hope, however,
is that the higher-level formulation will better support an analysis of
the broader evaluatory terms that we are concerned with here.

Consider the list of observations presented in Section 3.1. The
first was that a proof should be understood as some kind of
communicable text; proof scripts certainly have that character. The
second was that proof can be evaluated with respect to different
desiderata. Further work is necessary to determine whether or not
the model can support the kinds of analysis we are interested in, but
here, at least, we can begin to assess its prospects.

The third observation was that our model of proof should take
lemmas and definitions seriously. Recall that one of our objections
to the use of formal axiomatic deduction as a suitable model was
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that definitions are usually assumed to be expanded in the metath-
eory. In contrast, Isabelle never expands a definition, unless one
explicitly instructs the system to do so. Doing otherwise would
defeat the purpose of using definitions in the first place. Typically,
we introduce a definition to avoid having to repeat the definiens;
after establishing the relevant properties of the defined notion, we
rely on these as far as possible.

Because definitions have a recognizable status in Isabelle, one can
easily do an exhaustive search on theorems and rules in the current
environment in which a certain definiendum occurs. Indeed, much
of Isabelle’s development has focused on providing adequate sup-
port for the various types of definitions one wants to use, in prac-
tice. The issues are subtle, because definitions affect the behavior of
automated methods by providing patterns that methods can match
against: the mere occurrence of the token for “norm” or “group”
can be used to trigger the invocation of lemmas and rules in a
search procedure, or to instruct the simplifier to express appropri-
ate terms in canonical forms that are justified by the group axioms
or properties of norms. Thus, tokens like “norm” and “group” may
have a number of associations in the system, including their defini-
tions in particular instances; theorems, lemmas, and rules in which
they occur, which can be made available to the general automated
reasoners and term simplifiers in various ways; more specialized
automated methods that are designed to act on states in which
these tokens are found; implicit or explicit definitions with respect
to general algebraic structures, of which particular definitions are
instances; and so on. Thus the mechanisms for handling defini-
tions have a tremendous effect on the system’s ability to construct
proofs simply and automatically. It would be surprising if the study
of these “pragmatic” mechanisms were to have to have no positive
effects on the development of a more robust epistemology of math-
ematics.18

The final observation was that we would like to be able to
evaluate individual proofs against a suitable background context,
whereas, in contrast, traditional axiomatic proofs stand alone. Mech-
anized proof assistants, however, distinguish between the underly-
ing axiomatic system, standard libraries of theorems, specialized
libraries of theorems, lower- and higher-level methods, as well as
general and more specialized methods. A particular proof script can
therefore only be understood and evaluated with respect to the more
general resources available to the system. (The fact that libraries
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and automated methods can change while the proof assistant is
under development is the constant bane of formalizers.) Thus, care-
ful attention to the practice of automated deduction should help us
in our conceptual analysis by providing us, at least, with concrete,
working models of mathematical context.

3.3. A Case Study, Revisited

The attention we have given to mechanized proof assistants sug-
gests a certain methodology for getting at the methods that are
implicit in an informally presented proof. Start by translating the
proof into a formal proof language, as straightforwardly as possi-
ble, with the goal of verifying it mechanically. You will find that
the steps in an ordinary proof are too large, and the instructions
too vague; the computer needs more information in order to be able
to fill in the gaps. Making this information explicit will require you
to reflect carefully on the theorems, simplification rules, and other
mechanisms by which you are able to recognize the ordinary proof
as valid. Once you spell out all the details, then, you will have before
you a formal representation of the background context and methods
that are needed to make the original proof intelligible.

This, reflexively, provides you with a partial explanation of why
these methods are valuable: they make it possible to read the proof
at hand. The case is bolstered considerably when the same methods
are shown to be more generally useful. Thus, for example, a single
proof may help one initially uncover certain mechanisms for reason-
ing about groups or norms; a comparative analysis will help show
how these mechanisms function more widely.

Of course, our discussion shows that there are other virtues we
would like to ascribe to methods. We would like to understand what
it means to say that a method shows how a related problem can
be solved, or how to obtain an algorithm; or, for example, what it
means for a method to be “generalizable” to other contexts. The
type of analysis just described provides a starting point, by provid-
ing concrete representations of the “methods” in question. This lays
a foundation, on which we can begin to build a more elaborate the-
ory.

Let us consider, as an example, the product law for sums of
squares that we studied in Section 2.2. The first proof has a short
Isabelle formalization:
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theorem EX (x::int) y. (a∧2 + b∧2) ∗ (c∧2+d∧2)

=x∧2+y∧2
proof (rule exI)+

show (a∧2+b∧2) ∗ (c∧2+d∧2)= (a ∗ c−b ∗ d)∧2+
(a ∗ d + b ∗ c)∧2

by (simp add: zadd-zmult-distrib zadd-zmult-distrib2
zdiff-zmult-distrib zdiff-zmult-distrib2
power2-eq-square)

qed

In other words, we simply provide explicit terms that express the
product of (a2 +b2) and (c2 +d2) as sums of squares. Verifying that
these terms do the job is a straightforward calculation using basic
properties of integers, the distributivity of multiplication over addi-
tion and subtraction in particular.

Analyzing our second proof, the one that uses the concept of
the norm of a Gaussian integer, requires a good deal more work.
Appendix A contains an Isabelle development of the theory of Gaussian
integers that is just barely sufficient to prove the theorem at hand. (It is
modeled after Jacques Fleuriot’s development of the complex numbers,
which is included in the Isabelle 2004 distribution.) The reader need not
be concerned with the specific mechanisms invoked to define the Gauss-
ian integers as new objects; the net effect is that we then have variables
ranging over Gaussian integers, a function gauss(a,b) that turns a pair
of integers a and b into the Gaussian integer a +bi, as well as functions
gauss-re(x) and gauss-im(x) that return the real and imaginary parts of
a Gaussian integer, respectively. These satisfy the expected identities:

lemma [simp]: gauss-re(gauss(a, b)) = a

lemma [simp]: gauss-im(gauss(a, b)) = b

lemma gauss-gauss-re-im-conv [simp]:
gauss(gauss-re(z), gauss-im(z)) = z

lemma gauss-gauss-eq[simp]:
(gauss(a, b) = gauss(c, d)) = (a = c & b = d)

The annotation [simp] in the statements of these theorems tells the sys-
tem that these equalities should always be applied in the left-to-right
direction when simplifying terms. The last lemma is an important bool-
ean identity, telling the system that demonstrating the equality of two
Gaussian integers amounts to proving the identity of the real and imag-
inary components; when we are presented with Gaussian integers in
these terms, we should always simplify the former task to the latter. Our
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ability to do so depends on the fact that gauss is injective, which is to
say, our representations are unique.

The number of preparatory lemmas may seem daunting, but, at least,
most of the proofs are one-liners. Recall that the methods “auto” and
“simp” are essentially Isabelle’s way of saying “obvious”, at least given
the background resources and those explicitly provided. So, for exam-
ple, the lemmas

lemma gauss-mult-commute [simp]: (w::gauss-int) ∗ z
= z ∗ w

lemma gauss-mult-assoc [simp]: ((u::gauss-int) ∗ v) ∗ w

=u ∗ (v ∗ w)

establish that the multiplication we have defined for Gaussian integers
is commutative and associative. These identities are made available to
the automated simplifier. The proofs are entirely straightforward, given
the definition of multiplication for Gaussian integers, and the relevant
properties of multiplication and addition for ordinary integers. The
lemma

lemma gauss-conj -mult : gauss-conj (w) ∗ gauss-conj (z)

=gauss-conj (w ∗ z)

shows that conjugation is multiplicative; again, this is easy, given the
definitions of conjugation and multiplication. The Lemma gauss-
norm-conj establishes the relationship between the norm and the
conjugate. The lemma

lemma gauss-norm-mult [simp]: gauss-norm(x) ∗
gauss-norm(y)=gauss-norm(x ∗ y)

asserts that the norm is multiplicative, a fact that follows easily from
the two lemmas gauss-norm-conj and gauss-conj-mult.

The final lemma and theorem provide the dénouement. The lemma
shows that every sum of squares is the norm of a Gaussian integer:

lemma sum-squares-eq-norm-gauss: a∧2 + b∧2
= gauss-norm(gauss(a, b))

by (simp add: gauss-norm-def )

This is immediate, given the definition of norm. The final theorem
is our Theorem 2.2:

theorem EX (x::int) y. (a∧2+b∧2) ∗ (c∧2+d∧2)

=x∧2+y∧2
by (auto simp add: sum-squares-eq-norm-gauss)
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In other words, the theorem is obvious, given the preceeding lemma.
Despite the length, this example is misleadingly simple; the fact

that almost every lemma has a one-line proof shows that in this case
most of the verification can be reduced to unwinding definitions,
simplifying terms, and using basic logical inferences. Generally
speaking, automated deduction begins to get hard (and therefore
interesting) when this is not the case. At one end of the spectrum of
mathematical activity, there is routine calculation and verification,
where the appropriate means of proceeding is clear and straight-
forward; at the other, there is blind search and divine inspiration.
Mathematical methods are designed to shift as much as possible to
the first side, so that serious thought and hard work can be reserved
for tasks that are truly difficult. The project proposed here is to bet-
ter understand how they do this.

Even in our simple example, however, interesting phenomena
emerge. For example, consider the following lemma:

lemma gauss-gauss-ex-intro [intro]: EX z. P (z) ==>

EX x y. P (gauss(x, y))

This tells us that to prove that a property P holds of x + iy for
some x and y, it suffices to prove that P holds of some Gaussian
integer. This inference is declared suitable for use by the automated
reasoners. We carry out steps like this implicitly when reasoning
about Gaussian integers, and it may be hard to believe that a proof
assistant has to be told, explicitly, to do the same. But, in general,
working backwards using rules like this does not always preserve
validity; that it does in this case is guaranteed by the fact that gauss
is surjective. Thus, our formalization, in getting us to uncover the
principles of reasoning that should be automatic, at the same time
forces us to identify the features of our domain that are basic to
reasoning about it.

Note that in addition to associativity and commutativity, we also
provide the simplifier with a lemma that embodies a funny combi-
nation of the two:

lemma gauss-mult-left-commute [simp]:
(u::gauss-int) ∗ (v ∗ w) = v ∗ (u ∗ w)

There is a good reason for this. Clearly there is a problem with declaring
a term likea+b, in general, to be a simplification ofb+a: iterated appli-
cation can leave the system “simplifying” ad infinitum. Isabelle’s simpli-
fier is smart enough to recognize such “permutative conversion rules”,
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and will apply them only in cases where doing so results in a reduction
with respect to a somewhat arbitrary ordering of terms. But this renders
associativity and commutativity too weak. Adding left commutativity
for addition to the mix has the net effect that a nested sum of terms
is rewritten so that the terms appear in a fixed order, with parentheses
grouped to the right; this convention makes it possible to match such
terms. The epistemological moral is that a proper understanding of the
arithmetic operations requires not just knowing that they satisfy asso-
ciativity and commutativity, but also knowing how to make use of this
fact. In particular, a certain faculty is required to ignore parenthetical
groupings in iterative applications of an associative operation, and to
recognize that sums like a +b+c and c+a +b are equal. With complex
expressions, we are apt to do this by ticking off terms; in any event, it is
a capability that is available to any practicing mathematician, and one
that is usually carried out without comment or fanfare. It is only the
discipline of formalization that brings this to the fore.

Another subtlety that emerges has to do with the handling of
integers as a subdomain of the complex numbers. In Section 2.2, I
noted that if z is any Gaussian integer, then zz is an integer. This
is not exactly true; zz is really a Gaussian integer whose imaginary
part happens to be 0. The statement only becomes true when one
takes these Gaussian integers to be identified with their ordinary
integer counterparts. If one views the integers as a subset of the
Gaussian integers, one has to recognize that this subset is closed
under the operations of addition and multiplication; if, alternatively,
one views the integers as embedded in the Gaussian integers via
the mapping x 	→ x + 0i, one needs to recognize that this func-
tion respects the arithmetic operations. In the formalization in the
appendix A, the predicate gauss-IsInt holds of the Gaussian integers
that have imaginary part 0. Then, the two lemmas

lemma gauss-mult-int [simp]: gauss-IsInt x ==>
gauss-IsInt y ==> gauss-IsInt (x ∗ y)

lemma gauss-mult-int-eq [simp]: gauss-IsInt x ==>
gauss-IsInt y ==> gauss-re x * gauss-re y
= gauss-re(x ∗ y)

show, first, that the collection of Gaussian integers with this prop-
erty is closed under multiplication; and, second, that the effect of
such a multiplication is simply to multiply the real parts. Thus, once
again, the act of formalization forces us to articulate a pattern of
reasoning that typically passes unnoticed.
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Other rules that are declared as “simplifications” in Appen-
dix A merit further consideration. For example, the final proof
requires the fact that our statement of gauss-norm-mult declares the
term gauss-norm(x * y) to be a simplification of gauss-norm(x) *
gauss-norm(y). But, in general, is this a good thing? Further formal-
ization efforts may show that it is not always desirable to have auto-
mated methods apply this rewriting strategy. We may then choose
to remove the declaration, in which case the identity has to be
added explicitly to the list of resources in our formal proof of The-
orem 2.2. To make matters worse, we may decide that the reverse
direction constitutes a better default simplication,19 in which case
we would have to explicitly tell the simplifier to treat this case as an
exception.

What this shows is that calculation becomes more complex when
one is forced to use identities in which there is no clearly preferred
direction for rewriting terms. The distributivity laws for multipli-
cation over addition and subtraction are examples of such identi-
ties: sometimes one wants to multiply a term through a sum or
difference, whereas at other times it is desirable to factor a term
outside an expression. Having to specify the appropriate means of
proceeding at each stage can be tedious; the alternative is to train
the automated methods to pick up contextual clues, as we do, to
determine what types of rewriting are likely to be fruitful in specific
instances.

Finally, it is interesting to note that there is some redundancy in
our formalization. One of our simplification rules,

lemma gauss-mult-gauss [simp]: gauss(a, b)∗
gauss(c, d)=gauss(a ∗ c−b ∗ d, a ∗ d +b ∗ c)

is simply the multiplication rule for Gaussian integers. If we remove
the declaration to the simplifier, every proof in Appendix A still
goes through, unchanged. The same is true if we remove the rule
gauss-gauss-ex-intro, discussed above. But if we remove both of
these, the final proof fails. What happens is that the system gets
stuck trying to find appropriate terms s and t satisfying

gauss-norm(gauss(a, b)∗gauss(c, d))=
gauss-norm(gauss(s, t)).

In other words, the last theorem is obvious only if we employ
either the multiplication rule for Gaussian integers, or a faculty to



MATHEMATICAL METHOD AND PROOF 145

recognize that the specific terms are irrelevant in this case. Deter-
mining which of these strategies is more natural or more useful, in
this specific case or more generally, is no easy matter.

The fact that so many subtle issues emerge from such a simple
example suggests that there is a wealth of insight to be harvested
from even slightly more complex examples. At present, the faculties
by which we navigate even the most familiar mathematical terrain
are far from clear. This fact can be expressed in the form of a slo-
gan: what is obvious is not at all obvious.

At any rate, the discussion up to this point has been intended
to show that mechanically assisted formalization can help us detect
the various methods of inference that are needed to make an ordi-
nary mathematical proof intelligible. The reflections in Section 3.1
provide a sense of some of the criteria by which such methods may
be evaluated; the next step is to formulate these criteria more pre-
cisely. While I will not begin to undertake this broader project here,
let me briefly indicate two directions in which formal work with Isa-
belle may again provide some insight.

The notion of generality of method was a constant theme in the
discussion in Section 2. Isabelle supports the notion of an axiomatic
type class, that is, an axiomatic characterization of a class of struc-
tures, of which particular domains may be shown to be instances. In
Section 2, we noted that the first proof of Theorem 2.2 works, more
generally, for any commutative ring. In fact, there are Isabelle for-
malizations of the notion of a commutative ring, and our formal-
ization of the first proof works equally well for such an axiomatic
class, provided we cite the more general distributivity laws. Similarly,
we noted in Section 2 that the notion of “norm” makes sense for
more general classes of structures. With more work, we can axiom-
atize, for example, the relevant properties of finite field extensions
of the rational numbers, and show that the Gaussian integers are a
particular instance; most of the theorems in the appendix can then
be proved in the more general framework. Thus, one can show how
a more general body of methods can be used to support a formal
proof of Theorem 2.2. This falls short of characterizing the sense
in which the specific methods associated to Gaussian integers are
generalizable; that is, it does not characterize the higher-level meth-
ods (or heuristics) one can use to obtain appropriate generalizations.
But it does provide a clear sense in which methods developed to
reason about the Gaussian integers are instances of more general
ones.
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Also discussed in Section 2 was the notion that some methods
show us how an associated problem was solved. Isabelle was not
designed to solve mathematical problems, other than the problem
of finding a proof. But there are ways we can begin to creep up
on such issues. For example, in Isabelle’s interactive mode, one may
specify a theorem with metamathematical parameters that are to be
instantiated. Writing

theorem (a∧2 + b∧2) ∗ (c∧2 + d∧2) = ?x∧2 + ?y∧2

declares the goal of finding terms to substitute for ?x and ?y and
a proof of the resulting theorem. In our example, if one issues the
same proof script before, the system happily reports that a theorem
has successfully been proved; ?x and ?y are instantiated to ac − bd

and ad + bc, respectively. Thus, we have a precise sense in which
these methods provide additional information, beyond the fact that
the statement of the theorem is true; that is, they show us how to
find specific witnesses for x and y.

4. TOWARDS A GENERAL THEORY

Adapting a system like Isabelle for use in our project of understand-
ing value judgments that are applied to proofs involves an awk-
ward type mismatch, in that we are using a specific implementation
of a proof language to address general questions about the nature
of proofs. In our analysis, we are not so much concerned with the
fact that certain definitions, theorems, and methods in Isabelle make
it possible for that particular system to verify a proof script; but,
rather, that a certain body of definitions, theorems, and methods in
mathematics make it possible for a mathematical cognizer to under-
stand a certain proof. Thus, we need to develop a way of speak-
ing about methods and proofs at a level of abstraction that strips
away whatever it is we take to be ad-hoc and specific to a certain
implementation. At the same time, such a framework has to be con-
crete enough to support a rigorous analysis.

Some essential features of our framework can easily be discerned.
First of all, we need an appropriate notion of a proof state, which
characterizes, among other things, the locally-available knowledge
and the immediate subgoals at each stage of a proof in progress. I
have implicitly assumed that such a state can be represented syntac-
tically, which is to say, it can be stored, communicated, and acted
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upon by a computational agent. The second essential component of
the account is that of a method, that is, an algorithmic procedure
which acts on a proof state and transforms it into another. It is
these methods that are to be the basic objects of evaluation.

At this level of generality, however, the framework is unlikely
to be useful. For example, if we take the initial proof state to be
simply a statement of the theorem to be proved, there is a sin-
gle method that always succeeds in finding a proof if there is one:
blind, systematic search. Of course, in practice, this is a lousy way
to proceed. Instead of methods that are generally foolproof but
impractical, we seek methods that are effective in particular con-
texts. Characterizing such methods will require more nuanced ways
of describing both proof states and the algorithms that act upon
them. But then we are pushed back to the problem of overspecific-
ity: what more can we do beyond choosing a particular representa-
tion of proof states, and a particular “programming language” for
methods?

Here I am encouraged by historical precedent. Before the 19th
century it may have seemed unlikely that any neat theory could
account for the correctness of the bewildering range of styles
and methods of mathematical argumentation. Now, a couple of
100 years later, the modern theory of mathematical proof provides
just such a theory. Achieving our modern understanding required
both philosophical and mathematical reflection, as well as a good
deal of mucking around, and it was a long time before the out-
lines of a robust and stable theory began to emerge. Eventually, con-
ceptual pieces began to fall into place, terminology and notation
began to stabilize, important deductive systems like first-order logic
and higher-order logic were isolated, semantic notions were clari-
fied, and interesting axiomatic systems like set theory and arithmetic
were identified. It seems to me unlikely that we can obtain a simi-
larly robust theory of proof, of the kind described above, without
reconciling ourselves to a period of untidy exploration.

Pushing the analogy may be fruitful. One of the factors that contrib-
uted to the identification of first-order logic as an important fragment
of reasoning was its characterization in nonsyntactic terms. Deductive
systems for first-order logic vary widely in choice of primitives, axioms,
and rules; what they all have in common is that they give rise to a notion
of consequence that is sound and complete for first-order semantics.
Analogously, we can ask: can methods of inference be fruitfully char-
acterized in more “semantic” or algebraic terms?
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The development of an appropriate framework has to go hand in
hand with initial attempts to answer the types of questions that the
framework is supposed to address. Here are some:

1. What methods of inference are required to understand proof X?
2. What are the methods of inference that are used in the branch

of mathematics X?
3. Are there useful and informative ways of characterizing and

classifying methods?
4. What are the types of methods that are used in the branch of

mathematics X?
5. What are the types of methods that are used in mathematics

simpliciter?
6. To what extent do methods vary across the branches of mathe-

matics?
7. How do methods from the different branches interact?
8. In what contexts is the collection of methods X useful?
9. What are the methodological/epistemic benefits of methods X?

10. What are the methodological/epistemic benefits of methods of
type X?

Here I am using “method” to refer specifically to the kind of low-
level methods of inference we have been discussing, so this list does
not even begin to address broader issues related to problem solv-
ing, generalization, and the like. It is common in mathematics to
classify various methods as algebraic, analytic, combinatorial, geo-
metric, and so on, and one might hope to shed light on such a
taxonomy. Aside from logical and philosophical interest, this could
also raise interesting mathematical questions; for example, it could
provide a clear sense to the question as to whether a particular
result can be obtained by certain methods.

As noted in the introduction, the framework I have proposed is
based on a distinctly syntactic view of mathematical practice. A ben-
efit is that the philosophical analysis does not presuppose or depend
on any substantial portion of this practice; all that is needed at
the core is a theory of syntactic entities and computational proce-
dures. On the other hand, from a naturalist perspective, it would be
perfectly legitimate to bring the full weight of our contemporary
mathematical understanding to bear. One may therefore wonder
whether a more semantic framework would be more appropriate.
For example, a referee suggests that the “higher-order” methods,
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like generalization, alluded to in the introduction are better under-
stood in terms of analogies between semantic objects.

I admit to a bias against such approaches. Put crudely, I doubt
that accounting for the utility of the notion of a group in terms of
references to actual groups will have much explanatory value. Fur-
thermore, I expect that insights from a semantic account can eas-
ily be translated into syntactic terms: simply speak of “uses of the
term ‘group”’ rather than “references to groups.” But, to be fair,
this misses the point of the referee’s objection: what is at issue is
the most natural level of description rather than inter-translatability,
and the approach I have suggested may simply miss the conceptual
forest for the syntactic trees.

I see, however, no reason that different perspectives should not
be developed in parallel. I think it likely that they will converge
in the limit, and that there is much to be gained by understanding
the relationships between them. Ultimately, only time will tell which
perspectives yield the most insight. In the meanwhile, you pays your
money, and takes your chances.

My claim in the introduction that a good theory of proof will
help explain the ways in which certain methods of inference render
a proof intelligible may suggest that the program I am proposing
has a psychologistic component, aiming to clarify human cognition.
Indeed, it may well be the case that the kind of theory I am after
can inform such an empirical study, and can, in turn, benefit from
the results. Similarly, I expect it can be informed by historical and
contemporary mathematical case studies, and can, in turn help us
understand these cases. I hope my discussion also suggests that a
good theory can be informed, and can serve to inform, research in
automated deduction; and that it can benefit from an appropriate
mathematical understanding, and provide specifically mathematical
insights.

That said, let me make it clear that the type of theory I am
after is neither psychological nor historical in nature. By that, I
only mean to say that I believe it possible to develop a general
epistemological framework for characterizing mathematical methods
and goals in terms that are independent of these disciplines. The
approach I have described has a Kantian transcendental flavor: tak-
ing, as a starting point, the fact that ordinary mathematical proofs
are intelligible, the challenge is to characterize the cognitive mecha-
nisms that make them so. It also has a phenomenological feel: what
must be accounted for is not the nature of mathematical objects in
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and of themselves, but, rather, our representations of these objects,
and the way we interact with these representations in our mathemat-
ical experience.

How should we gauge the success of such a theory? Of course, by
the usual philosophical standards: its internal coherence and consis-
tency, the extent to which it accords with intuition, and the extent
to which it provides a useful conceptual apparatus for those disci-
plines that touch upon such epistemological issues. It is not clear to
me whether there is anything else one has a right to expect from the
philosophy of mathematics; in any event, these goals are certainly
enough to justify the effort.
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NOTES

1 Many have raised issues like these, and I am not claiming originality or pri-
ority in that respect. In particular, Manders has long been emphasizing the need
for more general theories of mathematical understanding, which would presumably
address questions like the ones I raise here. But if I were to try to attribute to
him a particular way of framing the issues, I would run the risk of mischarac-
terizing his views; so, instead, this note will have to suffice to acknowledge his
general influence.
2 A list, with references, can be found in Lemmermeyer (2000, Appendix B).
3 John Stillwell has suggested to me that it would be fruitful to consider various
proofs of the fundamental theorem of arithmetic and the Pythagorean theorem
in the same vein.
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4 In my view, Steiner (1978), in particular, does not sufficiently acknowledge this.
His analysis proceeds by comparing multiple proofs of sample theorems, and noting
positive and negative features of the various proofs; I often find myself in disagree-
ment only at the point where he judges a particular proof to be the most explanatory
simpliciter. So, here I will strive to provide a framework in which one can clarify such
evaluatory claims, without trying to provide a single uniform measure.
After circulating a draft of this paper, I received a copy of Hafner and Mancosu
(2005), which adopts a similar attitude, and urges a “bottom–up” methodology
similar to the one I follow here. It also provides a forceful criticism of the con-
clusions in Steiner (1978).
5 This is essentially the one given by Coxeter (1969, p. 27), who credits
M. Kraitchick, and, later but independently, J. E. Hoffmann. It can also be
found in Hardy and Wright (1979), which cites (the first edition of) Coxeter
(1969), but credits Kraitchick and Bennett. A presentation in terms of congru-
ences can be found in Baaz (1999), which, however, mistakenly attributes the
proof to Euler.
6 Dana Scott used this example, in discussing the notion of mathematical proof,
in a colloquium he gave at Carnegie Mellon, in the spring of 2002.
7 There is a subtle interplay between such local and global considerations, that is,
between valuing lemmas and definitions for their ability to help us understand a
particular proof, and for their utility in more general contexts. In commenting on
this paper, William Tait has emphasized that one should be careful not to devalue
the former in favor of the latter. For example, even though Dedekind’s notion of
an ideal is now ubiquitous in commutative algebra, Dedekind was clearly pleased
with its role in the develoment of the unique factorization theorem for algebraic
integers, before its more global utility was established.
8 That is, in which the terms used to express the product are real bilinear forms
in the values that are squared and summed in the factors.
9 See e.g. Edwards (1996 Section 1.7), Goldman (1998 Section 12.6), or Hardy
and Wright (1979 Section 366).
10 One way to prove this is to appeal to Fermat’s little theorem, which asserts
that if p does not divide x, xp−1 ≡ 1 (mod p). In particular, if p is of the form
4n+1, each of the numbers 1,2, . . . ,4n satisfies the equation x4n ≡1 (modp), and
hence x4n − 1 ≡ (x2n + 1)(x2n − 1) ≡ 0 (mod p). By Lagrange’s theorem, the poly-
nomial x2n − 1 has at most 2n roots modulo p; thus the remaining 2n numbers
between 1 and 4n satisfy x2n +1≡0 (mod p), that is, (xn)2 ≡−1 (mod p).

Another way to prove Lemma 2.5 is to appeal to Wilson’s theorem, which
asserts that (p − 1)! ≡ 0 (mod p) when p is prime. When p − 1 = 4n, note
that the numbers 2n + 1,2n + 2, . . . ,4n − 1,4n are congruent, respectively, to
−2n,−2n − 1, . . . ,−2,−1 modulo p, which implies (2n + 1)(2n + 2) · · · (4n − 1)

(4n)≡ (−1)2n(2n)!≡ (2n)! (modp). Appealing to Wilson’s theorem, we have (4n)!≡
(2n!)2 ≡−1 (mod p), so we can let m= (2n!) in the statement of the lemma. This
proof was given by Lagrange in 1771.

A third way to proceed is to first prove the weaker statement that there are
relatively prime x and y such that p|x2 +y2 by iteratively applying a differences
operator to the sequence 12n,22n, . . . ,44n, as did Euler in 1749 (cf. footnote 11).
The desired conclusion follows from the fact that y has a multiplicative inverse
modulo p.
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A very direct and elegant fourth proof can be found in Aigner and Ziegler
(2001): partition the p−1 nonzero residue classes modulo p into sets of the form
{x,−x, x−1,−x−1}, where −x and x−1 denote, respectively, the additive and mul-
tiplicative inverses of x modulo p. Most of these sets have four elements, but
some collapsing can occur. When p is an odd prime, x and −x are always dis-
tinct; but x = x−1 exactly when x2 = 1, i.e x =±1, resulting in one set with two
elements. When p −1 is a multiple of 4, there has to be exactly one other two-
element set: this occurs when x =−x−1, which is equivalent to the assertion that
x2 ≡1 (mod p).

Some textbooks use the fact that the group of 4n nonzero residues modulo p is
cyclic, and hence has an element m of order 4. But every proof of this fact that I
know of (i.e. that there is a primitive element modulo any prime) uses Lagrange’s
theorem, and constitutes essentially a strengthened form of the second argument
above.

Proofs of Fermat’s theorem, Lagrange’s theorem, and Wilson’s theorem can be
found in almost any elementary textbook on number theory; see, for example,
Hardy and Wright (1979) or Niven et al. (1991).
11 Euler’s proof assumed a slightly weaker form of Lemma 2.5, which he was
unable to prove until 1749. See the discussions in Edwards 1996, Scharlau and
Opolka 1985, Weil 1984, and also footnote 4.
12 This proof is commonly found in textbooks today, but I do not know who
first discovered it. It was certainly accessible to Gauss, who proved Lemma 2.8
in 1828. Dickson (1996, II, p. 233) notes that L. Wantzel states in a paper of
1848 that the use of Lemma 2.8 provides the simplest proof of the fact that every
prime divisor of a sum of two squares is again a sum of two squares.
13 I can’t resist including one last proof, adapted from Niven et al. 1991, which
is very elementary and direct. Using Lemma 2.5 , start with an integer m such
that m2 ≡1 (modp). First, I claim that there is a solution to x ≡my (modp), with
0< |x|, |y|<√

p. To see this, consider the values u−mv for all pairs u, v satisfy-
ing 0 ≤u, v <

√
p. Since there (1 +�√p
)2 ≥p such pairs, there are two distinct

pairs u0, v0 and u1, v1 such that u0 −mv0 ≡u1 −mv1 (mod p). Let x =u0 −u1, and
let y = v0 − v1. At least one of these is nonzero since the pairs are distinct, and
so they satisfy the requirements of the claim.

Now note that we have x2 ≡m2y2 ≡−y2 (mod p), so that p|x2 +y2. Since 0 <

x2 +y2 <2p, the only possibility is that x2 +y2 =p.
14 This tension was a focal point of foundational debate in the late 19 century,
and even though modern mathematics embraces a full range of viewpoints, from
explicitly computational to resolutely abstract, such differences can still incite pas-
sion in serious practitioners of the subject. Although an adequate treatment of
the topic is well beyond the scope of this essay, a few clarificatory words are in
order.

From the bias of a modern, set-theoretic, point of view, we can distinguish
between statements that are constructively valid, and statements that are true but
not constructively valid. A statement is “constructively valid” if it remains true
on a computational reading of its quantifiers; for example, a constructive read-
ing of a theorem of the form “for every x there is a y such that . . . ” should
provide an algorithm for producing a y from any given x. A simple instance of
a statement that, on the modern view, is true but not constructively true is the
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following: “for every Turing machine x, there is a number y, such that x halts
in y steps when started on empty input, if it halts at all”.

It can happen that a nonconstructive proof can have a constructively valid con-
clusion. Saying that a proof is nonconstructive means that it relies on theorems
that are not constructively valid, or, more generally, on methods of reasoning, like
proof by contradiction and the law of the excluded middle, that do not in general
guarantee constructive validity. Indeed, nonconstructive methods are often praised
for making it possible to obtain even explicitly computational results more easily.

Mathematical logic and the theory of computability provide a clear sense
in which a statement can be constructively valid, or not. There are also vari-
ous characterizations of constructively valid methods of proof; see, for example,
Beeson (1985), Troelstra and van Dalen (1988), or Bridges and Reeves (1999).
Proof theory, in an extended version of Hilbert’s program, provides many ways
in which nonconsructive theories can be interpreted in constructive terms; many
of the articles in The Handbook of Proof Theory (Buss 1998) can be interpreted
in this light (see also, e.g., Avigad 2000). Recent work in logic has even focused
on ways of extracting useful constructive information from nonconstructive proofs
in practice; see, for example, Kohlenbach (2005) or Berger et al. (2001).

The discussion in Section 2 shows, however, that even when a proof is con-
structive, we may pass judgment as to whether it makes computational informa-
tion explicit or not; or that we can declare that even though a proof is noncon-
structive, an associated algorithm is “easily obtained.” In other words, in ordi-
nary practice, there are degrees of salience and more subtle ways in which con-
structive information can be transmitted. These more nuanced distinctions are not
captured well by the standard logical models, but these types of judgments are
of interest here.
15 For concreteness, we can fix on the notion of computably-axiomatized theo-
ries in many-sorted classical first-order logic, and, in fact, little will be lost if we
focus on theories axiomatized by finitely many schemata. Note that such theo-
ries include deductive systems for higher-order logic, which can be expressed in
such a many-sorted first-order framework, as well as axiomatic set theory. From
our perspective it matters little whether one prefers an axiomatic, natural deduc-
tion, or sequent formulation, since these are easily and efficiently intertranslat-
able. Anyone who wishes to include intuitionistic or type-theoretic foundational
frameworks as well is welcome to do so; all I am assuming is that the systems
we consider are syntactically specified, in such a way that there are effective pro-
cedures for verifying the well-formedness of assertions and validity of inferences.
16 To be sure, logicians also sometimes use the notion of a definitional extension
of a theory, in which one extends the language of the original theory with new
function and relation symbols, together with their defining axioms. But outside
the field of proof complexity (where one is interested in the effects of such exten-
sions on lengths of proofs), the notion does not play an important role in the
subsequent development of the theory; which is to say, after the first chapter it
is rare that any assertion in a logic textbook depends on whether one is thinking
in terms of definitional extensions or definitions in the metatheory.
17 I am simplifying somewhat. Isabelle’s goals are actually higher-order sequents,
which is to say, hypotheses can themselves be sequents of the form W1,W2, . . . ,

Wm ⇒ Z; and one is allowed to use variables and universal quantifiers ranging
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over arbitrary terms in higher-order logic. For details, see Nipkow et al.
2002, as well as the other documentation at http://www.cl.cam.ac.uk/Research/
HVG/Isabelle/index.html.
18 For example, a token with a suitable list of associations may be able to stand
duty for the notion of a “mathematical concept.” It could help explain, e.g., how
it is that we can sometimes identify an implicit historical use of a concept, before
a precise definition is in place; how a concept can be instantiated in different foun-
dational frameworks; or how mathematical concepts can change over time, and yet
preserve some of the same meaning. I am not yet convinced, however, that for our
purposes talk of concepts has any benefits over more direct talk of methods and the
tokens they detect; so, for the time being, I will stick with the latter.
19 In fact, Tobias Nipkow tells me that this would be his initial impulse. Isabelle
2004’s standard HOL library does not currently declare either simplication rule
for the absolute value function on ordered rings, and more thought and experi-
mentation is needed to determine whether it should.
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Euler, L.: 1770, Vollständige Anleitung zur Algebra. St. Petersberg: Kays. Akademie
der Wissenschaften. Reproduced in Volume 1 of Euler (1911–1956).

Euler, L.: 1911–1956, Opera Omnia. Series Prima: Opera Mathematica. Geneva:
Societas Scientiarum Naturalium Helveticae. 29 volumes.

Ferreirós, J.: 1999, Labyrinth of Thought: A History of Set Theory and its Role in
Modern Mathematics, Vol. 23 of Science Networks, Historical Studies, Birkhäuser
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Hermite, C.: 1848, ‘Théorème relatif aux nombres entiers’. Journal de Mathématique
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Kohlenbach, U.: 2005, ‘Some Logical Metatheorems with Applications in Func-
tional Analysis’. Transactions of the American Mathematical Society 357, 89–128.

Laugwitz, D.: 1999, Bernhard Riemann 1826–1866: Turning Points in the Concep-
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APPENDIX A

theory GaussInt = Main:
typedef gauss-int = {p::(int*int). True}

by auto
instance

gauss-int :: times ..
constdefs

gauss :: int * int => gauss-int
gauss p == Abs-gauss-int(p)
gauss-re :: gauss-int => int
gauss-re(z) == fst(Rep-gauss-int z)
gauss-im :: gauss-int => int
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gauss-im(z) == snd(Rep-gauss-int z)
gauss-conj :: gauss-int => gauss-int
gauss-conj z == gauss(gauss-re z, -gauss-im z)
gauss-norm :: gauss-int => int
gauss-norm z == gauss-re(z) ∧ 2 + gauss-im(z) ∧ 2
gauss-IsInt :: gauss-int => bool
gauss-IsInt z == (gauss-im z = 0)

defs
gauss-mult-def:
w * z == gauss(gauss-re(w) * gauss-re(z) - gauss-im(w) *
gauss-im(z),gauss-re(w) * gauss-im(z) + gauss-im(w) * gauss-re(z))

lemma [simp]: Rep-gauss-int(Abs-gauss-int(a,b)) = (a,b)
by (rule Abs-gauss-int-inverse, simp add: gauss-int-def)

lemma [simp]: (Abs-gauss-int(a,b) = Abs-gauss-int(c,d)) = ((a,b)
=(c,d))

by (simp add: Abs-gauss-int-inject gauss-int-def)
lemma [simp]: gauss-re(gauss(a,b)) = a

by (simp add: gauss-re-def gauss-def)
lemma [simp]: gauss-im(gauss(a,b)) = b

by (auto simp add: gauss-im-def gauss-def)
lemma gauss-gauss-re-im-conv [simp]: gauss(gauss-re(z),gauss-im(z))= z

by (auto simp add: gauss-def gauss-re-def gauss-im-def
Rep-gauss-int-inverse)

lemma gauss-gauss-eq [simp]:
(gauss(a,b) = gauss(c,d)) =(a = c & b = d)
by (auto simp add: gauss-def)

lemma gauss-mult-gauss [simp]:
gauss(a,b) * gauss(c,d) = gauss(a * c - b * d, a * d + b * c)

by (auto simp add: gauss-mult-def)
lemma gauss-gauss-ex-intro [intro]: EX z. P(z) ==> EX x y. P(gauss

(x,y))
apply (erule exE)
apply (subgoal-tac P(gauss(gauss-re(z),gauss-im(z))))
by (auto simp del: gauss-gauss-re-im-conv, simp)

lemma gauss-mult-int [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-IsInt (x * y)
by (simp add: gauss-IsInt-def gauss-mult-def)

lemma gauss-mult-int-eq [simp]: gauss-IsInt x ==> gauss-IsInt y ==>
gauss-re x * gauss-re y = gauss-re(x * y)
by (simp add: gauss-IsInt-def gauss-mult-def)

lemma gauss-mult-commute [simp]: (w::gauss-int) * z = z * w
by (auto simp add: gauss-mult-def zmult-commute zadd-commute)

lemma gauss-mult-assoc [simp]: ((u::gauss-int) * v) * w = u * (v * w)
by (auto simp add: gauss-mult-def zmult-ac zadd-zmult-distrib
zadd-zmult-distrib2 zdiff-zmult-distrib zdiff-zmult-distrib2)

lemma gauss-mult-left-commute [simp]: (u::gauss-int) * (v * w) =
v * (u * w)



MATHEMATICAL METHOD AND PROOF 159

by (auto simp add: gauss-mult-def zmult-ac zadd-zmult-distrib
zadd-zmult-distrib2 diff-zmult-distrib zdiff-zmult-distrib2)

lemma gauss-conj-mult: gauss-conj(w) * gauss-conj(z) = gauss-conj
(w * z)
by (simp add: gauss-conj-def gauss-mult-def)

lemma gauss-mult-conj-self: z * gauss-conj(z) = gauss(gauss-norm(z),0)
by (auto simp add: gauss-norm-def gauss-conj-def gauss-mult-def
power2 -eq-square)

lemma gauss-norm-conj: gauss-norm(z) = gauss-re(z * gauss-conj(z))
by (simp add: gauss-mult-conj-self)

lemma gauss-mult-conj-self-int [simp]: gauss-IsInt (x * gauss-conj x)
by (simp add: gauss-mult-conj-self gauss-IsInt-def)

lemma gauss-norm-mult [simp]: gauss-norm(x) * gauss-norm(y) =
gauss-norm(x * y)

by (simp add: gauss-norm-conj gauss-conj-mult)
lemma sum-squares-eq-norm-gauss: a∧2 + b∧2 = gauss-norm(gauss

(a,b))
by (simp add: gauss-norm-def)

theorem EX (x::int) y. (a∧2 + b∧2) * (c∧2 + d∧2) = x∧2 + y∧2
by (auto simp add: sum-squares-q-norm-gauss)

end
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