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ABSTRACT. Alternating-time temporal logic (ATL) is a branching time temporal
logic in which statements about what coalitions of agents can achieve by strategic
cooperation can be expressed. Alternating-time temporal epistemic logic (ATEL)
extends ATL by adding knowledge modalities, with the usual possible worlds
interpretation. This paper investigates how properties of agents’ actions can be
expressed in ATL in general, and how properties of the interaction between
action and knowledge can be expressed in ATEL in particular. One commonly
discussed property is that an agent should know about all available actions, i.e.,
that the same actions should be available in indiscernible states. Van der Hoek
and Wooldridge suggest a syntactic expression of this semantic property. This
paper shows that this correspondence in fact does not hold. Furthermore, it is
shown that the semantic property is not expressible in ATEL at all. In order to
be able to express common and interesting properties of action in general and
of the interaction between action and knowledge in particular, a generalization
of the coalition modalities of ATL is proposed. The resulting logics, ATL-A and
ATEL-A, have increased expressiveness without loosing ATL’s and ATEL’s trac-
tability of model checking.

1. INTRODUCTION

Alternating-time temporal logic (ATL) (Alur et al. 1997) is a
propositional logic in which statements about what coalitions can
achieve by strategic cooperation can be expressed. ATL general-
izes the path quantifiers A and E, for all and some computational
paths, of the branching time temporal logic computational tree logic
(CTL), to coalition modalities 〈〈G〉〉 for every group of agents G.
For example, 〈〈G〉〉©p and 〈〈G〉〉♦p mean that G have a collective
strategy to ensure that, no matter what the other agents do, p will
be true in the next state, and some future state, respectively.

While ATL is a logic about what agents can do, alone or in
groups, it was already pointed out in Moore’s (1984) seminal work
on knowledge and action that agents in general have incomplete
information about the world and that a proper logic about action
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also needs to provide an account of what the agents know. In alter-
nating-time temporal epistemic logic (ATEL) (van der Hoek and
Wooldridge 2002) knowledge modalities are introduced, and knowl-
edge is interpreted as truth in all worlds considered possible as
in standard epistemic logic (Fagin et al. 1995; Meyer and van der
Hoek 1995). For example, Ki〈〈i〉〉 © p means that agent i knows
that he can make p true in the next state.

This paper investigates how properties of the interaction between
action and knowledge can be expressed in ATEL. As in Moore’s
work, actions will be considered to be first-class citizens which con-
sequences can depend on the situation in which they are performed.
Consider the following example: in a situation, or possible world,
where the battery of my car is flat the motor will not start if I turn
the key, while in a situation where the battery is not flat the motor
will start. If I do not know whether the battery is flat, I cannot dis-
cern between these two situations, and from my subjective viewpoint
turning the key in the two situations is the same action – yet the
action has different consequences depending on the actual situa-
tion. Similarly, two actions may have the exact same consequences
in all situations and still be viewed as different actions. This view
of actions with subjective identity across states is facilitated by the
latest versions of the semantics for ATL, where actions are repre-
sented by action names whose interpretation depend on the current
state of the system, very much like propositions are represented by
proposition letters.

Moore identifies two main interactions between action and knowl-
edge: first, that knowledge is required prior to taking action and,
second, that actions may change knowledge. A particular instance
of the first point is a property which recently has been discussed in
relation to ATEL: knowledge about all available actions, or equiv-
alently, that the same actions are available in indiscernible states.
This semantic property will henceforth be called complete knowl-
edge about (available) actions. A syntactic ATEL expression for the
semantic property has been proposed in the literature. The relation-
ship between the syntactic expression and the semantic property is
investigated in Section 3. It is shown that the claim in fact does not
hold; the proposed formula does not express complete knowledge
about available actions. Furthermore, it is shown that the semantic
property is not expressible in ATEL at all. Of course, the former
result follows from the latter, but the first result is discussed in some
detail to allow for broader interpretations of definability. This shows
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that the expressive power of ATEL is not strong enough for certain
common and interesting properties of action and knowledge.

In Section 4 an extension of AT(E)L in which the coopera-
tion modalities 〈〈G〉〉 are generalized is proposed. This is done by
allowing (sets of) actions instead of agent names inside 〈〈. . . 〉〉. The
new modalities are similar to those in propositional dynamic logic
(PDL) (Harel, 1984): for example, 〈〈set truei〉〉 © p means that p
is a consequence of agent i performing the action set true and
〈〈set falsei ,accj 〉〉©q means that q is a consequence of agents i and
j respectively performing the actions set false and acc. The resulting
logic, ATEL-A, is quite expressive and can, e.g., express complete
knowledge about available actions. Although ATEL-A is presented
here in the context of expressibility of the latter property, it is a
much more general extension and many other examples of prop-
erties involving knowledge and actions expressible in ATEL-A are
presented. Thus, ATEL-A is a general proposal for a more expres-
sive logic. While the expressive power is increased, ATELs tractabil-
ity of model checking is retained.

The following section introduces ATL and ATEL and discusses
what it means to express a semantic property syntactically.

2. ALTERNATING-TIME TEMPORAL LOGICS

Alur et al. (2002) define the semantics of ATL via concurrent game
structures (CGSs). The following definition, which is used in the
remainder of the paper, is slightly different from the original one in
that actions are identified by arbitrary labels rather than by natural
numbers. Formally the difference is small, but the following model
better fits the semantic assumption of actions as first-class entities.
Similar variants have also been used by others (Jamroga 2003; van
der Hoek et al. 2004), with similar motivations.

DEFINITION 1. (CGS) A CGS is a tuple

(k,Q,�,π,ACT, d, δ)

where

• k>0 is a natural number of players. The set of players is �=
{1, . . . , k}.

• Q is a finite set of states.
• � is a finite set of propositions.
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• π is the labeling function, assigning a set π(q)⊆� to each q ∈
Q.

• ACT is a finite set of actions.
• For each player i ∈� and state q ∈Q, di(q)⊆ACT is the non-

empty set of actions available to player i in q. D(q)= d1(q)×
· · ·×dk(q) is the set of joint actions in q. If �a∈D(q), ai denotes
the ith component of �a.

• δ is the transition function, mapping each state q ∈Q and joint
action �a∈D(q) to a state δ(q, �a)∈Q.

(Including the set of atomic propositions and the number of agents,
which are also parameters of the logical language, in the semantic
structures is untraditional in logic in general, but is done in both
CGSs and other ATL structures.)
Q+ is used to denote the set of non-empty finite strings over Q.

A computation λ is an infinite sequence of states; λ=q0q1 · · · , where
for each j ≥ 0 there is a joint action �a ∈D(qj ) such that δ(qj , �a)=
qj+1. λ[j ] is used to denote the element in λ with index j (qj ), while
λ[0, j ]∈Q+ is the prefix of λ with length j+1. A strategy for player
i is a function fi : Q+ → ACT where fi(q0 · · ·qm)∈ di(qm), mapping
any finite prefix of a computation to an action for player i. Str(G)
denotes the set of joint strategies for a group of agents G⊆�; �fG∈
Str(G) iff �fG={fi : i ∈G} where each fi is a strategy for i. Given a
state q and a joint strategy �fG for G, out(q, �fG) denotes the set of
possible computations starting in state q where the agents in G use
the strategies �fG. Formally, λ∈out(q, �fG) iff

1. λ[0]=q,
2. ∀j≥0∃�a∈D(λ[j ]),

(a) ∀i∈Gai =fi(λ[0, j ]),
(b) δ(λ[j ], �a)=λ[j +1].

ATL formulae 〈〈G〉〉 © φ, 〈〈G〉〉�φ, 〈〈G〉〉♦φ and 〈〈G〉〉φUφ′ mean
that the coalition G can cooperate – or that it has a joint strat-
egy – to ensure that φ is true in the next state, all future states,
some future state and until φ′ is true, respectively. Formally, the syn-
tax of the ATL language is defined over � and �. � are formulae,
and if φ1, φ2 are formulae and G⊆� then ¬φ1, φ1 ∨φ2, 〈〈G〉〉©φ1,
〈〈G〉〉�φ1 and 〈〈G〉〉φ1Uφ2 are formulae. The usual derived propo-
sitional connectives are used, including  for an arbitrary proposi-
tional tautology, in addition to 〈〈G〉〉♦φ for 〈〈G〉〉Uφ. Furthermore,
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dual operators are defined as follows. [[G]] ©φ means ¬〈〈G〉〉©¬φ,
[[G]]�φ means ¬〈〈G〉〉♦¬φ and [[G]]♦φ means ¬〈〈G〉〉�¬φ. Intui-
tively, [[G]]©φ means that G cannot cooperate to avoid φ being true
in the next state, and so on for the other duals.

Satisfiability of a formula ψ in a state q of a CGS S, written
S, q |=ψ or just q |=ψ when S is understood, is defined as follows,
where p∈�:

S, q |=p ⇔ p∈π(q),
S, q |=¬φ ⇔ S, q �|=φ,
S, q |=φ1 ∨φ2 ⇔ S, q |=φ1 or S, q |=φ2,

S, q |= 〈〈G〉〉©φ ⇔ ∃ �fG∈Str(G)∀λ∈out(q, �fG)S, λ[1] |=φ,
S, q |= 〈〈G〉〉�φ ⇔ ∃ �fG∈Str(G)∀λ∈out(q, �fG)∀j≥0S,λ[j ] |=φ,
S, q |= 〈〈G〉〉φ1Uφ2 ⇔
∃ �fG∈Str(G)∀λ∈out(q, �fG)∃j≥0(S, λ[j ] |=φ2 and ∀0≤k<jS, λ[k] |=φ1).

If all states in a structure satisfy a formula, we say that the struc-
ture is a model of the formula, written M |=ψ . Two states q, q ′ in
a given CGS are equivalent, written q≡ q ′, if they satisfy the same
formulae. Two structures S,S ′ are equivalent, written S≡S ′, if they
are models of the same formulae.

2.1. Action in ATL

Several slightly different versions of structures for ATL exist in the
literature. An earlier version which appears in many ATL related
papers is alternating transition systems (ATSs) (Alur et al. 1999).
ATSs have no explicit actions; choices are identified by their possi-
ble outcomes. An ATS is a tuple (k,Q,�,π, δ) where the δ func-
tion maps an agent and a state to a set of possible choices, where
a choice is a set of states: δ : Q×� → 22Q . For all possible Qi ∈
δ(q, i), it is required that |⋂i∈� Qi | = 1. Computations and strat-
egies are defined accordingly: a sequence λ= q0q1 · · · is a compu-
tation iff {qk+1} = ⋂

i∈� Qi for some choices Qi ∈ δ(qk, i) for each
k, and if fi is a strategy for i then fi(λq)∈ δ(q, i). The out func-
tion, and satisfaction of ATL formulae, is defined similarly to for
CGSs.

In this paper the CGS model of action will be used. The reason
is that it models the view of actions as first-class citizens with sub-
jective identity mentioned in the introduction in a direct way. This
is similar to the model used by Moore (1984) in that actions are
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modeled very much like propositions in a possible worlds frame-
work: an action is available to an agent in a possible world iff all
the physical pre-conditions for performing the action are satisfied in
that world. In the following, it will be assumed that an agent can
observe the available actions in a given possible world, in the same
way it is assumed that an agent can observe the true propositions in
a given world (but, when agents with incomplete information about
the world are introduced in the next subsection, an agent does not
necessarily know which possible world is the real one and thus not
necessarily which propositions are in fact true or which actions are
available). The CGS model of multi-agent action is also similar to
the popular (Fagin et al. 1995) model introduced in Halpern and
Fagin (1989).

ATSs will nevertheless sometimes be used in the following when
it is not immediately clear that results for CGSs also hold for ATSs.

2.2. Alternating-time Temporal Epistemic Logic

Alternating-time Epistemic Logic (van der Hoek and Wooldridge
2002) extends the ATL language with a knowledge modality Ki for
each agent i ∈�.1

Structures for ATEL are structures for ATL extended with an epi-
stemic accessibility relation ∼i⊆Q×Q, required to be an equivalence
relation, for each agent i. Originally, the structures were based on
ATSs: an alternating epistemic transition system (AETS) is a tuple
(k,Q,�,π, δ,∼1, . . . ,∼k) where (k,Q,�,π, δ) is an ATS. However,
we can of course base ATEL structures on CGSs: a concurrent epi-
stemic game structure (CEGS) is a tuple (k,Q,�,π,ACT, d, δ,∼1,

. . . ,∼k) where (k,Q,�,π,ACT, d, δ) is a CGS.
Satisfaction (in either AETSs or CEGSs) for the new operators

is defined as follows:

S, q |=Kiφ⇔∀q∼iq ′S, q ′ |=φ
In the following, structures for ATEL will be assumed to be CEGSs
unless otherwise noted.

The following are properties of ATEL which will be useful later.2

〈〈G〉〉�φ↔ (φ∧〈〈G〉〉©〈〈G〉〉�φ)(1)

〈〈G〉〉φ1Uφ2 ↔ (φ2 ∨ (φ1 ∧〈〈G〉〉©〈〈G〉〉φ1Uφ2))(2)
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2.3. Expressiveness and Frames

Since expressiveness of logics is the main topic of this paper, it must
be defined properly.

In general, a (possibly singular) set of formulae � can be said to
define, or express, a semantic property iff the class of models for �
is precisely the class of structures having the property.

In modal logic, however, it is tradition to say that a (set of) for-
mula(e) define(s), or express(es), a property iff it define(s) the class of
frames with that property. There seem to be no standard definition
of a frame for ATEL, but in the following the most straightforward
definition will be used: a frame is a CEGS without a labeling func-
tion, i.e., a tuple (k,Q,�,ACT, d, δ,∼1, . . . ,∼k). Similarly, an AETS
frame is a tuple (k,Q,�, δ,∼1, . . . ,∼k). The following notation and
terminology will be used for frames: a structure is based on a frame
iff all components except the labeling function are equal; if F is a
frame and π is a labeling function for F then (F,π) is the structure
based on F with labeling function π ; a frame F is a frame of a for-
mula/set of formulae � if all structures based on F are models of
�; fr(�) is the class of frames of �; two frames F,F ′ are equivalent,
written F ≡F ′, iff they are frames of the same formulae. A frame
property is a semantic property which holds for a frame iff it holds
for all models based on the frame (e.g., Equation (3)). Similar defini-
tions hold for AETSs. Thus we have another notion of definability:
if the frames of � are exactly the class of frames having the property.
When necessary, we will discern between the two types by using the
terms “model-definability” and “frame-definability.” Note that for a
frame property, model-definability implies frame-definability.

3. EXPRESSING COMPLETE KNOWLEDGE ABOUT ACTIONS IN ATEL

One of the main goals in this paper is to investigate the expres-
siveness of ATEL when it comes to action properties. A key action
property is complete knowledge about actions; that the same actions
are available in indiscernible states. This property can be formalized
in CEGSs as

q∼i q
′ ⇒di(q)=di(q ′).(3)

A proposed formalization of the property in AETSs is the following
(van der Hoek and Wooldridge 2003):

q∼i q
′ ⇒ δ(q, i)= δ(q ′, i).(4)
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A prerequisite for formalizing complete knowledge about actions is
a notion of subjective identity of actions across states, as discussed
in the introduction. The difference between (3) and (4) seem to be
that different notions of action identity is assumed. While the fact
that the same actions are available in two different states is naturally
expressed in CEGSs as in (3), the formalization of this fact in AETSs
used in (4) seems to be too strong. In effect the latter formalization
assumes that an action is identified by a set of possible (depending on
what the other agents do) outcomes. As discussed in the introduction,
this does not correspond to the usual view of action identity in which
e.g., the same action can have different sets of possible outcomes in
different states. In particular, (3) and (4) are not equivalent. Thus, as
already noted, C(E)GSs are used as semantic structures for AT(E)L,
and (3) as the formalization of complete knowledge about actions,
in most of the following discussion – but corresponding results for
A(E)TSs and (4) will also be mentioned.

One of the reasons the property of complete knowledge about
actions is interesting is that it has recently (Jamroga 2003; van der
Hoek and Wooldridge 2003; Jamroga and van der Hoek 2004) been
pointed out that ATEL does not seem to integrate the semantics
of knowledge with the ATL semantics properly, because it is not
required that a strategy maps indiscernible histories of states to the
same action. The fact that agents can base their choices on the
state of the whole system, seems to contradict the premise of epi-
stemic logic: that agents may have incomplete information. It has
been argued that (3)/(4) is a part of a proper semantic solution to
the problem.3 Nevertheless, the problem under consideration here is
orthogonal to the one just mentioned: to express interaction prop-
erties between knowledge and action such as (3) syntactically. One
suggested expression from the literature is considered next.

3.1. A Suggested Syntactic ATEL-Expression

In van der Hoek and Wooldridge (2003 p. 144), it is claimed that
the condition “same actions in indiscernible states” can be expressed
syntactically

q∼i q
′ ⇒ δ(q, i)= δ(q ′, i).(5)

This gives us the following syntactic property.

〈〈i〉〉T φ↔Ki〈〈i〉〉T φ,(6)
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where T is a temporal operator. This claim, however, is not true. It
is not clear that “this gives us” means “is defined by,” but it seems
at least to imply that (5) implies (6). In any case, as a model prop-
erty (5) is neither a sufficient nor a necessary condition for (6), and
as a frame property (5) is not defined by (6) either. This was already
shown for AETSs in (Ågotnes, 2004); here, it is shown for CEGSs
– with (5) replaced by (3).

First, I show that (3) is not a sufficient condition for (6) by con-
structing a CEGS S1 where (3) holds but with an agent i, a propo-
sition p and a state q1 such that

S1, q1 �|= 〈〈i〉〉©p→Ki〈〈i〉〉©p.(7)

First, let F1 be the frame (k1,Q1,�1,ACT1
, d1, δ1,∼1

1,∼1
2) where

• k1 =2
• Q1 ={q1, q2}
• �1 ={p}
• ACT1 ={a, b}
• d1

1 (q1)=d1
1 (q2)=d1

2 (q1)=d1
2 (q2)={a}

• δ1(q1, (a, a))=q1
• δ1(q2, (a, a))=q2
• ∼1

1={(q1, q1), (q2, q2), (q1, q2), (q2, q1)}
• ∼1

2={(q1, q1), (q2, q2)}.
Clearly, (3) holds for F1. The following observation about F1 is
obvious.

OBSERVATION 1. For any π and any collective strategy �fG for
any set of agents G, in the system (F1, π):

out(q1, �fG)={λ1} out(q2, �fG)={λ2},(8)

where λ1, λ2 are the computations

λ1 =q1q1 · · · , λ2 =q2q2 · · · .(9)

Let π1 :Q→2� be such that π1(q1)={p} and π1(q2)=∅, and let S1 =
(F1, π1). S1 is illustrated in Figure 1.

It is easy to see that

S1, q1 |= 〈〈1〉〉©p(10)
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Figure 1. The CEGS S1.

holds, since S1, λ1[1] |=p. If

S1, q1 |=K1〈〈1〉〉©p,(11)

then S1, q2 |= 〈〈1〉〉 © p, since q1 ∼1
1 q2. But S1, q2 �|= 〈〈1〉〉 © p since

S1, λ2[1] �|=p, so (11) does not hold, which shows (7).
Thus, (3) is not a sufficient condition for (6). To show that it is

neither a necessary condition, I construct a CEGS S2 which is a
model for (6) for any i, T and φ, for which (3) does not hold for
any q. Let S2 = (k1,Q2,�1, π2,ACT1

, d2, δ2,∼2
1,∼2

2) where

• Q2 ={q1, q2, q3}
• ∼2

1=∼1
1 ∪{(q3, q3)}, ∼2

2=∼1
2 ∪{(q3, q3)}

• d2
1 (q1)=d2

2 (q1)=d2
2 (q2)=d2

1 (q3)=d2
2 (q3)={a}

• d2
1 (q2)={b}

• δ2(q1, (a, a))= δ2(q3, (a, a))= δ2(q2, (b, a))=q3
• π2(q1)=π2(q2)=π2(q3)={p}

and k1,�1,ACT1
,∼1

1,∼1
2 are as in S1. S2 is illustrated in Figure 2.

Let T be a state quantifier and φ be a formula. To show that S2 is
a model of (6), it suffices to show that

S2, q1 |= 〈〈1〉〉T φ⇔S2, q2 |= 〈〈1〉〉T φ(12)

since it follows trivially in state q3 and when i=2. It is easy to see
that the only computation starting in q1 is q1q3q3 · · · and the only
computation starting in q2 is q2q3q3 · · · . Satisfaction of a formula ψ
in a state q depends only on (i) π(q), (ii) the states accessible for
each agent from q and (iii) the set of possible remaining computa-
tions starting in q. For q1 and q2, (i) π2(q1)=π2(q2), (ii) q1 ∼1

i q
′ iff

q2 ∼1
i q

′ for i∈� and (iii) the set of possible remaining computations
starting in q1 or q2 is {q3q3 · · · }. Thus, q1 ≡q2 in S2 and (12) holds.
However, (3) does not hold for S2: q1 ∼1

1 q2 but d2
1 (q1) �=d2

1 (q2).
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Figure 2. The CEGS S2.

In other words; there are models of the schema (6) in which (3)
does not hold, and there are structures in which (3) holds which are
not models of the schema (6).

3.1.1. A Frame Property
Since it does not depend on the labeling function, the property (3)
can be read as a frame property, rather than as a model property.
So far we have only looked at the models of (6), but since there are
CGSs with the (3) property which are not models of (6), there are
also frames with the (3) property which are not frames of (6). A nat-
ural question is whether the other direction holds for frames: does
(3) hold for all frames of (6)? The answer is in fact “yes”. It holds,
however, because (6) as a frame condition is really not very interest-
ing: if F = (k,Q,�,ACT, d, δ,∼1, . . . ,∼n) is a frame of (6) then

q∼i q
′ ⇒q=q ′(13)

for each i ∈�. To see this, let F |= (6) and assume that q ∼i q
′ for

some q �= q ′. Let π be such that π(q)= {p} and π(q ′)= ∅. Then
(F,π), q |= (6), particularly4

(F,π), q |= 〈〈i〉〉pUp↔Ki〈〈i〉〉pUp

But (F,π), q |= 〈〈i〉〉pUp and (F,π), q ′ �|= 〈〈i〉〉pUp, which is a con-
tradiction showing that the assumption is impossible. Thus, an agent
i in a frame of (6) is factually omniscient: he always knows every
true fact.
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Thus, (6) only describes a proper subset of the (3)-frames, con-
sisting of frames in which agents can have no interesting properties
of knowledge.

3.1.2. The Problem
While (6) does not express (3), the next question is whether the prob-
lem can be “fixed” syntactically by looking at the counter models. One
source of confusion about action and ability is that a statement such as
〈〈i〉〉©φ often is informally interpreted as a statement about agent i’s
capability to make φ come about. This is an imprecise interpretation.
It may be that 〈〈i〉〉©φ holds because the rest of the system will deter-
ministically make φ true in the next state – no matter what agent i does.
In other words, it may be that 〈〈∅〉〉©φ holds – which trivially implies
〈〈i〉〉©φ. For example, Equation (10) holds because the system S1 will
if started in state q1 deterministically stay in q1 forever.

It may be argued that a case where 〈〈i〉〉 © φ holds because
〈〈∅〉〉©φ holds is a special case which was not the intention of (6),
and that the fully deterministic system S1 is not a very interesting
counter model. The case may be ruled out syntactically:

(〈〈i〉〉©p∧¬〈〈∅〉〉©p)→Ki〈〈i〉〉©p.(14)

Indeed (trivially),

S1 |= (〈〈i〉〉©p∧¬〈〈∅〉〉©p)→Ki〈〈i〉〉©p.

However, there are (non-deterministic) counter-models of (14) where
(3) holds. One such structure, S3, is illustrated on Figure 3. S3 =
(k1,Q2,�1, π3,ACT1

, d3, δ3,∼2
1,∼2

2) where k1,Q2,�1,ACT1
,∼2

1,∼2
2

are as before and

• π3(q1)=p, π3(q2)=π3(q3)=∅
• d3

1 (q1)=d3
1 (q2)={a, b}

• d3
2 (q1)=d3

2 (q2)=d3
1 (q3)=d3

2 (q3)={a}
• δ3(q1, (a, a))=q1
• δ3(q2, (a, a))=q2
• δ3(q1, (b, a))= δ3(q2, (b, a))= δ3(q3, (a, a))=q3.

S3, q1 |=〈〈1〉〉©p and S3, q1 |=¬〈〈∅〉〉©p, but S3, q2 �|= 〈〈1〉〉©p so

S3, q1 �|= (〈〈1〉〉©p∧¬〈〈∅〉〉©p)→K1〈〈1〉〉©p.

S3 might be a more interesting counter-model of (6) than S1 is.
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Figure 3. The CEGS S3.

The problem seems to be that temporal connectives in ATL
express something about future states, without regard to how they
come about. Therefore, local semantic properties of individual agents’
actions, such as interaction between action and knowledge, are diffi-
cult to express syntactically in ATEL. We have seen that (3) is not
expressed by (6) (or by (14)); in the following section it is shown that
it is not expressible in ATEL at all.

3.2. Undefinability in ATEL

One of the reasons the semantic property (3) is inexpressible in
ATEL is that frames may contain “equivalent” actions – actions
which lead to the same outcome when the actions of the other
agents are fixed. In this section, that notion is made precise. It is
shown that every class of frames (models) expressible by an ATEL
formula must be closed under equivalent actions, and by counter
examples that the classes described by (3) are not.

Henceforth, if �a ∈ ACTk is a joint action and b ∈ ACT is an
action, �a[b/i]∈ACTk is �a with ai replaced by b.

First, the notion of two actions being equivalent for a given
agent in a given state is formalized.

DEFINITION 2. Actions a and b are equivalent for agent i in state
q of frame F = (k,Q,�,ACT, d, δ,∼1, . . . ,∼k) iff

(1) a∈di(q)⇔b∈di(q),
(2) a, b∈di(q)⇒∀�a∈D(q)δ(q, �a[a/i])= δ(q, �a[b/i]).
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The result of removing one of two equivalent actions from a
frame is simply a frame where the agent no longer can select the
particular action. Formally:

DEFINITION 3. If a and b are equivalent for i in q ′ of F =
(k,Q,�,ACT, d, δ,∼1, . . . ,∼k), the result of removing action a for
i in q ′ is the frame F ′ = (k,Q,�,ACT, d ′, δ′,∼1, . . . ,∼k) where

d ′
j (q)=

{
dj (q)\ {a}, if j = i, q=q ′,
dj (q), otherwise,

and δ′ is the restriction of δ to d ′.

The following Lemma shows that satisfaction is invariant under
removal (or, equivalently, addition) of equivalent actions.

LEMMA 1. If a and b are equivalent for i in q ′ of F and F ′ is the
result of removing action a for i in q ′, then for any labeling function
π , formula φ and state q of F :

(F,π), q |=φ⇔ (F ′, π), q |=φ.(15)

Proof. See the appendix.

That the semantic property (3) is inexpressible in ATEL can now be
seen by constructing two frames, one which is the result of remov-
ing one of two equivalent actions from the other; one which has the
property and one which does not.

THEOREM 1. The class of frames with the property (3) is not
ATEL-definable.

Proof. We can use one of the frames we already have: F1 =
(k1,Q1,�1,ACT1

, d1, δ1,∼1
1,∼1

2) from Section 3.1. Let F4 = (k1,Q1,

�1,ACT1
, d4, δ4,∼1

1,∼1
2) where

d4
i (q)=

{ {a, b}, i=1 and q=q1,

d1
i (q), otherwise,

(16)

δ4(q, �a)=
{
q1, q=q1 and �a= (b, a),
δ1(q, �a), otherwise.

(17)
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In other words, actions a and b are equivalent for agent 1 in state
q1 of frame F4, and F1 is F4 with b removed for 1 in q1. Thus by
Lemma 1

F1 ≡F4.(18)

Let F1 be the class of frames having the property (3) and let � be
a set of ATEL formulae. If F1 �|=�, then F1 � fr(�) since F1 ∈F1. If
F1 |=�, then F4 |=� by (18), and then fr(�)�F1 since F4 �∈F1. Thus,
F1 �= fr(�).

COROLLARY 1. The class of models with the property (3) is not
ATEL-definable.

Proof. Follows immediately, since (3) is a frame property (see
Section 2.3).

Since AETSs differ from CEGSs exactly in the definition of what
an action/a choice is, and since ATEL was originally based on this
earlier version of ATL structures and the claim about expressiveness
(quoted on p. 382) was made in terms of AETSs, it should be men-
tioned that an analogous result to Theorem 1 can be obtained for
AETSs – (5) is not ATEL definable under AETS semantics.

Counter examples5 are the AETS frames F̂1 = (k1,Q1,�1, δ̂,

∼1
1,∼1

2) and F̂4 = (k1,Q1,�1, δ̂2,∼1
1,∼1

2) where

• δ̂(q1,1)= δ̂(q2,1)={ {q1, q2} }
• δ̂(q1,2)={ {q1} }
• δ̂(q2,2)={ {q2} }
• δ̂2(q, i)=

{ { {q2} }, q=q2 and i=1,
δ̂(q, i), otherwise.

and the other components are as in the CEGS frame F1. It is easy
to see that F̂1 and F̂2 are logically equivalent, while the former has
the property (5) and the latter does not.

4. ALTERNATING-TIME TEMPORAL LOGICS WITH ACTIONS

We have looked at the problems with expressing semantic proper-
ties, such as complete knowledge about available actions, in ATEL.
In this section, a simple but more expressive extension of ATEL is
presented.
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The extension consists in generalizing the 〈〈. . . 〉〉 operators to
taking (sets of) actions from ACT as parameters in addition to
agent names, in order to express what the agents can achieve with
the given actions rather than just what they can achieve with some
actions. For example,

〈〈sendi〉〉©p

means that p will be true in the next state if agent i uses the send
action, no matter what the other agents do. An example with a set
of actions is 〈〈{send, receive}i〉〉©p; i can use (at least) one of the
actions send or receive to make p be true in the next state. 〈〈i〉〉©φ

can thus be expressed as 〈〈ACTi〉〉 © φ. ATL and ATEL with the
new action operators are called ATL-A and ATEL-A, respectively.
The idea is similar to the one behind dynamic linear time temporal
logic (DLTL) (Henriksen and Thiagarajan 1999), where the tempo-
ral operators of LTL are indexed with programs of the type used in
PDL and where atomic programs can be seen as actions.

Actions in ATL have consequences for the next state of the sys-
tem; thus the semantics of the new operators are intimately con-
nected to the © state quantifier.6

Moore (1984) describes two principal interactions between action
and knowledge: first, knowledge is often required prior to taking
action, and, second, action can change what is known. After a for-
mal definition, it is shown how among other things such interac-
tions can be expressed in ATEL-A.

4.1. Formal Definitions

The new generalized operators are constructed by restricting the
actions one or more of the agents can use in the next step. Formally,
an action descriptor consists of a set of legal actions for each agent.
The set of all action descriptors is

descr = (℘ (ACT)\ {∅})k.
Given an A∈descr, Aj will be used to denote the j th component of
A, and

A× =×
j∈�

Aj

is the set of legal joint actions. As before, we write ai for the ith ele-
ment of a given tuple �a∈ACTk, and correspondingly, if b1, . . . , bk ∈
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ACT we write �b for (b1, . . . , bn). If �a, �b∈ACTk are two joint actions,
then

�b[�a/G]= (c1, . . . , ck) where
{
ci =ai, i ∈G,
ci =bi, i �∈G

is the joint action with actions from �a for G and actions from �b for
� \G.

The language of ATL-A (ATEL-A) is the language of ATL
(ATEL) with the formation rule for 〈〈G〉〉© replaced by: if φ is a
formula, G⊆� and A∈ descr then 〈〈A,G〉〉©φ is a formula. This
notation allows not only restricting the legal actions for the agents
in the coalition G, but also for the agents outside the coalition,
allowing, e.g., the expression of what a coalition can achieve when
other agents’ actions are fixed or otherwise restricted.

CGSs/CEGSs are still used to define the semantics of ATL-
A/ATEL-A formulae. The definition of satisfaction is extended to
the new operators as follows. In evaluating the expression S, q |=
〈〈A,G〉〉 ©φ we must consider the actions available to each agent,
both in G and in � \G, i.e., the set of joint actions that the set � of
all agents have available. This set is restricted in two ways. First, the
set of joint actions available to the agents in q in the first place is
D(q). Second, the action descriptor A says that we should only con-
sider what happens when joint actions in the set A× are used. Thus,
finding the truth of 〈〈A,G〉〉©φ is very much like finding the truth
of 〈〈G〉〉 © φ, except that we must only consider next states which
are the result of performing a joint action from

A× ∩D(q)
rather than from D(q). There is, however, an important difference.
In the case of 〈〈G〉〉©φ we are guaranteed that the system can go
on to a next state from q, i.e., there exists a joint action in D(q).
In the case of 〈〈A,G〉〉©φ, we are not guaranteed that A× ∩D(q)
is non-empty – thus it may be that the system cannot go to a next
state when agents are restricted to actions from A. In that case the
proper semantics of the formula 〈〈A,G〉〉©φ is the value false, since
there does not exist a next state where φ is true and thus G have no
strategy to reach such a state. The following is the formal definition
of satisfaction, and is discussed below:

S, q |= 〈〈A,G〉〉©φ⇔
∃�a∈A×∩D(q)∀�b∈A×∩D(q)S, δ(q, �b[�a/G]) |=φ.
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Informally, 〈〈A,G〉〉©φ holds iff (i) all agents (in and not in G) can
act under the restriction A and (ii) given that all agents (in and not in
G) are restricted by A, G can perform actions such that φ will be true
in the next state no matter what the other agents do. In the definition
of satisfaction, the existence of �a ensures (i) and fixes the actions of
G while �b denotes arbitrary actions for the agents not in G.7

Similarly to 〈〈A,G〉〉©, operators 〈〈A,G〉〉� and 〈〈A,G〉〉U can
also be used in ATL-A/ATEL-A. However, as mentioned before,
action descriptors only restrict the actions that can be used in the
next step, and not forever. Thus, the two latter operators can be
defined as derived operators by the former, by restricting the actions
used in the first step. The derived operators are defined as follows,
and their semantic interpretation can be defined similarly to (but
slightly more complicated than) 〈〈A,G〉〉©.

〈〈A,G〉〉�φ≡φ∧〈〈A,G〉〉©〈〈G〉〉�φ,(19)

〈〈A,G〉〉φ1Uφ2 ≡φ2 ∨ (φ1 ∧〈〈A,G〉〉©〈〈G〉〉φ1Uφ2) .(20)

For each tense quantifier T , the ATL operator 〈〈G〉〉T can be writ-
ten as 〈〈A,G〉〉T , as shown in Section 4.3. Restricting the actions
only in the next step gives an intuitive interpretation also of the
derived connectives; e.g., 〈〈sendi〉〉♦p can be read as “if i uses send
now, he can eventually achieve p.”

Other derived connectives are 〈〈A,G〉〉♦φ, for 〈〈A,G〉〉Uφ, and
the duals [[A,G]]©, [[A,G]]�, [[A,G]]♦, [[A,G]]U which are defined
similarly to their ATL counterparts.

The following notational shorthands are used. If we want to
restrict the actions of only some of the agents, we want an action
descriptor where Aj = ACT for all the other agents. The sets
Aj = ACT will often be omitted when writing the descriptor,
and the agents identified by subscripts. For example, a short-
hand for the descriptor A = (ACT, {send},ACT, {send, receive}) is
({send}2, {send, receive}4). If the sets different from ACT in a descrip-
tor A are exactly the sets for a group G, we will write 〈〈A〉〉 as a
shorthand for 〈〈A,G〉〉. Braces around tuples and sets inside 〈〈〉〉 will
sometimes be dropped. For example,

〈〈send4〉〉©φ

is shorthand for

〈〈({send}, {4})〉〉©φ

Finally, 〈〈G〉〉 is used as shorthand for 〈〈ACTk,G〉〉.
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4.2. Expressiveness and Examples

The following are informal readings of formulae with some of the
instances of the new operators. Let a, b∈ACT, X⊆ACT.

(1) 〈〈ai〉〉©φ: φ is a necessary consequence of i using action a.
(2) 〈〈ai〉〉♦φ: by starting with action a, i can eventually achieve φ.
(3) [[ai ]]©φ: φ is a possible consequence of i using action a.
(4) 〈〈Xi〉〉©φ: for some action in X, φ is a necessary consequence

of i using the action.
(5) [[Xi ]]©φ: for each action in X, φ is a possible consequence of i

using the action.
(6) 〈〈ai, bj 〉〉©φ: if i uses action a and j uses action b, φ is a nec-

essary consequence.
(7) 〈〈ai,Xj 〉〉©φ: if i uses action a, φ is the consequence of j using

a particular action in X.
(8) 〈〈(ai,Xj ), {i}〉〉©φ: if i uses action a, φ is the consequence of j

using any arbitrary action in X.
(9) 〈〈Xj, {i}〉〉 © φ: i can enforce φ as long as j is restricted to

actions X.

A concrete model checking example follows, before the expression
of certain common and/or interesting properties of knowledge and
action using the new operators is discussed.

4.2.1. A Model Checking Example
The following is a modified version of an example from (Jamroga
and van der Hoek 2004). Consider a system with a single boolean
variable, represented by the atomic proposition x (Figure 4). The
system has two processes, the controller o and the client l. The cli-
ent cannot observe the value of the variable, and always has the
following available actions: set true and set false which are requests
to the controller to set the value of the variable to true and false,
respectively, and switch which switches the value of the variable. The
controller can observe the value of the variable, and always has
available actions acc and rej, which accepts or rejects, respectively,
a possible request from the client. If the client performs switch, the
variable is changed no matter what the controller does. The follow-
ing hold in this system.
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–
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–
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–

Figure 4. A variable controller/client example. ? means “any action”.

(1) ¬x→〈〈switchl〉〉©x. If the value of the variable is false, the cli-
ent alone can change it with the switch action.

(2) 〈〈set truel ,acco〉〉 © x. By performing the actions set true and
acc respectively, the client and the controller can together ensure
that the variable will be true in the next state.

(3) 〈〈{set true, switch}l〉〉© x. The client can always set the variable
to true, if he guesses correctly between the set true and switch
actions (or finds out which one to use in any other way).

(4) [[set truel]]©x. The variable being true is a possible consequence
of the client performing the set true action.

(5) 〈〈l〉〉©x, but there is no action a such that 〈〈al〉〉©x. The client
can always ensure (in the ATL sense) that the variable will be
true in the next state, but no single action is sufficient to ensure
it.

(6) [[set truel]]©x and ¬[[c]]©x. The client cannot always avoid the
variable being set to true in the next state by using the set true
action, but he can avoid it if his actions are not restricted.

(7) q0 ∼l q1 and switch ∈ dl(q0)= dl(q1), so switch in q0 and switch
in q1 are subjectively the same action. But q0 |= 〈〈switchl〉〉 © x

and q1 |= 〈〈switchl〉〉©¬x; switch in q0 and in q1 are objectively
different actions – they have different outcomes.

(8) x → 〈〈{set true, set false}l , o〉〉 © x. If the variable is true, the
controller can ensure that it stays true in the next state if the cli-
ent is restricted to actions set true and set false.

(9) 〈〈acco, l〉〉©x and 〈〈acco, l〉〉©¬x. If the controller is restricted
to using the acc action, the client can alone set the value of the
variable in the next state.
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4.2.2. Available Actions
The fact that an action a∈ACT is currently available to agent i can
be expressed by

〈〈ai〉〉©(21)

and the fact that a is not currently available to i by

[[ai ]]©⊥.(22)

In ATL, 〈〈G〉〉 ©  and ¬〈〈G〉〉 © ⊥ hold (in fact, they are taken
as axioms in the axiomatization of ATL by Goranko and Van
Drimmelen 2003), because of the requirement that there must be
at least one action available for each agent in each state (da(q) �=
∅). These axioms still hold in ATL-A (where they are written
〈〈ACT|G|

,G〉〉 ©  and ¬〈〈ACT|G|
,G〉〉 © ⊥ respectively) but, e.g.,

〈〈(A1, . . . ,A|G|),G〉〉© does not hold for arbitrary non-empty Aj s
containing only non-available actions.

Formally, given a∈ACT, it is easy to see that (21) and (22) hold
in q iff a∈di(q) and a �∈di(q), respectively.

4.2.3. Epistemic Pre-Conditions for Action
A theory about action must explain when an agent can achieve a
particular goal by performing a particular action. In (Moore, 1984),
an agent i can use an action a to achieve a goal φ, can(i, a, φ), iff
(1) the goal will result from the agent performing the action and (2)
the agent knows that the goal will be the result of performing the
action.

In order to discuss how different ATEL/ATEL-A expressions
capture this notion, consider a safe with combination c and let dialx

be the action of dialing the combination x and open be the propo-
sition that the safe is open. For simplicity, we assume that all other
pre-conditions for opening the safe are satisfied, so that the safe will
be opened if an agent dials c. The formula

〈〈i〉〉©open

expresses the fact that i has a strategy to ensure that the safe will be
open in the next state. However, this formula does not express the
fact that a purposeful agent can open the safe if he wants to – he
may consider worlds possible where he cannot open the safe at all,
and even if he knew that he could open the safe he would not nec-
essarily know how. In other words, i can open the safe if he guesses
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the right combination, but this is not necessarily known to him. A
second attempt is

〈〈dialci 〉〉©open

which expresses the fact that the safe is opened if i dials c, but this
is not necessarily known to him: he may consider it possible that
other combinations than c will open the safe.

Ki〈〈i〉〉©φ

expresses that i knows that he can open the safe, but not that he
necessarily knows how to do it. Finally,

Ki〈〈dialci 〉〉©open

expresses that i can open the safe by dialing c, and that he knows
this.

Jamroga and van der Hoek (2004) note the similarity between
“knowing that there exist some strategy that will solve the prob-
lem” and “for some strategy, knowing that it will solve the problem”
and the notion of de dicto and de re formulae as used in quantified
modal logic (see, e.g., (Hughes and Cresswell, 1996)), and call the
former “having a strategy de dicto” and the latter “having a strategy
de re”. In these terms the two latter formulae above express having
a strategy de dicto and de re, respectively. Knowing de re that the
action will satisfy the goal (having a rigid designator for the action)
is exactly what Moore requires.

Thus, the fact that agent i can achieve a goal φ by perform-
ing an action a in the sense discussed by Moore, can(i, a φ), can in
ATEL-A be defined as

can(i, a, φ)≡Ki〈〈ai〉〉©φ

can(i, a, φ) → 〈〈ai〉〉 © φ holds by virtue of the S5 properties of
knowledge. Note that the other expressions given above are inter-
esting in their own right, as long as it is clear precisely what they
mean. These examples show that ATEL-A can express a range of
subtly different facts about knowledge and action.

Van der Hoek and Wooldridge (2003) discuss general knowledge
pre-conditions, such as “ψ is a necessary knowledge pre-condition
for i having the ability to bring about φ”:

〈〈i〉〉©φ→Kiψ.
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This formula does not express ability in the sense of Moore pre-
cisely. For example, if the proposition combc is true in the worlds in
which the combination of the safe is c, then 〈〈i〉〉©open→Kicombc

expresses the fact that i cannot even guess the right action for open-
ing the safe without knowing the combination first. A formula such
as can(i, a, φ)→Kicombc captures the intention better.

4.2.4. Epistemic Post-Conditions for Action
Epistemic consequences of action is the second main interaction
between knowledge and action, according to Moore. The epistemic
consequences of action can be expressed by ATEL-A formulae such
as

〈〈ai〉〉©Kiφ.

(after performing action a agent i will know φ), or

Ki〈〈ai〉〉©Kiφ,

(agent i knows that he will know φ after performing a).

4.2.5. Complete Knowledge about Actions
We can now express the semantic condition (3) as a knowledge
pre-condition about available actions: all available actions must be
known.

THEOREM 2. The schema

〈〈ai〉〉©→Ki〈〈ai〉〉©(23)

defines the property (3).

Proof. Let S = (k,Q,�,π,ACT, d, δ,∼1, . . . ,∼k) be a model of
(23), and let q, q ′ be such that q ∼i q

′. If a ∈ di(q) then S, q |=
〈〈ai〉〉©, so S, q ′ |= 〈〈ai〉〉© by (23) i.e., a ∈ di(q ′). If a ∈ di(q ′),
it follows similarly that a∈di(q) since q ′ ∼i q by symmetry.

Conversely, let S= (k,Q,�,π,ACT, d, δ,∼1, . . . ,∼k) be a CEGS
where the frame property (3) holds, q ∈Q and a be such that S, q |=
〈〈ai〉〉 © . Let q ∼i q

′. a ∈ di(q ′) by (3) since a ∈ di(q), so S, q ′ |=
〈〈ai〉〉©. Thus, S, q |=Ki〈〈ai〉〉©.

Thus, (23) defines the class of (3)-models, and, since (3) is a
frame property, also the class of (3)-frames.
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The other direction of (23), Ki〈〈ai〉〉 ©  → 〈〈ai〉〉 © , if an agent
knows that an action is available then it is available, holds by virtue
of the S5 properties of knowledge.

4.3. Properties

Properties of ATL-A involving the new operators are now discussed.
Of course, properties of the ATL operator 〈〈G〉〉 do not carry over
to the ATL-A operator 〈〈A,G〉〉 for arbitrary A, see e.g., Section
4.2.2. Some properties of 〈〈G〉〉 have similar 〈〈A,G〉〉 counterparts;
such as, e.g., the properties (1) and (2) (p. 380) and the definition
of 〈〈A,G〉〉� and 〈〈A,G〉〉U .

LEMMA 2.

(1) S, q |= 〈〈ACTk,G〉〉 © φ in ATL-A (ATEL-A) if and only if
S, q |= 〈〈G〉〉©φ in ATL (ATEL)

(2) S, q |=〈〈ACTk,G〉〉�φ in ATL-A (ATEL-A) if and only if S, q |=
〈〈G〉〉�φ in ATL (ATEL)

(3) S, q |= 〈〈ACTk,G〉〉φ1Uφ2 in ATL-A (ATEL-A) if and only if
S, q |= 〈〈G〉〉φ1Uφ2 in ATL (ATEL)

Proof. 1 follows immediately from the semantic definitions, 2 and
3 follow from 1 by the properties (1) and (2) in section 2.2.

The above lemma expresses the fact that the new ATL-A operators
are generalizations of the traditional ATL operators.

LEMMA 3. The following are valid (T is any temporal operator).

(1) 〈〈(A1, . . . ,Ak),G〉〉T φ→〈〈(A′
1, . . . ,A

′
k),G〉〉T φ when

Aj ⊆A′
j j ∈G,

A′
j ⊆Aj j �∈G,

(2) 〈〈(A1, . . . ,Ak),G〉〉T φ↔∨
A′
j∈Xj 〈〈(A′

1, . . . ,A
′
k),G〉〉T φ where

Xj =
{ {{aj } :aj ∈Aj }, j ∈G

{Aj }, j �∈G
(3) 〈〈(A1, . . . , {a}j , . . . ,Ak),G〉〉T φ

↔〈〈(A1, . . . , {a}j , . . . ,Ak),G\ {j}〉〉T φ

Proof. Immediate from the semantic definitions.
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The first property in the above Lemma 3 is a generalization of
action descriptors: a coalition cannot achieve less if they are given
more, and their opponents less, action possibilities.

The second property is a definition of what it means to achieve
something with a set of actions, in terms of what it means to
achieve something with a single action. An example instance is

〈〈Ai〉〉©φ↔
∨

a∈A
〈〈ai〉〉©φ

agent i can alone achieve φ with the actions A iff there is an action
in A which he can achieve φ with.

The third property says that restricting an agent j to a single
action implies that any coalition can achieve the same with or with-
out j .

4.4. Model Checking

One of the reasons for the popularity of the branching time logics
CTL and ATL is the tractability of the model checking problem.
For both logics, the problem can be answered in time polynomial
in the size of the formula and the size of the structure (Alur et
al. 2002), and model checkers such as Smv (McMillan 1993) and
Mocha (Alur et al. 1998) have been implemented.

Van der Hoek and Wooldridge (2003) have shown that tracta-
bility of model checking carries over to ATEL, by constructing an
algorithm. In this section that algorithm is generalized to ATEL-
A. It is shown that the resulting algorithm still runs in polynomial
time, and thus that the increase in expressiveness from ATEL to
ATEL-A, does not come at the expense of increased computational
complexity of model checking.

The algorithm for ATEL, henceforth called “the original algo-
rithm,” is defined recursively over the structure of the formula, and
the corresponding correctness and complexity proofs by induction
over the structure, and since ATEL-A is an extension of ATEL we
can just extend the definition and the proofs with cases for the new
clauses in the language. The extensions are straightforward.

The original algorithm is implemented as a function

• eval(φ, S) which, given an ATEL formula φ and a CEGS S,
returns the set of states in S satisfying φ.

which in turn relies on the following function:
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• pre(S,G,Q′), which, given a CEGS S, a group of agents G and
a set of states Q′, returns the set of states in which G can coop-
erate to make the next state of the system be in Q′.

The extended algorithm makes use of the following modified system.

DEFINITION 4. (S(A)) Given a CEGS S = (k,Q,�,π,ACT, d, δ,
∼1, . . . ,∼k) and an action descriptor A= (A1, . . . ,Ak), the CEGS

S(A)= (k,Q∪{q̂},�, π̂,ACT∪{â}, d̂, δ̂,∼1, . . . ,∼k)

where q̂ �∈Q and â �∈ACT and

• π̂(q)=∅ if q= q̂, π̂(q)=π(q) otherwise,
• d̂i(q)= {â} if q = q̂ or di(q)∩Ai = ∅, d̂i(q)= di(q)∩Ai other-

wise,
• δ̂(q, �a) = q̂ if q = q̂ or ai = â for some i, δ̂(q, �a) = δ(q, �a)

otherwise.

Clearly, S(A) is a proper CEGS. Intuitively, S(A) is S when the
agents are restricted to A with the addition of the state q̂ which the
agents go to (using action â) when one or more of them cannot act.

In Figure 5, the extended algorithm is presented by the case for
the new language clause.

THEOREM 3. eval(φ, S) (Figure 5) terminates and returns the set
{q :S, q |=φ}.

Proof. Since the original algorithm and pre(. . . ) terminates, the
algorithm terminates.

The proof of correctness of eval(φ, S) for ATEL-formulae φ is
by induction over the structure of φ, thus it suffices to show that

Algorithm: eval(φ, S), where S= (k,Q,�,π,ACT, d, δ,∼1, . . . ,∼n), returns a sub-
set of Q

if φ=〈〈(A1, . . . ,Ak),G〉〉©ψ then
return pre(S(A1, . . . ,Ak),G, eval(ψ,S))

else
{the other cases are as in the original algorithm}

end if

Figure 5. A model checking algorithm for ATEL (van der Hoek and
Wooldridge 2003) adapted to ATEL-A. Only the operation for the new language
clause is shown.

[146]



ACTION AND KNOWLEDGE IN ALTERNATING-TIME TEMPORAL LOGIC 401

eval(φ, S)={q :S, q |=φ} for the new case in Figure 5 assuming cor-
rectness for simpler formulae.

If S, q |= 〈〈A,G〉〉©ψ , let �a ∈×i∈�(di(q)∩Ai) be as in the defi-
nition; thus di(q)∩Ai �= ∅ for all i, and aj ∈ d̂j (q) since q �= q̂. Let
bi ∈ d̂i(q), i �∈G. bi ∈di(q)∩Ai since q �= q̂. Let bi ∈di(q)∩Ai be arbi-
trary for i ∈G, and let �a′ = �b[�a/G]. S, δ(q, �a′) |=ψ and since q �= q̂
and a′

i �= â for all i, δ̂(q, �a′)= δ(q, �a′) and, by the induction hypoth-
esis for ψ , G can thus cooperate by using actions ai (i ∈G) so that
no matter which actions the other agents use, S(A) will go to a state
in eval(ψ,S).

For the other direction, assume that q ∈ pre(S(A),G, eval(ψ,S)).
Thus, there are aj ∈ d̂(q), j ∈G, such that the outcome will be in
eval(ψ,S) no matter which actions � \ G use. Let aj ∈ d̂j (q) be
arbitrary for j �∈G. Since δ̂(q, �a) ∈ eval(ψ,S) and q̂ �∈ eval(ψ,S)=
(by the ind. hyp.) {q : S, q |= ψ}, aj �= â for all j . Clearly, S(A)

cannot go from q̂ to any state in eval(ψ,S), so q �= q̂. Thus, �a ∈
×i∈�(di(q)∩Ai). Let �b ∈ ×(di(q)∩Ai); bi ∈ d̂(q) since di(q)∩Ai is
non-empty, and let �a′ = �b[�a/G]. The outcome in S(A) of �a′ will be
δ̂(q, �a′)∈ eval(ψ,S), and since q �= q̂ and both ai �= â and bi �= â for
any i, δ(q, �a′)= δ̂(q, �a′), and thus S, δ(q, �a′) |=ψ .

THEOREM 4. The model checking problems for ATL-A and
ATEL-A are PTIME-complete.

Proof. The result follows from the PTIME-completeness of model
checking for ATL (Alur et al. 2002) and ATEL (van der Hoek
and Wooldridge 2003). It is easy to see that S(A1, . . . ,Ak) can be
constructed in time polynomial in the size of S,A1, . . . ,Ak. For
example, the time to compute d̂ can be expressed as a polyno-
mial in k, |Q|, |di(q)| for each q and i and |Ai | for each i. Since
pre(S(A),G,Q′) can be computed in time polynomial in the size of
S(A),G,Q′ (van der Hoek and Wooldridge 2003) and the size of
S(A) is a polynomial in the size of S, pre(S(A),G,Q′) can be com-
puted in time polynomial in the size of S,G,Q′,A by construct-
ing S(A). Each occurrence of a descriptor A in the formula is a
part of the input, and is used in only one pre-computation by the
algorithm. Thus, since eval(φ, S) can be computed in polynomial
time for ATEL formulae φ, so it can for ATEL-A formulae. The
problem for ATEL-A is PTIME-hard since ATEL-A extends ATEL.
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PTIME-completeness for the ATL-A problem follows since ATL-A
is included in ATEL-A, and ATL is included in ATL-A.

5. CONCLUSIONS

ATEL lacks the expressive power to express certain interesting prop-
erties about the interaction between action and knowledge. The pro-
posed generalization of the ATL operators is both syntactically and
semantically simple and computationally tractable, but gives a rich
syntax for statements about actions. Formally, the fact that ATEL-
A is more expressive than ATEL is shown by Theorems 1 and 2.

Several properties of ATEL-A have been discussed, but a com-
plete axiomatization is left for future work. Implementation of the
semantics of the new operators in a model checker such as Mocha
should be straightforward.

In future work the expressiveness of ATEL-A and the logics
ATOL/ATEL-R* mentioned in note 3 should be compared. An
interesting direction would be to introduce the generalized operators
into ATOL/ATEL-R*.

ATL-A can be viewed as allowing, in addition to atomic actions
(〈〈ai〉〉), PDL-like composition of actions into more complex ones,
viz. concurrency (〈〈ai, bj 〉〉) and choice (〈〈{a, b}i〉〉). Another inter-
esting direction is to also allow a sequencing operation on actions
in order to express plans, as mentioned in note 4. A key point in
a logic about knowledge and plans would be to give an account of
what it means to know that a plan can be used to achieve a goal.
ATOL/ATEL-R* may be the best candidates for such an extension
with plan-expressions.

APPENDIX

Proof of Lemma 1. Let F=(k,Q,�,ACT, d, δ,∼1, . . . ,∼k) and F ′ =
(k,Q,�,ACT, d ′, δ′,∼1, . . . ,∼k) be as in the lemma, and let π be a
labeling function. In Section 2, the set of strategies Str(G) and the
outcome function out for a given C(E)GS were defined. Both these
notions are properties of frames rather than models, and in order to
talk about them for both frame F and F ′, they will be subscripted
by the frame. For example, StrF (G) is the set of strategies for group
G in frame F , and outF is the output function on frame F .
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First, two intermediate results are shown. For these, let G⊆� be
arbitrary. The first one is:

�fG ∈StrF (G)⇒∃ �f ′
G ∈StrF ′ (G)∀q ∈QoutF ′(q, �f ′

G)⊆outF (q, �fG).(24)

Let �fG ∈StrF (G), and define �f ′
G as follows, for j ∈G:

f ′
j (q0 · · ·qm)=

{
b, if j = i, qm=q ′, fj (q0 · · ·qm)=a,
fj (q0 · · ·qm), otherwise.

It is easy to see that �f ′
G ∈ StrF ′(G). Let q ∈Q and assume that λ∈

outF ′(q, �f ′
G). We must show that λ∈ outF (q, �fG) (recall the defini-

tion of out from Section 2). Clearly, λ[0]=q. Let j ≥0. There is an
�a′ ∈D′(λ[j ]) (where D′(q) is the set of joint actions in q in F ′) such
that a) ∀l∈Ga′

l =f ′
l (λ[0, j ]) and b) δ′(λ[j ], �a′)=λ[j + 1]. Let �a be �a′,

except that each agent l ∈G uses fl instead of f ′
l :

al =
{
fl(λ[0, j ]), if l ∈G,
a′
l , otherwise.

�a ∈D(λ[j ]): if l ∈G then al = fl(λ[0, j ])∈ dl(λ[j ]) and if l �∈G then
al = a′

l ∈ d ′
l (λ[j ]) ⊆ dl(λ[j ]). We must show that a) al=fl(λ[0, j ])

when l∈G, and b) δ(λ[j ], �a)=λ[j + 1]. a) holds by definition of
al. For b), it suffices to show that δ(λ[j ], �a)=δ(λ[j ], �a′), since
δ(λ[j ], �a′)=δ′(λ[j ], �a′)=λ[j + 1]. If �a=�a′ we are done, so let m

be such that am �= a′
m. The only possibility for this is that m ∈

G in which case am=fm(λ[0, j ]) and a′
m=f ′

m(λ[0, j ]) and since
fm(λ[0, j ]) �= f ′

m(λ[0, j ]), the only possibility is that m= i, λ[j ] = q ′,
a′
m = f ′

m(λ[0, j ])= b and am = fm(λ[0, j ])= a. Thus, �a= �a[a/m] and
�a′ = �a[b/m], and δ(λ[j ], �a)= δ(λ[j ], �a′) follows by equivalence of a
and b in q ′. Thus, λ∈outF (q, �fG), and (24) holds for any G.

The second intermediate result is dual to (24):

�f ′
G ∈ StrF ′(G)⇒∃ �fG ∈StrF (G)∀q ∈QoutF (q, �fG)⊆outF ′(q, �f ′

G)(25)

Let �f ′
G∈StrF ′(G) and define

�fG= �f ′
G

It is easy to see that �fG ∈ StrF (G): fl(q0 · · ·qm) ∈ d ′
l (qm) ⊆ dl(qm).

Let q ∈Q and assume that λ∈ outF (q, �fG). We must show that λ∈
outF ′(q, �f ′

G). Clearly, λ[0] = q. Let j ≥ 0. There is an �a ∈D(λ[j ])
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such that a) ∀l∈Gal =fl(λ[0, j ]) and b) δ(λ[j ], �a)=λ[j +1]. Let �a′ be
defined as follows:

a′
l =

{
b, if l= i, λ[j ]=q ′, al =a (case A),
al, otherwise (case B)

�a′ ∈D′(λ[j ]): in case A, ai =a∈di(q ′), and a′
l =b∈di(q ′) by equiva-

lence of a and b for i in q ′, so a′
l =b∈d ′

i (q
′). In case B if not both

l= i and λ[j ] = q ′ then a′
l = al ∈ dl(λ[j ])= d ′

l (λ[j ]). In case B if l= i
and λ[j ]=q ′ then al �=a and a′

l=al ∈dl(λ[j ])\{a}=d ′
l (λ[j ]). We must

show that a) a′
l =f ′

l (λ[0, j ]) when l ∈G and b) δ′(λ[j ], �a)=λ[j + 1].
For (a), let l ∈G and first consider case A in the definition of a′

l .
This case is impossible since l ∈G: ai = a= fi(λ[0, j ])= f ′

i (λ[0, j ]),
so a ∈ d ′

i (q
′) which is impossible. So a′

l must be defined by case B,
in which case a′

l = al = fl(λ[0, j ]) = f ′
l (λ[0, j ]). For (b), it suffices

to show that δ(λ[j ], �a′)= δ(λ[j ], �a), since δ′(λ[j ], �a′)= δ(λ[j ], �a′) and
δ(λ[j ], �a)= λ[j + 1]. If �a = �a′ we are done, so let m be such that
am �=a′

m. The only possibility is that λ[j ]=q ′, m= i, ai=a and a′
i=b.

Then �a= �a[a/i] and �a′ = �a[b/i], and δ(λ[j ], �a′)=δ(λ[j ], �a) follows by
equivalence of a and b for i in q. Thus, λ∈ outF ′(q, �f ′

G), and (25)
holds for any G.

Finally,

∀q∈Q
(
(F,π), q |=φ⇔ (F ′, π), q |=φ)

(26)

can be shown for all φ by structural induction. Only two cases are
shown here; the propositional cases are trivial and the other tempo-
ral cases are similar to the one shown.

φ=〈〈G〉〉φ1Uφ2: (F,π), q |= φ iff ∃ �fG∈StrF (G)∀λ∈outF (q, �fG)∃j≥0

(F,π), λ[j ] |=φ2 and ∀0≤o<j (F,π), λ[o] |=φ1 iff, by the induction
hypotheses, ∃ �fG∈StrF (G)∀λ∈outF (q, �fG)∃j≥0(F

′, π), λ[j ] |= φ2 and
∀0≤o<j (F ′, π), λ[o] |=φ1 iff, by (24) for the direction to the right
and (25) for the direction to the left, ∃ �f ′

G∈StrF ′ (G)∀λ∈outF ′ (q, �f ′
G)

∃j≥0

(F ′, π), λ[j ] |=φ2 and ∀0≤o<j (F ′, π), λ[o] |=φ1 iff (F ′, π), q |=φ.
φ=Kiψ : (F,π), q|=φ iff for all q ′ ∈ Q such that q∼i q

′ (F,π), q ′ |=
ψ iff, by the induction hypothesis, for all q∼i q

′ (F ′, π), q ′ |=
ψ iff (F ′, π), q |=φ.
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NOTES

1 In addition, ATEL has operators for common knowledge and “everyone
knows.” These are not used in the following and are therefore not presented here.
2 They are used as axioms for ATL by Goranko and van Drimmelen (2003), and
it is easy to see that they also hold for ATEL.
3 Particularly, Jamroga and van der Hoek (2004) introduce the logics alternating-
time temporal observational logic (ATOL) and ATEL-R* in order to deal with
the mentioned and related problems. In these logics (3) is taken as a semantic
assumption, so the question of expressing the property in these logics is irrel-
evant. The expressiveness of action properties in these logics is nevertheless an
interesting direction for further work; see Section 5.
4 It is assumed here that this formula fits the intention of the schema (6) since
in (van der Hoek and Wooldridge 2003) T is said to be “a temporal operator”
and U is a temporal operator.
5 See (Ågotnes 2004) for AETS counter models corresponding to the CEGS ones
given in Section 3.1.
6 A possibility for further work is to allow sequences of actions, like in (Moore
1984; Morgenstern 1986, 1987) in order to be able to express plans in ATL.
7 The definition has been made as succinct as possible, but may be confusing
to read (particularly because the arbitrary (existence ensured by �a) actions bi for
i ∈G are not actually used). Here is an equivalent, as the reader can verify, for-
mulation, where G={g1, . . . , gm} and �\G={s1, . . . , sp}:

S, q |= 〈〈A,G〉〉©φ⇔A× ∩D(q) �=∅ and
∃cg1 ∈dg1 (q)∩Ag1

· · · ∃cgm∈dgm (q)∩Agm∀cs1 ∈ds1 (q)∩As1 · · · ∀csp ∈dsp (q)∩Asp S, δ(q, �c) |=φ.
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