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Treated philosophically,

it [mathematics] becomes a part of philosophy

Herbart*

1. INTRODUCTION

In 1888 Hilbert made his Rundreise from Königsberg to other Ger-
man university towns. He arrived in Berlin just as Dedekind’s Was
sind und was sollen die Zahlen? had been published. Hilbert reports
that in mathematical circles everyone, young and old, talked about
Dedekind’s essay, but mostly in an opposing or even hostile sense.1 A
year earlier, Helmholtz and Kronecker had published articles on the
concept of number in a Festschrift for Eduard Zeller. When reading
those essays in parallel to Dedekind’s and assuming that they reflect
accurately more standard contemporaneous views, it is easy to
understand how difficult it must have been to grasp and appreciate
Dedekind’s remarkably novel and thoroughly abstract approach.
This is true even for people sympathetic with Dedekind’s ways.
Consider, for example, the remark Frobenius made in a letter of 23
December 1893 to Dedekind’s collaborator and friend Heinrich
Weber who was planning to write a book on algebra:

I hope you often walk on the paths of Dedekind, but avoid the too abstract corners,

which he now likes so much to visit. His newest edition contains so many beauties,
§173 is highly ingenious, but his permutations are too disembodied, and it is also
unnecessary to push abstraction so far.2

This remark was made by someone who refers to Dedekind as ‘‘our
admired friend and master’’. The use of permutations, i.e., isomor-
phisms, in Dedekind’s algebraic investigations is systematically re-
lated to the use of similar mappings in Was sind und was sollen die
Zahlen? (The introduction of the general concept of mapping and its
structure-preserving variety for mathematical investigations is per-
haps the methodologically most distinctive and most radical step in
Dedekind’s work.)
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Dedekind was well aware that such difficulties would arise. In the
preface to the first edition of 1888 he writes that anyone with sound
common sense can understand his essay and that philosophical or
mathematical school knowledge is not needed in the least. He con-
tinues, as if anticipating the reproach of having pushed mathematical
abstraction and logical analysis too far:

But I know very well that many a reader will hardly recognize his numbers, which

have accompanied him as faithful and familiar friends all his life, in the shadowy
figures I present to him; he will be frightened by the long series of simple inferences
corresponding to our step-by-step understanding, by the sober analysis of the se-

quence of thoughts on which the laws of numbers depend, and he will become
impatient at having to follow proofs for truths which to his supposed inner intuition
seem evident and certain from the very beginning.3

Dedekind arrived at his approach only after protracted labor as he
emphasized in his letter to Keferstein dated 27 February 1890; in this
letter Dedekind defended his essay against Keferstein’s critical review
1890. Indeed, Dedekind had started to develop his views concerning
numbers in a manuscript, or rather a sequence of manuscripts,
written during the period between 1872 and 1878.4 These intellectual
developments are not isolated foundational ruminations, but have to
be seen in the context of Dedekind’s contemporaneous work on
algebraic number theory; cf. Section 4.

The publication of the essays by Helmholtz and Kronecker
moved Dedekind finally to sharpen, complete, and publish his
considerations. He characterized his views as ‘‘being in some re-
spects similar [to those of Helmholtz and Kronecker], but through
their grounding essentially different’’.5 This is a gentle formulation
of sharp mathematical and philosophical differences. The differences
emerged in Dedekind’s reflections slowly and over a long period of
time, but they ultimately resulted in a dramatic shift. The latter can
be understood, or so we will argue more explicitly below, as artic-
ulating an axiomatic approach that is joined with a genetic one in a
methodologically coherent way. In his essay Über den Zahlbegriff,
Hilbert distinguished sharply between the axiomatic and genetic
method, but did not recognize then the complementary roles they
play for the foundations of arithmetic. Dedekind’s and Hilbert’s
investigations have to be seen against the backdrop of the arith-
metization of analysis, that is, of the reduction of analysis to
number theory. Dedekind’s approach is associated with a novel
structuralist perspective on mathematics and is grounded in logic
broadly conceived. Hilbert sustains this general perspective in what
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he later calls existential axiomatics, but he gives up a logicist in
favor of a finitist grounding of mathematics; of course, that pre-
supposes the formalistic sharpening of the axiomatic method and
the syntactic formulation of the consistency problem. For that
development, see Sieg (1999, 2002).

By tracing its development we provide a view of Dedekind’s
evolving foundational position that apparently differs from Hilbert’s:
to our knowledge, Hilbert never considered Dedekind as having used
the axiomatic method. The view we provide is definitely in conflict
with that of contemporary writers like Ferreirós, Corry, and
McCarty. According to Ferreirós, Dedekind is non-modern in logical
matters, as he can be viewed as ‘‘anti-axiomatic’’; according to Corry,
Dedekind is non-modern in mathematical matters, as he can’t be
taken to be a mathematical structuralist; finally, according to
McCarty, Dedekind is non-modern in philosophical matters, as he is
a thoroughgoing Kantian.6 The reason for Ferreirós’s and Corry’s
judgments is rooted, ultimately, in a particular understanding of the
foundational essays 1872 and 1888. (That understanding is made
explicit by Ferreirós on pp. 119–124 and by Corry on pp. 71–75.) Our
paper should make it very clear that their understanding of Dede-
kind’s (methodology for the) treatment of real and natural numbers is
inadequate. This also holds for McCarty. When contrasting 1872 and
1888 in his paper 1995, McCarty points out that the essay from 1888
contains a categoricity result, whereas that from 1872 does not.
McCarty asks on p. 81, why Dedekind does not establish that the
geometric straight line and the system of rational cuts are isomorphic.
He continues, ‘‘To this the short – but by my lights correct – answer
is: Dedekind thinks that such an isomorphism would be impossible to
establish’’. Our contrary answer is indicated in the Concluding Re-
marks, Section 7.

Our general views are informed by the work of Belna, Dugac,
Gray, Mehrtens, Noether, Parsons, Stein, and Tait. However, they
have been shaped most importantly by a close reading of manuscripts
in Dedekind’s Nachlass. It is fair to say that these manuscripts –
including Arithmetische Grundlagen, the three drafts listed in Section
3.3, 1871/1872, 1872/1878, and also 1887 – have not yet been taken
into account properly for a detailed analysis of the development of
Dedekind’s foundational views and its intimate connection to the
evolution of his mathematical work. Our essay continues and deepens
earlier work in Sieg (1990, 2000) and Schlimm (2000), but focuses
almost exclusively on the systematic development of Dedekind’s
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approach to the foundations of the theory of numbers. And what a
stunning development it is! In a second essay, Dedekind’s general
methodological concerns will take center stage.

Let us give a brief orientation of this paper. Section 2 is concerned
with the important Habilitationsrede of 1854, as it reveals Dedekind’s
perspective on the classical number systems and some broad meth-
odological issues. We expose a subtle, but pervasive circularity in
Dedekind’s considerations, when he connects the creation of numbers
beyond the naturals with the extension of operations. This subtle
circularity is addressed, fully and satisfactorily, through the devel-
opments described next. Section 3 presents Dedekind’s more sys-
tematic treatment of numbers around 1872. He introduces the
successor function for natural numbers and takes a dramatic step of
‘‘analysis’’ toward their coherent extension to integers and rationals.
This step is complemented by a ‘‘synthesis’’ described in Sections 4.1
and 4.2; the central demands underlying these extensions – together
with a quite new aspect of abstraction – are emphasized, when we
consider the free creation of irrational numbers in Section 4.3. This
leaves open in 1872 the question how the natural numbers can be
characterized. The evolution of Dedekind’s theory of chains and the
formulation of the Dedekind–Peano axioms for natural numbers are
described in Section 5, based on a detailed analysis of 1872/1878.

Remarkable metamathematical investigations of this axiom sys-
tem are presented in 1888. Dedekind’s attempt to establish its con-
sistency and his proof of its categoricity are of course crucial here;
they are discussed in Section 6. The categoricity result allows him to
justify the claim that the numbers can be called a free creation of the
human mind. ‘‘Free creation’’ is understood here in a different, but
related way from ‘‘free creation’’ in 1872; however, the meaning is
radically different from ‘‘creation’’ in 1854. This central part of
Dedekind’s foundational work, elucidated by some general reflec-
tions, is in accord with the spirit of Herbart’s remark we quoted as
the motto for our essay: the mathematical work opens up a com-
pletely novel and distinctive philosophical perspective on the nature
of number and, indeed, of mathematics.

2. EXTENDING OPERATIONS

Richard Dedekind, born in 1831 as a citizen of Braunschweig,
finished his dissertation under Gauss in 1852 and gave a talk on the
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occasion of his Habilitation only two years later. The talk was enti-
tled Über die Einführung neuer Funktionen in der Mathematik and was
presented on 30 June 1854 to an audience that included Gauss, the
classical philologist Hoeck, the historian Waitz, and the physicist
Weber. Dedekind had chosen to talk about the general way, ‘‘in
which new functions, or, as one might also want to say, new opera-
tions, are added to the chain of already existing ones in the
progressive development of this science (i.e., mathematics)’’.7 For
Dedekind in 1854, the introduction of new functions was an
extremely important component in the development of mathematics;
for us now, Dedekind’s observations reveal general aspects of his
intellectual approach as well as special features of his understanding
of the classical number systems.

2.1. Systematic Reflections

The concrete analyses of the introduction of some functions are
preceded by expansive remarks about the role of functions and
concepts in organizing a body of knowledge, in ‘‘shaping a system’’.
That role pertains to the law as well as to the sciences and, in par-
ticular, to mathematics. Dedekind made these remarks at the age of
twenty-three for a particular occasion. Nevertheless, they bring out
striking characteristics of his way of thinking and, consequently, of
his later mathematical work. Their intrinsic significance is underlined
by the fact that he returned to them in 1888.

In the preface to 1888 Dedekind mentions with some satisfaction
that the purpose of his Habilitationsrede had been approved by
Gauss; he characterizes it then and there as defending the claim that
the most significant and most fruitful advances in mathematics and
other sciences have been made ‘‘by the creation and introduction of
new concepts, rendered necessary by the frequent recurrence of
complex phenomena, which could be controlled only with difficulty
by the old ones’’.8 This need to introduce new and more appropriate
notions arises for Dedekind, in 1854, from the fact that human
intellectual powers are imperfect; their limitation leads us to frame
the object of a science in different forms or systems. To introduce a
concept, ‘‘as a motive for shaping the system’’, means in a certain
sense to formulate an hypothesis concerning the inner nature of a
science, and it is only the further development that determines the
real value of such a notion by its efficacy in recognizing general
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truths. These truths, in turn, affect the formulation of definitions.
Dedekind summarizes his considerations in a most revealing way:

So it may very well happen that the concepts, introduced for whatever motive, have

to be modified, because they were initially conceived either too narrowly or too
broadly; they will require modification so that their efficacy, their import, can be
extended to a larger domain. The greatest art of the systematizer lies in carefully

turning over definitions for the sake of the discovered laws or truths in which they
play a role.9

Dedekind turns his attention then to mathematics. Definitions in
mathematics are initially of a restricted form, but their generaliza-
tions are determined without arbitrariness. Indeed, Dedekind asserts,
‘‘they follow with compelling necessity from the earlier narrower
ones’’. I.e., they do follow with necessity, if one applies the principle
that some laws holding for the initial definitions are viewed as gen-
erally valid. These laws become consequently the source of the gen-
eralized definitions, when one asks, ‘‘How must the general definition
be formulated such that the found characteristic law is always satis-
fied?’’ Dedekind views this as the distinctive feature of mathematical
definitions, and the feature by which mathematics is distinguished
from the other sciences. This claim will be taken up below; here we
just note that in mathematics the creation of new objects may be
involved, whereas the objects of the other sciences are presumably
given. In order to illustrate this general point, we consider one of
Dedekind’s mathematical examples – an example that provides fur-
thermore a real insight into his contemporaneous understanding of
the classical number systems.

2.2. Generally Valid, Subtly Circular

Dedekind describes elementary arithmetic as being ‘‘based on the
formation of ordinal and cardinal numbers’’ and continues, ‘‘the
successive progress from one member of the series of the absolute
whole numbers to the next is the first and simplest operation of
arithmetic; all other operations rest on it’’.10 Addition, multiplication,
and exponentiation are obtained by iterating ‘‘the first and simplest
operation,’’ addition, and multiplication, respectively, and then join-
ing these iterations into single acts. For the further development of
arithmetic these definitions of the basic operations are insufficient as
they are restricted to the very small domain of the positive integers.
The demand that one should be able to carry out the inverse opera-
tions of subtraction, division etc. without any restrictions leads to the
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creation of ‘‘the negative, fractional, irrational and finally also the
so-called imaginary numbers’’. Indeed, Dedekind views this last
demand as another formulation of the demand ‘‘to create anew by
each of these operations the whole given number domain’’.

Having expanded the domain of numbers by means of the inverse
operations, a crucial question arises, namely, how to extend the
definitions of the fundamental operations so that they are applicable
to the newly created numbers. Here Dedekind joins the above general
reflections and considers in detail the extension of multiplication
from the natural numbers to all integers. The extension of the defi-
nition of multiplication is non-arbitrary, Dedekind asserts, if one
follows his principle of the general validity of laws as the source for
deriving ‘‘the meaning of the operations for the new number do-
mains’’. This source cannot be exploited without a subtle circularity
for addition itself: the new numbers are generated by the unrestricted
inverse of a restricted operation, which is then extended to this
generated broader domain! In spite of Dedekind’s protestation – that
the definition of the extended operation ‘‘involves an a priori com-
plete arbitrariness’’ (see next paragraph) – he appeals to the very
character of that generation. The intricate dependency can be ob-
served most clearly also in Dedekind’s considerations for the exten-
sion of multiplication from the natural numbers to all integers.

As noted earlier, Dedekind defines multiplication for the natural
numbers as joining the iteration of addition into one single act, and it
is of course assumed now that addition and subtraction are already
available for all integers. Prima facie, the definition of multiplication
via iteration makes sense only if the multiplicator is positive; the
multiplicator is the number which indicates how often one has to
iterate the addition of the multiplicand. The multiplicand can be
positive or negative. Dedekind asserts:

A special definition is therefore needed in order to admit negative multiplicators as

well, and to liberate in this way the operation from the initial restriction; but such a
definition involves an a priori complete arbitrariness, and it would only later be
determined whether this arbitrarily chosen definition would bring any real advantage

to arithmetic; and even if this succeeded, one could only call it a lucky guess, a happy
coincidence – the sort of thing a scientific method ought to avoid.11

What considerations might provide grounds for a principled defini-
tion of the extended operation of multiplication? – ‘‘One has to
investigate’’, Dedekind demands, ‘‘which laws govern the product, if
the multiplicator is successively subjected to the same changes by
which the series of negative numbers is generated from the series of
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the absolute whole numbers in the first place’’. The broader domain is
obtained, of course, by the unrestricted inversion of addition, i.e., by
considering (m� n) for arbitrary natural numbers m and n. Dedekind
observes that a · (m+1) ¼ a · m+a, which yields the ‘‘addition
theorem for the multiplicator’’ a · (m+n) ¼ a · m+a · n. From this
follows the ‘‘subtraction theorem’’ a · (m� n) ¼ a · m� a · n, but
only as long as the minuendm is greater than the subtrahend n. Taking
this law as valid also for the case that the difference representing the
multiplicator is negative, one obtains the definition of multiplication
for the generated new numbers.12 Thus, Dedekind concludes, ‘‘It is no
longer an accident that the general law for multiplication is in both
cases exactly the same’’. Dedekind obtains in a similar way the gen-
eralized definition of exponentiation for rational numbers.

2.3. Imaginary and Real Problems

The extension of the basic operations to the real and imaginary
numbers is only alluded to. Dedekind claims, ‘‘These advances
[obtained by creating the new classes of numbers] are so immense that
it is difficult to decide which of the many paths that are opened up
here one should follow first’’. So much is clear, however, that the
operations of arithmetic have to be extended to these new classes and
that no extension is possible along the lines sketched above without
grasping the ‘‘generation’’ of the real and imaginary numbers. Here,
‘‘at least with the treatment of the imaginary numbers’’, the main
difficulties for the systematic development of arithmetic begin.
Dedekind ends the discussion of the number systems in a very sur-
prising way:

However, one might well hope that a truly solid edifice of arithmetic will be attained
by persistently applying the principle not to permit ourselves any arbitrariness, but
always to be led on by the discovered laws. Everybody knows that until now, an
unobjectionable theory of the imaginary numbers, not to mention those newly

invented by Hamilton, does not exist, or at any rate has not been published yet.13

Four years later, in the fall of 1858, Dedekind lectured on the
infinitesimal calculus at the ‘‘Eidgenössisches Polytechnikum’’ in
Zürich. He reports in 1872 that he was motivated – by the ‘‘over-
whelming feeling of dissatisfaction’’ with the need to appeal to geo-
metric evidences when discussing certain limit considerations – to
search for ‘‘a purely arithmetic and completely rigorous foundation
of the principles of infinitesimal analysis’’. He found it in his
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examination of continuity and the resulting definition of real numbers
as, or rather through, cuts of rationals.

Dedekind discussed the solution with his friend Heinrich Durège
at the time and presented the material to the ‘‘Wissenschaftlicher
Verein’’ in Braunschweig on 11 January 1864, but also in some of his
lectures on the differential and integral calculus.14 Already in 1870 he
had the intention of publishing his theory of continuity according to a
letter from his friend Adolf Dauber.15 We have the extended draft
1871/1872 of the essay Stetigkeit und irrationale Zahlen; that was
seemingly written in late 1871 and early 1872. We should notice that
by this time Dedekind had isolated the concept of a field (Körper) in
Supplement X of Dirichlet (1871). This concept plays a significant
role in 1872; the novel and careful definition of the arithmetic oper-
ations on rational cuts via their definition on rationals will be dis-
cussed in Section 4.2. This fits marvelously with Dedekind’s evolving
view of natural numbers and their extensions to integers and rationals
around 1872.

Assuming that the difficulty mentioned explicitly in the Habilita-
tionsrede (to obtain an ‘‘irreproachable theory of imaginary num-
bers’’) has been resolved16 and that the definition of real numbers in
terms of cuts answers Dedekind’s concerns for a rigorous foundation
of analysis, two questions are clearly implicit in the above and remain
open for Dedekind in 1872: (i) What are (the principles for) natural
numbers? and (ii) How are the integers and rational numbers ob-
tained, or how are they created, starting with the natural numbers? In
the Habilitationsrede Dedekind takes for granted that the new
mathematical objects (the negative and fractional numbers) have
been obtained already from the natural numbers; the central issue is
there, how to extend the basic arithmetic operations to the wider
number systems. Question (ii) is addressed in a sequence of manu-
scripts contained in Cod. Ms. Dedekind III, 4, and it seems that the
issues were settled to Dedekind’s satisfaction before the essay on
continuity and irrational numbers was completed. Question (i) was
not settled at that time; on the contrary, Dedekind struggled with it
intermittently over the next six years. The intense work is reflected in
the manuscript 1872/1878; it served as the very first draft for the 1888
essay on the nature and meaning of numbers and is published as
Appendix LVI in Dugac (1976) with the title Gedanken über die
Zahlen. We will analyze that work in Section 5.1, whereas the next
two sections are devoted to turning the puzzle of manuscripts on
extensions into an informative mosaic that answers question (ii).
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3. EXTENDING DOMAINS

In this section two important steps are described and analyzed: (i) the
successor operation is separated clearly from the other arithmetic
operations as the one that generates the domain of natural numbers
(above, and even in 1872, all the arithmetic operations are on a par);
(ii) basic domains of integers and rationals are characterized axi-
omatically (guaranteeing invertibility of addition and multiplication,
but also providing without subtle circularity the basis for extending
the arithmetic operations). The axiomatic ‘‘analysis’’ is comple-
mented by a ‘‘synthesis’’ in Section 4.1: Dedekind gives an explicit
definition of appropriate domains that form models of those axi-
oms.17 These considerations foreshadow the broad methodological
moves in 1888; namely, an axiomatic characterization of simply
infinite systems and the explicit definition of a model. To obtain an
appropriate axiomatic analysis of the natural numbers as a simply
infinite system will take significantly more work. That is obtained in
the manuscript 1872/1878, at the end of which we find the first for-
mulation of the Dedekind–Peano axioms. But one step at a time!

3.1. Analyzing Na€ıvely

The manuscript 1872/1878 has the subtitle Attempt to analyze the
number concept from the na€ıve point of view (Versuch einer Analyse
des Zahlbegriffs vom naiven Standpuncte aus). Is it in the ‘‘na€�ve’’
approach to the topic that Dedekind sees, as he does in 1888, a
certain similarity between his view and that of Helmholtz and
Kronecker? What did Dedekind have in mind, when calling his
approach na€�ve? An answer to the second question seems to be given
in his letter to Keferstein by the remark addressing the rhetorical
question, ‘‘How did my essay come into being?’’

Surely not all at once, rather it is a synthesis constructed after protracted labor,
which is based on a preceding analysis of the sequence of natural numbers as it
presents itself, in experience so to speak, to our consideration.18

A thoroughgoing analysis of the data of ordinary mathematical
experience, free from philosophical preconceptions, is fundamental
for Dedekind. Such an analysis, as Dedekind demanded already in
1854, should lead to notions that reflect the nature of the subject and
prove their efficacy in its development. The independence from tra-
ditional philosophical preconceptions is brought out clearly, when
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Dedekind at the very beginning of 1872/1878 writes that the notions
he uses for the foundation of the number concept ‘‘remain necessary
for arithmetic even when the notion of cardinal number is assumed as
immediately evident (‘inner intuition’)’’.19

Recall that in 1854 elementary arithmetic begins with the forma-
tion of ordinal and cardinal numbers. Dedekind views the ‘‘successive
progress from one member of the sequence of positive integers to the
next’’ as ‘‘the first and simplest operation of arithmetic’’ on which all
other operations rest. Addition is obtained by joining iterations of
this ‘‘first and simplest operation’’ into a single act; in completely
parallel ways one obtains multiplication from addition and expo-
nentiation from multiplication. This standpoint concerning the
character of natural numbers is hardly changed, when Dedekind
expresses his views in Section 1 of 1872. There he uses chain, the
central notion of 1888, not yet in the precise sense of the later work,
but rather as a fitting informal notion to capture the structural
character of the domain that has been obtained by successively
generating its objects through the ‘‘simplest arithmetical act:’’

I regard the whole of arithmetic as a necessary, or at least natural, consequence of
the simplest arithmetical act, that of counting, and counting itself is nothing other
than the successive creation of the infinite series of positive integers in which each

individual is defined by the one immediately preceding; the simplest act is to pass
from an already-created individual to its successor that is to be newly created. The
chain of these numbers already forms in itself an exceedingly useful instrument for

the human mind; it presents an inexhaustible wealth of remarkable laws, which one
obtains by introducing the four fundamental operations of arithmetic.20

One should notice that Dedekind speaks of counting as ‘‘nothing
other’’ than the successive creation of the individual positive integers.

An elementary and restricted development of arithmetic is given in
the contemporaneous manuscript Arithmetische Grundlagen; this
manuscript is found in three distinct versions in Dedekind’s Nachlass
(Cod. Ms. Dedekind III, 4, II).21 The development uses only the
definition principle by recursion and the proof principle by induction.
The first version starts out in the following way:

§1

Act of creation 1; 1+1=2; 2+1=3; 3+1=4 . . . numbers (ordinal).
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§2

Definition of addition by a+(b+1)=(a+b)+1. After this, consequences are –
according to the nature of the subject – always to be deduced by complete induction.22

This is only slightly modified in the second version that reads:

§1

Creation of the numbers: 1; 1+1=2; 2+1=3; 3+1=4 . . . from each number a the
following number a+1 is formed by the act +1. Therefore, everything by complete

induction.

§2

Definition of addition: a+(b+1)=(a+b)+1.23

In both versions elementary arithmetic is then briefly and very
thoroughly developed. Dedekind establishes (in different ways)
associativity and commutativity of addition and multiplication and
ends with a proof of the distributive law a·(b+c) ¼ a·b+a·c. In the
second version, he remarks on the margin that this law can be ob-
tained much more directly from the definition of multiplication and
the associativity of addition. Such a more direct argument is indeed
presented in the third version.

Most remarkable about the third version of Arithmetische
Grundlagen is the fact that Dedekind separates the generating ‘‘suc-
cessor operation’’ from addition, i.e., the sequence of numbers is now
indicated by 1, u(1)=2, u(2)=3, u(3)=4, . . ., and the recursive
definition of addition is given by the two equations
a+u(b) ¼ u(a+b) and a+1 ¼ u(a) instead of just by the single
equation a+(b+1) ¼ (a+b)+1. This notational change to the unary
successor operation indicates the beginning of a quite dramatic
conceptual shift that finds its systematic expression in the manuscript
1872/1878 and provides one solid reason for thinking that Arithme-
tische Grundlagen was completed in (early) 1872.

3.2. Creating in Circles

The third version makes also quite clear that Dedekind is trying to
use these foundations for constructing the extended number systems,
here, of all integers. Dedekind defines subtraction by a� b ¼ c, in
case a ¼ b+c; this is taken, implicitly, as the motivation for con-
sidering an extension of the positive integers that contains 0 (zero)
and the negative numbers 1*, 2*, 3*, etc. The successor operation is
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suitably extended by setting, in particular, 0+1 ¼ 1, 1*+1 ¼ 0,
2*+1 ¼ 1*, 3*+1 ¼ 2*, etc. Having defined the predecessor opera-
tion b ¼ a� 1, in case b+1 ¼ a, he considers 1� 1, (1� 1)� 1, etc. as
the new numbers.

Together with the systematic development up to the distributive
law (central for restricting the possible extensions of multiplication in
1854 and called there the ‘‘addition theorem for the multiplicator’’)
this sets the stage for a development along the lines suggested in his
Habilitationsrede. Indeed, it sets the stage in a much more refined
way, but it leaves in place the subtle circularity we diagnosed in 1854;
it is now directly visible through the juxtaposition of the non-positive
numbers 0, 1*, 2*, etc. and the new numbers 1� 1, (1� 1)� 1,
((1� 1)� 1)� 1, etc. Thus, Dedekind assumes here a domain con-
taining also zero and the negative numbers in order to define the
extended successor operation. That allows him, in turn, to define the
general predecessor operation and to describe the desired extension of
the system of natural numbers by the new numbers.24 But of what
objects does the first extension really consist? What are the negative
numbers? (Dedekind’s answers to these questions are discussed fully
in Section 4.)

There is no indication on the manuscript itself as to when Arith-
metische Grundlagen was written. We conjecture, for three reasons,
that it was completed in early 1872. The first reason is simply the fact
that the beginnings of the various versions are in accord with the
informal description in 1872. The second reason was mentioned al-
ready, when we looked at the third version and noticed an important
and rather unique overlap with 1872/1878. Finally, the third reason is
provided by the systematic context of creating the system of rational
numbers on these arithmetic foundations. In 1871/1872 Dedekind
emphasizes that the rational numbers are a free creation. He also
claims that the ‘‘instrument mathematicians have constructed by
creating the rational numbers’’ has to be refined by the creation of the
irrational numbers in a purely arithmetic way.

Just as negative and fractional rational numbers are formed by a free creation, and

just as the laws of operating with these numbers are reduced to the laws of operating
with positive integers (at least it should be done in this way), in the same way the
irrational numbers must also be defined by means of the rational numbers.25

This long sentence is repeated almost verbatim in the publication
1872. Here it is (and we urge readers to notice the italized replace-
ment for the parenthetical remark in the above quotation):
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Just as negative and fractional rational numbers are formed by a free creation, and

just as the laws of operating with these numbers must and can be reduced to the laws
of operating with positive integers, in the same way the irrational numbers must also
be completely defined by means of the rational numbers alone.26

What is the mathematical substance that allows us to understand the
shift from should to must and can?

We conjecture that the material contained in Cod. Ms. Dedekind
III, 4 provides the answer: having established proper arithmetic
foundations, Dedekind convinces himself in detail that the system of
rational numbers can be created, and that the laws for calculating
with these numbers can be reduced to those for calculating with the
positive whole numbers. This is done, however, in a completely novel
axiomatic way.

3.3. Analyzing Axiomatically

Dedekind’s Nachlass contains several manuscripts dealing with the
extension of the natural numbers to the integers and rational
numbers. Particular ways of extending the number concept are
pursued in the following manuscripts: (i) Cod. Ms. Dedekind III, 4,
I, pp. 1–4, entitled Die Schöpfung der Null und der negativen ganzen
Zahlen, (ii) Cod. Ms. Dedekind III, 4, I, pp. 5–7, without title, but
we will refer to it as Ganze und rationale Zahlen, and (iii) Cod. Ms.
Dedekind III, 2, I, entitled Die Erweiterung des Zahlbegriffs auf
Grund der Reihe der natürlichen Zahlen. The first two manuscripts,
we conjecture, were written in 1872.27 The third one was written
after 1888, as it refers explicitly to the essay 1888; it gives an
altogether modern approach. In this subsection we give a detailed
account of the first manuscript.

Our description in Section 3.2 of how to generate the integers from
the natural numbers is based on remarks in the third version of
Arithmetische Grundlagen. The generation proceeds essentially in two
steps, the creation of the negative numbers motivated by the demand
of the general invertibility of addition and the creation of the new
numbers by the generalized predecessor operation. In Die Schöpfung
der Null und der negativen ganzen Zahlen a beautifully detailed pre-
sentation of the first step of those considerations is given. That is one
way of describing it; more accurately, however, Dedekind separates
cleanly the discussion of the general invertibility of addition, exten-
sion of operations and the permanence of laws from the generation of
mathematical objects satisfying those laws.
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The first manuscript formulates at the outset basic facts regarding
the series of natural numbers N: (1) N is closed under addition;
addition is (2) commutative and (3) associative; (4) if a > b, then
there exists one and only one natural number c, such that b+c ¼ a,
whereas in the opposite case, when a £ b, no such number c exists.
Dedekind notes that the fourth condition states a certain irregularity
and raises the crucial question, whether it is possible to extend the
sequence N to a system M (by the addition of elements or numbers to
be newly generated) in such a way that M satisfies conditions (1)–(3)
and also (40), i.e., for any two elements a and b from M, there exists
exactly one element c, such that b+c ¼ a. And he asks, how rich
must the smallest such system M be.

In the following Investigation, which is also called Analysis,
Dedekind assumes the existence of such a system M. He reasons that
M must contain a unique element 0 (called zero), such that a+0 ¼ a;
furthermore, for every element a in N there must be a new element a*
in M, such that a+a* ¼ 0. Thus, any system M satisfying (1)–(40)
must contain in addition to the elements of N the new element zero
and all the different new elements a*. Dedekind considers now the
system P consisting of just N together with these new elements and
shows that P has already the completeness expressed by conditions
(1)–(40); P is obviously the smallest such system, as it must be con-
tained in any complete system M. The investigation is carried out in
exemplary mathematical clarity, but it assumes quite explicitly the
existence of a suitable M. This methodologically crucial issue is
presumably addressed in the second, and unfortunately incomplete,
section of the manuscript that is entitled Synthesis. Here is the full
text of that section:

From the sequence N of natural numbers a is to be created a system P, which
contains in addition to the elements a also an element 0 and for each a a corre-

sponding element a*, with the stipulation that all these elements in P are different
from each other (easy to formulate more precisely; on the possibility of such a
creation, see farther below).28

There is no ‘‘farther below’’ and thus no discussion of the possibility
of such a creation. The manuscript ends abruptly on page 4 with the
remark just quoted. The folder contains, however, additional mate-
rial that was written at a later date (as argued above), but its sub-
stance was undoubtedly clear to Dedekind in 1872 and can be
understood as realizing such a creation.
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4. CREATING MODELS

The systematic considerations are continued in Ganze und Rationale
Zahlen. This manuscript has two main parts: the first deals with the
extension of the domain of all natural numbers to that of all integers;
the second is concerned with the ‘‘transition from the domain G of all
whole numbers to the field R of all rational numbers’’. The first part
consists of three handwritten pages together with a few Zettel filled
with detailed calculations concerning integers; the second part sket-
ches very briefly similar considerations for the rationals on just one
page. We describe the first part in detail, despite the fact that the steps
are routine for a modern reader: Dedekind has finally found a way
out of the subtle circularity involved in his earlier considerations of
the various number systems (and their creation from the natural
numbers).

4.1. Pairs as Numbers

Dedekind starts out with the domain N of all natural numbers to-
gether with the operations of addition and multiplication. Both
operations satisfy the commutative and associative laws, and the
distributive law connects them. The domain G of all whole numbers is
then formed from N, as Dedekind puts it, by extension: ‘‘Any two
numbers m, n in N generate a number (m, n) in G’’. Dedekind defines
two pairs of numbers (m, n) and (m0, n0) as identical when
m+n0=m0+n and verifies that this relation is symmetric and tran-
sitive. As it is obviously also reflexive, it is an equivalence relation.
Then he defines addition on pairs by letting the sum of (m, n) and
(m0, n0) be identical to the pair (m+m0, n+n0). Having checked that
the defined addition yields identical results when applied to identical
pairs, he verifies easily the associative and commutative laws. Mul-
tiplication for pairs (m, n) and (m0, n0) is given by (mm0+nn0,
mn0+m0n) and is treated in a completely parallel way: uniqueness is
checked (that is actually a quite lengthy argument and spills over
onto the Zettel) and laws are verified; the final step is the verification
of the distributive law.

This is the central part of constructing the integers as pairs of
natural numbers that represent positive and negative numbers, but of
course also zero. It is reminiscent of the very early considerations in
1854, when Dedekind extends subtraction from the natural numbers
to the integers and, in essence, uses differences between natural
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numbers to represent negative numbers. Thinking of the pairs (m, n)
as differences m� n and using the ordinary calculation rules, the
operations are obtained in a direct way and obey the standard laws.
A parallel construction is sketched in the second part of this manu-
script to obtain the rationals R from the integers G: for pairs (m, n)
and (m0, n0) – where m, n, m0 and n0 are in G, but n and n0 are different
from zero – ‘‘identity’’ is defined by mn0=m0n; this is again an
equivalence relation. Thinking of pairs (m, n) as fractions m/n,
addition and multiplication are defined via the ordinary calculation
rules as (mn0+nm0, nn0), respectively (mm0, nn0). The various laws can
be verified. It is also clear, though Dedekind does not prove it, that
the inverted operations can be performed without any restriction.

We emphasize that this manuscript is in very rough form and
indicates only the bare minimum of the needed considerations. But
even so, it does provide a quite novel way in which to ensure the
permanence of laws. Dedekind does not create – out of thin air –
new individual elements: he rather obtains by pairing natural
numbers, respectively integers, new systems of genuine mathemati-
cal objects. The arithmetic operations are then defined in terms of
the operations on natural numbers, respectively integers. These
systems satisfy the laws or axiomatic conditions for integers and
rationals, i.e., Dedekind exhibits models for these laws. In fact, the
models presented are exactly the ones that are still being employed
today: except that in a modern exposition one would deal with
equivalence classes of pairs.

That is done very beautifully in the final and later manuscript
concerned with the extension of the number systems, Die Erweiterung
des Zahlbegriffs auf Grund der Reihe der natürlichen Zahlen. It should
be noticed clearly, however, that Dedekind could have taken this last
step in 1872. There was no ideological reason for avoiding infinite
mathematical objects; indeed, he had used such objects in the ideal-
theoretic investigations of Supplement X for the second edition of
Dirichlet’s Zahlentheorie of 1871, but also in the 1872 essay on
continuity and irrational numbers. Yet there is one question that is
left open: The rational numbers, ‘‘are’’ they these specific infinite
objects? – A pertinent answer can be extracted from 1872, as
Dedekind’s essay answers an analogous question for the reals. In the
introduction to 1888, Dedekind situates his treatment of the natural
numbers in the general context of providing, as he puts it, a com-
pletely clear picture of the science of numbers. He refers to the
example of the real numbers presented in 1872 and remarks that the
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other classes of numbers can be treated easily in a quite similar
fashion. It is this observation, made also very clearly in Dedekind’s
letter to Weber dated 24 January 1888, that allows us to use the
methodological considerations concerning the reals for our present
context of the rational numbers. What has Dedekind to say about the
question, what the reals really ‘‘are’’? (The reader should look also at
the related considerations in Section 6.2 and note 62.)

4.2. Systems as Numbers

In his considerations of this very question Dedekind heeds, first of all,
his own later warning in a letter to Lipschitz of 27 July 1876 that
‘‘nothing is more dangerous in mathematics than to make existence
assumptions without sufficient proof’’. This refers to the definition of
the system of real numbers. Recall that the system of reals is to allow
us to pursue all phenomena of the geometric line in a purely arith-
metic way. Thus, it has to be defined by means of rational numbers
and (the laws for) the arithmetic operations have to be reduced to
(those for) the operations on rational numbers. The construction has
to be done in such a way that the resulting system has the same kind
of continuity or completeness as the geometric line. We will empha-
size, on the one hand, the considerations involved in extending the
system of rationals to that of the reals and bring out, on the other
hand, the new answer to the question that parallels the above for
rationals: ‘‘Are’’ the constructed objects, i.e., the cuts, really the real
numbers? (The central issues are discussed in almost identical ways in
1871/1872 and 1872.)

Cuts are partitions (A1, A2) of the system of rationals with the
property that all a1 in A1 are less than all a2 in A2; they are viewed
extensionally: (A1, A2)=(B1, B2) if and only if A1 and A2 have the
same members as B1 and B2, respectively. If A2 contains a smallest
element a0, then the cut (A1, A2) is said to have been engendered by a0;
the fact that not all cuts are engendered by rationals constitutes the
incompleteness or discontinuity of the domain of rationals.29 Dedekind
continues, in the section entitled Creation of irrational numbers:

Thus, whenever we have a cut (A1, A2) produced by no rational number, we create a

new number, an irrational number a, which we regard as completely defined by this
cut (A1, A2); we shall say that the number a corresponds to this cut, or that it
produces this cut. From now on, therefore, to every definite cut there corresponds a
definite rational or irrational number, and we regard two numbers as different or

unequal if and only if they correspond to essentially different cuts.30

WILFRIED SIEG AND DIRK SCHLIMM138



The system of real numbers consists thus of all rational numbers
(corresponding of course to the cuts engendered by them) together
with these newly created irrational ones or, to put it in other
words, the system of rationals has been extended by these irra-
tional numbers. The crucial point is this: reals are not identified
with cuts, but rather ‘‘correspond’’ to cuts; the latter are for
Dedekind genuine mathematical objects, and the relations between
reals and operations on them are defined in terms of the corre-
sponding cuts.

The ordering between two reals a and b corresponding to the
cuts (A1, A2) and (B1, B2) is defined as follows: a < b if and only
if A1 � B1 (if, for any rational cut, the rational that engenders the
cut is always, say, in the right part of the cut). Addition and
multiplication of reals is defined in terms of the corresponding
operations for the rationals. Consider two reals a and b that
correspond to the cuts (A1, A2) and (B1, B2); the sum a+b cor-
responds to the cut (C1, C2), where C1 consists of all c that are
smaller than a1+b1 for some a1 in A1 and b1 in B1, and C2

consists of the remaining rational numbers. Multiplication can be
defined in a similar way, and it is not difficult to verify the
arithmetic laws for a field. Dedekind verifies also the order laws
and proves that the system of reals is continuous. The system of
reals or, more directly, the system of all cuts has been recognized
as a complete ordered field.

It should be noticed that Dedekind uses ‘‘creation’’ here with a
different sense than in the early discussions: for one, not individual
mathematical objects are created, but rather systems thereof; in
addition, the elements of those systems correspond to the elements of
an already established system. (In the case of the reals, they corre-
spond to rational cuts.) Perhaps to emphasize this new sense,
Dedekind speaks in both 1871/1872 and 1872 of free creation.

4.3. Free Creation

Dedekind had excellent reasons for not identifying the real numbers
with cuts of rationals. He articulated them very clearly in his early
correspondence with Lipschitz already in 1876 and, as we mentioned
above, in his letter to Weber dated 24 January 1888. The corre-
spondence with Lipschitz was partially stimulated by the preparation
of Dedekind’s essay Sur la théorie des nombres entiers algébriques,
published in 1877 in the Bulletin des sciences mathématiques.
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Lipschitz had actually suggested that Dedekind be invited to report
on his work in algebraic number theory.31 The resulting attempt by
Dedekind to present his work (essentially contained in Supplement X
of the second edition of Dirichlet’s Zahlentheorie) in a new and
possibly more accessible way contains in the Introduction a long
methodological note; it is attached to remarks about Kummer’s ideal
numbers and his own ideals. In that note he points to 1872 as making
even more evident – for the case of introducing the irrational num-
bers and defining the arithmetic operations on them – the ‘‘legiti-
macy, or rather necessity, of such demands, which must always be
imposed with the introduction or creation of new arithmetic ele-
ments’’. He refers here to the demands concerning the precise defi-
nition of new mathematical objects in terms of already existing ones
and the general definition of operations on them in terms of the given
ones. In contemporary language, the structures of pairs and cuts
provide models of the axioms for integers, rationals, and reals; the
particular elements of these structures are not identified with the
respective numbers, but the latter are specifically obtained by an
abstracting free creation.

If we think of the genetic method as underlying the construction of
mathematical objects, systems of which are models of appropriate
axiom systems, we can see very clearly how it complements in
Dedekind’s hands an axiomatic approach. However, an arithmet-
ization of analysis that satisfies Dedekind’s methodological demands
for creating the irrational numbers has not been achieved yet: for that
it is essential to characterize the very basis of the construction, the
natural numbers. First steps beyond Arithmetische Grundlagen are
taken in the manuscript 1872/1878 for 1888 that was written, modi-
fied, and extended between 1872 and 1878. At the end of this period
Dedekind must have thought about publishing a booklet with the
very title of 1888, as Heinrich Weber writes in a letter of 13
November 1878:32 ‘‘I am awaiting your book Was sind und was sollen
die Zahlen with great anticipation’’. In the Introduction to 1888 on
page IV, the earlier manuscript is said to contain ‘‘all essential basic
thoughts of my present essay’’. Dedekind mentions as the main points
the ‘‘sharp distinction between the finite and the infinite’’, the concept
of cardinal, the justification of proof by induction and definition by
recursion.

The emphasis in the draft is, however, almost exclusively on the
proof principle; there are some very brief, almost cryptic hints con-
cerning definition by recursion. From a modern perspective there is
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so much more to the final essay; for one, the detailed metamathe-
matical considerations and Dedekind’s reflections based on them. In
the letter to Keferstein they are properly emphasized, and we will
discuss them in Section 6, in particular, the existence and uniqueness,
up to isomorphism, of simply infinite systems. That will be the
background for discussing the free creation of numbers with a more
systematically founded perspective.

5. CHAIN OF A SYSTEM

Weber’s ‘‘great anticipation’’ was more than justified already in 1878,
as Dedekind’s reflections had led him to a novel conceptualization of
natural numbers within, what he viewed as, a logical framework using
the fundamental concepts of system and mapping. Indeed, in the
manuscript 1872/1878 Dedekind writes:

If one accurately tracks what we are doing when we count a set or a number of
things, one is necessarily led to the concept of correspondence or mapping.
The concepts of system, of mapping, which shall be introduced in the following in

order to ground the concept of number, cardinal number, remain indispensable for
arithmetic even if one wants to assume the concept of cardinal number as being
immediately evident (‘‘inner intuition’’).33

This is the basis for the radical break with the considerations in 1854
and the description of the positive integers in 1872, a break that was
hinted at by the notational change from the creative act +1 to the
successor operation u in the third version of Arithmetische Grundla-
gen. However, the facts one is forced to accept from an informal
analysis of number using these new conceptual tools ‘‘are still far
from being adequate for completely characterizing the nature of the
number sequence N;’’34 for that the general notion of the chain of a
system A is introduced. The specialization of A to the system {1} leads
to the ‘‘complete’’ characterization of N as a simply infinite system.

5.1. Mappings (Between 2 and 3)

We do not mean to discuss mappings between the integers two and
three, but rather emphasize the significance of the notion of mapping
that emerged in Dedekind’s work between the publication of the
second and third edition of Dirichlet’s Zahlentheorie in 1871 and
1879, respectively. This was a fruitful and important period in
Dedekind’s work on algebraic number theory: he published the essay
Sur la théorie des nombres entiers algébriques and worked
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intermittently, but strenuously, on a proper formulation of his Ge-
danken über Zahlen. The broad considerations, which were central for
the mathematical and the foundational work, are highlighted in the
announcement of the third edition and in a footnote to that very work.
Indeed, Dedekind refers back to these considerations in (a note to
§161 of) the fourth edition of 1894 indicating very clearly, how
important those reflections were for him:

It is stated already in the third edition of the present work (1879, footnote on p. 470)
that the entire science of numbers is also based on this intellectual ability to compare
a thing a with a thing a0, or to relate a to a0, or to let a correspond to a0, without
which no thinking at all is possible. The development of this thought has meanwhile

been published in my essay ‘‘Was sind und was sollen die Zahlen?’’ (Braunschweig,
1888); . . .’’35

This remark is attached to a discussion of the general notion of
mapping. The evolution of that notion in Dedekind’s work is one of
the foci of our second paper, but the material from the manuscript
Gedanken über Zahlen reveals already crucial aspects of this devel-
opment and its significance.

The manuscript contains three distinct layers.36 In its initial at-
tempt to characterize natural numbers via chains, the first layer uses
the notions mappable, corresponding, and image, which match 1871
(Section I of §159 in Supplement X) as well as 1872 in terminology
and outlook. In its second attempt, calling a chain now a group (sic),
the manuscript introduces for the first time in Dedekind’s writings the
term mapping (Abbildung). Dedekind distinguishes without any
explanation between injective (deutliche) and non-injective (undeutli-
che) mappings. The second layer is the longest and most intricate one,
and it alone discusses finite cardinals. The third layer is close to the
eventual presentation of this material in 1888 and takes mappings
officially as objects of study; it matches the remarks and note in 1879
mentioned above.

5.2. Thoughts on Numbers

Let us indicate briefly the common arithmetic content. In each layer
Dedekind considers a system S and a (n arbitrary) mapping u from S
to S.37 If u is injective, the system S is called infinite just in case there
is a proper subset U of S, such that the system u(S) of images is a
subset of U. The other notions are defined relative to S and u. A
subset K of S is called a chain if and only if it is closed under u. A
subset B of S is called dependent on A if and only if B is a subset of
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any chain that contains A, and (A) is the system of all things
dependent on A. Finally, Dedekind establishes as the central claim
that (A) is a chain. As a justification for induction one can easily show
that, given two subsets A and K of S,

If A � K and uðKÞ � K; then ðAÞ � K:

Assume A � K and uðKÞ � K, consider an arbitrary a in (A), and
distinguish two cases. In the first case a is in A, then – by the
assumption A � K – a is in K. In the second case {a} is dependent on
A, but not in A, i.e., contained in any chain that contains A. But K is
such a chain; thus {a} is a subset of K, and a is an element of K. This
sequence of steps anticipates that in 1888, except for the definition of
(A) via the dependency relation.

The second layer defines the dependency relation just for elements
and calls the system (a) of all elements dependent on a the sequence of
a. For injective mappings and infinite systems S Dedekind establishes
as a theorem that (1) is an infinite system. Every element of (1) is
called a number; proof by induction is justified as above, and the issue
of definition by recursion is raised here, briefly. Dedekind notes on
the margin:

The proof of the correctness of the method of proof from n to n+1 is correct; in
contrast, the proof (completeness) of the definition of concepts by the method from n

to n+1 is not yet sufficient at this point; the existence (consistent) of the concept
remains in doubt. This will become possible only by injectivity, by the consideration
of the system [n]!!!!!! Foundation.38

This is a pregnant remark and, together with theorems established on
pp. 300–304, points ahead to central issues in 1888. To support that
claim, we have to explain first of all the notation [n]. Informally, [n] is
the system of all numbers less than or equal to n, for any n in (1);
systematically, [n] is defined as the system of numbers not contained
in (n0), and it is shown to be finite. (In 1888 the systems [n] are
denoted by Zn.) Dedekind formulates as a theorem that a system B is
infinite, if every system [n] can be mapped injectively into B. He re-
marks on the margin, ‘‘To prove this is circuitous, but possible’’.
(Umständlich, aber möglich zu beweisen.) This is, of course, the
central and deep fact used to establish in §14 of 1888 that Dedekind’s
definition of infinite is equivalent to the standard one.39 That proof
requires definition by recursion and a form of the axiom of choice:40

to secure generally the existence of a mapping satisfying recursion
equations the systems [n] are invoked and the injectivity of the
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mapping u is needed (Remark 130 of 1888). All of this seems to be
hinted at in the remark quoted above; it is a dramatic step for gaining
a proper perspective.

The third layer is a very polished version of the considerations
leading up to Theorem 31 that states, (A) is a chain. But this time
there is a most interesting and important note next to the statement of
the theorem: ‘‘(A) is the ‘smallest’ chain that contains the system A’’.
The layer ends with brief remarks on the ‘‘direct treatment of the
system Z of natural (i.e., whole positive rational) numbers’’. We
quote those in full and mention that Dedekind wrote next to the
sentence just quoted ‘‘better N than Z:’’

Characteristic of the system Z. There is an injective mapping from Z – if T is a part of

Z, then the image of T is denoted by T0– which has the following property.

I Z0 is a part of Z.

II There is a number (i.e., a thing contained in Z), which is not contained in Z0. This
number shall be called ‘‘one’’ and is denoted by 1.

III A number chain (i.e., each part T of Z, whose image T0 is a part of T0) that
contains the number 1 is identical with Z.41

This ‘‘characteristic’’ corresponds perfectly to the axiomatic condi-
tions for a simply infinite system in 1888, i.e., we have here the very
first formulation of the so-called Peano Axioms.42

5.3. Axioms for Numbers

In the systematic analysis of 1888 we use Dedekind’s letter to Ke-
ferstein, but also his official reply 1890* to Keferstein’s review of
1888. Dedekind makes his methodological considerations much more
explicit in these documents than in the essay itself. Indeed, in the
letter Dedekind poses these motivating questions:

What are the mutually independent fundamental properties of the sequence N, that
is, those properties that are not derivable from one another but from which all others

follow? And how should we divest these properties of their specifically arithmetic
character so that they are subsumed under more general notions and under activities
of the understanding without which no thinking is possible at all but with which a

foundation is provided for the reliability and completeness of proofs and for the
formulation of consistent definitions of concepts?43

When one poses the problem in this way, Dedekind continues, then
one is forced to accept the following facts: the number sequence N is a
system of elements or individuals, called numbers; the relation be-
tween these elements is given by a mapping u from N to N; u must be
similar (ähnlich, this term replaces ‘‘deutlich’’ used in the earlier
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discussion); the image of N under u is a proper part of N, and 1 is the
only element not in the image. The central methodological problem,
Dedekind emphasizes, is the precise characterization of just those
individuals that are obtained by iterated application of u to 1; this is
to be achieved in general logical terms, not presupposing arithmetic
notions. Before addressing this central problem, Dedekind introduces
as above, relative to a system S and an arbitrary mapping u from S to
S, the general concept of a chain. Then he defines directly, using the
insight gained in the third layer of 1872/1878, the chain A0 of a system
A as the intersection of all chains containing A. A0 obviously contains
A as a subset, is closed under the operation u, and is minimal among
the chains that contain A, i.e., if A � K and uðKÞ � K, then A0 � K.
These properties characterize A0 uniquely. From the minimality of A0

it is easy to prove a general induction principle in the form:

ð�Þ if A � R and uðA0 \ RÞ � R; then A0 � R;

S denotes the extension of any property E pertaining to the elements
of S.

After this preparatory step Dedekind specializes the consideration
to the chain N of the system {1} for the similar mapping u, i.e., the
simply infinite system (N, u, 1). The essence of this system is given by
the axiomatic conditions a, b, c, and d of Erklärung 71 in corre-
sponding order: uðNÞ � N;N ¼ 10; 1 62 uðNÞ, and u is a similar
mapping. Condition b expresses in Dedekind’s notation that N is the
chain {1}0 of the system {1}; it is the basis for the usual induction
principle for natural numbers formulated now as follows:

ð��Þ If f1g � R and uðN \ RÞ � R; then N � R

The considerations leading to ð��Þ are completely parallel to those for
ð�Þ above. Indeed, reordering conditions a, b, c, and d, reformulating
them a little, and using ð��Þ as the induction principle yields:

1 2 N;

ð8n 2 NÞ uðnÞ 2 N;

ð8n;m 2 NÞðuðnÞ ¼ uðmÞ ) n ¼ mÞ;
ð8n 2 NÞ uðnÞ 6¼ 1; and

ð1 2 R & ð8n 2 NÞðn 2 R) uðnÞ 2 RÞÞ ) ð8n 2 NÞ n 2 R:

These statements make explicit the principles underlying Dedekind’s
earlier ‘‘characteristic of the systemZ’’ and aremere notational variants
of the five axioms for the positive integers formulated in Peano’s 1889.
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Hilbert’s axiomatization for N in his 1905 also uses these axioms,
clearly extracted from Dedekind’s characterization of simply infinite
systems.44 Hilbert’s syntactic consistency proof in that paper was to
guarantee the existence of the ‘‘smallest infinite’’. Thus, his proof was
to serve the dual purpose of Dedekind’s argument for the existence of
a simply infinite system. Already in his 1900a and 1900b Hilbert
intended to insure the existence of a set, here the set of real numbers,
by a ‘‘direct’’ proof of the consistency of an appropriate axiomatic
theory. The theory was formulated in the style of Dedekind: one
considers a system of objects satisfying certain axiomatic conditions,
and the systematic development of the theory makes use of these
conditions only. In contrast to Dedekind, Hilbert called a theory
consistent if it does not allow to establish in finitely many steps a
contradiction; note that this is only a quasi-syntactic specification of
consistency, as the steps that are allowed in proofs were not made
explicit. We turn our attention now to Dedekind’s way of thinking
about, and addressing, the issue of existence and consistency; this is
the last component in the assembly of a Dedekindian perspective on
numbers and the nature of mathematics.

6. ABSTRACT TYPE

The number sequence N is characterized completely as the abstract
type of a simply infinite system, Dedekind writes to Keferstein; how is
this to be understood? The answer to the question will evolve through
a sequence of detailed metamathematical, reflective steps concerning
simply infinite systems. The steps are guided by the systematic in-
sights gained in the earlier investigations; thus, Dedekind is con-
cerned with the ‘‘possibility of the creation of a simply infinite
system’’ – to use the language of the early axiomatic analysis of
number systems reported in Section 3; cf. in particular Section 3.3.
We first discuss the existence proof for simply infinite systems and
then complement the literal uniqueness of the chain of the system {1}
by the completely new sense of uniqueness ‘‘up to isomorphism’’.
Finally, we describe Dedekind’s view of the science of numbers or
arithmetic that is based on the metamathematical work.

6.1. Logical Existence

A simply infinite system is defined as a triple (N, u, 1) or, in con-
temporary model-theoretic terminology, as a structure that satisfies
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the conditions a, b, c, and d from Dedekind’s Erklärung 71. We saw
that these conditions correspond to the so-called Peano Axioms.
Given the earlier concerns, it is perfectly natural for Dedekind to ask:
‘‘Does such a system exist at all in our realm of thoughts?’’45 The
affirmative answer to this question is given by a logical existence
proof, and Dedekind explains to Keferstein that without such a proof
‘‘it would remain always doubtful, whether the concept of such a
system does not perhaps contain internal contradictions’’.46 In his
official response 1890* to Keferstein’s review article Dedekind asserts
more strongly, ‘‘as long as such a proof has not been given one may
fear that the above definition of the system N contains an internal
contradiction, whereby the certainty of arithmetic would be lost’’.47

That is the reason, he emphasizes in his letter, why the proofs for
theorems 66 and 72 of his essay are necessary.

The crucial considerations are presented in the proof of theorem
66. Theorem 72 just states that every infinite system contains a simply
infinite one as a part, and that assertion can be established straight-
forwardly. To establish theorem 66, i.e., the claim that there is an
infinite system, Dedekind formulates and proves the claim for a
specific system, namely, for his Gedankenwelt. Dedekind’s Gedan-
kenwelt is defined as ‘‘the totality S of all things that can be an object
of my thinking’’. For an arbitrary element s of S, the thought s0 that
‘‘s can be an object of my thinking’’ is itself an element of S. The
operation u that leads from s to s¢ is injective, and the set of images S¢
is a proper part of S, as Dedekind’s own self, for example, is in S but
not in S¢. Thus, S together with u is indeed an infinite system. The
terminology of ‘‘thing’’ and ‘‘system’’ was already introduced at the
very beginning of the 1872/1878 manuscript and not only in 1888: ‘‘A
thing’’, it says there, ‘‘is any object of our thinking; . . .’’ and ‘‘A
system . . . S of things is determined, if one can judge of any thing,
whether or not it belongs to the system’’. Dedekind notes there also
that such a system of things is treated as a new thing when contrasted
with the other things. These remarks can be found in Dugac (1976,
293); we mention them here to make perfectly clear that the use of
these notions in the argument above does not locate it close to the
actual writing of 1888.

In 1890* Dedekind reproduces the proof of theorem 66, asserts
that he considers it not only as correct, but as rigorously correct
(streng richtig), and explicates it in an informative way without, as he
claims, adding anything new. The explication consists in expanding
the specification of u by a parenthetical remark. Instead of consid-
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ering ‘‘the thought s0 that . . .’’, Dedekind considers here ‘‘the thought
s0 (expressible in the form of a sentence or judgment) that . . .’’. This
seems to indicate directly that Dedekind’s thoughts are not to be
viewed as psychological ideas. There is also indirect evidence: Frege
asserts in his manuscript Logik that he uses the word ‘‘Gedanke’’ in
an unusual way and remarks that ‘‘Dedekind’s usage agrees with
mine’’.48 Such a Fregean understanding is reinforced, when Dedekind
continues his explication by claiming that the thought s0 can be an
object of his thinking. After all, ‘‘I may think, e.g., of this thought s0,
that it is obvious, that it has a subject and a predicate, etc’’. (ich darf
z.B. von diesem Gedanken s0 denken, dass er selbstverständlich ist,
dass er ein Subjekt und ein Prädikat besitzt u.s.w.). Consequently, the
thought s0 is an element of S.

In 1888, Dedekind writes in the footnote to theorem 66, ‘‘A similar
consideration is found in §13 of Bolzano’s Paradoxien des Unendli-
chen (Leipzig 1851)’’. The similarity of their considerations is par-
ticularly striking, when we compare Bolzano’s argument with
Dedekind’s in the explicated form pertaining to thoughts that are
expressible in the form of sentences. Bolzano establishes that ‘‘the set
of sentences and truths in themselves’’ (die Menge der Sätze und
Wahrheiten an sich) is an infinite multiplicity. This is achieved by
considering first any truth T whatsoever and then using the con-
struction principle the proposition A is true to step from any true
proposition A to a distinct new and true proposition. Bolzano con-
cludes that this set of all propositions constructed from T ‘‘enjoys a
multiplicity surpassing every individual integer’’ and is therefore
infinite, according to his definition.49 (The characterization of ‘‘this’’
set, or of similarly constructed ones, as the chain of {T} was for
Dedekind according to his letter to Keferstein, ‘‘. . . one of the most
difficult points of my analysis and its mastery required lengthy
reflection’’. (p. 100))

Excursion. The need to prove the existence of an infinite system is
not even discussed in 1872/1878. A proof is given in the manuscript
from 1887 that precedes the final writing of 1888, and this seems to be
the first appearance in Dedekind’s manuscripts or published writings.
Through a letter from Cantor to Dedekind dated 7 October 1882 we
know that the former sent with his letter also a copy of Bolzano’s
booklet to Dedekind.50 These three facts are taken as evidence, for
example by Dugac, that Dedekind adapted Bolzano’s considerations
concerning the objective existence of the infinite. (Cf. Dugac (1976, 81
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and 88), but also Sinaceur (1974, 254), Belna (1996, 37, 38 and 54ff)
and Ferreirós (1999, 243–246); on p. 243 Ferreirós takes it for granted
that Dedekind knew Bolzano’s proof when giving his own and
‘‘transformed it to suit his different philosophical ideas and his strict
definition of infinity’’.)

We first describe in (almost tedious) detail, where the claim and
proof for the existence of an infinite system occur first, namely, in the
fourth section of 1887 that is entitled ‘‘The finite and infinite’’. It
starts out with a definition.

40. Definition. S is called an infinite system, if there is an injective mapping from S,
such that the image of S is a proper part of S; in the opposite case S is called a finite
system.51

This is followed by the remark that ‘‘all hitherto known definitions of
the finite and the infinite are completely useless, to be rejected by all
means’’.52 Next comes a proposition, numbered 41, which states that
the unionS of the singleton {a} andT is finite, ifT is finite.53 As in other
manuscripts of Dedekind’s, the pages of 1887 are vertically divided in
half. The main text is written on one half, whereas the other half is
reserved for later additions. On this particular page a number of
important additions have been made. Already its first line indicates
that the manuscript is still being reorganized in significant ways:
Dedekind refers to remarks on a separate page andwrites that the ‘‘first
two propositions of §7 belong here’’. This is followed by three prop-
ositions, numbered 40x, 40xx, and 40xxx, the last of which claims:
‘‘There are infinite systems’’. Dedekind adds parenthetically,
‘‘Remarks on separate page’’, and mentions there that the following
proposition can be added immediately to the fundamental definition 40:

Proposition: There are infinite systems; the system S of all those things s (this word

understood in the sense given in the introduction) that can be objects of my thinking,
is infinite (my realm of thoughts).54

The proposition is established by a proof of roughly the same
character as that given in the sources we discussed already.55

In the preface to the second edition of 1888, Dedekind emphasizes
that Cantor and Bolzano had also recognized the property he uses as
the definition of an infinite system. However,

. . . neither of these authors made the attempt to use this property as the definition of

the infinite and to establish upon this foundation with rigorous logic the science of
numbers. But this is precisely the content of my difficult labor, which in all its
essentials I had completed several years before the publication of Cantor’s memoir
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[i.e., Cantor 1878] and at a time when the work of Bolzano was completely unknown

to me, even by name.56

Whether and how Dedekind was influenced by Bolzano’s work in
formulating his proof of theorem 66 remains a topic of speculation.
The known facts, as we recounted them, allow a different interpre-
tation than that given by Dugac and Ferreirós: the manuscript of
1887 is so different from 1872/1878 that one might conjecture with
good reason that Dedekind had other intermediate manuscripts or, at
least, additional notes to bridge this remarkable conceptual and
mathematical gap. The issue of providing ‘‘models’’ for axioms had
been pressing already at that time, as we pointed out in Section 4.
Given Dedekind’s own remarks concerning the connection with
Bolzano’s and Cantor’s work (indicated in the above quote), we
speculate that he must have completed one such intermediate
manuscript no later than 1878. Dedekind’s own remarks, quoted
above at the end of Section 4, about these early considerations do not
shed decisive light on the issue at hand: in his response to Weber’s
inquiry concerning the status of Was sind und was sollen die Zahlen?
from 1878 he gives a description that fits the available material in
1872/1878, and views it as a ‘‘rough draft;’’ in the Introduction to
1888 the earlier material is said to include also the justification of
definition by recursion (that is barely hinted at in the folder of 1872/
1878); finally, in his remark concerning Cantor and Bolzano in the
preface to the second edition of 1888 we just quoted, he claims to
have completed the work ‘‘in all its essentials’’ several years before the
appearance of Cantor’s 1878 paper. End of Excursion.

Dedekind himself just points out a ‘‘similarity’’ between Bolz-
ano’s and his own considerations. We point to a central dissimilarity
and, without further elaboration, to the fact that Dedekind’s for-
mulations are dramatically more rigorous.57 Bolzano bases his con-
siderations concerning the objective existence of the infinite implicitly
on the existence of the species of integers and explicitly on the exis-
tence of the set of sentences and truths in themselves, whereas
Dedekind uses only one universal system, his Gedankenwelt; a simply
infinite system and the natural numbers are obtained from it.

6.2. Mathematical Uniqueness

How then are natural numbers obtained in Dedekind’s case? Any
infinite system whatsoever has as a part a simply infinite one that is
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unique as a minimal chain (of a chosen element 1), as we observed
above. To insist on minimality has the metamathematical reason
emphasized by Dedekind in both 1890 and 1890*, namely, that it
excludes ‘‘intruders;’’ these intruders are, in modern terminology,
non-standard elements. The minimality captures the informal, moti-
vating idea that every element of the chain is obtained by the finite
iteration of the operation u applied to 1.58 This is also the basis for
establishing that simply infinite systems are unique in a novel sense.

Given the analysis via minimal chains, it is most direct to use the
general concept of a mapping and to conceive of a bijection w be-
tween two arbitrary simply infinite systems based on operations u
and h, respectively. w would map the first element of one system to
the first element of the other; in addition, the bijection would satisfy
the recursion equation w(u(n)) ¼ h(w(n)). It is one thing to graphically
draw such a connection, but quite another thing (i) to have the
appropriate mathematical (or logical) notions to capture the essence
of the situation and (ii) to prove the unique existence of such a
structure-preserving mapping. The one thing is undoubtedly in
everybody’s mind, certainly Bolzano’s and also Kronecker’s, for
example, in §1 of his 1887 entitled Definition des Zahlbegriffs. The
other thing is what Dedekind does in §9 of 1888!

Dedekind isolates the crucial feature in theorem 126, Satz der
Definition durch Induktion: let (N, u, 1) be a simply infinite system, let
h be an arbitrary mapping from a system W to itself, and let x be an
element of W; then there is exactly one mapping w from N to W that
satisfies the conditions

I wðNÞ � X;

II wð1Þ ¼ x;

III wðuðnÞÞ ¼ hðwðnÞÞ:59

The justification requires subtle metamathematical considerations;
i.e., a proof by induction of the existence of approximations to the
intended mapping for initial segments of N. The basic idea was used
later in axiomatic set theory and extended to transfinite recursion;
Gödel used it within formal arithmetic.60 In the context of his
investigation, Dedekind draws two conclusions with the help of
theorem 126: on the one hand, all simply infinite systems are similar
(theorem 132), and on the other hand, any system that is similar to a
simply infinite one is itself simply infinite (theorem 133).
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These results, together with some observations in remark 134 to
which we will return below, ‘‘justify completely’’ the explication of
the concept of number Dedekind provided already in Erklärung 73:

If in the consideration of a simply infinite system N ordered by a mapping u we
entirely neglect the special character of the elements, simply retaining their distin-
guishability and taking into account only the relations in which they are placed to

one another by the ordering mapping u, then these elements are called natural
numbers or ordinal numbers or simply numbers, and the base-element 1 is called the
base-number of the number-series N. With reference to this freeing of the elements

from every other content (abstraction) we are justified in calling the numbers a free
creation of the human mind.61

In the earlier manuscript 1887 one finds, after an almost identical
remark, a more expanded and explicit formulation concerning the
result of the abstraction; Dedekind writes there:

By this abstraction, the originally given elements n of N are turned into new elements
n, namely into numbers (and N itself is consequently also turned into a new abstract

systemN). Thus, one is justified in saying that the numbers owe their existence to an
act of free creation of the mind. For our mode of expression, however, it is more
convenient to speak of the numbers as of the original elements of the system N and to

disregard the transition from N to N, which itself is an injective mapping. Thereby,
as one can convince oneself using the theorems regarding definition by recursion,
nothing essential is changed, nor is anything obtained surreptitiously in illegitimate

ways.62

This is Dedekind abstraction in its clearest and most direct formula-
tion (and obviously follows the spirit of the remarks concerning the
free creation of the real numbers in 1872). Though these newly cre-
ated objects are indeed the numbers, there is nevertheless no need to
insist on treating them as the subject of the science of numbers. After
having established as proposition 106 the similarity of all simply
infinite systems, Dedekind concludes his deliberations in 1887 under
the heading ‘‘Creation of the pure natural numbers:’’

It follows from the above, that the laws regarding the relations between the numbers
are completely independent from the choice of that simply infinite system N, which
we called the number sequence, and that they are also independent from the mapping
of N that orders N as a simple sequence.63

How does that claim follow ‘‘from the above?’’ – In remark 134 of
1888 Dedekind gives a rough argument that can be interpreted as
showing that ‘‘categoricity’’ implies ‘‘elementary equivalence’’. The
arguments for theorems 132 and 133 make use of the canonical
bijection that transforms elements of one simply infinite system into
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corresponding elements of the other and that can even be claimed to
transform, as Dedekind does, the successor operation of one system
into that of the other. Thus, if one considers only propositions in
which the particular character of the elements is neglected and only
notions are used that arise from the successor function in one system,
then these propositions have quite general validity for any other
simply infinite system.64 This gives finally the complete justification of
the above remarks and allows the proper characterization of the
‘‘object of the science of numbers or arithmetic’’ as presented in the
second half of the long note 73:

The relations or laws which are derived entirely from the conditions a, b, c, d in 71,
and therefore, are always the same in all ordered simply infinite systems, whatever
names may happen to be given to the individual elements (compare 134), form the

next [in Ewald, one finds ‘‘first’’ here] object of the science of numbers or arithmetic.65

We begin to explore the meaning of this characterization next.

6.3. The Science of Numbers

From the very start, two broad and intimately connected issues were
of paramount importance for Dedekind’s foundational reflections,
namely, finding fundamental concepts and principles, but also using
them for the systematic development of a subject. As the reader may
recall, in 1854 Dedekind views introducing a concept as formulating
an hypothesis concerning the inner nature of a science. In 1888
introducing the concept ‘‘simply infinite system’’ is more than for-
mulating an hypothesis concerning the essential character of number
theory: it rather emerges from a deep insight into a capacity of the
human mind – ‘‘without which no thinking is possible’’ and with
which we have the essential basis for erecting ‘‘the entire science of
numbers’’. (That is forcefully expressed in the Preface to the first
edition of 1888, pp. III–IV.) The principle of proof by induction and
that of definition by recursion (or induction) can be obtained, and
these principles allow the unique characterization of the number
sequence – a most significant theoretical insight.

Both principles are also indispensable for a systematic develop-
ment: proof by induction is the pervasive form of argumentation in
number theory, and definition by recursion yields the standard
operations like addition, multiplication, and exponentiation. As to
the definition principle Dedekind emphasizes in his letter to Kefer-
stein the need ‘‘to formulate the definitions of operations on numbers
consistently for all numbers n’’. This is one aspect of Dedekind’s
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general concern to provide the conceptual tools for the development
of arithmetic and to establish their efficacy in recognizing general
truths. Let us recall the parallel considerations in 1872. There, the
notion of continuity allows the characterization of the real numbers,
the operations on reals are defined via operations on the rationals,
and their basic properties are verified. Then Dedekind develops a
fundamental part of analysis and establishes, in particular, that the
principle of continuity implies the theorem that bounded increasing
sequences have a limit. This theorem is actually shown to imply the
principle of continuity; thus, we have here – as far as we know – the
very first theorem of ‘‘reverse mathematics’’. This equivalence has for
Dedekind significant methodological impact; in his letter to Lipschitz
dated 27 July 1876 he emphasizes this equivalence, when making the
point that his definition of irrational numbers has not created any
number, ‘‘which was not already grasped more or less clearly in the
mind of every mathematician’’.66

The reflections concerning induction and recursion have conse-
quently two fundamental goals: to serve as the methodological frame
for Dedekind’s answer to the question Was sind die Zahlen? and to
provide the systematic tools for developing number theory. We saw
how they are used to justify the abstractionist move, when the natural
numbers were viewed as a ‘‘free creation of the human mind;’’ we also
discussed the basic role of induction and recursion in the develop-
ment of number theory. However, we did not address the question,
‘‘What is number theory?’’ – For Dedekind, as is clearly stated in the
second half of note 73, number theory is the ‘‘theory’’ of the sequence
N, which is completely characterized as the abstract type of a simply
infinite system. Thus, we are facing two central methodological
questions, which emerge from the general discussion in remark 134
and note 73:

(i) How are the concepts characterized that arise out of the successor
operation? (Begriffe, die aus der Anordnung u entspringen,
remark 134);

(ii) How are the laws obtained that are derived exclusively from the
conditions for simply infinite systems? (Gesetze, welche ganz al-
lein aus den Bedingungen a, b, c, d in 71 abgeleitet werden, note
73)?

The answer to both of these questions is, ‘‘By logic!’’ i.e., logic is to
specify principles of concept formation (or of definition) and
principles of proof; these ‘‘logical’’ principles are not explicitly
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formulated. A satisfactory analysis has to be sufficiently restricted in
order to ensure, what Dedekind argued for, namely, that any prop-
osition using only ‘‘those’’ concepts and having been inferred by only
‘‘those’’ proof principles is valid for any simply infinite system.
Dedekind had an appropriate abstract understanding of ‘‘theory’’
already in the 1870s; that is clear not only from his contemporaneous
mathematical work, but also from more general methodological
discussions, for example, in the letters to Lipschitz dated 10 June and
27 July 1876. (We quoted from the second letter already earlier.) In
the second letter he claims, for us most interestingly, that the conti-
nuity of space is by no means inseparably connected to Euclid’s
geometry. He proposes to establish the claim by an analysis of the
whole system of Euclidean geometry making clear that the continuity
principle is not being used. In a parenthetical addition he remarks on
a sure, infallible method for such an analysis. This method consists in
replacing all ‘‘terms of art’’ (Kunstausdrücke) by arbitrary newly
invented and until now meaningless words; he continues:

. . . the system must not collapse [by such a replacement], if it has been constructed
correctly, and I claim for example, that my theory of the real numbers withstands

this test.67

These remarks precede Hilbert’s pronouncement on ‘‘Tische’’,
‘‘Stühle’’, and ‘‘Bierseidel’’ by quite a few years! In her brief note to
1872, Emmy Noether points to the letters Dedekind sent in 1876 to
Lipschitz and asserts that they not only contain pertinent remarks on
the essay itself but also express, in her view, an ‘‘axiomatic stand-
point’’ (axiomatische Auffassung).68 Dedekind’s above remarks are
the most explicit and concise expression of this standpoint.

7. CONCLUDING REMARKS

Let us return to the narrower historical context sketched in our
Introduction and elaborated in Section 3. Kronecker and Helmholtz
share, so we claim there, the ‘‘na€�ve’’ starting-point with Dedekind,
but it is only Dedekind who builds a conceptual framework, in which
he can express sharply the (na€�ve) analysis, carry out fruitful meta-
mathematical investigations, and provide the tools for a systematic
treatment of number theory. The underlying distinctive methodo-
logical themes and their evolution will be at the center of a second
essay entitled Dedekind’s structuralism: mappings and models. We will
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argue in particular for what was already indicated above: Dedekind’s
Stetigkeit und irrationale Zahlen is a significant stepping-stone in this
development.

The essay is commonly viewed as providing the final step in a
genetic presentation of the reals via cuts. However, from the per-
spective of 1888 and the (unpublished) work that contains all its
central notions already before 1878, 1872 can be seen as containing a
thoroughly axiomatic characterization of the reals as a complete
ordered field together with a semantic consistency proof for these
axioms; that was observed already in Sieg (1990, 264–265). Dede-
kind’s investigation of the correspondence between the geometric line
and the system of all cuts contains the crucial elements of a proof of
the categoricity of the axioms. What is missing at this stage of his
foundational reflections in 1872 is the general concept of mapping. In
our second essay we will discuss the emergence of this notion in
Dedekind’s mathematical and foundational work, as well as the de-
tailed connections with (what Hilbert and Bernays later called)
existential axiomatics and the reductive structuralism that arose from
Hilbert’s Program, properly understood.

There remains a great deal of important historico-analytical work
that can and should be done, in spite of Ferreirós’s marvelous book.
The latter has opened a larger vista for Dedekind’s work and is
wonderfully informative in so many different and detailed ways.
However, it seems to us to be deeply conflicted about, indeed,
sometimes to misjudge, the general character of the foundational
essays and manuscripts. Let us mention three important aspects. First
of all, there is no program of a constructionist sort in 1854 that is then
being pursued in Dedekind’s later essays, as claimed on pp. 217–218.
Secondly, there is no conflict, and consequently no choice has to be
made, between a genetic and an axiomatic approach for Dedekind.
That conflict is frequently emphasized. It underlies the long
meta-discussion (on pp. 119–124) where the question is raised, why
authors around 1870, including of course Dedekind, pursued the
genetic and not the axiomatic approach. In that meta-discussion
Ferreirós seeks reasons ‘‘for the limitations of thought in a period’’,
but only reveals the limitations of our contemporary perspective.
Finally, there is no supersession of Dedekind’s ‘‘deductive method’’
(described on pp. 246–248) by the axiomatic method of Hilbert’s, but
the former is rather the very root of the latter. Hilbert’s first
axiomatic formulations in Über den Zahlbegriff and Grundlagen der
Geometrie are patterned after Dedekind’s. Indeed, Hilbert is a logicist
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in Dedekind’s spirit at that point, and it is no accident that, as late as
1917/1918, he was attracted by attempts to provide a logicist foun-
dation of mathematics.69

We mention three broad and temporally distinct directions for
such historico-analytic work, namely, (i) a thorough-going explora-
tion of the early mathematical and philosophical context of Dede-
kind’s work, in particular, the impact of Gauss, Dirichlet, Riemann,
and Herbart, (ii) a detailed examination of the deep interaction be-
tween Dedekind’s foundational and mathematical work, in particu-
lar, the work on algebraic number theory in the 1870s, and (iii) a
thorough investigation of Dedekind’s influence on Hilbert’s mathe-
matical work, in particular, on the Zahlbericht.
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Staats- und Universitäts-Bibliothek in Göttingen for access to the
unpublished Dedekind manuscripts.

NOTES

* Herbart, as quoted in Scholz (1982, 437).
1 In Hilbert (1931, 487): ‘‘Im Jahre 1888 machte ich als junger Privatdozent von

Königsberg aus eine Rundreise an die deutschen Universitäten. Auf meiner ersten
Station, in Berlin, hörte ich in allen mathematischen Kreisen bei jung und alt von der
damals eben erschienenen Arbeit Dedekinds Was sind und was sollen die Zahlen?

sprechen – meist in gegnerischem Sinne. Die Abhandlung ist neben der Untersu-
chung von Frege der wichtigste erste tiefgreifende Versuch einer Begründung der
elementaren Zahlenlehre’’. On this trip Hilbert visited also Paul du Bois-Reymond
who told Hilbert ‘‘die dedekindsche Arbeit ‘Was sollen Zahlen’ sei ihm grässlich’’ (in

Hilbert’s report, Cod. Ms. 741, 1/5 and also mentioned in Dugac (1976, 203)).
In the preface to the second edition of his 1888, Dedekind reports: ‘‘Die vorlie-

gende Schrift hat bald nach ihrem Erscheinen neben günstigen auch ungünstige

Beurteilungen gefunden, ja es sind ihr arge Fehler vorgeworfen. Ich habe mich von
der Richtigkeit dieser Vorwürfe nicht überzeugen können und lasse jetzt die seit
kurzem vergriffene Schrift, zu deren öffentlicher Verteidigung es mir an Zeit fehlt,

ohne jede Änderung wieder abdrucken, indem ich nur folgende Bemerkungen dem
ersten Vorwort hinzufüge’’. The preface was written in August 1893.
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2 Frobenius refers to Dedekind’s investigations in Supplement XI of Dirichlet

(1894). The letter is found in Dugac (1976, 269). Here is the German text: ‘‘Hoff-
entlich gehen Sie vielfach die Wege von Dedekind, vermeiden aber die gar zu abst-
rakten Winkel, die er jetzt so gern aufsucht. Seine neueste Auflage enthält so viele
Schönheiten, der §173 ist hochgenial, aber seine Permutationen sind zu körperlos,

und es ist doch auch unnöthig, die Abstraktion so weit zu treiben’’.
3 Ewald (1996, 791). ‘‘Aber ich weiß sehr wohl, daß gar mancher in den schatten-
haften Gestalten, die ich ihm vorführe, seine Zahlen, die ihn als treue und vertraute

Freunde durch das ganze Leben begleitet haben, kaum wiedererkennen mag; er wird
durch die lange, der Beschaffenheit unseres Treppenverstandes entsprechende Reihe
von einfachen Schlüssen, durch die nüchterne Zergliederung der Gedankenreihen,

auf denen die Gesetze der Zahlen beruhen, abgeschreckt und ungeduldig darüber
werden, Beweise für Wahrheiten verfolgen zu sollen, die ihm nach seiner vermeint-
lichen inneren Anschauung von vornherein einleuchtend und gewiß erscheinen’’.

Dedekind expressed such sentiments also in a letter to Klein written on 6 April 1888;
the letter is contained in Appendix XXV of Dugac (1976, 188, 189). Even a quite
positive review like that by Meyer remarks: ‘‘Der Verfasser sieht bei seinen Dar-
legungen von specifischen mathematischen Kenntnissen völlig ab, er wendet sich

demgemäss an jeden Gebildeten. [. . .] Für unsere Vorstellung allerdings sinken die
gemeinhin Zahlen genannten Dinge vermöge der erwähnten Abstractionen zu blos-
sen Schatten herab, dafür sind sie aber auch aller subjectiven Willkür entzogen, und,

strengen rein logischen Regeln unterworfen, bieten sie für den Arithmetiker völligen
Ersatz für jene populären Zahlen’’. (Cf. Dugac (1976) on Meyer, pp. 93, 176.)
4 These manuscripts are analyzed in Section 5; their dating is Dedekind’s own.
5 These observations are made in the first note to the preface of the first edition:
‘‘Das Erscheinen dieser Abhandlungen [i.e., the essays by Helmholtz and Kronecker]
ist die Veranlassung, die mich bewogen hat, nun auch mit meiner, in mancher Be-
ziehung ähnlichen, aber durch ihre Begründung doch wesentlich verschiedenen

Auffassung hervorzutreten, die ich mir seit vielen Jahren und ohne jede Beeinflussung
von irgendwelcher Seite gebildet habe’’.
6 As to Ferreirós, we refer to the discussion, Dedekind’s deductive method, in section

5.3 of his book 1999, where it is claimed on p. 247, that ‘‘. . . Dedekind’s deductive
method seems rather strange, and could be even called anti-axiomatic. . . The
underlying elementary logic [in Dedekind 1888] – although transparently employed

– is not made explicit, and above all arithmetic is understood as requiring no axiom.
All of this places Dedekind’s contribution in a peculiar historical position, as an
intermediate step that would quickly be abandoned (or, if you wish, superseded)’’.

That perspective is taken then in Section 6.3 to judge Dedekind’s influence on
Hilbert and his school with the central question formulated on p. 246: ‘‘. . . why
Dedekind’s strong deductivism did not lead to an axiomatic approach’’. As to
Corry, we refer to the discussion of Dedekind’s and Hilbert’s influence ‘‘on the rise

of the structural approach to algebra’’ in his book 1996 as expressed, for example,
on pp. 170–171; though both Dedekind and Hilbert introduced ‘‘a kind of axi-
omatic analysis when dealing with their algebraic entities’’ and in their algebraic

works ‘‘displayed and promoted’’ structural features, they did so ‘‘independently of
any adoption of the modern axiomatic approach’’. For Dedekind, in particular,
Corry notes on p. 129 in a section entitled ‘‘Dedekind and the structural image of

algebra’’: ‘‘Although Dedekind used many of the concepts that were later to become

WILFRIED SIEG AND DIRK SCHLIMM158



the hard core of structural algebra, these concepts play very different roles in those

of his works in which they appear. Therefore, they cannot be identified with the
notion of an algebraic structure’’. Finally, as to McCarty, he argues that the
solutions to the ‘‘mysteries’’ in Dedekind’s thought are ‘‘to be found in the doctrines
of Kant’s Transcendental Dialectic’’. (p. 70) These points of difference are taken up

also below.
7 Dedekind (1854, 428). The German text: ‘‘Diese Vorlesung hat nicht etwa . . . die
Einführung einer bestimmten Klasse neuer Funktionen in die Mathematik, sondern

vielmehr allgemein die Art und Weise zum Gegenstande, wie in der fortschreitenden
Entwicklung dieser Wissenschaft (i.e., der Mathematik) neue Funktionen, oder, wie
man ebensowohl sagen kann, neue Operationen zu der Kette der bisherigen hin-

zugefügt werden’’.
8 Dedekind (1888, VI). The German text: ‘‘. . . die größten und fruchtbarsten
Fortschritte in der Mathematik und anderen Wissenschaften sind vorzugsweise

durch die Schöpfung und Einführung neuer Begriffe gemacht, nachdem die häufige
Wiederkehr zusammengesetzter Erscheinungen, welche von den alten Begriffen nur
mühselig beherrscht werden, dazu gedrängt hat’’.
9 Ewald (1996, 756) [4]. The German text – Dedekind (1854, 430) – is as follows: ‘‘So

zeigt sich wohl, daß die aus irgendeinem Motive eingeführten Begriffe, weil sie
anfangs zu beschränkt oder zu weit gefaßt waren, einer Abänderung bedürfen, um
ihre Wirksamkeit, ihre Tragweite auf ein größeres Gebiet erstrecken zu können.

Dieses Drehen und Wenden der Definitionen, den aufgefundenen Gesetzen oder
Wahrheiten zuliebe, in denen sie eine Rolle spielen, bildet die größte Kunst des
Systematikers’’. In the Introduction to the second edition of Dirichlet (1863) he

emphasized this general aspect for the particular mathematical work. He presented in
the tenth supplement his general theory of ideals in order, as he put it, ‘‘to cast, from
a higher standpoint, a new light on the main subject of the whole book’’. In German,
‘‘Endlich habe ich in dieses Supplement eine allgemeine Theorie der Ideale aufge-

nommen, um auf den Hauptgegenstand des ganzen Buches von einem höheren
Standpunkte aus ein neues Licht zu werfen;’’ he continues, ‘‘hierbei habe ich mich
freilich auf die Darstellung der Grundlagen beschränken müssen, doch hoffe ich, daß

das Streben nach charakteristischen Grundbegriffen, welches in anderen Teilen der
Mathematik mit so schönem Erfolg gekrönt ist, mir nicht ganz mißglückt sein
möge’’. (Dedekind 1932, 396, 397)
10 Ewald (1996, 757ff). The German text, Dedekind (1854, 430–431), is as follows:
‘‘Die Elementararithmetik geht aus von der Bildung der Ordinal- und Kardinal-
zahlen; der sukzessive Fortschritt von einem Gliede der Reihe der absoluten ganzen

Zahlen zu dem nächstfolgenden ist die erste und einfachste Operation der Arith-
metik; auf ihr fußen alle andern. Faßt man die mehrere Male hintereinander wie-
derholte Ausführung dieser Elementaroperation in einem einzigen Akt zusammen, so
gelangt man zum Begriff der Addition. Aus diesem bildet sich auf ähnliche Weise der

der Multiplikation, aus diesem der der Potenzierung’’.
11 Ewald (1996, 758) [8]. The German text – Dedekind (1854, 431–432) – is as follows:
‘‘Es bedarf daher einer besonderen Definition, um auch negative Multiplikatoren

zuzulassen, und auf diese Weise die Operation von der anfänglichen Beschränkung
zu befreien; eine solche involviert aber eine a priori vollständige Willkürlichkeit, und
es würde sich erst später entscheiden, ob denn die so beliebig gewählte Definition der

Arithmetik einen wesentlichen Nutzen brächte; und glückte es auch, so könnte man
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dies doch immer nur ein zufälliges Erraten, ein glückliches Zutreffen nennen, von

welchem eine wissenschaftliche Methode sich frei halten soll’’.
12 Notice a most interesting feature: a negative number can be taken to be repre-
sented, for the purpose of defining the extended operation, by a pair of positive ones.
If the multiplicand a were to be represented in the same way, this approach is

technically very close to the later one discussed in Section 4.1.
13 Ewald (1996, 759) [9]. The German text – Dedekind (1854, 434) – is as follows:
‘‘Indessen ist wohl zu hoffen, daß man durch beharrliche Anwendung des

Grundsatzes, sich auch hier keine Willkürlichkeit zu erlauben, sondern immer durch
die gefundenen Gesetze selbst sich weiterleiten zu lassen, zu einem wirklich festen
Gebäude der Arithmetik gelangen wird. Bis jetzt ist bekanntlich eine vorwurfsfreie

Theorie der imaginären, geschweige denn der neuerdings von Hamilton erdachten
Zahlen entweder nicht vorhanden, oder doch wenigstens noch nicht publiziert’’. To
see why Gauss’s geometric interpretation of complex numbers did not satisfy

Dedekind’s purely arithmetic ambitions, it is instructive to read Gauss’s defense of
the use of complex numbers in his 1831, in particular, pp. 310–331.
14 See, for example, the outline for such a course in the winter semester of 1862/1863,
published in Dugac (1976) as Appendix IV.
15 Dauber asks Dedekind in a letter of 20 June 1871, whether Dedekind had come
closer to realizing his plans for publishing his theory of continuity, and remarks that
Dedekind had written him about such plans a year earlier. The letter is part of

Appendix XXVI in Dugac (1976); the remark can be found on p. 192.
16 Ferreirós reports on p. 220 of his 1999 that Dedekind borrowed in 1857 Hamil-
ton’s Lectures on Quaternions from the Göttingen Library. Hamilton gives in the

Preface to his book the definition of complex numbers as pairs of reals. Pairs are
viewed there as genuine mathematical objects for which operations can be defined
appropriately; see Hamilton (1853, 381–385). ‘‘Thus’’, Ferreirós concludes con-
vincingly, ‘‘Dedekind could regard the problem of complex numbers as satisfactorily

solved, . . .’’ Indeed, Dedekind uses Hamilton’s way later; cf. Section 4.1.
17 Dedekind uses the concepts analysis and synthesis here. Dedekind’s use illumi-
nates, but is also illuminated by, that of the ancient geometers, in particular, as

formulated by Pappus; see, Beaney (2003).
18 Van Heijenoort (1967, 99). The German text is: ‘‘Gewiss nicht in einem Zuge,
sondern sie ist eine nach langer Arbeit aufgebaute Synthesis, die sich auf eine vor-

ausgehende Analyse der Reihe der natürlichen Zahlen stützt, so wie diese sich, ge-
wissermassen erfahrungsmässig, unserer Betrachtung darbietet’’.
19 Dugac (1976, 293). The German text is included in footnote 33 .
20 Ewald (1996, 768). The German text – Dedekind (1872, 5–6) – is as follows: ‘‘Ich
sehe die ganze Arithmetik als eine notwendige oder wenigstens natürliche Folge des
einfachsten arithmetischen Aktes, des Zählens, an, und das Zählen selbst ist nichts
anderes als die sukzessive Schöpfung der unendlichen Reihe der positiven ganzen

Zahlen, in welcher jedes Individuum durch das unmittelbar vorhergehende definiert
ist; der einfachste Akt ist der Übergang von einem schon erschaffenen Individuum
zu dem darauffolgenden neu zu erschaffenden. Die Kette dieser Zahlen bildet an

sich schon ein überaus nützliches Hilfsmittel für den menschlichen Geist, und sie
bietet einen unerschöpflichen Reichtum an merkwürdigen Gesetzen dar, zu welchen
man durch die Einführung der vier arithmetischen Grundoperationen gelangt’’.
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21 Ferreirós discusses Arithmetische Grundlagen on p. 218 and, more extensively, on

pp. 222–224. Our perspectives are different on the dating of the manuscript and on
the ‘‘rational reconstruction’’ of the mathematical content and context. Our reasons
for differing are presented with the detailed discussion of the manuscript below. On
one crucial issue we do agree with Ferreirós, namely, that the introduction of the

successor operation in (what we take to be) the third version of the manuscript is of
utmost significance and a central result of the informal analysis.
22 ‘‘§1 Schöpfungsakt 1; 1+1=2; 2+1=3; 3+1=4 . . . Zahlen (Ordinal). §2

Erklärung der Addition durch a+(b+1)=(a+b)+1. Hiernach Folgerungen, der
Natur der Sache nach [,] immer durch die vollständige Induktion abzuleiten’’.
23 ‘‘§1 Erschaffung der Zahlen: 1; 1+1=2; 2+1=3; 3+1=4 . . . aus jeder Zahl a wird
durch den Act +1 die folgende Zahl a+1 gebildet. – Deshalb Alles durch
vollständige Induction. §2 Erklärung der Addition: a+(b+1)=(a+b)+1’’.
24 That way of proceeding was not uncommon at the time; indeed, Heine pursues a

similar route in his Elemente der Functionenlehre. Though Heine’s is a natural way of
proceeding, Dedekind must have found it (and his own approach) quite unsatis-
factory at this juncture. Heine answers the general question ‘‘What are numbers?’’ not
by a conceptual definition, but rather by taking a purely formal standpoint (acer-

bically criticized by Frege): ‘‘In the definition [of numbers] I adopt the purely formal
standpoint, by calling certain tangible marks numbers, such that the existence of these
numbers is not in question’’. Dedekind received Heine’s paper, when working on the

draft of 1872. Heine describes his way of introducing the negative numbers on pp.
173–174 of his essay. As to possible precedents of Dedekind’s way of proceeding cf.
Ferreirós (1999, 219), note 1.
25 In Dugac (1976, 205). ‘‘So wie die negativen und gebrochenen rationalen Zahlen
durch eine freie Schöpfung hergestellt, und wie die Gesetze der Rechnungen mit
diesen Zahlen auf die Gesetze der Rechnungen mit ganzen positiven Zahlen zu-
rückgeführt werden (so sollte es wenigstens geschehen), ebenso müssen auch die

irrationalen Zahlen durch die rationalen Zahlen definiert werden’’. The emphasis of
‘‘sollte’’ is Dedekind’s.
26 Ewald (1996, 771). The German text is: ‘‘So wie die negativen und gebrochenen

rationalen Zahlen durch eine freie Schöpfung hergestellt, und wie die Gesetze der
Rechnungen mit diesen Zahlen auf die Gesetze der Rechnungen mit ganzen positiven
Zahlen zurückgeführt werden müssen und können, ebenso hat man dahin zu streben,

daß auch die irrationalen Zahlen durch die rationalen Zahlen allein vollständig
definiert werden’’.
27 To be more precise, we conjecture that the first manuscript was written in 1872,

whereas the second one was written much later, but that its essential content goes
back to 1872. (The evidence for the conjecture that the second manuscript was
written later is quite direct: one part of the detailed calculations is written on the
back of a receipt for a journal subscription – from 1907.)
28 The German text on p. 4 of Cod. Ms. Dedekind III, 4, I, is this: ‘‘Man erschaffe
aus der Reihe N der natürlichen Zahlen a ein System P, welches außer den Elem-
enten a noch ein Element 0, und zu jedem a ein entsprechendes Element a* enthält,

mit der Festlegung, daß alle diese Elemente in P von einander verschieden sind
(leicht genauer auszudrücken; über die Möglichkeit einer solchen Schöpfung weiter
unten)’’.
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29 There is a simple issue of whether the partition (A0, B0) that is exactly like (A, B)

except that b0 is no longer the smallest element of B but the largest element in A0

should also be a cut or not; Dedekind discusses these matters in 1871/1872 on p. 11,
i.e., on p. 207 in Dugac (1976). For his own presentation, he decides, to consider such
cuts as not essentially different.
30 Ewald (1996, 773). ‘‘Jedesmal nun, wenn ein Schnitt (A1, A2) vorliegt, welcher
durch keine rationale Zahl hervorgebracht wird, so erschaffen wir eine neue, eine
irrationale Zahl a, welche wir als durch diesen Schnitt (A1, A2) vollständig definiert

ansehen; wir werden sagen, daß die Zahl a diesem Schnitt entspricht, oder daß sie
diesen Schnitt hervorbringt. Es entspricht also von jetzt ab jedem bestimmten Schnitt
eine und nur eine rationale oder irrationale Zahl und wir sehen zwei Zahlen stets und

nur dann als verschieden oder ungleich an, wenn sie wesentlich verschiedenen
Schnitten entsprechen’’.
31 Cf. the letter from Lipschitz to Dedekind dated 11 March 1876; in Lipschitz (1986,

47–48).
32 The letter is found in Appendix L of Dugac (1976, 272). In German the remark is:
‘‘Deinem Buch Was sind und was sollen die Zahlen sehe ich mit grosser Spannung
entgegen’’. Dedekind responded on 19 November 1878, saying: ‘‘Du fragst auch

nach meiner Untersuchung über den Uranfang der Arithmetik: ‘‘Was sind und was
sollen die Zahlen?’’ Sie ruht und ich zweifle, ob ich sie je publiciren werde; sie ist auch
nur in rohem Entwurfe aufgeschrieben, mit dem Motto: ‘‘Was beweisbar ist, soll in

der Wissenschaft nicht ohne Beweis geglaubt werden’’. Die Hauptsache ist die Un-
terscheidung des Zählbaren vom Unzählbaren, und der Begriff der Anzahl, und die
Begründung der sog. vollständigen Induction’’. Dedekind (1932, 486).
33 From 1872/1878, printed in Dugac (1976, 293): ‘‘Verfolgt man genau, was wir
beim Abzählen der Menge oder Anzahl von Dingen thun, so wird man nothwendig
auf den Begriff der Correspondenz oder Abbildung geführt.
Die Begriffe des Systems, der Abbildung, welche im Folgenden eingeführt werden,

um den Begriff der Zahl, der Anzahl zu begründen, bleiben auch dann für die
Arithmetik unentbehrlich, selbst wenn man den Begriff der Anzahl als unmittelbar
evident (‘‘innere Anschauung’’) voraussetzen wollte’’.
34 Dedekind in his letter to Keferstein, in van Heijenoort (1967, 100). The German
text is: ‘‘Aber ich habe in meiner Entgegnung . . . gezeigt, daß diese Tatsachen noch
lange nicht ausreichen, um das Wesen der Zahlenreihe N vollständig zu erfassen’’.
35 ‘‘Schon in der dritten Auflage dieses Werkes (1879, Anmerkung auf S. 470) ist
ausgesprochen, daß auf dieser Fähigkeit des Geistes, ein Ding amit einem Ding a0 zu
vergleichen, oder a auf a0 zu beziehen, oder dem a ein a¢ entsprechen zu lassen, ohne

welche überhaupt kein Denken möglich ist, auch die gesamte Wissenschaft der
Zahlen beruht. Die Durchführung dieses Gedankens ist seitdem veröffentlicht in
meiner Schrift ‘‘Was sind und was sollen die Zahlen?’’ (Braunschweig 1888); . . .’’
36 The first layer extends in Dugac (1978) from p. 293 to p. 297, the second from p.

297 to p. 304, and the third from p. 304 to p. 309. The order of the layers reflects,
quite clearly, the temporal evolution of Dedekind’s ideas, with only one exception:
much of the material in the right-hand columns on pp. 293–294 must have been

added later. In particular, we conjecture that the remarks quoted above from p. 293
of the manuscript (at the very beginning of this part of our paper) are from a later
date; they fit systematically best with the beginning of the third layer. The material
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on p. 294 uses notations that are introduced and explained only on p. 308, respec-

tively on p. 301.
37 It should be emphasized that the (in our view, original part of the) first layer does
not have the explicit notation u for a mapping; §159 of 1871 does, but only for
substitutions, i.e., isomorphisms between fields.
38 Dugac (1976, 300): ‘‘Der Beweis der Richtigkeit der Beweismethode von n auf n+1
ist richtig; dagegen ist der Beweis (Vollständigkeit) der Begriffserklärung durch die
Methode von n auf n+1 an dieser Stelle noch nicht genügend; die Existenz (wi-

derspruchsfrei) des Begriffs bleibt zweifelhaft. Dies wird erst möglich durch die
Deutlichkeit, durch die Betrachtung des Systems [n]!!!!!! Fundament’’.
39 Such a standard definition is given, for example, in Bolzano’s Paradoxien des

Unendlichen, Sections 8–9.
40 That is now well-known and was first established in Tarski (1924); additional
details are found in Belna (1996) on p. 41. As a matter of historical record, Zermelo

remarked already on the use of the axiom of choice in Dedekind’s proof on p. 188 of
Zermelo (1908).
41 ‘‘Charakteristik des Systems Z. Es giebt eine deutliche Abbildung von Z - ist T ein
Theil von Z, so soll das Bild von T mit T¢ bezeichnet werden -, welche folgende

Eigenschaft besitzt.
I. Z0 ist Theil von Z.
II. Es giebt eine Zahl (d.h. ein in Z enthaltenes Ding), welche nicht in Z¢ enthalten

ist. Diese Zahl soll ‘‘Eins’’ heissen und mit 1 bezeichnet werden.
III. Eine Zahlkette (d.h. jeder Theil T von Z, dessen Bild T¢ ein Theil von T ist),

welche die Zahl 1 enthält, ist identisch mit Z’’.
42 Peano mentions in the Introduction of his 1889: ‘‘In this paper I have used the
research of others’’. In particular, he states later in the paragraph that begins with
the sentence just quoted, ‘‘Also quite useful to me was the recent work by
Dedekind, Was sind und was sollen die Zahlen (Braunschweig 1888), in which

questions pertaining to the foundations of numbers are acutely examined’’. (p.
103). Belna (1996), on p. 60, refers to a text from 1891, in which ‘‘Peano recog-
nizes that his axioms ‘are due to Dedekind’ and drawn from #71 of the latter’s

book’’. Stein remarks in his 2000a that ‘‘Giuseppe Peano directly borrowed his
axioms for arithmetic’’ from Dedekind’s characterization of the system of natural
numbers as a simply infinite system. Peirce made priority claims at a number of

occasions; they are discussed very well, and accorded their proper place, in Belna
(1996) on pp. 57–59. It is quite clear from the above discussion that Dedekind
gives an analysis of natural numbers in 1872/1878 that culminates in their axi-

omatic characterization. However, the further claim – as found in Belna (1996) on
p. 58 and Stein (2000a) – that there is no essential difference (except by the
absence of the theorem concerning the existence of infinite systems) between the
1872/1878 manuscript and 1888 is not correct; for example, none of the meta-

mathematical results and broader conceptual reflections discussed in Section 6 are
contained in 1872/1878.
43 Van Heijenoort (1967, 99–100), except for a correction in the very last sentence,

where ‘‘formulation of consistent definitions of concepts’’ replaces ‘‘construction of
consistent notions and definitions’’. The German text, also reprinted in Sinaceur
(1974, 272), is as follows: ‘‘Welches sind die von einander unabhängigen Grundei-

genschaften dieser Reihe N, d.h. diejenigen Eigenschaften, welche sich nicht aus
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einander ableiten lassen, aus denen aber alle anderen folgen? Und wie muss man

diese Eigenschaften ihres spezifisch arithmetischen Characters entkleiden, der Art,
dass sie sich allgemeinen Begriffen und solchen Tätigkeiten des Verstandes unter-
ordnen, ohne welche überhaupt kein Denken möglich ist, mit welchen aber auch die
Grundlage gegeben ist für die Sicherheit und Vollständigkeit der Beweise, wie für die

Bildung widerspuchsfreier Begriffs-Erklärungen?’’
44 For details, see Sieg (2002, 366–371). Hilbert does not formulate the induction
principle; he just claims that it can be formulated in a way that is suitable for his

investigations.
45 The German text is: ‘‘Existiert überhaupt ein solches System in unserer Gedan-
kenwelt?’’ – In van Heijenoort (1967) ‘‘Gedankenwelt’’ is misleadingly translated as

‘‘realm of ideas’’.
46 The German text is: ‘‘Ohne den logischen Existenz-Beweis würde es immer zwei-
felhaft bleiben, ob nicht der Begriff eines solchen Systems vielleicht innere Wider-

sprüche enthält’’
47 Sinaceur (1974, 266). The German text is: ‘‘. . . so lange ein solcher Beweis nicht
geliefert ist, darf man befürchten, dass die obige Definition des Systems N einen
inneren Widerspruch enthält, womit dann die Gewissheit der Arithmetik hinfällig

würde’’.
48 Quoted from p. 138 of Frege (1969); cf. ibid. pp. 147–148, where Frege analyzes
Dedekind’s proof, approvingly. – McCarty asserts in his 1995 that Section 66 dis-

tinguishes itself ‘‘as the most blatantly psychologistic’’. To support this claim in note
5, p. 93, and also to bolster his contention of a strong connection between Kant and
Dedekind on p. 71, McCarty relies on the mistranslation of ‘‘Gedankenwelt’’ as

‘‘realm of ideas’’ in van Heijenoort (1967). McCarty writes on p. 71: ‘‘. . . we will find
the mathematical objects of Dedekind among the pure ideas of Kant. Dedekind did,
after all, write to Keferstein that he must locate the infinite system of natural
numbers ‘in the realm of our ideas’.’’
49 Bolzano (1851, 258). Bolzano’s definition, given on p. 254, is as follows: ‘‘. . . I
propose the name infinite multitude for one so constituted that every single finite
multitude represents only a part of it’’. Note that Bolzano uses finite multitude and

whole number synonymously; see also note 57.
50 Dugac (1976, 256). Cantor characterizes Bolzano’s booklet as ‘‘a peculiar little
work’’ (ein merkwürdiges Werkchen) of which he happened to have a second copy.
51 Dedekind (1887). ‘‘40. Erklärung: S heißt ein unendliches System, wenn es eine
derartige deutliche Abbildung von S gibt, daß das Bild von S ein echter Teil von S
ist; im entgegengesetzten Fall heißt S ein endliches System’’. (The underlining is

Dedekind’s.)
52 Dedekind (1887). ‘‘Anmerkung: alle bisher bekannten Definitionen des Endlichen
und Unendlichen sind gänzlich unbrauchbar, durchaus zu verwerfen’’.
53 Dedekind (1887). ‘‘41. Satz: Ist S=M(a,T), wo a ein Element von S, und T ein

endliches System bedeutet, so ist auch S ein endliches System’’. M is the union
operation. This is essentially Theorem 70 in 1888.
54 Dedekind (1887). ‘‘Satz. Es giebt unendliche Systeme; das System S aller derje-

nigen Dinge s (dieses Wort in dem in der Einleitung angegebenen Sinne verstanden),
welche Gegenstand meines Denkens sein können, ist unendlich (meine Gedanken-
welt)’’.
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55More will be said on the details of the reorganization in Section 5 of 1887 at

another occasion
56 Ewald (1996, 796). The German text – in Dedekind (1888, IX–X) – is as follows:
‘‘. . . keiner der genannten Schriftsteller hat den Versuch gemacht, diese Eigenschaft
zur Definition des Unendlichen zu erheben und auf dieser Grundlage die Wissen-

schaft von den Zahlen streng logisch aufzubauen, und gerade hierin besteht der
Inhalt meiner mühsamen Arbeit, die ich in allem Wesentlichen schon mehrere Jahre
vor dem Erscheinen der Abhandlung von G. Cantor [i.e., Cantor 1878] und zu einer

Zeit vollendet hatte, als mir das Werk von Bolzano selbst dem Namen nach gänzlich
unbekannt war’’.
57We discuss how Dedekind obtains natural numbers below. Compare that ap-

proach to Bolzano’s quick step in §8, where – after describing the formation of series
that start from a particular individual of a species A and proceed by adjoining a fresh
individual from that species – says: ‘‘Such multitudes I call finite [endlich] or

countable [zählbar], or quite boldly: numbers; and more specifically: whole numbers –
under which the first term shall also be comprised’’. Here and in §13, where Bolzano
establishes the existence of an infinite set, the proper general (‘‘logical’’) character-
ization of the set of objects that are obtained from an initial one via some successor

operation is completely missing in Bolzano.
58 Cf. Sinaceur (1974, 268)
59 Dedekind points out on p. 27 of 1888 what is obvious, namely, that condition I is a

consequence of II and III; he only includes it on account of greater clarity
(Deutlichkeit).
60 In contrast to induction, the recursion principle is not correct for arbitrary chains;

that is discussed in Bemerkung 130 of 1888.
61 Ewald (1996, 809). The German text is: ‘‘Wenn man bei der Betrachtung eines
einfach unendlichen, durch eine Abbildung u geordneten Systems N von der bes-
onderen Beschaffenheit der Elemente gänzlich absieht, lediglich ihre Un-

terscheidbarkeit festhält und nur die Beziehungen auffaßt, in die sie durch die
ordnende Abbildung u zueinander gesetzt sind, so heißen diese Elemente natürliche
Zahlen oder Ordinalzahlen oder auch schlechthin Zahlen, und das Grundelement 1

heißt die Grundzahl der Zahlenreihe N. In Rücksicht auf diese Befreiung der Ele-
mente von jedem anderen Inhalt (Abstraktion) kann man die Zahlen mit Recht eine
freie Schöpfung des menschlichen Geistes nennen’’. – The resonance with the re-

marks concerning the real numbers in 1872 is not accidental, as Dedekind makes
quite clear in his letter to Weber of 24 January 1888; the letter is found in Dedekind
(1932, 488–490).
62 The German text is found at the beginning of Section 5 of 1887: ‘‘Da durch diese
Abstraction die ursprünglich vorliegenden Elemente n von N (und folglich auch N
selbst in ein neues abstraktes System N) in neue Elemente n, nämlich in Zahlen
umgewandelt sind, so kann man mit Recht sagen, daß die Zahlen ihr Dasein einem

freien Schöpfungsacte des Geistes verdanken. Für die Ausdrucksweise ist es aber
bequemer, von den Zahlen wie von den ursprünglichen Elementen des Systems N zu
sprechen, und den Übergang von N zu N, welcher selbst eine deutliche Abbildung

ist, außer Acht zu lassen, wodurch, wie man sich mit Hilfe der Sätze über Definition
durch Recursion . . . überzeugt, nichts Wesentliches geändert, auch Nichts auf
unerlaubte Weise erschlichen wird’’.
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63 This is the full text of section 107 in 1887; the German is: ‘‘Aus dem Vorherge-

henden ergiebt sich, daß die Gesetze über die Beziehungen zwischen den Zahlen
gänzlich unabhängig von der Wahl desjenigen einfach unendlichen Systems N sind,
welches wir die Zahlenreihe genannt haben, sowie auch unabhängig von der Ab-
bildung von N, durch welche N als einfache Reihe geordnet ist’’.
64 This is nothing but a paraphrase of Dedekind’s considerations in #134 of 1888.
65 Ewald (1996, 809). The German text from Dedekind (1888) is: ‘‘Die Beziehungen
oder Gesetze, welche ganz allein aus den Bedingungen a, b, c, d in 71 abgeleitet

werden und deshalb in allen geordneten einfach unendlichen Systemen immer
dieselben sind, wie auch die den einzelnen Elementen zufällig gegebenen Namen
lauten mögen (vgl. 134), bilden den nächsten Gegenstand der Wissenschaft von den

Zahlen oder der Arithmetik’’.
66 The full German text in Dedekind (1932, 475), is as follows: ‘‘Ebenso wenig habe
ich gemeint, durch meine Definition der irrationalen Zahlen irgend eine Zahl

erschaffen zu haben, die nicht vorher schon in dem Geiste eines jeden Mathematikers
mehr oder weniger deutlich aufgefaßt war; dies geht aus meiner ausdrücklichen
Erklärung (S. 10 und 30) hervor, daß die durch meine Definition der irrationalen
Zahlen erreichte Vollständigkeit oder Stetigkeit (A) des reellen Zahlengebietes we-

sentlich äquivalent ist mit dem von allen Mathematikern anerkannten und benutzten
Satze (B): ‘Wächst eine Grö�e beständig, aber nicht über alle Grenzen, so nähert sie
sich einem Grenzwerth’ ’’.
67 The German text of the whole passage, on p. 479 of Dedekind (1932), is: ‘‘. . . eine
untrügliche Methode einer solchen Analyse besteht für mich darin, alle
Kunstausdrücke durch beliebige neu erfundene (bisher sinnlose) Worte zu ersetzen,

das Gebäude darf, wenn es richtig konstruiert ist, dadurch nicht einstürzen, und ich
behaupte z.B., daß meine Theorie der reellen Zahlen diese Probe aushält.’’
68 In Dedekind (1932, 334).
69 See Sieg (1999) and Mancosu (1999).
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Keferstein, H.: 1890, ‘Über den Begriff der Zahl’; Festschrift der Mathematischen
Gesellschaft in Hamburg, pp. 119–125.
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