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BOOTSTRAP CONFIRMATION MADE QUANTITATIVE

ABSTRACT. Glymour’s theory of bootstrap confirmation is a purely qualitative
account of confirmation; it allows us to say that the evidence confirms a given theory,

but not that it confirms the theory to a certain degree. The present paper extends
Glymour’s theory to a quantitative account and investigates the resulting theory in
some detail. It also considers the question how bootstrap confirmation relates to
justification.

1. INTRODUCTION

It is widely acknowledged that empirical testing crucially involves
the use of auxiliary theories and is thus in an uncontroversial sense
always relative to some theory or theories. In his (1980a), Glymour
presented an important, new confirmation theory according to
which empirical theories can be confirmed in an absolute sense
nonetheless. Glymour’s theory of bootstrap confirmation – as he
called it – is a purely qualitative confirmation theory; it allows us to
say that the evidence confirms a given theory, but not that it
confirms the theory to a certain degree. In the present paper we aim
to take some first steps towards extending Glymour’s theory to a
quantitative account.

The plan of the paper is as follows. We start by outlining Gly-
mour’s theory of bootstrap confirmation (Section 2). We then in
Section 3 formulate what we believe to be the main desiderata for a
quantitative bootstrap theory. Guided by these desiderata, we define
a measure of bootstrap confirmation and show how it can be put to
use to formulate a quantitative version of Glymour’s theory (Section
4). Finally, we consider the question how bootstrap confirmation
relates to justification. In particular, we address a worry that boot-
strap confirmation of some theory by the evidence does not really
indicate confirmation of that theory (Section 5).
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2. BOOTSTRAP CONFIRMATION

Aconfirmation theory is, roughly put, a theory that purports to specify,
for any given evidence statement and any given hypothesis, whether or
not the former supports the latter, or – in different terms that for present
purposes can all be taken as equivalents – whether coming to know the
evidence statement should increase our confidence in the hypothesis,
whether the evidence adds to the justificational status of the hypothesis,
whether it gives reason to believe the hypothesis. A confirmation theory
may or may not also specify to what extent the evidence supports, or
should affect our confidence in, a given hypothesis, howmuch it adds to
the justificational status of a hypothesis, how much reason it gives to
believe the hypothesis. If it does specify the extent of support, it is called
a quantitative confirmation theory, if it does not, it is called a qualitative
confirmation theory.

All these formulations suggest that confirmation is a two-place
relation, viz., a relation between a body of evidence and a hypothesis.
And indeed this is what philosophers for a long time believed. How-
ever, as Duhem (1906/1954) was the first to argue, and as Quine (1953)
famously repeated in his assault on the logical empiricists’ reductionist
semantics, confirmation is a three- rather than a two-place relation:
evidence generally accrues to a hypothesis only relative to one or more
auxiliary hypotheses. It is no exaggeration to say that today this is
something of a commonplace among analytic philosophers.1

While many have taken Duhem’s thesis to imply that all confir-
mation must be ‘relative’ confirmation, according to Glymour
(1980a), the indispensability of auxiliaries in the testing of single
hypotheses is no impediment to absolute confirmation of complexes
of such hypotheses or, as we may call them, theories. More specifi-
cally, Glymour presents a confirmation theory on which the piece-
meal confirmation of the individual hypotheses comprised by a given
theory relative to other hypotheses comprised by the same theory
may add up to an unrelativized confirmation of that theory as a
whole. Whether it does, depends on whether the separate tests of the
various hypotheses might have turned out negative for these
hypotheses. In a capsule formulation, Glymour’s theory comes to the
following definition:2

DEFINITION 2.1 (Bootstrap Confirmation). Let T ¼ fH1; . . . ;Hng.
Then evidence E bootstrap-confirms T exactly if T [ E0? and for
each i 2 f1; . . . ; ng the following two conditions hold:
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1. there is a T 0 � T such that Hi j2T 0 and
a. E confirms Hi with respect to T 0 ; and
b. there is possible – but non-actual – evidence E 0 such that E 0

disconfirms Hi with respect to T 0;
2. there is no T 0 0 � T such that E disconfirms Hi with respect to T 0 0.

We have eight comments on this definition:

(1) The reader should be warned that the definition reflects our
understanding of Glymour’s theory, and that Glymour’s book
leaves some room for interpretation.3 Since our aim is not exe-
getical, we shall not argue for the correctness of our interpreta-
tion of Glymour’s text. Moreover, we believe that, even if
Definition 2.1 should fail to capture what Glymour ‘really’ had in
mind, it defines a notion of confirmation that is well worth
considering in its own right.

(2) As Glymour (1980a, 127; 1980b) emphasizes, bootstrapping is not
to be thought of as being tied to a particular theory of (simple,
non-bootstrap) confirmation. Accordingly, the terms ‘confirms’
and ‘disconfirms’ in the clauses of the definition can be cashed out
in more than one way.4 For example, they can be understood in
terms of a Hempelian positive-instance account of confirmation
(as Glymour does in his own presentation of bootstrapping), in
hypothetico-deductive terms, or in probabilistic terms.

(3) Coupled with certain confirmation theories, in the face of sub-
clause 1.a the second clause amounts to no more than the
requirement that the theory at issue be consistent (and is thus
redundant given the requirement that the theory be consistent
with the evidence). Suppose for instance the notions of confir-
mation and disconfirmation are understood hypothetico-deduc-
tively. Without loss of generality, consider a theory consisting of
three axioms, T ¼ fH1;H2;H3g, and suppose that E confirms H1

with respect to H2, and thus that (1) fH1;H2g ‘ E, but discon-
firms H1 with respect to H3, and thus that (2) fH1;H3g ‘ :E.
Then T must be inconsistent. For it follows from (1) that
f:Eg ‘ :H1 _ :H2 and, similarly, it follows from (2) that
fEg ‘ :H1 _ :H3. And thus, by Constructive Dilemma,
fE _ :Eg ‘ ð:H1 _ :H2Þ _ ð:H1 _ :H3Þ, or, put differently,
fE _ :Eg ‘ :H1 _ :H2 _ :H3. From which it follows that
‘ :ðH1 ^H2 ^H3Þ, i.e., ‘ :T. But for those familiar with the
common probabilistic understanding of confirmation and dis-
confirmation (see Section 3), it will be immediately clear that, if
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some T and E satisfy clause 1 but not clause 2, that does not entail
that T is inconsistent. So if the definition is to be neutral as
regards theories of non-bootstrap confirmation, then the second
clause cannot be dispensed with.

(4) Glymour originally allowed bootstrap testing in which evidence
could confirm a hypothesis relative to itself – what later came to
be called ‘macho-bootstrapping’. However, under the pressure of
criticism from, among others, Christensen (1983), Edidin (1983),
and van Fraassen (1983a) he later restricted the auxiliaries
admissible in a test to hypotheses other than the one under
scrutiny in that test (Earman and Glymour 1988), as does clause 1
by requiring that the hypothesis under scrutiny not be in the set of
hypotheses from which the auxiliaries in that hypothesis’ test are
taken. (Notice that a similar restriction in clause 2 would be
superfluous. If a hypothesis is disconfirmed by the evidence, then
this seems to be no less – but rather more – damaging to that
hypothesis, and hence also to any theory that includes it, when the
hypothesis served itself as an auxiliary in that test than when only
other hypotheses did.)

(5) Bootstrap confirmation as presented here is defined for finitely
axiomatizable theories only. It is not theoretically impossible to
generalizeDefinition 2.1 to the infinite case, but it is hard to see how
bootstrap confirmation of such theories could practically be
achieved. Thus, in what follows, by ‘theory’ we shall mean finitely
axiomatizable theories.5

(6) As in a bootstrap test of a theory T all the tests of the individual
axioms ofT rely on auxiliaries that also come fromT, it might seem
aquestionable feature of this account that, provided both clauses of
Definition 2.1 are satisfied, it allows us to conclude that the evidence
confirms the theory, period, and not just that it confirms the theory
with respect to itself (a conclusion – note – that would be barely
significant unless one is already willing to accept the theory). More
than questionable, in fact: a common response of those who first
learn about bootstrap testing is to exclaim that the procedure is
patently circular. After all – it is said – the very theory the truth of
which is at stake in the test is presupposed in that test in the sense
that it is allowed to supply the auxiliaries needed in the tests of the
separate hypotheses comprised by the theory. At first sight, the
situationmay indeed seem analogous to one inwhichwe (correctly)
derive some proposition A using A itself as a premise and then
present that as a proof ofA (instead of just as a proof ofA! A, or
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of fAg ‘ A). But it is not. Consider: if bootstrap testing were really
circular, then how could any theory ever fail to be bootstrap-con-
firmed?And if the ‘non-triviality subclause’ 1.b is satisfied, a theory
can fail to be bootstrap-confirmed. For what the subclause ensures
is that adopting certain hypotheses as auxiliaries in testing some
other hypothesis does not guard the latter against disconfirmation
whatever the data. This, we believe, is as straightforward a way as
any to see the non-circularity of bootstrap testing.6

(7) Definition 2.1 defines bootstrap confirmation. What about boot-
strap disconfirmation? Glymour does not say, and it seems this
notion can be defined in more than one plausible way. Like
Glymour, we will mainly concern ourselves with bootstrap con-
firmation. Nevertheless, it will prove useful later on to have a
definition of bootstrap disconfirmation at hand. As such we
propose this:

DEFINITION 2.2 (Bootstrap Disconfirmation). Evidence E boot-
strap-disconfirms theory T ¼ fH1; . . . ;Hng precisely if for at least one
i 2 f1; . . . ; ng there is a T 0 � T such that E disconfirms Hi with re-
spect to T 0.

(8) Our final comment has a heuristic intent. It may be helpful to think
of Definition 2.1 as indicating some sort of coherence of the axioms
of a theory both with one another andwith the evidence. After all, a
major intuition regarding coherence is that coherent propositions
‘hang together’ (cf. BonJour 1985, 93).And apositive bootstrap test
fromevidenceEof a theoryT ¼ fH1; . . . ;Hng is an indicationof the
hypotheses in T and E hanging together in a very clear sense: the
hypotheses help each other to obtain support from the evidence. Of
course the definition cannot quite be a definitionof coherence. For a
second generally held intuition regarding coherence is that coher-
ence is a matter of degree – a set of propositions can hang together
more or less tightly – and this cannot be expressed by a qualitative
theory of bootstrap confirmation, which permits categorical judg-
ements only. (The quantitative theory of bootstrap confirmation to
be developed in this paper does make graded judgements possible.
SeeDouven (2004) for an analysis of coherence explicitly in terms of
that theory.7)

The theory of bootstrap confirmation as just presented plainly is a
qualitative confirmation theory: it allows us to say that a given
theory is bootstrap-confirmed by the evidence, but not that it is
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bootstrap-confirmed by the evidence to a certain degree, nor that one
theory is better bootstrap-confirmed by the evidence than another. A
quantitative bootstrap theory is not available. In view of the fact that
Glymour (1980a, 373, 375f) lists the development of such an account,
specifically of that of a probabilistic theory of bootstrapping, among
the projects for further research, this is surprising. One might think
that there must have been attempts to provide a quantitative version
of Glymour’s theory, but just none that was successful. But the odd
thing is that, to the best of our knowledge, no such attempt has been
made at all. How come?

The following may at least partly answer this question. Glymour
(1980, Ch. 3) presented what is now commonly known as the
problem of old evidence. Basically the problem is that, on a Bayesian
account, evidence that is already known at the time a theory is
developed can never confirm that theory (for if it is known, it has
unit probability, so that, for every theory T consistent with
E; pðTjEÞ ¼ pðTÞÞ, contrary to what we know from the practice of
science. This problem had the Bayesians stupefied for some time, and
once they had convinced themselves that it was not as damaging to
their position as it had at first appeared,8 and when they might have
considered the question of how to place Glymour’s account in a
Bayesian framework, interest in bootstrapping had virtually faded9 –
for no good reason, we believe. Of course, there had been the criti-
cisms related to Glymour’s initial countenancing of macho-boot-
strapping. As we already said, however, to dodge these it required no
more than a minor adjustment of the original definition of bootstrap
confirmation. There also had been some criticisms directed against
Glymour’s attempt to characterize, following Hempel, confirmation
relations in a strictly syntactical fashion (cf. Christensen 1983, 1990).
But, as van Fraassen already showed in his (1983a) by recasting
bootstrap confirmation within a semantic approach to theories,
Glymour’s syntactic approach is not essential to the theory of
bootstrap confirmation.

Whatever may be the exact cause of the loss of interest in Gly-
mour’s theory, in our opinion it deserves a second chance. By using
Bayesian tools to formulate bootstrapping we not only circumvent
the problems that beset the original theory due to its purely syntac-
tical orientation but also make it relatively straightforward to extend
the latter, qualitative theory to a quantitative one, thereby obtaining
a richer theory that permits graded judgements concerning the con-
firmational status of scientific theories.10
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3. DESIDERATA FOR A QUANTITATIVE THEORY OF BOOTSTRAP

CONFIRMATION

Before we can begin to formulate a quantitative theory of bootstrap
confirmation, we must clarify what relations between the evidence
and the theory and/or between the hypotheses in the theory them-
selves intuitively matter to the degree of bootstrap confirmation
(assuming that the evidence does bootstrap-confirm the theory). That
is to say, we should start by asking what the desiderata are for a
quantitative theory of bootstrapping (or, more exactly, what the
extra desiderata are beyond those already canvassed in Glymour’s
book, i.e., beyond those that have to be met by any theory of
bootstrapping, whether qualitative or quantitative).

The first desideratum is evident and concerns the degree to which,
in the separate tests involved in a bootstrap-test of a theory as a
whole, the individual hypotheses of the theory are confirmed by the
evidence. So, given a measure of relative confirmation, i.e., of the
confirmation supplied to a hypothesis relative to one or more auxil-
iaries, it should for instance hold that, if the hypotheses in some
theory T are all ‘relatively confirmed’ by the evidence to a degree
greater than that to which the evidence ‘relatively confirms’ the
hypotheses in some other theory T 0, then, all else being equal, the
evidence bootstrap-confirms T to a greater degree than it bootstrap-
confirms T 0.

A second desideratum is suggested by Glymour (1980a, 76f, 140).
Here he stresses the importance of testing each hypothesis of a given
theory in a variety of ways (if possible). It can of course never be
excluded that, in testing one hypothesis with respect to another, an
error in one compensates for an error in the other, thus leading to
spurious confirmation of the hypothesis that is being tested. But the
more ways in which we can test a hypothesis, the better we will be
guarded against such spurious confirmation. Thus, while for Clause
1.a of Definition 2.1 to be satisfied it suffices if for each hypothesis of
a given theory there is exactly one subset of the theory’s axioms with
respect to which the hypothesis is confirmed, it is nevertheless
desirable that for each hypothesis there are more such subsets – and
the more there are, the better it is.

However, for all the weight Glymour puts on variety of testing in
the general discussion of bootstrap testing, it plays no role whatso-
ever, and can play no role whatsoever, in his formal theory. There is,
for instance, no possibility to express in the framework of this theory
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that in testing T each of the hypotheses in T have been confirmed
relative to a great variety of auxiliaries also in T whereas the
hypotheses in T � have each been confirmed only relative to one set of
auxiliaries in T �. And it is also difficult to see how this difference
could be brought out by Glymour’s account, given that it is only a
qualitative account. Now assume, just for the moment, that the
theory were quantitative, i.e., that it would allow us to express that a
given theory is bootstrap-confirmed by the evidence to a degree of x.
Then if that theory is to respect the intuition that variety of testing
matters, it should in any case entail that, if evidence E bootstrap-
confirms both theories T and T 0 but T is tested in a greater variety of
ways than T 0, then, all else being equal, E bootstrap-confirms T to a
greater extent than it bootstrap-confirms T 0. This we will take to be a
further important desideratum for any quantitative version of Gly-
mour’s theory of bootstrap testing.

A third desideratum is related to the non-triviality condition, the
condition expressed by Clause 1.b of Definition 2.1. Recall that this
condition demands that the auxiliaries do not shield the hypothesis
under scrutiny from disconfirmation. Here, too, we have a condition
that in Glymour’s theory is of the yes-or-no type: either the auxilia-
ries shield the hypothesis from disconfirmation or they do not. But it
seems intuitively plausible that auxiliaries can shield the hypothesis to
a greater or lesser degree.

To render precise this intuition, it is easiest if we first recast Def-
inition 2.1 in probabilistic terms. In those terms, confirmation of a
hypothesis by the evidence is generally taken to mean that the
hypothesis conditional on the evidence has a higher probability than
taken on its own; disconfirmation on this account means that the
hypothesis conditional on the evidence has a lower probability than
taken on its own. If Duhem, Quine, Glymour, and many others are
correct, and all confirmation requires the use of auxiliaries, then
presumably the foregoing should be revised as follows: evidence E
confirms hypothesis H relative to auxiliaries A1; . . . ;An exactly if
pðH jE ^ A1 ^ � � � ^ AnÞ > pðH jA1 ^ � � � ^ AnÞ; for disconfirmation,
replace ‘>’ by ‘<’.11 This suggests a probabilistic version both of
Clause 1.a and of Clause 2 of Definition 2.1.

How should Clause 1.b read in probabilistic terms? It turns out
that, given the just-suggested probabilistic version of the first sub-
clause, the second subclause is taken care of quite automatically. For
it is straightforward that if pðH jH0 ^ EÞ > pðH jH0Þ, then there is
also evidence E0 such that pðH jH0 ^ E0Þ < pðH jH0Þ, that is, in that
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case there is possible evidence disconfirming H relative to the same
auxiliary as that relative to which E confirms it. After all, by the law
of total probability, we have that

pðH jH0Þ ¼ pðH jH0 ^EÞpðE jH0Þþ pðH jH0 ^:EÞpð:E jH0Þ:
Thus, since pðE jH0Þ ¼ 1� pð:E jH0Þ, the probability pðH jH0Þ is a
mixture of pðH jH0 ^ EÞ and pðH jH0 ^ :EÞ:12 And so if pðH jH0 ^ EÞ
> pðH jH0Þ, it must be that pðH jH0 ^ :EÞ < pðH jH0Þ.

Putting all this together now, we obtain the following probabilistic
definition of bootstrap confirmation: 13; 14

DEFINITION 3.1 (Probabilistic Bootstrap Confirmation). Evidence
E probabilistically bootstrap-confirms theory T ¼ fH1; . . . ;Hng pre-
cisely if pðT ^ EÞ > 0 and for each i 2 f1; . . . ; ng it holds that
1. there is a T 0 � T such that Hi j2T 0 and pðHi jT 0 ^ EÞ > pðHi jT 0Þ;

and
2. there is no T 00 � T such that pðHi jT 00 ^ EÞ < pðHi jT 00Þ.
As an obvious analogue of Definition 2.2 we have:15

DEFINITION 3.2 (Probabilistic Bootstrap Disconfirmation).
Evidence E probabilistically bootstrap-disconfirms theory T ¼
fH1; . . . ;Hng if and only if for at least one i 2 f1; . . . ; ng there is a
T 0 � T such that pðHi jT 0 ^ EÞ < pðHi jT 0Þ.
Appendix A charts some logical relationships between Definitions 3.1
and 3.2 and simple probabilistic confirmation.

It was just said that if in a test the hypothesis under scrutiny has
unit probability given the auxiliary, that test can yield no disconfir-
mation of the hypothesis; this corresponds to a situation in which the
non-triviality condition of Definition 2.1 is not met. But of course the
probability of the hypothesis conditional on the auxiliary may as-
sume any value in the interval (0, 1). And it seems intuitively clear
that it makes some difference for the test whether this value is closer
to one end of the interval than to the other. For instance, if the
probability of the hypothesis conditional on the auxiliary is high,
then although that does not completely trivialize the test in the sense
that the auxiliary shields that hypothesis against a negative test result,
something like shielding does occur in that case, in view of the fact
that, ceteris paribus, the higher the probability ofH conditional onH0

is, the less impact evidence can have on H in a test relative to H0:16

Accordingly, whereH1; . . . ;Hm are the auxiliaries used in a particular
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test of H, we will say that pðH j
Vm

k¼1 HkÞ measures the degree of
triviality of that test. As a third desideratum for a quantitative
bootstrap theory, then, we propose that it take account of the degree
of triviality of each of the tests passed by the various hypotheses of a
theory.

While there may well be further desiderata for a quantitative
theory of bootstrapping, we believe the above three to constitute the
main ones, and our measure of bootstrap confirmation will be tai-
lored to meet them (it may well meet others, of course, or be
adaptable to others – if such there be).17

4. A QUANTITATIVE THEORY OF BOOTSTRAP CONFIRMATION

In this section we first define, and illustrate the use of, a quantitative
measure of the bootstrap support a given theory receives from a
certain body of evidence (Section 4.1). We then state some useful
theorems concerning this measure (Section 4.2). Finally, we define a
quantitative theory of bootstrap testing in terms of it (Section 4.3).

4.1. A Measure of Bootstrap Confirmation

If we let ‘Th’ denote the class of all (finitely axiomatizable) theories
that can be formulated in a given language and ‘Sent’ the class of
sentences of that language apt to report evidence (as was said earlier,
this class is taken to be coextensive with the class of all sentences
belonging to the language), then the measure we intend to define can
be expressed as a function B : Th� Sent! R, where the value
indicates what might, slightly misleadingly (see below), be termed
degree of bootstrap confirmation. We know from the discussion in
the previous section the, or at least some major, desiderata for this
function. Unfortunately, these desiderata fail to determine a unique
measure of bootstrap confirmation. Here we are happy to provide
one such measure, but refrain from claiming that it is the true one (if
it makes sense at all to speak of a true measure).

One reason why we do not get a unique measure of bootstrap
confirmation from our desiderata is that, for all anyone has said so
far, there is no unique measure of confirmation for single hypoth-
eses. We want our measure of bootstrap support for theories to
depend on the degree of confirmation the evidence supplies to the
various hypotheses comprised by the theories in the various tests the
theories allow us to perform (that was the first desideratum).
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Adapting the probability definition of confirmation to the needs of
bootstrap testing, confirmation of a hypothesis, we said, comes
down to the claim that the probability of the hypothesis conditional
on the auxiliary or auxiliaries plus the evidence exceeds the
hypothesis’ probability conditional on the auxiliary/auxiliaries
alone. While this seems to be unproblematic, it is unclear how we
are to determine the degree to which the evidence confirms the
hypothesis with respect to the auxiliary/auxiliaries. This problem
already arises for ‘plain’ (i.e., non-bootstrap) confirmation. Several
functions have been proposed as candidates for providing the ‘true’
measure of such confirmation, but none, so far, can count on any
general acclaim. Nonetheless the following can be said to enjoy
some popularity (for later purposes, we shall call these the standard
measures of confirmation):18

–the difference measure: dðH;EÞ ¼df pðH jEÞ � pðHÞ;
–the (log-)ratio measure: rðH;EÞ ¼df pðH jEÞ=pðHÞ (or, as some pre-
fer, rðH;EÞ ¼ log½pðH jEÞ=pðHÞ�Þ;
–Carnap’s relevance measure: rðH;EÞ ¼df pðH ^ EÞ � pðHÞpðEÞ;
–the (log-)likelihood measure: lðH;EÞ ¼df pðE jHÞ=pðE j :HÞ (or the
logarithm of that ratio).

All these functions can be readily adapted to meet our concerns.
Choosing any particular one must, at least at this point, lack a solid
philosophical motivation. For simplicity, and because it seems to be
slightly more popular than the others, we will adapt the difference
measure for the purpose of measuring in a bootstrap test the confir-
mation of the separate hypotheses in the separate tests, as follows:19

DEFINITION 4.1.

d�ðH;H 0;EÞ ¼df pðH jH 0 ^ EÞ � pðH jH 0Þ:
Of course, if one were to pick one of the others and adapt that, then
that would result in a different measure of bootstrap confirmation.
This is a major reason why the desiderata of Section 3 are (presently)
incapable of determining a unique such measure. It is important to
note, though, that all the theorems to be given in the remainder
would go through if one were to replace the measure d� by the
(adapted) Carnap measure – i.e., the measure r�ðH;H0;EÞ ¼df pðH^
H0 ^ EÞ � pðH j H0ÞpðH0 ^ EÞ – in the measure of bootstrap confir-
mation to be defined below; and all theorems except Theorem 4.4
would go through if one were to replace d� by the adapted (log-)ratio
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measure r�ðH;H0;EÞ ¼df pðH j H0 ^ EÞ=pðH j H0Þ ðor log½pðH j H0^
EÞ=pðH j H0Þ�Þ:20 However, neither Theorem 4.2 nor Theorem 4.4
nor Theorem 5.1 holds for the adapted (log-)likelihood measure
l�ðH;H0;EÞ ¼df pðH0 ^ E j HÞ=pðH0 ^ E j:HÞ ðor log ½pðH0 ^ E j HÞ=
pðH0 ^ E j:HÞ�Þ:21

The desideratum of variety of testing can now easily be realized:
simply add up the support the evidence provides each of the hypoth-
eses in a theory relative to each of the possible sets of auxiliaries taken
from the same theory. Then, ceteris paribus, and provided a theory is
bootstrap-confirmed, the more tests of each of its hypotheses it allows,
the higher will be its degree of bootstrap support.

In order to satisfy our last desideratum we must make sure that the
higher the ‘degree of triviality’ of a test of a particular hypothesis is,
the less that test can contribute to the degree of bootstrap support the
theory as a whole obtains. It was previously argued that the condi-
tional probability of a hypothesis given one or more other hypotheses
can be regarded as measuring the degree of triviality of a test of the
former involving exactly the latter as auxiliaries. It appears that by
letting our function d� measure the degree of confirmation of single
hypotheses and by measuring total bootstrap support by summing up
the support each hypothesis receives from the evidence relative to
each possible set of auxiliaries, we have already catered for this last
desideratum: ceteris paribus, the higher the degree of triviality of a
test, the smaller the value of d� will be and thus, ceteris paribus, the
smaller the total amount of bootstrap support of the theory will be.
To see this, consider that, e.g., where H is the hypothesis being tested
and H1; . . . ;Hm are the auxiliaries being used in the test, if
pðH j

Vm
j¼1 HjÞ ¼ 1, then a test of H relative to H1; . . . ;Hm cannot

possibly add anything to the overall bootstrap support the theory
comprising H;H1; . . . ;Hm receives from E whatever E is. And if
pðH j

Vm
j¼1 HjÞ 6¼ 1 but still high, then a test of H relative to

H1; . . . ;Hm can at best add a slight amount to the overall bootstrap
support the theory receives from the evidence. But of course it holds
quite generally that the lower pðH j

Vm
j¼1 HjÞ is, the more a test of H

relative to H1; . . . ;Hm can add to the bootstrap support T receives
from the evidence.

To put this in more formal terms, let T ¼ fH1; . . . ;Hng. For each
Hi 2 T, there are exactly 2n�1 sets of auxiliary hypotheses also in T
with respect to which it can be tested, namely, all the elements of the
power set of T minus Hi, that is, }ðT nfHigÞ:22 Given some ordering
hHT

i1
; . . . ;HT

i
2n�1
i of }ðT nfHigÞ, let ‘HT

ij
’ denote the jth member of that

IGOR DOUVEN AND WOUTER MEIJS108



ordering. Finally, let ‘
V
HT

ij
’ denote the conjunction of the hypotheses

in HT
ij
. Then we can define our measure of bootstrap confirmation, B,

as follows:23

DEFINITION 4.2 (Measure of Bootstrap Confirmation).

BðT;EÞ ¼df

Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT

ij
;EÞ:

As already intimated, the name of this function may be slightly
misleading in that it suggests that ‘BðT;EÞ ¼ x’ is to be generally
interpreted as saying that E bootstrap-confirms T to a degree of x,
an interpretation that does not seem appropriate in all cases. In-
deed, it only seems natural to say that B measures bootstrap con-
firmation if B takes as its arguments a theory and a collection of
data such that the latter bootstrap-confirms the former in the
qualitative sense defined earlier. Nevertheless, for want of a better
name, we shall stick to this one.

To get a feel for Definition 4.2, it may be helpful to see an actual
application of it. Consider the following example in which the
bootstrap support the evidence supplies to a theory consisting of four
axioms is calculated:

EXAMPLE 4.1. Theory T has as axioms hypothesesH1,H2,H3, and
H4. Each of these hypotheses has a prior probability of .25, and they
are mutually probabilistically independent.24 Evidence E has a prior
probability of .5. Further we have the following:25

• pðE ^HiÞ ¼ :125, for all i 2 f1; . . . ; 4g;
• pðE ^Hi ^HjÞ ¼ :05, for all i; j 2 f1; . . . ; 4g such that i 6¼ j;
• pðE ^Hi ^Hj ^HkÞ ¼ :015, for all i; j; k 2 f1; . . . ; 4g such that
i 6¼ j 6¼ k;26

• pðE ^H1 ^ � � � ^H4Þ ¼ :0038:
It can easily be verified that, given the previous assumptions, E boot-
strap-confirms T in the sense of Definition 3.1. To calculate the degree
of support E provides for T, first derive for all i 2 f1; . . . ; 4g that

• d�ðHi;EÞ ¼ ðpðHi ^ EÞ=pðEÞÞ � pðHiÞ ¼ ð:125=:5Þ � :25 ¼ 0;
• for all j 2 f1; . . . ; 4g such that i 6¼ j :

d�ðHi;Hj;EÞ¼
pðHi^Hj^EÞ
pðHj^EÞ

�pðHi^HjÞ
pðHjÞ

¼ :05

:125
�:0625

:25
¼ :15;

• for all j; k 2 f1; . . . ; 4g such that i 6¼ j 6¼ k :
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d�ðHi;Hj^Hk;EÞ¼
pðHi^Hj^Hk^EÞ
pðHj^Hk^EÞ

�pðHi^Hj^HkÞ
pðHj^HkÞ

¼ :015
:05
� :015625

:0625
¼ :05;

• for all j; k; l 2 f1; . . . ; 4g such that i 6¼ j 6¼ k 6¼ l :

d�ðHi;Hj ^Hk ^Hl;EÞ ¼
pðHi ^Hj ^Hk ^Hl ^ EÞ

pðHj ^Hk ^Hl ^ EÞ

� pðHi ^Hj ^Hk ^HlÞ
pðHj ^Hk ^HlÞ

¼ :0038
:015

� :00390625
:015625

� :003:

Since for each Hi there is exactly one way in which it can be tested
relative to no auxiliary hypotheses, three different ways in which it
can be tested relative to one auxiliary hypothesis, three different
ways in which it can be tested relative to two auxiliary hypotheses,
and one way in which it can be tested relative to three auxiliary
hypotheses, the total bootstrap support each of the Hi individually
receives from E equals (approximately): ð1Þð0Þ þ ð3Þð:15Þþ
ð3Þð:05Þ þ ð1Þð:003Þ ¼ :603: Since the bootstrap support T receives is
just the sum of the bootstrap supports each of its axioms receives,
BðT;EÞ � ð4Þð:603Þ ¼ 2:412:27

4.2. Some Theorems

Before stating our quantitative account of bootstrapping, we want to
point to some important facts concerning B.

First, the standard measures of confirmation given earlier apply
to theories (that is, to sets of hypotheses) no less than they do to
single hypotheses. Our measure of bootstrap support would of
course be entirely superfluous if it coincided with one of these
standard measures or indeed with any of the other known measures
of confirmation (see Note 18), or if the degree of bootstrap support
provided by some piece of evidence to a theory were just the degree
of confirmation of the theory by the evidence given some of those
measures of confirmation modulo some scale transformation. This
is not the case, however. Note that each of the known measures of
confirmation makes the degree of confirmation a theory T receives
from evidence E a function of some subset of fpðTÞ; pðEÞ; pðT jEÞ;
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pðT j :EÞ; pðE jTÞ; pðE j :TÞg: More generally, call any measure,
whether or not actually proposed, that is a function of any such
subset a non-bootstrap measure of confirmation. Then we have the
following theorem (see Appendix B for proofs of this and of The-
orems 4.2–4.4):

THEOREM 4.1. There is no function f such that, for all T and E,
BðT;EÞ ¼ f 	mðT;EÞ; with m any non-bootstrap measure of confir-
mation.

Second, we have some theorems concerning relations between the
measure B and qualitative bootstrap confirmation and disconfirma-
tion as defined by Definitions 3.1 and 3.2, respectively:

THEOREM 4.2. For all T and E, if BðT;EÞ 6> 0; then E does not
bootstrap-confirm T; if in addition BðT;EÞ < 0; then E bootstrap-
disconfirms T.

THEOREM 4.3. There is no a 2 R such that, for all T and E, if
BðT;EÞ > a; then E bootstrap-confirms T, nor is there a b 2 R such
that, for all T and E, if E bootstrap-disconfirms T, then BðT;EÞ < b:

Note that the first conjunct of Theorem 4.3 only indicates that there is
no general numerical threshold value for qualitative bootstrap con-
firmation in the sense that, for any T and E, if we are informed that
BðT;EÞ has a value above that threshold, we can immediately infer
that E qualitatively bootstrap-confirms T. This leaves open the pos-
sibility that with every particular theory T some value a can be
associated such that, if BðT;EÞ > a for some E, then E qualitatively
bootstrap-confirms T. In fact, as the following theorem shows,
something stronger holds: for each class of theories that have the
same number of axioms there is a threshold value such that for every
theory T within the class, if BðT;EÞ is greater than or equal to the
threshold value, E bootstrap-confirms T:

THEOREM 4.4. For all n 2 N; T, and E, if T ¼ fH1; . . . ;Hng and
BðT;EÞP ðnÞð2n�1Þ � 1, then E bootstrap-confirms T.

This theorem is of limited interest, though. As the proof clearly
shows, a value equal to or greater than the threshold is only reached
in the special case in which each axiom of a theory is confirmed by the
evidence relative to each possible set of auxiliaries also from that
theory (recall that Definition 3.1 only requires that each axiom is
confirmed relative to some possible set of auxiliaries and not dis-
confirmed relative to any of the others).28
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By the same reasoning as is utilized in the proof of Theorem 4.4, we
can associate a numerical threshold – to wit, also ðnÞð2n�1Þ � 1 – with
every class of theories axiomatized by n axioms ðn 2 NÞ such that, if
some E bootstrap-disconfirms a theory T within that class, then
BðT;EÞ is below that threshold. Here, too, we do not have a contra-
diction with Theorem 4.3, whose second conjunct only denies the
stronger claim that there is a general numerical threshold such that all
theories that are bootstrap-disconfirmed have a B-value below that
threshold.

4.3. Quantitative Bootstrap Confirmation Defined

Turning now to the task of defining quantitative bootstrap confir-
mation, first notice that Theorem 4.3, which says that no value of B
necessarily indicates bootstrap confirmation, implicates that (unless
we are willing to say that E bootstrap-confirms T to a degree of x even
in a case in which E does not bootstrap-confirm T at all according to
Definition 3.1) we cannot simply have a quantitative theory of boot-
strapping according to which E bootstrap-confirms T to a degree of x
just in case BðT; EÞ ¼ x > a, for some a 2 R. Second, while a value of
BðT; EÞ of 0 or below indicates that the evidence does not bootstrap-
confirm the theory (and a value below 0 even that the evidence
bootstrap-disconfirms the theory), and a value of BðT; EÞ of
ðnÞð2n�1Þ � 1 or higher indicates, for a theory with n axioms, that it is
bootstrap-confirmed by the evidence, nevertheless if 0 < BðT; EÞ <
ðnÞð2n�1Þ � 1, no similar conclusion can be drawn: all values within
that range are compatible with E bootstrap-confirming, bootstrap-
disconfirming, and being bootstrap-irrelevant to, T. Hence, nor can
we have a quantitative theory of bootstrapping according to which E
bootstrap-confirms T to a degree of x just in case BðT;EÞ ¼ x and x is
above some threshold that is a function of the number of T ’s axioms.
The following quantitative bootstrap theory is hardly more involved,
however:

DEFINITION 4.3 (Quantitative Bootstrap Confirmation). Evidence
E bootstrap-confirms theory T ¼ fH1; . . . ;Hng to a degree of x ex-
actly if

1. clauses 1 and 2 of Definition 3.1 are satisfied; and
2. BðT;EÞ ¼ x.

What this definition basically says is that Definition 3.1 determines
when a theory is bootstrap-confirmed by the evidence, and that
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thereupon the measure of bootstrap-confirmation as specified by
Definition 4.2 determines to what degree the theory is bootstrap-
confirmed by the evidence. Quantitative bootstrap disconfirmation
can be defined in a parallel fashion.

The account of bootstrap confirmation we have hereby obtained
enables us to express such things as that, if evidence E bootstrap-
(dis)confirms a given theory T, then it does this the stronger the
higher (lower) the value of BðT;EÞ is, and also that E bootstrap-
(dis)confirms theory T to a greater extent than some other theory T 0

if E bootstrap-(dis)confirms both T and T 0 and BðT;EÞ > BðT 0;EÞ,
or BðT;EÞ < BðT 0;EÞ, respectively.

5. A PUZZLE ABOUT BOOTSTRAP CONFIRMATION

What is the connection between bootstrap support and justified be-
lief? We here consider a puzzle raised in van Fraassen (1983b), which
seems to show that qualitative bootstrap confirmation of some theory
does not give reason to believe that theory. As will be seen, our
quantitative theory may give rise to basically the same puzzle. But we
suggest that the puzzle does not necessarily show that bootstrapping
is not really a theory of confirmation at all.

Consider a simple, comparative definition of justification in terms
of bootstrap confirmation

(B1) If E bootstrap-confirms T but not T 0, then, if E is our total
evidence, belief in T is more justified than belief in T 0.

(B2) If E bootstrap-confirms T to a higher degree than T 0, then, if E is
our total evidence, belief in T is more justified than belief in T 0.

Though appealingly simple, this answer to our initial question
appears to conflict with the following principle:

(P) If pðT jEÞ > pðT 0 jEÞ, then, if E is our total evidence, belief in T 0

cannot be more justified than belief in T,

a principle that van Fraassen (1983b) presents as a truism.
Van Fraassen’s argument that (B1) and (P) conflict goes roughly

as follows: Suppose T ¼ fH1;H2;H3g is bootstrap-confirmed by E
(according to Definition 3.1). Suppose in particular that E confirms
H1 relative to H2 (and perhaps also relative to H3 and to H2 ^H3),
E confirms H2 relative to H3 (and perhaps also relative to H1 ^H3,
but not relative to H1), and E confirms H3 relative to H1 (and
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perhaps also relative to H1 ^H2). Now the subset T 0 � T, containing
only H1 and H2, is not bootstrap-confirmed by E (for E does not
confirm H2 relative to H1). Without loss of generality, assume that
fH1;H2;Eg0H3. Then it is an elementary truth of probability theory
that pðT 0 jEÞ > pðT jEÞ. So, according to (B1), we are more justified
in believing T than in believing T 0, but according to (P), we are not.

It must be immediately clear that although (B1) always conflicts
with (P), this does not hold for (B2). In quantitative bootstrapping
there are various ways in which a theory can become more bootstrap-
confirmed. Many of these will simply raise the probability of the
theory given the evidence, and in such cases (B2) and (P) are in
perfect accordance with each other. This said, it is not hard to see that
in other cases (B2) and (P) will still conflict.

For example, consider subset T 0 of T of Example 4.1, consisting of
hypotheses H1, H2, H3. This theory has a probability of .03 given
evidence E, which clearly exceeds that of T given E (=.0076).
However, it is bootstrap-supported by E to a much lower degree than
T, namely BðT 0;EÞ ¼ 1:05 ðBðT;EÞ � 2:412Þ. Thus, according to
(B2), we are more justified in believing T than in believing T 0, but
according to (P) we are not.

To generalize the problem, note that, if T � T 0, then, for all
E; pðT jEÞP pðT 0 jEÞ. And unless T [ fEg ‘ T 0; pðT jEÞ will even
exceed pðT 0 jEÞ. On the other hand, we have the following theorem
(see Appendix C for a proof):

THEOREM 5.1. For all T; T 0, and E, if T � T 0 and E does not
bootstrap-disconfirm T 0, then BðT 0;EÞPBðT;EÞ; if in addition E
bootstrap-confirms T 0, then BðT 0;EÞ > BðT;EÞ.
Hence, degree of bootstrap confirmation and probability may pull in
opposing directions; they cannot always be jointly maximized. But
then how can bootstrap confirmation be related to justification?

Van Fraassen’s conclusion is that it cannot. This is not to say that
van Fraassen believes a positive bootstrap test is insignificant. Quite
the contrary – he believes it gives reason to accept a theory, where the
notion of acceptance is considerably weaker than that of belief (van
Fraassen 1983a, 1983b). More specifically, acceptance of a theory
involves the belief that it is empirically adequate (roughly, true of the
observable part of the world) as well as a commitment to use the
theory’s conceptual apparatus in describing future phenomena (van
Fraassen 1980, Ch. 1). Should his view on bootstrap testing be cor-
rect, then that hardly detracts from the importance of having a
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quantitative account of bootstrap confirmation: surely it makes sense
to say that one bootstrap test provides stronger reason to accept a
given theory than another bootstrap test, and it seems that only a
quantitative bootstrap theory is capable of capturing that intuition.
However, van Fraassen’s conclusion may not be inescapable.

Plausible though it may appear, principle (P) has been denied by,
among others, Levi (1967), Kaplan (1981a), (1981b), Lehrer (1990),
and Maher (1993), who have argued that – loosely – justification has
the structure of a decision-making problem. In such a problem, one
heeds not only the probabilities of the possible outcomes of a certain
decision, but also their utilities. More exactly, in decision making one
chooses the option that has greatest expected utility of the available
alternatives, where an option’s expected utility is just the sum of the
utilities of its various possible outcomes weighted by the probabilities
of those outcomes.29 According to the aforementioned authors, there
is nothing in the way decision theory is set up that would prevent
applying it to matters epistemological; we can perfectly well assign
cognitive or epistemic utilities to the ‘acts’ of accepting, rejecting, and
suspending judgement on particular hypotheses or theories under
particular circumstances, and then apply the decision-theoretic
apparatus to these acts in the normal manner in order to determine
what the agent is justified to do. So, on this approach to justification,
a person may well be more justified in believing one theory than she is
in believing a second even if the former is less likely to her than the
latter, because, given her probabilities and utilities, the former may
well have a greater expected cognitive utility than the latter.30

Now the notion of utility is anything but crystal-clear.31 The no-
tion of cognitive utility appears even more problematic. We are told
that the cognitive utility of accepting some hypothesis depends on the
informativeness of that hypothesis (cf. e.g., Lehrer 1990; Maher
1993). But the notion of informativeness itself is still very much in
need of clarification. Maher thinks this notion is to be cashed out in
terms of verisimilitude. However, given that there is still widespread
disagreement over the nature of verisimilitude (cf. e.g., Niiniluoto
1998), this suggestion seems rather unhelpful.32 One way in which our
quantitative bootstrap account could be positively related to justifi-
cation is by replacing, in cognitive decision theory, the ill-defined
notion of cognitive utility by the clearly defined notion of degree of
bootstrap support. In order to determine the justificational status of a
hypothesis or theory we would thus have to weigh not probability
and utility but probability and degree of bootstrap support against
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one another. This is only a rough proposal that can be filled out in
quite diverse ways. We will not explore the possibilities here. Our aim
in this section merely was to point out that there may still be a
positive role for degree of bootstrap confirmation even though a
higher degree of bootstrap support does not generally indicate a
higher probability.33

6. CONCLUDING REMARKS

In our view, it is hard to overestimate the philosophical significance
of Glymour’s work on bootstrap confirmation. Still, the work was in
an important respect left unfinished: Glymour provided a qualitative
theory only. In this paper, we have begun the formulation of a
quantitative account of bootstrapping. We started by laying down a
number of desiderata for such an account, and then defined, guided
by these desiderata, a quantitative measure of bootstrap support.
Quantitative bootstrap confirmation could then be rather straight-
forwardly defined by means of that measure.

As was indicated at various junctures, the theory offered here is far
from meant to be the final word on quantitative bootstrap confir-
mation, but rather the beginning of a larger project. Two avenues for
future research deserve special mentioning. First, it will be remem-
bered that we left open the possibility that there are other desiderata
for a quantitative theory of bootstrap confirmation beyond those we
identified. More research is needed to see whether there indeed are
and, if so, what (if any) changes our measure of bootstrap confir-
mation will need to undergo. Secondly, still relatively little is known
about the mathematical properties of this measure and, especially, of
the variant measures that are obtained if, instead of on the difference
measure, the measure of bootstrap confirmation is built upon another
measure of probabilistic confirmation. We in fact hope that a com-
parison of the mathematical properties of the various measures may
help us settle on a particular measure in a more motivated way than
was done in the present paper.

APPENDIX A: BOOTSTRAP CONFIRMATION VERSUS PROBABILISTIC

CONFIRMATION

In this appendix we prove some facts concerning the logical relations
between bootstrap confirmation and probabilistic confirmation.
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‘Bootstrap confirmation’ and ‘bootstrap-disconfirmation’ – and de-
rived terms – are here as well as in the following appendices under-
stood as defined by Definitions 3.1 and 3.2; instead of
‘probabilistically-(dis)confirms’ we will throughout simply write
‘(dis)confirms’.

THEOREM A.1. For all T and E, if E bootstrap-confirms T, then E
also confirms T.

Proof. Let T ¼ fH1; . . . ;Hng and suppose E bootstrap-confirms T.
Then, by Clause 1 of Definition 3.1, there must for every Hi 2 T be at
least one T0 � T n fHig such that pðHi jE ^ T0Þ > pðHi jT0Þ. Thus in
particular there must for H1 be a subset T� of T n fH1g such that

pðH1 jE ^ T �Þ > pðH1 jT �Þ: ð1Þ
Now let p1; . . . ;pn! denote the permutations on 1; . . . ; n. Clearly

pðE^TÞ¼pðEÞpðHpið1ÞjEÞ���p HpiðnÞjE^Hpið1Þ^���^Hpiðn�1Þ
� �

¼pðEÞpðHpjð1ÞjEÞ���p HpjðnÞjE^Hpjð1Þ^���^Hpjðn�1Þ

� �

for all i; j 2 f1; . . . ; n!g. Observe that for some k 2 f1; . . . ; n!g;
pðH1 jE ^ T�Þ must occur as a factor in pðEÞpðHpkð1Þ jEÞ � � �
pðHpkðnÞ jE ^Hpkð1Þ ^ � � � ^Hpkðn�1ÞÞ. Next suppose, towards a re-
ductio, that the consequent of the theorem does not hold, i.e., E does
not confirm T. Then pðT jEÞO pðTÞ, or ½pðT ^ EÞ=pðEÞ�O pðTÞ, or
again written differently

pðE ^H1 ^ � � � ^HnÞ
pðEÞ O pðH1 ^ � � � ^HnÞ:

By the general multiplication rule and after cancelling pðEÞ in the left-
hand expression, this is equivalent to

pðH1 jEÞ � � � pðHn jE ^H1 ^ � � � ^Hn�1Þ
O pðH1ÞpðH2 jH1Þ � � � pðHn jH1 ^ � � � ^Hn�1Þ:

ð2Þ

Given (2), the following must also hold:

pðHpkð1Þ jEÞ���pðHpkðnÞ jE^Hpkð1Þ^���^Hpkðn�1ÞÞ
OpðHpkð1ÞÞpðHpkð2Þ jHpkð1ÞÞ���pðHpkðnÞ jHpkð1Þ^���^Hpkðn�1ÞÞ:

From inequality (1) we know that for one i with 1O iO n, it must
hold that

pðHpkðiÞ jE ^Hpkð1Þ ^ � � � ^Hpkði�1ÞÞ
> pðHpkðiÞ jHpkð1Þ ^ � � � ^Hpkði�1ÞÞ:
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Combining this with (3), we get that for at least one j with 1O jO n

pðHpkðjÞ jE ^Hpkð1Þ ^ � � � ^Hpkðj�1ÞÞ
< pðHpkðjÞ jHpkð1Þ ^ � � � ^Hpkðj�1ÞÞ

for else the left-hand side of (3) will be larger than the right-hand side.
It follows that there is a Hi 2 T and a T 0 � T such that
pðHi jE ^ T 0Þ < pðHi jT 0Þ. But this violates Clause 2 of Definition
3.1 and hence our assumption that E bootstrap-confirms T. Thus the
assumption that E does not confirm T is false. (

THEOREM A.2. For all T and E, if E disconfirms T, then E also
bootstrap-disconfirms T.

Proof. Assume the antecedent, i.e., pðT jEÞ < pðTÞ, where T ¼
fH1; . . . ;Hng. Then

pðT ^ EÞ
pðEÞ < pðTÞ

or, with T written out,

pðE ^H1 ^ � � � ^HnÞ
pðEÞ < pðH1 ^ � � � ^HnÞ:

Multiplying both sides by pðEÞ yields

pðE ^H1 ^ � � � ^HnÞ < pðEÞpðH1 ^ � � � ^HnÞ:

Using the general multiplication rule for both sides, we obtain

pðEÞpðH1 jEÞ � � � pðHn jE ^H1 ^ � � � ^Hn�1Þ
< pðEÞpðH1Þ � � � pðHn jH1 ^ � � � ^Hn�1Þ;

which can only be the case if

½pðH1 jEÞ < pðH1Þ� _ � � � _ pðHn jE ^H1 ^ � � � ^Hn�1Þ½
< pðHn jH1 ^ � � � ^Hn�1Þ�:

Thus there is at least one Hi 2 T and at least one T 0 � T nfHig such
that pðHi jE ^ T 0Þ < pðHi jT 0Þ and hence, by Definition 3.2, E
bootstrap-disconfirms T. (
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Theorems A.3 and A.4 show that neither Theorem A.1 nor Theorem
A.2 can be strengthened to a bi-implication.

THEOREM A.3. It is not the case that, for all T and E, if E con-
firms T, then also E bootstrap-confirms T.

Proof. Let theory T have as axioms hypotheses H1;H2; and H3,
each of which has a prior probability of .1; let E have a prior prob-
ability
of .5. Further assume the following:

• pðHi ^HjÞ ¼ :015 for all i; j 2 f1; 2; 3g such that i 6¼ j;
• pðH1 ^H2 ^H3Þ ¼ :005;
• pðE ^HiÞ ¼ :05 for all i 2 f1; 2; 3g;
• pðE ^Hi ^HjÞ ¼ :004 for all i; j 2 f1; 2; 3g such that i 6¼ j;
• pðE ^H1 ^H2 ^H3Þ ¼ :003:

Then E does not bootstrap-confirm T, since for all i; j 2 f1; 2; 3g,

pðHi jE ^HjÞ ¼
pðE ^Hi ^HjÞ

pðE ^HjÞ
¼ :004

:05
¼ :08;

which is smaller than :15ð¼ pðHi jHjÞÞ. A fortiori, this model violates
Clause 2 of Definition 3.1.
However, E does confirm T, for

pðT jEÞ ¼ pðE ^H1 ^H2 ^H3Þ
pðEÞ

¼ :003
:5
¼ :006 > :005 ¼ pðTÞ (

THEOREM A.4. It is not the case that, for all T and E, if E boot-
strap-disconfirms T, then also E disconfirms T.

Proof. From the probability model constructed in the proof of
Theorem A.3. (

APPENDIX B: PROOFS OF THEOREMS 4.1–4.4

THEOREM 4.1. There is no function f such that, for all T and
E;BðT;EÞ ¼ f 	mðT;EÞ; with m any non-bootstrap measure of con-
firmation.
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Proof. We prove this theorem by specifying a probability model
involving a theory T� and evidence E� for which the following hold
(T andE are as in Example 4.1): (i) pðT �Þ ¼ pðTÞ, (ii) pðE�Þ ¼ pðEÞ, (iii)
pðT� jE�Þ ¼ pðT jEÞ, (and thus also) (iv) pðE�jT�Þ ¼ pðE jTÞ, (v)
pðT� j :E�Þ ¼ pðT j :EÞ, and (vi) pðE� j :TÞ ¼ pðE j :TÞ, but (vii)
BðT�;E�Þ 6¼ BðT;EÞ. It can readily be seen that, given (i)–(vi), and gi-
ven how we defined the notion of a non-bootstrap measure of confir-
mation, there can be no function f such that f 	mðT;EÞ ¼ BðT;EÞ,
where m is such a non-bootstrap measure of confirmation.

Like T, the theory T� consists of four axioms, H�1; . . . ;H�4. Like the
hypotheses in T, the H�i all have a prior probability of .25, and are all
mutually probabilistically independent; we thus see immediately that
(i) holds. Evidence E� has a prior probability of .5 (like E in Example
4.1; so (ii) holds). Further we have the following:

• pðE� ^H�i Þ ¼ :125, for all i 2 f1; . . . ; 4g;
• pðE� ^H�i ^H�j Þ ¼ :045, for all i; j 2 f1; . . . ; 4g such that i 6¼ j;
• pðE� ^H�i ^H�j ^H�kÞ ¼ :0125, for all i; j; k 2 f1; . . . ; 4g such that
i 6¼ j 6¼ k;

• pðE� ^H�1 ^ � � � ^H�4Þ ¼ :0038.
From the fact that pðE� ^H�1 ^ � � � ^H�4Þ ¼ pðE ^H1 ^ � � � ^H4Þ it
follows that pðT� jE�Þ ¼ pðT jEÞ (so (iii) holds; and given (i)–(iii), (iv)
and, by the law of total probability, (v) and (vi) must hold as well).
We now calculate the bootstrap support for T� from the following
values, which hold for all i 2 f1; . . . ; 4g:

• d�ðH�i ; E�Þ ¼ ð:125=:5Þ � :25 ¼ 0;
• d�ðH�i ; H�j E�Þ ¼ ð:045=:125Þ � :25 ¼ :11, for all j 2 f1; . . . ; 4g

such that i 6¼ j;
• d�ðH�i ; H�j ^H�k; E

�Þ ¼ ð:125=:045Þ � :25 � :0278, for all j; k 2
f1; . . . ; 4g such that i 6¼ j 6¼ k;

• d�ðH�i ; H�j ^H�k ^H�l ; E
�Þ ¼ ð:0038=:0125Þ � :25 ¼ :054, for all

j; k; l 2 f1; . . . ; 4g such that i 6¼ j 6¼ k 6¼ l.

So, the bootstrap support each of the H�i gets from E� totals
(approximately): (1)(0)+(3)(.11)+(3)(.0278)+ (1)(.054)=.4674. And
thus BðT�;E�Þ � ð4Þð:4674Þ ¼ 1:8696: This is unequal to the boot-
strap support T was seen to get from E, namely 2.412, despite the fact
that, as we saw, (i)–(vi) hold, and thus on any non-bootstrap measure
of confirmation m, we have mðT�;E�Þ ¼ mðT;EÞ.
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THEOREM 4.2. For all T and E, if BðT;EÞ 6> 0, then E does not
bootstrap-confirm T; if in addition BðT;EÞ < 0, then E bootstrap-
disconfirms T.

Proof. Let T ¼ fH1; . . . ;Hng and assume that E bootstrap-confirms
T. It follows from the second clause of Definition 3.1 together with
Definition 4.1 that, for all Hi 2 T and all HT

ij
2 }ðTnfHigÞ, we have

d�ðHi;
V
HT

ij
;EÞP 0. From the first clause of Definition 3.1 together

with the definition of d� it follows that for all Hi 2 T there is at least
one HT

ij
2 }ðTnfHigÞ such that d�ðHi;

V
HT

ij
;EÞ > 0. Since B just

tallies the bootstrap support each hypothesis receives relative to each
set of possible auxiliaries, it must be that BðT;EÞ > 0.

To see that for all T and E, if BðT;EÞ < 0, then E bootstrap-
disconfirms T, let again T ¼ fH1; . . . ;Hng. Then if BðT;EÞ < 0,
there must by Definition 4.2 be at least one Hi 2 T such that, for at
least one HT

ij
2 }ðTnfHigÞ, we have d�ðHi;^HT

ij
; EÞ < 0. Hence, for

at least one Hi and one HT
ij
2 }ðTnfHigÞ, we have pðHij

V
HT

ij
^ EÞ <

pðHi j
V
HT

ij
Þ. And thus, by Definition 3.2, E bootstrap-disconfirms

T. h

THEOREM 4.3. There is no a 2 R such that, for all T and E, if
BðT;EÞ > a, thenE bootstrap-confirmsT, nor is there some b 2 R such
that, for all T and E, if E bootstrap-disconfirms T, then BðT;EÞ < b.

Proof. We first show that there is no a 2 R such that, for all T and
E, if BðT;EÞ > a, then E bootstrap-confirms T. Toward a reductio,
suppose that, for all T, E, if BðT;EÞ > c for some particular c 2 R,
then E bootstrap-confirms T. Then let T 0 ¼ fH1; . . . ;Hng and fur-
thermore let it be the case that BðT 0;E 0Þ > c for some E 0. Now let
T 0 0 ¼ fH1; . . . ;Hn;Hnþ1g with Hnþ1 any hypothesis that is probabi-
listically independent of any subset of fH1; . . . ;Hn;E

0g (we can,
without loss of generality, assume that such an Hnþ1 exists). Thus in
particular the following facts hold:

(i) pðHi j
V
HT 0

ij
^Hnþ1Þ ¼ pðHi j

V
HT 0

ij
Þ for all Hi 2 T 0 and all

HT 0
ij
2 }ðT 0nfHigÞ;

(ii) pðHi j
V
HT 0

ij
^Hnþ1 ^ E 0Þ ¼ pðHi j

V
HT0

ij ^ E 0Þ for all Hi 2 T 0

and all HT 0
ij
2 }ðT 0nfHigÞ;

(iii) pðHnþ1 j
V
HT 00

nþ1k ^ E 0Þ ¼ pðHnþ1 j
V
HT 00

nþ1kÞ ¼ pðHnþ1Þ for all
HT 00

nþ1k 2 }ðT
00nfHnþ1gÞ.

Dividing into three parts the sum which, by Definition 4.2, gives the
value of BðT 00;E 0Þ; we have
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BðT 00;E 0Þ ¼
Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;E 0Þ

þ
Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
^Hnþ1;E

0Þ

þ
X2n

k¼1
d�ðHnþ1;

^
HT 00

nþ1k ;E
0Þ: ð4Þ

Given (i) and (ii), we have, for all i with 1O iO n and all HT 0
ij

such
that 1O jO 2n�1; that pðHi j

V
HT 0

ij
^ E 0Þ � pðHi j

V
HT 0

ij
Þ ¼ pðHi j

V

HT 0
ij
^Hnþ1 ^ E 0Þ � pðHi j

V
HT 0

ij
^Hnþ1Þ; and thus also that d�ðHi;

V

Hij ;E
0Þ ¼ d�ðHi;

V
Hij ^Hnþ1;E

0Þ: And from this it follows that the
first two summands in (4) are equal, that is,

Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;E 0Þ ¼

Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
^Hnþ1;E

0Þ:

ð5Þ
Furthermore, from (iii) it can be immediately seen to follow that

X2n

k¼1
d�ðHnþ1;

^
HT 00

nþ1k ;E
0Þ ¼ 0: ð6Þ

Since the first of the summands in (4) equals BðT 0;E 0Þ; it follows
from(5) and (6) that BðT 00;E 0Þ ¼ 2BðT 0;E 0Þ: Since, furthermore, it
follows from Theorem 4.2 that BðT 0;E 0Þ > 0; it must be that
BðT 00;E 0Þ > c. Thus, by our hypothesis, E 0 bootstrap-confirms T 00.
However, it follows from (iii) above that Clause 1 of Definition 3.1 is
not satisfied, so that E 0 does not bootstrap–confirm T 00. Hence, the
assumption that there is a numerical threshold for bootstrap confir-
mation leads to contradiction. Hence, there is no such numerical
threshold.

To show that neither is there a b 2 R such that, for all T and E, if
E bootstrap–disconfirms T, then BðT;EÞ < b; we first note that, if E
bootstrap–disconfirms T, then that does not exclude that BðT;EÞ > 0.
To see this, we only need to slightly change the model given in
Example 4.1. Let in that model pðE ^Hi ^Hj ^HkÞ ¼ :01 (instead of
.015), for all i; j 2 f1; . . . ; 4g such that i 6¼ j. Then E bootstrap–dis-
confirms T (for E disconfirms Hi for every i 2 f1; . . . ; 4g relative to
the conjunction of every Hj;Hk 2 T such that i 6¼ j 6¼ k : pðHi jHj^

IGOR DOUVEN AND WOUTER MEIJS122



Hk ^ EÞ ¼ :01=:05 ¼ :2 < :25 ¼ pðHi jHj ^HkÞÞ. Still, as an easy
calculation shows, BðT;EÞ ¼ 1:212 and is thus positive. Second, we
saw in the first part of this proof that if we add an hypothesis H to
any theory T that is probabilistically independent of that theory to-
gether with the evidence E (in the precise sense specified above), then
BðT 0;EÞ ¼ 2BðT;EÞfor T 0 ¼ T [ fHg. So let then T be bootstrap-
disconfirmed by E and such that BðT;EÞ ¼ c > 0: Adding a proba-
bilistically independent hypothesis to T will result in a theory T 0 that
is also bootstrap-disconfirmed by E but for which BðT 0;EÞ ¼ 2c > c:
Since this procedure can be repeated as often as one likes, there can
be no b 2 R such that BðT;EÞP b indicates that T is not bootstrap-
disconfirmed by E. (

THEOREM 4.4. For all n 2 N;T; and E, if T ¼ fH1; . . . ;Hng and
BðT;EÞP ðnÞð2n�1Þ � 1; then E bootstrap-confirms T.

Proof. Suppose BðT;EÞP ðnÞð2n�1Þ � 1 for some E, and
T ¼ fH1; . . . ;Hng: Then it follows from Definition 4.2 that for no
Hi 2 T can it be the case that there is a HT

ij
2 }ðTnfHigÞ such that

d�ðHi;
V
HT

ij
;EÞO 0. Hence for all Hi 2 T and all HT

ij
2 }ðT nfHigÞ it

must hold that pðHi jHT
ij
^ EÞ > pðHi jHT

ij
Þ: And thus, by Definition

3.1, E bootstrap-confirms T. (To see that, if for even a single Hi the
value of d�ðHi;

V
HT

ij
;EÞ is lower than or equal to 0 for some set of

auxiliaries, then the value of BðT;EÞ must be strictly smaller than,
and hence cannot be equal to, ðnÞð2n�1Þ � 1; one only has to note that
the range of d� is the open interval (�1; 1), and that �1, respectively,
1 are not within the range because for pðH jH 0 ^ EÞ � pðH jH 0Þ to
obtain those values, it would have to hold that pðH jH 0 ^ EÞ ¼ 0 and
at the same time that pðH jH 0Þ ¼ 1; respectively, that
pðH jH 0 ^ EÞ ¼ 1 and at the same time that pðH jH 0Þ ¼ 0; neither of
which combinations is possible.) (

APPENDIX C: PROOF OF THEOREM 5.1

THEOREM 5.1. For all T, T 0, and E, if T � T 0 and E does not
bootstrap-disconfirm T 0; then BðT 0;EÞPBðT;EÞ; if in addition E
bootstrap-confirms T 0; then BðT 0;EÞ > BðT;EÞ:
Proof. Let T 0 ¼ fH1; . . . ;Hng: Without loss of generality, we can
assume that T ¼ fH1; . . . ;Hmg ðm < nÞ: From Definition 4.2 it fol-
lows that:
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BðT 0;EÞ ¼
Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;EÞ

¼
Xm

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;EÞ

þ
Xn

k¼mþ1

X2n�1

l¼1
d�ðHk;

^
HT 0

kl
;EÞ:

Note now that, if E does not bootstrap-disconfirm T 0; it must hold
for all Hi 2 T and all HT 0

ij
2 }ðT 0nfHigÞ that d�ðHi;

V
HT 0

ij
;EÞP 0:

Thus,

BðT;EÞ ¼
Xm

i¼1

X2m�1

j¼1
d�ðHi;

^
HT

ij
;EÞ

O
Xm

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;EÞ:

Hence, if
Pn

k¼mþ1
P2n�1

l¼1 d�ðHk;
V
HT 0

kl
;EÞP 0; the following must

hold:

BðT 0;EÞ ¼
Xn

i¼1

X2n�1

j¼1
d�ðHi;

^
HT 0

ij
;EÞ

P
Xm

i¼1

X2m�1

j¼1
d�ðHi;

^
HT

ij
;EÞ ¼ BðT;EÞ:

ð7Þ

But it is easy to see that the condition is satisfied. For since T 0 is not
bootstrap-disconfirmed by E, it must be the case for all Hi 2 T 0 � T
that for allHT 0

ij
2 }ðT 0nfHigÞ; we have d�ðHi;

V
HT 0

ij
;EÞP 0 (in virtue

of Clause 2 of Definition 3.1). If E bootstrap-confirms T 0; then it must
also be the case that for at least one HT 0

ij
2 }ðT 0nfHigÞ; we have

d�ðHi;
V
HT 0

ij
;EÞ > 0 (in virtue of Clause 1 of Definition 3.1) so that

Pn
k¼mþ1

P2n�1

l¼1 d�ðHk;
V
HT 0

kl
;EÞ > 0; whence it follows that in Equa-

tion (7), ‘P ’ can be replaced by ‘>’. (
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NOTES

1 Subjective Bayesians may want to deny this. On their account, scientists are free –
within the bounds of probability theory – in the probabilities they assign, and thus
may also assign a probability to a hypothesis conditional upon the evidence alone
(not conjoined to any auxiliaries, that is) that is greater than the unconditional

probability assigned to the hypothesis (in which case the evidence confirms the
hypothesis – see Section 3). However, the quantitative theory of bootstrap confir-
mation to be developed in this paper is neutral on the indispensability of auxiliaries

in the sense that the measure of bootstrap support to be proposed also takes into
account any support the evidence might give a hypothesis in isolation (in addition to
the support the evidence may give the hypothesis relative to various auxiliaries).
2 A point about notation: we use ‘T ¼ fH1; . . . ;Hng’ to mean that T has axioms
H1; . . . ;Hn, not that it has theorems H1; . . . ;Hn. And a point about terminology: by
‘E confirms H with respect to T’ (or ‘E confirms H relative to T’) we mean that E

confirms H when the conjunction of hypotheses in T is taken as an auxiliary.
3 Cf. e.g., Christensen (1997). Pondering various possibilities of how relative con-
firmation can provide ‘real’ confirmation, he conjectures that Glymour ‘‘(takes)
certain complicated structures of interlocking relative confirmation to constitute real

confirmation of a set of hypotheses’’ (p. 372). As may be clear, we think this con-
jecture is correct. Earman and Salmon (1992, 52ff ) seem to interpret Glymour in the
same way as we do.
4 Or better, the phrases ‘confirms with respect to’ and ‘disconfirms with respect to’;
the exact understanding of ‘with respect to’ will depend on the interpretation of
‘confirms’/‘disconfirms’.
5 Though Glymour does not note this, one must also assume that theories are
naturally axiomatized (in some sense of ‘‘natural’’) lest the notion of bootstrap
confirmation is one that is relative to a given axiomatization. To see this, just con-
sider that since every finitely axiomatizable theory is axiomatizable by just one axiom

– given any finite axiomatization, take the conjunction of the axioms – and since,
given that we want to exclude macho-bootstrapping, a theory with only one axiom
cannot be bootstrap-tested, without some notion of natural axiomatization it be may

possible to claim of one and the same theory both that it is and that it is not
bootstrap-confirmed by the evidence. With that notion, we can stipulate that a
theory is bootstrap-confirmed by the evidence if its natural axiomatization is boot-

strap-confirmed by the evidence. It seems that the notion of natural axiomatization
has been around in the logical literature for some time. However, only recently an
attempt has been made to explicate it; see Gemes (1993) (also his (1994, 1997);

Schurz’s (1991) theory of relevant deduction can also be thought of as such an
attempt). We do not want to commit ourselves to Gemes’ or any other explication;
for present purposes the intuitive notion of natural axiomatization seems clear en-
ough. Every theory to be presented by its axioms in this paper, both in the examples
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and in the proofs of the theorems, is assumed to be naturally axiomatized in this

intuitive sense.
6 One may insist that the mere fact that a theory is (in a sense) presupposed in its
own test is sufficient to make the procedure circular. Of course one may define

circularity in any way one likes, but the crucial issue is whether the fact that a theory
supplies auxiliaries for testing its own axioms is vicious. And we can only challenge
anyone who holds that it is to point out why that is so.
7 The claim is not that quantitative bootstrap confirmation captures the notion of
coherence. Surely there is more than one sense in which propositions can be said to
hang together (cf. Spohn 1999, 155). The bootstrap confirmation analysis of

coherence and other formal analyses of coherence that have recently been proposed
(e.g., in Spohn 1991, 1999; Olsson 1999; Shogenji 1999; Bovens and Hartmann 2003;
Fitelson 2003; Douven’s 2002a notion of a non-probabilistically self-undermining set
clearly also is some sort of coherentist notion, as is Douven and Uffink’s 2003 notion

of a genuine preface case) are therefore best not thought of as being in competition
with each other but rather as complementing each other, spelling out different but
possibly equally valid concepts of coherence.
8 Mainly thanks to the work of Garber (1983), Niiniluoto (1983), Eells (1985), and
van Fraassen (1988). Whether the problem has been fully solved is still controversial,
though; cf. Earman (1992, Ch. 5) and Howson (2000, 193ff ) for differing opinions on

this issue.
9 Although it must be noted that Cartwright (1989) still makes extensive use of
Glymour’s theory in her attempt to show that causes can (sometimes) be obtained from

probabilities; somewhat surprisingly, she does not address any of the criticisms to
bootstrapping that were then already for some time being vigorously discussed in the
journals. In this connection, it should also be noted that as late as 1997 bootstrapping
was still referred to as one of ‘‘the two leading logical approaches to qualitative con-

firmation’’ (the other being hypothetico-deductivism; Christensen 1997, 370).
10 By choosing a Bayesian approach we are following the mainstream in current
analytic philosophy. However, it is noteworthy – as an anonymous referee reminded

us of – that there exist other quantitative approaches to confirmation besides
Bayesianism, such as Shafer’s (1976) Dempster – Shafer belief functions, Zadeh’s
(1978) possibility measures, and Spohn’s (1988) ranking functions (see Halpern 2003,

Ch. 2 for an excellent overview of the different approaches to represent uncertainty).
11 Note that the term ‘pðH jA1 ^ � � � ^ AnÞ’ should not be ‘p(H)’, for then the in-
crease in probability of H might well have nothing to do with the evidence. Glymour
(1980a; 376), when briefly considering the prospects for placing the bootstrap idea in

probabilistic terms, remarks that analyzing the relation ‘E tests H relative to T’ in
terms of the probability of H conditional on T ^ E ‘‘meets with the difficulty that H
can sometimes be used to test itself; that is, H is a consequence of T, so that the

conditional probability in question becomes unity’’. But, clearly, now that macho-
bootstrapping is prohibited, this problem can no longer arise.
12 Here it may be helpful to note that if pðH jH0 ^ EÞ > pðH jH0Þ, it must hold that

both 0 < pðH0 ^ EÞ < 1, and pðH0 ^ EÞ 6¼ pðH0Þ and hence also that 0 < p
ðE jH0Þ < 1.
13 According to Duhem, Quine, and others, confirmation generally is three-place.

Since we know of no air-tight argument showing that confirmation is necessarily
three-place, we deem it best to at least formally leave open the possibility that
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evidence confirms a hypothesis relative to the empty set, i.e., without the aid of any

auxiliaries. Strictly speaking, the clauses of Definition 3.1 make no sense in case the
subsets of T they refer to are empty. It should be obvious, however, that in that case
‘pðHi jT 0 ^ EÞ > pðHi jT 0Þ’ is to be read as pðHi jEÞ > pðHiÞ; similarly for

‘pðHi jT 00^ EÞ < pðHi jT 00Þ’ in the second clause.
14 As a referee brought to our attention, it is insufficient to require that T [ fEg0?
(as is done in Definition 2.1, and as we did in Definition 3.1 in an earlier version of

the present paper) given that T may be consistent with E and yet it may hold that
pðT ^ EÞ ¼ 0 (unless we assume all probability functions to be strict, which we
don’t); and of course one would not want to say that a theory can be confirmed in

any sense by evidence conditional on which it has probability 0.
15 Some might prefer a stricter definition of probabilistic bootstrap disconfirmation,
like for instance one that requires that the evidence substantially decrease the
probability of at least one axiom of the theory with respect to some other axioms of

the theory. (Thanks to an anonymous referee for noting this.) We are here following
standard Bayesian usage in identifying disconfirmation with any decrease in prob-
ability (however slight), but it would certainly seem to be of interest to investigate

quantitative theories of bootstrap confirmation that employ stricter definitions of
disconfirmation than Definition 3.2.
16 The formal argument for this goes as follows: By the law of total probability, it

holds that

pðE jH0Þ ¼PðH jH0ÞpðE jH^H0Þþpð:H jH0ÞpðE j:H^H0Þ:
So, since pðH jH0Þ ¼ 1� pð:H jH0Þ, the higher pðH jH0Þ is, the smaller will

j pðE jH0Þ � pðE jH ^H0Þj be, and thus (by some simple algebra) the smaller will
jpðHjH0 ^ EÞ � pðHjH0Þj be. And from this it follows that, on all plausible ways of
measuring evidential impact (see Section, 4), and ceteris paribus, that impact will be
lower the higher pðH jH0Þ is.
17 Glymour’s book in fact seems to suggest another desideratum. Glymour lays great
emphasis on the confirmation-theoretic importance of the variety of evidence.
However, since so far no one has been able to spell out in an even remotely precise

fashion what variety of evidence amounts to, we here leave out sensitivity to variety
of evidence as a desideratum for a quantitative account of bootstrapping.
18 For a discussion and comparison of these measures, see Eells and Fitelson (2002).

They make a strong case for d and l on the basis of symmetry considerations. Other
measures to be found in the literature are Kemeny and Oppenheim’s (1952) measure
ðpðEjHÞ � pðEj:HÞÞ=ðpðEjHÞ þ pðEj:HÞÞ, Nozick’s (1981) measure pðEjHÞ�
pðEj:HÞ, Gaifman’s (1985, 20n6) measure ð1� pðHÞÞ=ð1� pðHjEÞÞ, Christensen’s
(1999) measure dðH;EÞ=pð:EÞ; Eells and Fitelson’s (2000) measure lðH;EÞ=pð:EÞ,
and Kuipers’ (2000) measure pðEjHÞ=pðEÞ. Joyce (2004) makes the intriguing point
that many of the proposed measures are worth having, given that they capture

different, but equally important, notions of confirmation.
19 As indicated in Note 13, we do not want our theory to formally preclude the
possibility of evidence confirming a hypothesis relative to the empty set. It seems

natural to take d�ðH; ;;EÞ ¼ dðH;EÞ to measure the degree of confirmation be-
stowed by E on H relative to ;; in the following we will write d�ðH; ;;EÞ simply as
d�ðH;EÞ:
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20 In fact, Theorem 4.4 holds for any measure with range (�1; 1), but the (log-)ratio
measure is not among those.
21 Thanks to an anonymous referee for pressing us to be clearer about which the-
orems hold for which measures.
22 We are assuming, recall, that macho-bootstrapping is disallowed. Else there would
(of course) be 2n such sets.
23 To reiterate a point previously made, we are not claiming to provide the one true

measure of bootstrap confirmation here. In fact, it is easily seen that already the
function given in the text allows of many variations (like, for example, variations
with respect to the weights the desiderata are given relative to each other), some of

which may well be worth exploring.
24 That is, it holds for all T 0 � T that pð

V
T 0Þ ¼

Q
H2T 0 pðHÞ.

25 Here and elsewhere, probability functions will be specified without a proof that
they are probability functions. It is nowadays easy to check that they are, however,

by means of the function InequalityInstance ofMATHEMATICA �(Versions 4.1 and
higher); see Fitelson (2001; 93–100) for an explanation of how to do this.
26 Here and elsewhere, we write i 6¼ j 6¼ k as short for i 6¼ j; j 6¼ k; k 6¼ i; similarly for

similar expressions.
27 Recall that we are assuming that it makes sense to speak of a theory’s natural
axiomatization, and also that every theory is given by its natural axiomatization (cf.

Note 5). Without this assumption, it may occur that BðT;EÞ 6¼ BðT�;EÞ even though
T 
 T�. Just consider T 0 ¼ fH1;H2;H3 ^H4g, with the Hi’s and all the probabilities
as in the example. As another straightforward calculation shows, BðT�;EÞ �
:572 6¼ 2:412 � BðT;EÞ. Intuitively that seems undesirable. However, T 0 is ruled out
as a natural axiomatization by Gemes’ (1993, 483) definition of a natural axiomat-
ization (at least if we adopt the fourth clause he briefly discusses in Note 3 of his
paper and which he presents as being optional), and we may assume that any other

sensible definition of natural axiomatization will do the same.
28 If we assume that also probabilistic (dis)confirmation always requires auxiliaries,
this kind of case cannot even occur, of course. But in that case the threshold men-

tioned in Theorem 4.4 can be lowered to ðnÞð2n�1Þ � ðnþ 1Þ.
29 See Jeffrey (1983) for a lucid presentation of the theory’s basic machinery; also
Resnik (1987).
30 It would take us too far afield here to discuss van Fraassen’s reasons for rejecting
this view on justification. For criticisms of these reasons, see, e.g., Kukla (1998);
Douven (1999), (2002b), (2003a); Niiniluoto (1999); Psillos (1999).
31 As, e.g., Gillies (2000) and Howson (2000, 2003) have argued (whether a defense

of Bayesianism that does not appeal to utilities is possible, as Howson claims, is
doubtful, however; cf. Douven (2003b). For one, it is entirely unclear whether an
agent’s risk-averseness should be reflected in her utility function; cf. Weirich (1986,

2001), Rabin (2000), and Hacking (2001, 100f) for discussion. As a further indication
of the unclarity, see the divergent interpretations of utility proposed in, for instance,
Hansson (1988), Hampton (1994), and Dreier (1996). Some believe that utilities are

just theoretical posits that do not stand in need of any interpretation (this view seems
to underlie Ramsey’s (1926); Savage’s (1954), work in decision theory and is still not
uncommon, as Rabin (2000) reminds us). But aside from the difficulties generally

related to instrumentalist interpretations of theoretical terms, on an instrumentalist
reading, decision theory, and hence also cognitive decision theory, can only be used
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as an explanatory device, and not as a guide to decision making (see, e.g., Satz and

Ferejohn 1994). So, in particular, cognitive decision theory could on that reading not
inform us about when it is rational for us to believe a particular hypothesis or theory;
at most it could be used post factum to explain why someone preferred to accept one

rather than another hypothesis or theory.
32 See Goosens (1976) for a more systematic critique of the concept of cognitive
utility.
33 A way in which bootstrap confirmation could play a role in determining the
justificational status of a theory that respects principle (P) is to assign a justificatory
role to bootstrap support only after probabilistic considerations have been taken

account of. This is, for instance, what the following principle does:
ðP�Þ If (i) pðT jEÞ > pðT0 jEÞ or (ii) pðT jEÞ ¼ pðT 0jEÞ and E bootstrap-confirms
T but not T 0 or (iii) pðTjEÞ ¼ pðT 0EÞ and E bootstrap-confirms both T and T0

but BðT;EÞ > BðT0;EÞ, then we are more justified in believing T than we are in

believing T 0.
Again another response to the puzzle would be to claim that justification is to be
evaluated at the level of single hypotheses, and not at the level of theories. It is

perfectly compatible with one theory as a whole being more probable than another
theory as a whole that the probability of any of the axioms of the latter exceeds the
probability of each of the axioms of the former. (This would be much along the lines

of Merricks’ 1995 response to Klein and Warfield’s 1994 claim that coherence is not
generally truth-conducive. The discussion concerning the truth-conduciveness of
coherence has in fact many parallels with the discussion in the present section. Given

the close conceptual ties between coherence and bootstrap support pointed to in
Section 2, this should come as no surprise.)
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