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UPDATE SEMANTICS OF SECURITY PROTOCOLS

ABSTRACT. We present a model-theoretic approach for reasoning about security
protocols, applying recent insights from dynamic epistemic logics. This enables us to
describe exactly the subsequent epistemic states of the agents participating in the

protocol, using Kripke models and transitions between these based on updates of the
agents’ beliefs associated with steps in the protocol. As a case study we will consider
the SRA Three Pass protocol and discuss the Wide-Mouthed Frog protocol.

1. INTRODUCTION

In today’s world of e-commerce and the Internet, the role of security
protocols is getting increasingly important. The design of these
security protocols is difficult and error-prone (Lowe 1996; Schneier
2000; Anderson 2001), which makes (automatic) verification of pro-
tocols of crucial importance. Since the late 1980s, one line of research,
amongst others, for reasoning about security protocols is based on
the use of the so-called BAN logic, proposed by Burrows, Abadi and
Needham in (Burrows et al., 1990). This is an epistemic logic aug-
mented by constructs that are relevant for reasoning about security,
such as the property of having the disposal of a cryptographic key to
be able to decode a message and therefore to know its contents.
Although many useful results have been reported (e.g., Kessler and
Neumann 1998; Agray et al., 2001; Stubblebine 2002), due to their
complexity and their semantic underpinning the use of BAN logics to
prove the correctness of security protocols has so far been of limited
success (cf. Abadi and Tuttle 1991; Wedel and Kessler 1996; Bleeker
and Meertens 1997).

In this paper we will apply insights from dynamic epistemic logics
as recently developed by Gerbrandy (1997, 1999), Baltag and Moss
(Baltag et al., 1998; Baltag 2002; Baltag and Moss 2004), van
Ditmarsch (2000, 2001), and Kooi (2003). Moreover, contrary to the
traditional BAN logic approach, our approach is semantic or model-
theoretic. We use Kripke models to represent the epistemic state of
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the agents involved in a protocol, similarly to the S5 preserving ap-
proach of Van Ditmarsch to analyze certain kinds of games involving
knowledge. From the action models of Baltag and Moss we import
the idea to describe belief updates of the agents by semantic operators
transforming the Kripke models at hand by copying and deleting
parts of these models, although we use traditional Kripke models
rather than action models. To this end, we need also operations for
unfolding models, which is in its turn inspired by Gerbrandy’s work
on possibilities. The difference being that in our approach only partial
unfolding is called for. We furthermore propose a language to express
belief updates in the context of security protocols as well as properties
of these updates, and give a semantics of this language in terms of the
models mentioned and the operators on them. Since our approach is
model-theoretic, we believe that it may serve as a starting point for
the automatic verification of (properties of) security protocols.

As a case study illustrating our approach we will consider the so-
called SRA Three Pass protocol. It is not our intention to prove that
the protocol is completely secure (as it is not in full generality), but we
will prove that if the agents participating in the protocol are honest,
then an intruder watching the communication does not learn any-
thing about the plain-text messages in a single run. Furthermore, we
show what the intruder is able to learn about the agents participating.
We also discuss the Wide-Mouthed Frog protocol to illustrate the
operation developed in the sequel for updating the beliefs of agents.

2. PRELIMINARIES

In this section we briefly discuss some preliminaries and background
regarding the semantic updates we will handle and the epistemic
models we will use. First, we define the notion of an objective formula
and introduce so-called o-seriality. The set of propositional variables
in a model is denoted as P.

DEFINITION 2.1. The class of objective formulas is the smallest
class such that

� all propositional variables and atoms p 2 P are objective;
� if / is objective, then :/ is objective;
� if /1 and /2 are objective, then /1 ^ /2 is objective.

So, objective formulas do not involve beliefs. For our purposes it is
important that every agent, at every world, distinguishes a world with
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the same ‘objective’ information. This leads to the notion of an o-
serial model. The operations on Kripke structures discussed in the
sequel degenerate for models that are not o-serial.

DEFINITION 2.2. A model M ¼ hS;p;R1; . . . ;Rmi is o-serial iff for
all agents i and w 2 S, there exists v 2 S such that Riðw; vÞ and for all
objective formulas / it holds that ðM;wÞ � / , ðM; vÞ � /.

We use a; b; c; etc. and i; j as typical agents, taken from a class A.
Furthermore, B is used as a doxastic modal operator. For example,
Ba/ should be read as ‘a believes /’. We interpret formulas on
standard Kripke models ðM; sÞ ¼ ðhS; p;R1; . . . ;Rmi; sÞ, where
ðM; sÞ � Bi/ iff 8t 2 S : Riðs; tÞ ! ðM; tÞ � /.

We require the relations Ri to be o-serial, transitive and euclidean.
This yields a class of models that we will call Kt45, a proper subset of
the class of models of the well-known doxastic logic KD45. The lower
case t refers to the axiom

Bi/ ) / ðtÞ

where the formula/ ranges over objective formulas. The systemKt45 is
sound with respect to the class of o-serial, transitive and euclidean
models (Hommersom 2003). (We conjecture that Kt45 is complete as
well for this class.) We will show that the operations we introduce
preserve Kt45. The point is that in worlds of Kt45 models, we cannot
both have Bi/ and :/, for an objective formula /. This is reasonable
from the assumption that agents are conscious about the protocol.
Therefore, they will not infer objective falsehoods. This objectivity is
captured locally for eachstate.Asaconsequence, theoperations thatwe
introduce can restrict the set of states without destroying objective
information.

For the analysis of security protocols below, we assume that we are
omniscient about the values of the variables in different runs of a pro-
tocol. For example, the program variable p in a protocol run has the
value ½½ p��. In the real world it is, obviously, always true that p ¼ ½½ p��.
However, it is cumbersome to keep track of what is the real world in the
operations on Kripke structures that we employ below. Therefore, we
assume that an interpretation ½½��� is given, that provides the ‘real’ values
(not necessarily boolean) of the program variables when needed. It
might very well be the case that p 6¼ ½½ p�� in a certain state. Often, wewill
abbreviate p ¼ ½½ p�� to p on (thus transforming a program expression
into a propositional variable). Similarly, :p is an abbreviation of
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p 6¼ ½½ p��. For example, agent a that learnsBbp _ Bb:p, learns that agent
b has assigned a value to the program variable p.

The types of updates we consider are

� public announcement of a variable,
� private learning of a variable, and
� private learning about the knowledge of other agents.

The first type of update typically runs as follows: In an open network,
agent a sends a message to agent b. From a security perspective, it is
customary in the so-called Dolev–Yao framework (Dolev and Yao
1983), to assume that all agents in the network can read this message
too. In contrast, the second type of update, describes private learning.
For example, agent b receives a message fxgk from agent a. (Here, we
use the notation fxgk to denote a message x encrypted with the
cryptographic key k.) If b possesses the key k, then b privately learns
the message content x. The final type of update is probably the most
interesting. It is realistic to assume that the steps in a protocol run are
known to all agents. Therefore, observing that an agent receives a
message will increase the knowledge of the other agents. For example,
if agent a sends a message fxgk to agent b, then agent c learns that b
has learned the information contained in the message fxgk, but
typically, c does not learn x if c does not possess the key k.

Stronger types of updates we do not consider here. For example,
we will not update the beliefs of an honest agent such that it learns
that an intruder has learned about others. In the present paper, we
restrict ourselves to beliefs about objective formulas and the updating
of such beliefs.

3. UPDATE CONSTRUCTIONS

In this section we describe various types of updates in detail. We will
start by defining an update for propositions in Section 3.1. In Section
3.2 we will define a belief update for agents that learn something
about the belief of others. We do this in two slightly different ways by
varying in the operations that describe a side-effect for an agent.

3.1. Objective Updates

The belief update of objective formulas we will use is based on the
work reported in (Baltag et al., 1998; Roorda et al., 2002). The
construction works as follows: We will make copies of the states of
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the model such that the old worlds correspond to the information in
the original model and the new worlds correspond to the new infor-
mation.

DEFINITION 3.1. Let a model ðM;wÞ ¼ ðhS;p;R1; . . . ;Rmi;wÞ, a
group of agents B, and an objective formula / be given. Then
UPDATEð/;BÞðM;wÞ, the update of ðM;wÞ for agents in B and formula
/, is given by UPDATEð/;BÞðM;wÞ ¼ ðhS0; p0;R0

1; . . . ;R
0
mi;w0Þ, where

� S0 ¼ foldðsÞ; newðsÞ j s 2 Sg
� w0 ¼ newðwÞ
� for all p 2 P : p0ðoldðuÞÞðpÞ ¼ p0ðnewðuÞÞðpÞ ¼ pðuÞðpÞ
� for a 2 A, the binary relation R0

a on S0 is minimal such that

R0
aðoldðuÞ; oldðvÞÞ , Raðu; vÞ

R0
aðnewðuÞ;newðvÞÞ , Raðu; vÞ ^ ðM; vÞ � / if a 2 B

R0
aðnewðuÞ;oldðvÞÞ , Raðu; vÞ if a 62 B

In order to distinguish the two copies of the states, the tagging function
old and new are used. In the new part of the model, agents in B will
only consider possible worlds that verify /. Therefore, states can be-
come unreachable from the actual world newðwÞ, and can be dropped.

The following example shows how this works on a concrete model.

EXAMPLE 3.1 (updating). Consider the model ðM; sÞ in Figure 1,
where we have pðsÞðpÞ ¼ true and pðtÞðpÞ = false. The operation
we execute is UPDATEðp;fbgÞ, i.e. b learns p. This results in the model
ðM; uÞ in Figure 2, where pðuÞðpÞ ¼ pðvÞðpÞ ¼ true and pðwÞðpÞ ¼
false and newðsÞ ¼ u; oldðsÞ ¼ v and oldðtÞ ¼ w. The world newðtÞ is
unreachable and is omitted.

We can see that the belief of agent a has not changed: it still
considers its old worlds possible. The belief of agent b, however, has
changed. It now only considers the state u possible where p holds.
Note that agent b is aware that agent a does not know about p.

Figure 1. ðM; sÞ:
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The update operation UPDATEð/;BÞ is based on a formula / and a set
of agents B. Roorda et al. (2002) propose a characterization of the
formulas that are altered by such an operation with a single learning
agent. Here, we extend their definition for multi-agent purposes.

DEFINITION 3.2. An update function ð�Þ½/;B� is called proper if

ðM;wÞ½/;B��p , ðM;wÞ�p
ðM;wÞ½/;B��a^b , ðM;wÞ½/;B��a and ðM;wÞ½/;B��b
ðM;wÞ½/;B��:a , ðM;wÞ½/;B� 6�a
ðM;wÞ½/;B��Baa , ðM;wÞ�Baa if a 62B
ðM;wÞ½/;B��Baa , 8v :ððRaðw;vÞ and ðM;vÞ�/Þ)

ðM;vÞ½/;B��aÞ if a2B

for every model M and state w.

Following Roorda et al. (2002) we have that UPDATEð/;BÞ is proper (cf.
Roorda et al., 2002, Proposition 3.2). Moreover, UPDATEð/;BÞ is un-
iquely characterized by Definition 3.2 up to elementary equivalence,
i.e., if ð�Þ½/;B� is a proper update function, then ðM;wÞ½/;B� and
UPDATEð/;BÞðM;wÞ are elementary equivalent. We collect the follow-
ing properties of UPDATEð/;BÞ.

THEOREM 3.1.

(a) For any objective formula / and set of agents B, it holds that

UPDATEð/;BÞðM;wÞ � Bb/

for all b 2 B:

Figure 2. ðM; uÞ:
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(b) If ðM;wÞ satisfies the Kt45 properties, the formula / is objective
and ðM;wÞ � /, then UPDATEð/;BÞðM;wÞ satisfies the Kt45
properties as well.

(c) Updating is commutative, i.e. the models

ðM1;w1Þ ¼ UPDATEðw;CÞðUPDATEð/;BÞðM;wÞÞ; and

ðM2;w2Þ ¼ UPDATEð/;BÞðUPDATEðw;CÞðM;wÞÞ
for objective formulas /;w and sets of agentsB;C, are bisimilar.

(d) Update is idempotent, i.e., the two models

ðM1;w1Þ ¼ UPDATEðw;BÞðUPDATEð/;BÞðM;wÞÞ; and

ðM2;w2Þ ¼ UPDATEð/;BÞðM;wÞ
for an objective formula / and a set of agents B, are bisimilar.

Proof. We prove parts (a) to (c). The proof of part (d) is similar to
that of part (c). For part (a) we need to prove, that for any objective /,
set of agents B and b 2 B, it holds that ðM0;w0Þ ¼
UPDATEð/;BÞðM;wÞ � Bb/. Take b 2 B. Since w0 is newðwÞ, we have, by
definition, for all v, if Rbðw; vÞ then ðM0; vÞ � /. Hence,
ðM0;w0Þ � Bb/.

We prove part (b) by checking each of the properties for a Kt45
model. Assume that ðM;wÞ ¼ hS;R1; . . . ;Rm;pi is transitive, and that

UPDATEð/;BÞðM;wÞ ¼ ðhS;R0
1; . . . ;R

0
m;p

0i;w0Þ

is not. Then there is, for some agent i; ðs; tÞ 2 R0
i; ðt; uÞ 2 R0

i and
ðs; uÞ 62 R0

i. Because, by definition, there are no arrows from old to
new states and no i has both a relation from new to new states and
from new to old states, there are only three cases. Firstly, suppose
oldðsÞ; oldðtÞ and oldðuÞ. Then, by definition, we have ðs; tÞ 2 Ri;
ðt; uÞ 2 Ri and by transitivity ðs; uÞ 2 Ri. Then ðoldðsÞ; oldðuÞÞ 2 R0

i.
Contradiction. Now suppose newðsÞ; oldðtÞ and oldðuÞ. Then ðs; tÞ 2
Ri; ðt; uÞ 2 Ri and i 62 B. Again, this implies ðnewðsÞ; oldðuÞÞ 2 R0

i,
which is a contradiction. Finally, suppose newðsÞ; newðtÞ; newðuÞ, then
ðs; tÞ 2 Ri; ðt; uÞ 2 Ri and ðM; uÞ � /. Thus, ðnewðsÞ; newðuÞÞ 2 R0

i,
which is again a contradiction and completes the proof for transi-
tivity. For proving that R0

i is euclidean (for all agents i), we need to
consider exactly the same cases and for all these cases a similar
argument can be made. For o-seriality, the proof obligation is to
show that for all s 2 S0, there is a t 2 S0 such that ðs; tÞ 2 Ri^
ðM; sÞ � w $ ðM; tÞ � w, for all objective w. Suppose i 62 B, then this
follows directly from the definition, since we will have some t such
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that ðs; oldðtÞÞ 2 Ri. Suppose i 2 B, then by assumption of M being
o-serial, there is a t such that ðs; tÞ 2 Ri which agree on the objective
formulas. In particular, they agree on /. Suppose ðM; sÞ � /, then
ðM; tÞ � / and therefore ðnewðsÞ; newðtÞÞ 2 Ri. Suppose ðM; sÞ /,
then both s and t will be unreachable from w0 and will thus have no
corresponding state in M0. Thus, in all cases o-seriality is preserved.

For part (c), we observe that four copies of the original states are
made. In both cases we have an original copy (call them the old ones),
a new copy that is made in the first step is called middle, and the last
copy that is made (so a copy from both the old and middle) is called
new. Furthermore, the predicates have a superscript of 1 or 2
depending on the model they belong to. In addition, the elements of
the model will have superscripts according to their model. We
construct a bisimulation R � S1 � S2 such that it is minimal with
respect to

Rðold1ðsÞ; old 2ðs0ÞÞ , s ¼ s0

Rðmiddle1ðsÞ; new2ðs0ÞÞ , s ¼ s0

Rðnew1ðsÞ;middle2ðs0ÞÞ , s ¼ s0

(referring to equality in the original model).

1. R satisfies forward-choice: Suppose Rðs; s0Þ ^ R1
i ðs; tÞ; s, t 2 S1;

s0 2 S2, then there is a t0 2 S2 such that Rðt; t0Þ; ðs0; t0Þ 2 R1. If
old1ðsÞ, it is trivially satisfied (take a old 2ðt0Þ, and it is satisfied,
since oldðtÞÞ. Say middle1ðsÞ; new2ðs0Þ. If i 2 C, then t is appar-
ently a copy from the old1 states to the middle1 states. But then, it
is also copied to the new2 states and it is reachable for the same
reason that is was reachable in the middle1 state. If i 2 B, the
same argument applies as for C. If i 62 C and i 62 B, then one can
go back to the old world again as these worlds are still considered
possible for these agents i.

2. R satisfies backward-choice: The reasoning is similar to the case
of forward choice.

3. For all s 2 S; s0 2 S0; ðRðs; s0Þ ) pðsÞ ¼ p0ðs0ÞÞ: from the defini-
tion of R and the definition of UPDATEð/;BÞð�; �Þ this is trivial. (

The update operation of Definition 3.1 is restricted to objective for-
mulas. In principle, one can do the same constriction for non-objective
ones. However, for a non-objective formula Bi/, it can happen that,
unintendedly, an agent increases the objective knowledge encapsu-
lated by the formula /. This is illustrated by the next example.
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EXAMPLE 3.2 (updating of non-objective formula). Suppose we are
interested in agent a learning the formula Bbp _ Bb:p, but not the
property p itself. So, agent a learns that agent b knows about p
without getting information about p itself. Consider the Kripke
model ðM; sÞ in Figure 3, where pðsÞðpÞ ¼ pðuÞðpÞ = true and
pðtÞðpÞ = false. This models the state where b knows that p is true.
Agent a does not know p or :p,and it does not know if b knows p.

If we apply the definition of the update operation, it results in the
model ðM0; vÞ from Figure 4, where p0ðvÞðpÞ ¼ p0ðsÞðpÞ ¼ p0ðuÞðpÞ =
true and p0ðtÞðpÞ = false. In ðM0; vÞ it holds that Bap, as p0ðvÞðpÞ =
true, since v was copied from the state s in M. Figure 4 illustrates
that a has learned Bbp _ Bb:p, but also that a has learned p itself,
which we wanted to avoid. The reason that it turns out like this, is
because the only state in M where Bbp _ Bb:p holds, is the state s.
Thus, all the other states have no corresponding new states.

In the next subsection we will define a side-effect function such
that a will learn about others, but does not learn any objective for-
mulas itself.

3.2. Side-effects

The main reason that an update of Bbp _ Bb:p for agent a has
undesired consequences, is that it actually does not include the right
arrows between the copies of the original states. The construction, in
the case of the non-objective formula Bbp _ Bb:p, deletes arrows of a
to gain the states that satisfy the updating formula. However, for the
rest, we want a to keep all the states it considers possible. Moreover,
we do not want to change the knowledge of the other agents. In this
subsection we define the functions that accomplish these requirements.

Figure 3. ðM; sÞ:

Figure 4. ðM0; vÞ:

UPDATE SEMANTICS OF SECURITY PROTOCOLS 237

[297]



A technical obstacle is that states can be shared among agents. It is
obvious that if we change a state with the intention to change the
belief of one agent, then the belief of the other agents that consider
this state possible, is changed as well. Therefore, the first thing to do,
is to separate the states of learning agents from the states of agents
that do not learn. This procedure will be called unfolding. The tag
newB is a generalization of new and old from the previous section; the
tag orig is only used for the point of the model, i.e. the actual world.

DEFINITION 3.3. Given a model ðM;wÞ with M ¼ hS;p;R1; . . . ;
Rmi, and a partitioning X of A, we define the operation
UNFOLDXðM;wÞ, the unfolding of ðM;wÞ with respect to X, by
UNFOLDXðM;wÞ ¼ ðhS0; p0; R0

1; . . . ;R
0
mi;w0Þ, where

� S0 ¼ fnewBðsÞjs 2 S;B 2 Xg [ forigðwÞg
� w0 ¼ origðwÞ
� p0ðnewBðsÞÞðpÞ ¼ pðsÞðpÞ and p0ðorigðwÞÞðpÞ ¼ pðwÞðpÞ for all
s 2 S, p 2 P;B 2 X

� for a 2 A, the binary relation R0
a on S0 is minimal such that

R0
aðnewBðsÞ; newBðtÞÞ , Raðs; tÞ

R0
aðorigðwÞ; newBðsÞÞ , Raðw; sÞ and a 2 B

where B ranges over X.

So, for every group of agents B there is copy of the original states
(viz. newBðsÞ for every s 2 S). The unfold operation does indeed
preserve our Kt45 properties and it models the same knowledge,
which is captured by the following theorem.

THEOREM 3.2.

(a) If ðM;wÞ is a Kt45 model and X a partitioning of A, then it
holds that UNFOLDXðM;wÞ is a Kt45 model too.

(b) For every model ðM;wÞ and partitioning X, it holds that ðM;wÞ
and UNFOLDXðM;wÞ are bisimilar.

Proof. Part (a) First, we prove R0
a is euclidean under the

assumption that Ra is euclidean, for any a 2 A. Assume that
R0

aðs0; t0Þ ^ R0
aðs0; u0Þ; s0; t0; u0 2 S0. The proof obligation is that

R0
aðt0; u0Þ where s0; t0 and u0 are either in one of the partitions or in

orig. Suppose s0 ¼ newWðsÞ; t0 ¼ newYðtÞ and u0 ¼ newZðuÞ for
W;Y;Z 2 X. From the definition of R0

aðs0; t0Þ, it follows that
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Riðs; tÞ ^W ¼ Y, from R0
aðs0; u0Þ follows that Raðs; uÞ ^W ¼ Z.

Since Ra is euclidean, we have Raðt; uÞ. FromW ¼ Y andW ¼ Z we
have Y ¼ Z. Thus we conclude R0

aðnewYðtÞ; newZðuÞÞ ¼ R0
aðt0; u0Þ.

The only other case is that s0 ¼ origðwÞ; t0 ¼ newWðtÞ and
u0 ¼ newWðuÞ for some W 2 X. Then Raðw; uÞ and Raðw; uÞ. Thus
R0aðnewWðtÞ; newWðuÞÞ. The proof that R0

a is transitive is similar to
the euclidean proof. O-seriality can be proven directly, by observing
that each newW is a copy of the original model, so the property is
preserved inside a partition. Since A 6¼ ;, it also holds in orig,
because the world which is a copy of the orig in each partition is
accessible (which, clearly, have the same valuation).

Part (b) Construct a bisimulation R � S� S0 such that, for
u; v 2 S and W 2 X,

Rðu; newWðvÞÞ , u ¼ v and Rðu; origðwÞÞ , u ¼ w

We check the various properties.
R satisfies forward-choice: Suppose Rðs; s0Þ and Riðs; tÞ; s; t 2 S;

s0 2 S0; a 2 A. If s0 ¼ newWðsÞ, then by the definition of UNFOLDXð�; �Þ
and Raðs; tÞ we have R0

aðnewWðsÞ; newWðtÞÞ. If s0 ¼ origðsÞ, we have
R0

aðorigðwÞ; newWðtÞÞ for some W 2 X with a 2 W. Furthermore, for
all cases of t0 we get Rðt; t0Þ.

R satisfies backward-choice: Suppose Rðs; s0Þ and Raðs0; t0Þ; s 2 S;
s0; t0 2 S0. For all cases of R0

aðs0; t0Þ, we immediately get Raðs; tÞ. Also,
for all cases of t0 we have Rðt; t0Þ.

Rðs; s0Þ ) pðsÞ ¼ p0ðs0Þ for all s 2 S, s0 2 S0: This is immediate,
from the definition of R and the definition of UNFOLDXð�; �Þ. (

EXAMPLE3.3 (UNFOLDING).Consider theKripkemodel ðM; sÞ in
Figure 5with pðsÞðpÞ ¼ pðuÞðpÞ= true, pðtÞðpÞ= false. So, b knows
thatp istrue,whileadoesnot.Furthermore,adoesnotknowifbknows
p. Now the operationwe perform is UNFOLDffag;fbggðM; sÞ, thus fa; bg is
split into fag and fbg, which results in the model ðM0; sÞ in Figure 6.

So, we have separated the knowledge of a and b. In Figure 6, the
state s is the original state, the primed states model a0s knowledge and
the double primed states model b0s knowledge. Thus, the upper half

Figure 5. ðM; sÞ:
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of the model represents the knowledge of a, and the lower half
represents the knowledge of b. Note that no states are shared, in
particular because the point of the model is not reflexive.

Now, we give some preparatory definitions leading to the formu-
lation of a side-effect in Definition 3.9. First, we define the notion of a
partial submodel.

DEFINITION 3.4. A model M ¼ hS;p;R1; . . . ;Rmi is a partial
submodel of M0 ¼ hS0;p0;R0

1; . . . ;R
0
mi, notation MYM0, iff S � S0;

pðsÞðpÞ ¼ p0ðsÞðpÞ for all s 2 S, p 2 P and Ri � R0
i.

Note that a partial submodel is not pointed. Our notion of a partial
submodel is slightly more liberal compared to the standard notion of
a submodel, as here we allow to drop arrows. It is for technical
reasons, viz. the handling of the atom split operation and the oper-
ation for side-effects below, that we have occasion to consider partial
submodels here.

Next, we construct a partial submodel that represents the knowl-
edge of a group of agents B.

DEFINITION 3.5. Given a model ðM;wÞ such that

ðM;wÞ ¼ ðhS;p;R1; . . . ;Rmi;wÞ ¼ UNFOLDB;A=BðM0;w0Þ
for some ðM0;w0Þ, define SUBBðMÞ, the submodel of M for B, by
SUBBðMÞ ¼ hS0;p0;R0

1; . . . ;R
0
mi where

� S0 ¼ fnewBðsÞjs 2 Sg [ forigðwÞg
� p0ðsÞðpÞ , pðsÞðpÞ for all s 2 S0; p 2 P,
� for all a 2 A;R0

aðs; tÞ , Raðs; tÞ ^ s; t 2 S0.

Clearly a B-submodel is a partial submodel in the sense of Definition
3.4. The restmodel is the complementary part of the model that is the

Figure 6. ðM0; sÞ:
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complement with respect to the accessibility relation of a given partial
submodel.

DEFINITION 3.6. Given a model M ¼ hS;p;R1; . . . ;Rmi and a
partial submodel N ¼ hS00; p00;R00

1; . . . ;R
00
mi of M, define RESTN, the

restmodel of N in M, by RESTNðMÞ ¼ hS0; p0;R0
1; . . . ;R

0
mi where

� s 2 S0 , s 2 S ^ 9a 2 A9ðu; vÞ 2 R0
aðu ¼ s _ v ¼ sÞ

� p0ðsÞðpÞ , pðsÞðpÞ for all s 2 S0; p 2 P
� for all a 2 A;R0

aðs; tÞ , Raðs; tÞ ^ :R00
aðs; tÞ

We can see the partial submodel and restmodel definitions in action
by taking the model of Example 3.3 and applying the above defini-
tions (see Figure 7). This exactly corresponds to the idea of two
submodels that represent the belief of different agents.

Now, we would like to update the belief of some agents. To this
end, we want to replace the submodel that represents their belief by a
new model. We will apply the following definition.

DEFINITION 3.7. Given a model N ¼ hS;p;R1; . . . ;Rmi, a model
M, a modelN0 such thatNYN0 YMwith RESTN0 ðMÞ ¼ hS0; p0;R0

1; . . . ;
R0

mi, we define the operation REPLACEN0 ðN;MÞ, the replacement of N0

by N in M, by REPLACEN0 ðN;MÞ ¼ hS00;p00;R00
1; . . . ;R

00
mi where

� s 2 S00 , s 2 S _ s 2 S0,
� p00ðsÞðpÞ , pðsÞðpÞ for all s 2 S00; p 2 P
� for all a 2 A;R00

aðs; tÞ , ðs; tÞ 2 Ra _ ðs; tÞ 2 R0
a.

The idea is, that once the belief is completely separated, we cannot
only safely change the belief of certain agents, but also preserve the

Figure 7. Partial submodel and restmodel.
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Kt45 properties. The operation ATOMSPLITð/;BÞ removes the arrows for
agents in the group B between states that have a different valuation
for the objective formula /.

DEFINITION 3.8. Given a model M ¼ hS; p;R1; . . . ;Rmi and
objective formula /, we define an operation ATOMSPLITð/;BÞðMÞ ¼
hS0;p0;R0

1; . . . ;R
0
mi as follows.

� S ¼ S0,
� p0ðsÞðpÞ , pðsÞðpÞ for all s 2 S0; p 2 P,
� for a 2 B;R0

aðs; tÞ , Raðs; tÞ ^M; s � / , M; t � /,
� for a 62 B;R0

aðs; tÞ , Raðs; tÞ.z
Finally we are in a position to define the actual side-effect function
that ties these things together.

DEFINITION 3.9. For a model ðM0;w0Þ, a set of agents B and an
objective formula / such that ðM0;w0Þ ¼ UNFOLDfB;A=BgðM;wÞ and
N ¼ SUBBðM0Þ we define the operation SIDE-EFFECTð/;B;CÞðM;wÞ, the
side-effect for agents in B with respect to the agents in C and the
formula /, by

SIDE�EFFECTð/;B;CÞðM;wÞ
¼ ðREPLACENðATOMSPLITð/;CÞðNÞ;M0Þ;w0Þ:

Note, that the formula / in Definition 3.9 is required to be objective
(cf. Example 3.2).

EXAMPLE 3.4. We continue Example 3.3. Consider the a-submodel
of M. We now apply ATOMSPLITðp;bÞ on this model which results in the
model ðM00; sÞ in Figure 8. The arrow ðt0; u0Þ has disappeared, since
pðtÞðpÞ 6¼ pðuÞðpÞ. Therefore, u is not reachable anymore, and can be

Figure 8. ðM00; sÞ:
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dropped. Notice, that a believes Bbp _ Bb:p, while a has learned
nothing about p itself, as was the case for Example 3.2.

A typical application of the side-effect function is of the form
SIDE-EFFECTðp;A;bÞ where all agents collectively learn that agent b
knows about the atom p.

We introduce the notion of interconnection of relations, that comes
in handy for a proof of the preservation of the Kt45 properties by the
side-effect operation. Two binary relations A and B are called inter-
connected iff there is a ðw; vÞ 2 A and ðs; tÞ 2 B such that
w ¼ s;w ¼ t; v ¼ s or v ¼ t. If two binary relations are not intercon-
nected, we call them separated. Separateness is useful because of its
following properties.

LEMMA 3.1.

(a) If binary relations A and B are separated and are both Kt45,
then A [ B is also Kt45.

(b) If A and B are separated and A [ B has the Kt45 properties then
both A and B have the Kt45 properties.

Proof. (a) We restrict ourselves only to the proof that union pre-
serves the euclidean property. Assume C ¼ A [ B not euclidean.
Then there is ðs; tÞ 2 C and ðs; uÞ 2 C and ðt; uÞ 62 C. Observe that (1)
ðs; tÞ and ðs; uÞ cannot both come from A or both come from B, since
those relations were both euclidean, and that would mean ðt; uÞ 2 C
and ð2Þðs; tÞ and ðs; uÞ cannot come from the distinct subsets since
that would contradict the interconnection property. So, in conclusion
ðs; tÞ and ðs; uÞ cannot be elements of C. This directly contradicts the
assumption. Hence C is euclidean.

(b) Because of symmetry we only have to prove this for A. Suppose
ðs; tÞ 2 A; ðs; uÞ 2 A. Since C ¼ A [ B is euclidean, C must contain
ðt; uÞ. But because A and B are not interconnected, ðt; uÞ must be part
of A. Therefore, A is euclidean. Proofs for transitivity and o-seriality
are similar. (

We have seen that sets that are separated can be split and joined
together without changing the Kt45 properties. In the next lemma we
apply this for the replace operation.

LEMMA 3.2. Let f : M ! M be an operation on the class of models
such that ðiÞf ðMÞYM for any modelM 2 M and (ii) preserves Kt45
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properties. Suppose model ðM;wÞ ¼ UNFOLDfB;AnBgðM0;w0Þ and
N ¼ SUBBðMÞ. Then the operation defined by REPLACENðfðNÞ;MÞ
preserves the Kt45 properties too.

Proof. From the definition of UNFOLD, it is quite easy to see, that N
is separated (for all Ra; a 2 AÞ with the rest, since for a there’s only a
relation between orig and the partition where a is in, and for the
other agents the relation from orig to the partition of a does not
exist. So from Lemma 3.1 and the fact that M has the Kt45 prop-
erties, we must conclude that both the B-submodel (N) and the
restmodel have the Kt45 properties. Since f preserves the Kt45
properties, fðNÞ also has the Kt45 properties too. By observing that
doing a REPLACEN is the same as doing a union of the accessibility-
relations of the B-restmodel with the new replacement, we can now
use Lemma 3.1, and conclude that REPLACENðfðNÞ;MÞ has the Kt45
properties as well. (

In order to apply the above lemma we check that splitting preserves
Kt45.

LEMMA 3.3. Given a Kt45-model ðM;wÞ ¼ ðhS;p;R1; . . . ;Rmi;wÞ,
then, for an objective formula / and subset of agents B, the model
ATOMSPLITð/;BÞðMÞ ¼ hS0; p0;R0

1; . . . ;R
0
mi has all the Kt45 properties

too.

Proof. For proving the new model is euclidean, suppose Ri is
euclidean and ðs; tÞ 2 R0

i ^ ðs; uÞ 2 R0
i. From ðs; tÞ 2 R0

i follows that
pðsÞðpÞ ¼ pðtÞðpÞ and ðs; tÞ 2 Ri. From ðs; uÞ 2 R0

i follows that
pðsÞðpÞ ¼ pðuÞðpÞ and ðs; uÞ 2 Ri. Thus, pðtÞðpÞ ¼ pðuÞðpÞ and there-
fore if ðt; uÞ 2 Ri, then ðt; uÞ 2 R0

i. Hence, ðt; uÞ 2 R0
i. The proof for

transitivity is similar. For preservation of o-seriality we suppose
s 2 S0. By definition s 2 S and there is some t 2 S such that ðs; tÞ 2 Ri

and ðM; sÞ � u $ ðM; tÞ � u, where u is objective. In particular then
it holds that pðsÞðpÞ ¼ pðtÞðpÞ. By definition ðs; tÞ 2 R0

i. (

We are now in a position to prove a number of properties of the side-
effect operation.

THEOREM 3.3.

(a) If ðM;wÞ is a Kt45-model, then SIDE-EFFECTð/;B;AÞðM;wÞ, for
any objective formula / and sets of agentsB;C, is a Kt45-model
as well.
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(b) (commutativity of side-effect) Given a model ðM;wÞ, sets of
agents B;C;D;E and two formulas /;w, it holds that

SIDE�EFFECTð/;D;EÞðSIDE�EFFECTðw;B;CÞðM;wÞÞ
and SIDE-EFFECTðw;B;CÞ(SIDE-EFFECTð/;D;EÞðM;wÞÞ are bisimilar.

(c) (swapping update and side-effect) Given a model ðM;wÞ, sets of
agents B;C;D, a formula / and an objective formula w, it holds
that the models

SIDE�EFFECTð/;C;DÞðUPDATEðw;BÞðM;wÞÞ
and

UPDATEðw;BÞðSIDE�EFFECTð/;C;DÞðM;wÞÞ
are bisimilar.

(d) (idempotency of side-effect) Given a model ðM;wÞ, sets of
agents B;C;D and a formula /, it holds that

SIDE�EFFECTð/;B;CÞðSIDE�EFFECTð/;B;CÞðM;wÞÞ
and

SIDE�EFFECTð/;B;CÞðM;wÞ
are bisimilar.

Proof. (a) Clearly, ATOMSPLITðp;CÞðMÞYM holds. Therefore, the
statement follows from Lemma 3.2 and Lemma 3.3.

(b) There are several tagged states. We have orig; newB; newAnB,
newD; newAnD in both models.

Construct a bisimulation R � S� S0 such that

RðorigðwÞ; origðvÞÞ , w ¼ v

RðnewBðuÞ; newBðvÞÞ , u ¼ v

RðnewAnBðuÞ; newAnBðvÞÞ , u ¼ v

RðnewDðuÞ; newDðvÞÞ , u ¼ v

RðnewAnDðuÞ; newAnDðvÞÞ , u ¼ v

We can now follow the reasoning from Theorem 3.1 to see that this
bisimulation has all the desired properties for bisimulation. For
example, R satisfies forward-choice: suppose Rðs; s0Þ ^ Raðs; tÞ;
s; t 2 S; s0 2 S0. Suppose origðsÞ, then t could be newB or newAnB. But
this copy of t is present in S0 as well, since that was created after the
first execution of SIDE-EFFECT on the original model. And indeed,
there’s a origðwÞ such that ðw; tÞ 2 S0. The checks for all the other
options are similar.
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(c) Construct a bisimulation R � S� S0 such that:

RðorigðwÞ; origðvÞÞ , w ¼ v
RðoldðuÞ; oldðvÞÞ , u ¼ v
RðnewðuÞ; newðvÞÞ , u ¼ v
RðnewBðuÞ; newBðvÞÞ , u ¼ v
RðnewA=BðuÞ; newA=BðvÞÞ , u ¼ v

Checking all the properties is similar to (b).
(d) The result of applying the same side-effect operation twice is the

same model as applying it just once modulo a number of unreachable
states. Again, construct a bisimulation R similar to all the previous
proofs such that the relation exists if they are a copy of each other and
reachable from the point of the model. The unprimed variables belong
to SIDE-EFFECTð/;B;CÞðM;wÞ and the primed ones to SIDE-EF-

FECTð/;B;CÞ(SIDE-EFFECTð/;B;CÞðM;wÞÞ. Now, R satisfies forward-
choice: suppose Rðs; s0Þ ^ Raðs; tÞ; s; t 2 S; s0 2 S0. Suppose newBðsÞ,
then we indeed have such a copy newBðt0Þ with Rðt; t0Þ, since no more
arrows inside new0

B were deleted, because only the states from newB

are reachable in new0
B . For the other cases it it trivial. It can also be

shown that it satisfies the other properties that are required. (

Next, we consider how the formulas are altered by the side-effect
operation. We will partially answer this by presenting a few inter-
esting formulas that hold in the resulting model. We distinguish

1: the group of agents B that learn about other agents, ranged over
by b;

2: the group of agents C that is learned about, ranged over by c;
3: other agents in the group D, ranged over by d.

The fact that the agents in B are the only agents that learn at all, is
clear. The other agents consider exactly (copies of) their old worlds
possible; their belief has not changed. With this in mind, we present a
few properties of the side-effect operation. Below CBCD expresses
common knowledge of agents in the sets B;C and D.

LEMMA 3.4. Given a model ðM;wÞ, disjoint sets of agents B;C;D
and a formula /, put ðM0;w0Þ ¼ SIDE�EFFECTð/;B;CÞðM;wÞ. Then it
holds that

(a) ðM0;w0Þ � BbðBc/ _ Bc:/Þ;
(b) ðM0;w0Þ � Bbw iff ðM;wÞ � Bbw for any objective formula w;
(c) ðM0;w0Þ � BbCBCDðBc/ _ Bc:/Þ;
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(d) ðM0;w0Þ � Baw iff ðM;wÞ � Baw for any formula w and any
agent a 62 B.

Proof. We prove the typical cases of part (b) and (c).
(b) The unfolded model of ðM;wÞ is bisimilar with ðM0;w0Þ, and no

arrows of b were deleted afterwards. Hence, the knowledge of b about
objective formulas has not changed.

(c) We have already seen that in every state of SUBBðM0Þ it holds
that Bc/ _ Bc:/. Now, what we need to prove is that the path

w0 !b s1 !
i
s2 !

j
. . . with i; j; . . . ;2 A is a path to a state where it holds

that Bbp _ Bb:p. But since s1 2 newB, and since there are no arrows
from newA to other partitions, all sk are elements of newB. Thus any
sk is part of SUBbðM0Þ. By the construction of SIDE-

EFFECTð/;B;CÞðM;wÞ, in any state in newB, we either have all arrows of
c to a world where / holds (at least one, by o-seriality) or to a world
where :/ holds. Furthermore, Bc/ or Bc:/ holds. Hence,
Bc/ _ Bc:/ holds. (

In part (a) of the above lemma, an agent b obtains derived
knowledge of an agent c. Part (b) states that no objective knowledge
is learned. Part (c) phrases that an agent b considers the rest of the
agents as smart itself. Finally, part (d) captures that other agents do
not learn.

Property (c) may or may not be a reasonable assumption of b
about the other agents. If one agent believes that another agent
knows the value of /, then it is reasonable to assume that another
agent will believe the same. On the other hand common knowledge
might be too strong to assume.

Next, we address the issue that an agent b shares its belief about an
agent c with only some other agents. We represent this by linking b’s
beliefs of those other agents back to the original (unmodified) states.
We distinguish four different type of groups of agents.

1: the groups B and C are as before;
2: the group D of agents of which agents in B believe they have

learned in common about agents in group C, ranged over by d;
3: the group E of agents of which agents in B believe they have

learned nothing about, ranged over by e.

We define the new side-effect operation 0-UNFOLD that handles this
refinement. Here, 0 refers to zero-knowledge for the group of agents
E. As before, we define an unfolding operation first.
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DEFINITION 3.10. Given a model ðM;wÞ, with M ¼ hS;p;R1; . . . ;
Rmi, and a partitioning X ¼ fB;C;D;Eg of the set of agents A, we
define the operation 0-UNFOLDXðM;wÞ, the zero-knowledge unfolding
of ðM;wÞ with respect to X, by 0-UNFOLDXðM;wÞ ¼ ðhS0; p0;R0

1; . . . ;
R0

mi; w0Þ, where
� S0 ¼ newBðSÞ [ newCDEðSÞ [ forigðwÞg
� w0 ¼ origðwÞ
� p0ðnewYðvÞÞðpÞ ¼ pðvÞðpÞ and p0ðorigðwÞÞðpÞ ¼ pðwÞðpÞ for all
p 2 P;Y 2 ffBg; fCDEgg

� for a 2 A;R0
a on S0 is the minimal binary relation such that

R0
aðorigðwÞ; newBðvÞÞ , Raðw; vÞ ^ a 2 B

R0
aðorigðwÞ; newCDEðvÞÞ , Raðw; vÞ ^ a 62 B

R0
aðnewBðuÞ; newCDEðvÞÞ , Raðu; vÞ ^ a 2 E

R0
aðnewBðuÞ; newBðvÞÞ , Raðu; vÞ ^ a 62 D

R0
aðnewCDEðuÞ; newCDEðvÞÞ , Raðu; vÞ

So, instead of completely separating the knowledge of agents in B
with the other agents, we share this knowledge with the other agents.
Since the other agents do not learn anything, agents in B does not
gain knowledge about E. We present a theorem similar to Theorem
3.2.

THEOREM 3.4.

(a) If ðM;wÞ is a Kt45 model, then so is 0-UNFOLDðM;wÞ.
(b) For every model ðM;wÞ, it holds that ðM;wÞ and 0-

UNFOLDðM;wÞ are bisimilar.

Proof. (a) The accessibility relations of every agent other than
those in E are constructed exactly the same way as in Definition 3.3.
Since that operation preserves the Kt45 properties, we do not have to
prove it for those agents. A proof for the agents in E now follows.
For transitivity assume ðs; tÞ 2 R0

a; ðt; uÞ 2 R0
a. By the definition, we

immediately see that u is of the form newCDEð�Þ. Also we see that if
there is a Raðs; uÞ then there’s a R0

aðs; uÞ. Thus, we can conclude
R0

aðs; uÞ. The proof that R0
a euclidean is similar. For o-seriality

observe that every arrow of an agent in E ends in a state that used to
be its old state. Thus, o-seriality is preserved.

(b) Construct a bisimulation R � S� S0 such that

Rðu; newYðvÞÞ , u ¼ v and Rðu; origðvÞÞ , u ¼ v:
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We prove that
R satisfies forward-choice: Suppose Rðs; s0Þ and Raðs; tÞ; s; t 2 S;

s0 2 S0. Suppose origðsÞ, then we have newBðtÞ if a 2 B, else we have
newBCDðtÞ if a 62 B. Suppose newCDEðsÞ, then we immediately have
newCDEðtÞ for all agents a. Suppose newBðsÞ, then we have newBðtÞ if
a 62 E, else newCDEðtÞ.

R satisfies backward-choice: Suppose Rðs; s0Þ and Raðs0; t0Þ;
s 2 S; s0; t0 2 S0. We have that Raðs0; t0Þ immediately implies Raðs; tÞ
for some the s; t such that s0; t0 are copies from s; t. This implies
Rðt; t0Þ.

Rðs; s0Þ ) pðsÞ ¼ p0ðs0Þ for s 2 S; s0 2 S0: Direct from the definition
of R. (

Due to the case distinction for arrows leaving the point origðwÞ, in
Definition 3.10 above, it holds that the knowledge of B-agents about
C-agents is separated, with the knowledge of other agents about
agents in C or of C-agents themselves. So we can ‘cut out’ the sub-
model containing the c arrows from the belief of b. In this definition
we can omit the point of the model in our partial submodel, which
makes it slightly easier.

DEFINITION 3.11. Given a model ðM0;w0Þ, with
ðM0;w0Þ ¼ hS0;p0; R0

1; . . . ;R
0
mi, an objective formula / and a par-

titioning X of A (as in Definition 3.10) such that ðM0;w0Þ ¼
0-UNFOLDXðM;wÞ, for some ðM;wÞ, we define SUBBðM0Þ ¼
hS00; p00;R00

1; . . . ;R
00
mi where

� S00 ¼ fnewBðsÞjs 2 Sg
� p00ðsÞðpÞ , pðsÞðpÞ for all s 2 S0; p 2 P
� R00

c ðs; tÞ , R0
cðs; tÞ for s; t 2 S00

� R00
a ¼ ; ða 62 CÞ.

The operation 0-SIDE-EFFECTð/;XÞ, the zero-knowledge side-effect of /
with respect to the partitioning X, is then given by

0-SIDE�EFFECTð/;XÞðM;wÞ
¼ ðREPLACENðATOMSPLITð/;CÞðNÞ;M0Þ;w0Þ

where N ¼ SUBBðM0Þ.
The operation 0-SIDE-EFFECT has algebraic properties comparable

to those of the previous side-effect operation (cf. Theorem 3.3). We
also have to following result, corresponding to Lemma 3.4.
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LEMMA 3.5. Given a model ðM;wÞ, a partitioning X of A and an
objective formula / such that the model ðM0;w0Þ ¼ 0-SIDE-

EFFECTð/;XÞðM;wÞ, it holds that
(a) ðM0;w0Þ � BbðBc/ _ Bc:/Þ.
(b) ðM0;w0Þ � Bbw iff ðM;wÞ � Bbw for any objective formula w.
(c) ðM0;w0Þ � BbCBCDðBc/ _ Bc:/Þ.
(d) ðM0;w0Þ � Baw iff ðM;wÞ � Baw for a 62 B for any formula w.
(e) ðM0;w0Þ � BbBew iff ðM;wÞ � BbBew for any formula w.

Proof. We provide the proof for (e). ð)Þ Assume ðM0;w0Þ �
BbBew, then we have for all paths w!b s!e t; t � w. But, since all
arrows of e in newB point back to (a copy of) the original model, we
have that ðM; tÞ � w:ð(Þ Assume ðM;wÞ � BbBew. Now, we have a
path in the original model w!b s!e t. In the construction of ðM;wÞ no
arrows of b and e are ever added nor deleted. (

Parts (a) to (d) are correspond to the properties given in Lemma 3.4.
Part (e) states that the knowledge of agent b about agent e has not
changed, which is exactly as desired.

EXAMPLE 3.5 (alternative side-effect function). Recall the model
ðM; sÞ from Example 3.3 (Figure 5). We now present this model with
four agents fb; c; d; eg in Figure 9, with a partitioning into singletons,
such that pðsÞðpÞ ¼ pðuÞðpÞ ¼ true and pðtÞðpÞ= false. Now, apply
0-SIDE-EFFECTðp;b;cÞðM;wÞ and we gain the model ðM0; sÞ from
Figure 10 such that pðsÞðpÞ ¼ pðs0ÞðpÞ ¼ pðs00ÞðpÞ ¼ pðu0ÞðpÞ = true,
pðtÞðpÞ ¼ pðt0ÞðpÞ = false. Note that in this model, b still knows
exactly the same about e as it did before.

3.3. Comparison with the Action Model Approach

Baltag and Moss (Baltag et al., 1998; Baltag and Moss 2004) propose
a framework for describing epistemic actions using action models.
Similar to Kripke models that describe the uncertainty of agents

Figure 9. ðM; sÞ:
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about which world they are in, they use Kripke models to describe the
uncertainty of agents about the action that is being performed.

Formally, an epistemic action model is a triple R ¼ hR;!A ; prei,
where R is a set of simpleactions;!A is an accessibility relation of
agents on actions and the precondition pre is a mapping pre: R ! U
with U being the collection of all epistemic propositions. The central
operation of updating an epistemic model M ¼ hS;R1; . . . ;Rm;pi as
we have used so far with such an action model R is defined as
M� R ¼ hS� R;R0

1; . . . ;R
0
m; p

0i, where
� S� R ¼ fðs; rÞ 2 S� RjðM; sÞ � pre ðrÞg
� R0

iððs; rÞ; ðs0; r0ÞÞ iff Riðs; s0Þ and r!A r0

� p0ððs;rÞÞðpÞ iff pðsÞðpÞ
In Baltag and Moss (2004), Baltag and Moss provide, based on this
notion of updating, illuminating examples and study several inter-
esting applications of this idea such as the public and private learning
of, what we would call, objective formulas. This poses the question if
we can describe the more complicated updates as well.

Figure 11. 0-SIDE-EFFECT action model.

Figure 10. ðM0; sÞ:
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In Figure 11 the ovals depict a precondition with u some objective
formula. Intuitively, this action model corresponds to the operation
of 0-SIDE-EFFECT.

Indeed, the update product of the Kripke structure of Example
3.5 in Figure 9 and the action model of Figure 11 results in the
model of Figure 10. Also, omitting the e-arrows from the action
model in Figure 11 yields an action model that for the concrete
examples discussed above corresponds to the side-effect operation of
Definition 3.9. However, currently we have no proof that such a
correspondence holds in general.

4. A LOGICAL LANGUAGE FOR SECURITY PROTOCOLS

In this section we exploit the ideas of the previous section for a logical
language to reason about security protocols. The UPDATE and
SIDE-EFFECT operations are used for its semantics. We introduce so-
called transition rules for the modeling of security protocols, that we
discuss in the next section.

DEFINITION 4.1. Fix a set of proposition P, ranged over by p, and
a set of agents A of m elements, ranged over by i; j. The languageLC

is given by

/ ::¼ pj:/j/1 ^ /2jBi/j½r�/
r ::¼ Privði ! j; pÞjPubði; pÞjr; r0

where C is a collection of so-called transition rules.
The r symbol denotes a (possibly composed) communication ac-

tion. The action Privði ! j; pÞ is a private or peer-to-peer message p
from i to j; the action Pubði; pÞ means a public announcement or a
broadcast by i about p. In the latter, every agent on the network
learns p, whereas in the former, only j learns p. The bracket operator
½r�/ has the interpretation that after executing the communication
action r;/ holds.

The subscript in LC refers to a set of so-called transition rules C.
The transition rules capture the updates, i.e., the expansions and
side-effects, necessary for the interpretation of indirect effect of the
constructs Privði ! j; pÞ and Pubði; pÞ. The transitions rules enforce
consistency among the propositions that hold. For example, if an
agent believes that the value of a message m is ½½m�� and possesses a
key k, then it must believe that the value of the encryption fmgk of
m has a value that corresponds with ½½m��.
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A transition rule has the form Bip ) b. The condition Bip ex-
presses that p must be believed by agent i. The body b of a tran-
sition rule is a sequence of actions a1; . . . ; an. Actions come in three
flavours, viz. LBp;SB;Cp and S0

B;C;Dp. Here, LBp expresses that p is
learned among the agents in the set B and corresponds to belief
expansion, whereas SB;Cp expresses the side-effect that the agents in
the set B have learned that the agents in the set C now know about
p. Similarly, S0

B;C;Dp is used for the side-effect where agents in B
assume that the agents in D have learned as well.

As an example, we will have the transition rule Bbfxgk ) Labx,
when agents a and b share the key k, and a sends b the message fxgk.
In the situation described above, agent a sends the message x to agent
b and agent b returns the message fxgk. Since it is shared, a already
can compute fxgk itself, so the delivery of fxgk does not teach a
anything about this value. However, the transition rule expresses that
a and b commonly learn, and, in particular, a learns that b knows the
message x.

The semantics for the language LC, provided in the next defini-
tion, follows the set-up of, e.g., Baltag et al. (1998), and Clark and
Jacab (2000). Definition 4.2 is organized in three layers. First, there is
the layer of the actions of the language. The defining clauses make use
of an auxiliary operation .p. This operation helps in the processing of
the relevant transition rules. The set ModðM;w; pÞ collects all the
transition rules that will change the model. The next layer of the
definition concerns the body of a transition rule. The last part of
Definition 4.2 concerns the validity of the formulas of LC.

DEFINITION 4.2. Let C be a finite set of transition rules. For
r 2 LC the relation ½½r�� on models for A over P is given by

ðM;wÞ½½Privði! j;pÞ��ðM0;w0Þ

, ðM;wÞ �Bip)ðUPDATEp;jðM;wÞ .p ðM0;w0ÞÞ

ðM;wÞ½½Pubði;pÞ��ðM0;w0Þ

, ðM;wÞ �Bip)ðUPDATEp;AðM;wÞ .p ðM0;w0ÞÞ

ðM;wÞ½½r;r0Þ��ðM0;w0Þ

, ðM;wÞ½½r��ðM00;w00Þ½½r0��ðM0;w0Þ

for some model ðM00;w00Þ
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ðM;wÞ .p ðM0;w0Þ
, ifðx) bÞ 2ModðM;w;pÞ

then ðM;wÞhbiðM00;w00Þ .p ðM0;w0Þ
for some ðM00;w00Þ

else ðM;wÞ ¼ ðM0;w0Þ end

ðM;wÞhiðM0;w0Þ
, ðM;wÞ ¼ ðM0;w0Þ

ðM;wÞhLBp; biðM0;w0Þ
, UPDATEðp;BÞðM;wÞhbiðM0;w0Þ

ðM;wÞhSB;Cp;biðM0;w0Þ
, SIDE�EFFECTðp;B;CÞðM;wÞhbiðM0;w0Þ

ðM;wÞhS0
B;C;Dp; biðM0;w0Þ

, 0-side-effectðp;XÞðM;wÞhbi
where X ¼ fB;C;D;A n ðB [ C [DÞg

ðM;wÞ � p

, pðwÞðpÞ ¼ true

ðM;wÞ � :/
, ðM;wÞ/

ðM;wÞ � / ^ w

, ðM;wÞ � / and ðM;wÞ � w

ðM;wÞ � Bi/

, ðM; vÞ � / for all v such that Riðw; vÞ
ðM;wÞ � ½r�/

, ðM0;w0Þ � / if ðM;wÞ½½r��ðM0;w0Þ
where

ModðM;w; pÞ ¼ fBip ) b 2 CjðM;wÞ � Bip;

ðM;wÞhbiðM0;w0Þ; 9/ : ðM0;w0Þ
� / 6$ ðM;wÞ � /g

The private and public communication of p can only be executed
under the condition Bip. The communication has the effect that the
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agent j, respectively all agents get informed about p. Next, the
transition rules are invoked as a consequence of some parties
learning p, as expressed by the operator .p. The ‘modifiers’, the
transition rules in the set ModðM;w; pÞ are those rules that match
the learning of p and, moreover, will transform ðM;wÞ into a dif-
ferent model, i.e., some formula / will have changed its truth value.
As a consequence of the algebraic properties of the update and
side-effect operators of Section 3, the order of in which the
transition rules are processed does not matter and every ‘modifying’
rule gets applied at most once (by idempotency). So, no rules are
applied over and over again. Apart from this, the above definition
also works for general formulas instead of objective ones (cf. Balta
et al., 1998; van Ditmansch 2000).

5. EXAMPLES

In this section we discuss how the machinery developed above works
out for a concrete example. Preparatory for this, in order to keep the
models within reasonable size, we employ two helpful tricks. The first
one is the disregarding of propositions not known to any agent. Thus,
if a proposition is not part of the model, then the interpretation is
that no agent has any knowledge about it. What we then have to
specify is how to add a fresh proposition to the model. We accom-
plish this by making two copies of the original states. One of them we
assign ‘positive’ and the other ‘negative’. In the positive states, the
proposition will be true, and in the negative states, the proposition
will be false.

DEFINITION 5.1. Given a model ðM;wÞ ¼ hS; p;R1; . . . ;Rmi and a
fresh proposition p, we define the operation ADDATOMp such that
ðM0;w0Þ ¼ ADDATOMpðM;wÞ ¼ hS0;p0;R0

1; . . . ;R
0
mi where

� S0 ¼ posðSÞ [ negðSÞ
� p0ðposðsÞÞðqÞ ¼ if p ¼ q then true else pðsÞðqÞ
� p0ðnegðsÞÞðqÞ ¼ if p ¼ q then false else pðsÞðqÞ
� R0

iðs; tÞ , Riðs; tÞ for any agent i
� w0 ¼ posðwÞ

We suppress straightforward technicalities regarding the restriction
of the domain of the valuation p or expansion of the set of propo-
sition P.
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We have the following property.

LEMMA 5.1. Given a model ðM;wÞ and a fresh proposition p such
that ðM0;w0Þ ¼ ADDATOMpðM;wÞ it holds that
(a) ðM0;w0Þ � p;
(b) ðM;wÞ � / , ðM0;w0Þ � / for p 62 /	 with /	 the closure under

subformulas of /;
(c) ðM0;w0Þ 6� Bip for all agents i.

Proof. (a) Trivial, since we make the new point the positive copy of
the old point.

(b) We prove the stronger property ðM; sÞ � /; p 62 /	 , ðM0; s0Þ
where s0 is a copy of s. Proof by induction on complexity of /.
Suppose / is objective then it’s trivial (since p 62 /	). Now suppose
/ ¼ Biw, then each state that is reachable in the resulting model is
reachable if and only if it was reachable from a copy in the original
model. By induction, we have the property for w, so it follows that we
have it for /.

(c) It holds that w0 ¼ posðwÞ and we have some w00 ¼ negðwÞ, such
that Raðw0;w00Þ. (

The second trick helps to short-cut the application of rules which
helps keeping the model in a reasonable size.

LEMMA 5.2. Given a model ðM;wÞ, an agent i 2 A, a set of agents
B � A it holds that the model ðM0;w0Þ such that

ðM;wÞhLip;SB;i pixhLApiðM0;w0Þ

for some model x, and the model ðM00;w00Þ such that

ðM;wÞhLApiðM00;w00Þ

are bisimilar.

Proof. The proof is a corollary of the following two properties:

1: Lip;LAp ¼ LAp
2: SB;ip;LAp ¼ LAp

The proof of these properties is similar to the ones we have seen
before. Here we proof (1). Because in both operations the last
operation is a LA we can easily that only new states are reachable.
Bisimulation is constructed by associating links between states that
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are copies of each other in the original model. Checking bisimulation
now is trivial. For (2) it is similar. Intuitively for the first operation,
again in the last step, only the new are reachable. The removal of a in
the knowledge of B in the first step is redundant because of the
removal that happens in any case in the second step. (

That is to say, if an agent i learns p and then all other agents learn
about i that it has learned p, followed by the action where everyone
learns p (commonly), then it is equivalent to say that they have just
learned p commonly.

5.1. The SRA Three Pass protocol

Shamir, Rivest and Adleman have suggested the three-pass protocol
(Clark and Jacob, 1997) for the transmission of a message under the
assumption of a commutative cipher. It is known to be insecure and
various attacks have been suggested. However, it serves an illustrative
purpose here. The protocol has the following steps:

1: a ! b : fxgka
2: b ! a : ffxgkagkb
3: a ! b : fxgkb

Here, both agent a and b have their own symmetric and unshared
encryption key, ka and kb, respectively. Agent a wants to send
message x to agent b through an insecure channel and therefore
wants to send x encrypted to b. It does this by sending x protected
with its own key. Next, b will encrypt this message with b0s key
and sends this back. Since the encryption is assumed to be com-
mutative, a can now decrypt this message and sends the result to
b. Finally, b can decrypt the message it has just received and learn
the value of x.

In our modeling, we consider three agents fa; b; cg. It is assumed
that all agents can see the activity of the network. In particular,
they see messages been sent out and received. We are interested in
what agent c can learn during a run of this protocol between agents
a and b. We use the notation mK, for a possibly empty set of agents
K, to denote the message m encrypted with the keys of all agents in
the set K. We have, e.g., mfa;bg ¼ ffmgkagkb . Since the cipher is
commutative, this is well defined. Also, we write S	;a/ instead of
SA;fag/, to express that all agents learn that agent a knows about
formula /.
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Next, we define the transition rules. The first transition rule
models the fact that agents can encrypt with their own key:

BjmK ) LjmKþj;S	;jmKþj:

For simplicity, it is assumed that j 62 K. Thus, if an agent j happens
to learn the value of a message encrypted with the keys of the agents
in the set K, then agent j can encrypt the message received with its
own key added (provided it was not used already). Moreover, as the
other agents have seen that agent j has received the message, the
agents collectively learn that agent j knows about the result after
adding its key, as expressed by S	; jmKþj.

Complementary, we have the transition rule

BjmK ) LjmK�j;S	; jmK�j

for every agent j 2 A. Now, it is assumed that the agent j is among
the agents in K. By commutativity of the cipher, agent j can then
(partially) decrypt the message mK and learn mK�j whereas all others
know that agent j can do this.

In the modeling, we limit ourselves by defining the list of useful
propositions. The propositions we want to consider here are
P ¼ fm;ma;mb;mabg where ma abbreviates fxgka ¼ ½½fxgka �� and mab

abbreviates ffxgkagkb ¼ ½½ffxgkagkb ��. Recall, that ½½ y�� denotes the real
value of y, i.e., the value of the expression y in the point of the model.

Next, we must represent the initial knowledge of the agents, i.e.,
their knowledge before the run of the protocol. We will assume that a
is the only agent that knows m and ma. Furthermore, we will assume
that the other agents know this about a. The corresponding Kripke
structure is in Figure 12. The SRA protocol can be captured by three
public announcement Pubða;maÞ;Pubðb;mabÞ and Pubða;mbÞ. We are
curious whether at the end of the protocol

Figure 12. Starting point.
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(i) agent b will know m;
(ii) agent a will know that agent b knows m;
(iii) agent c only knows that agents a and b know about m.

The first step is executed. That is, ma is propagated on the network,
so all agents will learn its value. So, we execute the action Pubða;maÞ.
If we discard the states that become unreachable, this results in the
model of Figure 13. Note that in this model Bbma holds. This is the
condition of one of the transition rules, that is, it triggers
Bbma ) Lbmab;S	;bmab since its antecedent holds in the point now.

For processing the operation Lbmab, we notice that mab is not
modeled yet, so this is the first thing to do. We will not repeat ma in
the figure since this holds in any state of the model. The operation
ADDATOMmab

results in the model of Figure 14. Instead of applying the
body of the transition rule Lbmab;S	;bmab to this model, we observe
that in the next step of the protocol LAmab is executed, as the result
of the action Pubðb;mabÞ, since the message is being transmitted to all
agents on the network. So, with an appeal to Lemma 5.2, it is justified
to skip the operation that are required by the transition rules and
perform LAmab only. We arrive at the model in Figure 15.

In turn, this results in the triggering of the transition rule:
Bamab ) Lamb;S	;amb. This is in fact a completely similar case to the
previous step of the protocol. Since the next action of the protocol is

Figure 14. Added mab:

Figure 13. After Pubða;maÞ.
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Pubða;mbÞ the value ofmb will be learned by all agents, anyway.Again,
we dismiss the mab proposition since every agent has learned this.

We introduce the proposition mb and execute Pubða;mbÞ. So, we
end up with the model in Figure 16. The last transition rule that is
triggered is Bbmb ) Lbm;S	;bm. Again, we discard the proposition
that holds in every state, which is mb, and focus on the most inter-
esting proposition m. First b learns m, as dictated by the operation
Lbm, which results in the model in Figure 17.

Next, the second action for the transition rule is that all learn
Bbm _ Bb:m. If we execute this, we get the model ðM0;w0Þ which is
depicted in Figure 18. Recall that this model ðM0;w0Þ is obtained
from the initial model ðM;wÞ by application of the actions
Pubða;maÞ;Pubðb;mabÞ;Pubða;mbÞ and associated transition rules.

Figure 17. After Lbm.

Figure 16. After Pubða;mbÞ.

Figure 15. After Pubðb;mabÞ.
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Moreover, in the resulting model ðM0;w0Þ it holds that (i) Bbm, (ii)
Cabm, and :ðBcm _ Bc:mÞ.

5.2. The Wide-Mouthed Frog protocol

The next example we address to illustrate the update machinery
developed above, is the well-known Wide-Mouthed Frog protocol
(see, e.g., Borrows 1990; Abadi and Gordon 1999). The protocol
exchanges a session key k from the agent a to another agent b via a
server s. Then, agent a sends agent b a message protected with the
session key k. It is assumed, that the agents a and b share each a
symmetric key, kas and kbs say, with the server. The protocol can be
described by

1: a ! s : fkgkas
2: s ! b : fkgkbs
3: a ! b : fmgk

The keys kas and kbs are shared among a and s, and among b and s,
respectively. The key k is fresh and initially only known to agent a, as
is message m.

In the analysis we want to focus on the session key k and the
message m it protects. Therefore the protocol is represented by the
sequence of actions

Privða ! s; kÞ;Privðs ! b; kÞ;Pubða; fmgkÞ:
Thus, the security of the channel, based on the server keys kas and kbs
is expressed by private rather than public communication. We assume
that the ‘ports’ of the channel from a to b can be observed, but the
ones for the communication with the server are not visible to other
parties.

Figure 18. After S	;bm.
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The initial knowledge is depicted in Figure 19. As transition rule
we adopt

Bbfmgk ) Lbm;S	;bm;S	;bk

i.e., after b has received the encrypted message fmgk it can learn its
content m and everybody learns that b knows about it. Moreover, if
agent b is known to know about the message m, then it must know
about the session key k as well. Note that, there are no transition
rules dealing with the communication with the server.

Execution of the first action Privða ! s; kÞ leads to an update of
the knowledge of s. This is represented by a model with six (reach-
able) states in Figure 20. Similarly, but more complicated, the exe-
cution of the second action Privðs ! b; kÞ induces the model in
Figure 21. The model gets more involved because, by assumption, the

Figure 20. After Privða ! s; kÞ.

Figure 19. Starting point.
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learning of messages exchanged with the server is private. For
example, agent a is not aware of agent b learning about the key k. So
far, no transition rules have been triggered.

Next, we execute the last step of the protocol, viz. the public
communication Pubða; fmgkÞ. For this we need to add the atom mk

abbreviating fmgk ¼ ½½fmgk��. This doubles the number of states of the
models. However, since mk will be known to all agents, its negative
part can be discarded. Now, the transition rules gets activated. So,
agent b learns the content m and the other agents learn that b knows
about m and k, resulting in the final model in Figure 22. Since agent b
is learning twice in a row, the difference between Figures 21 and 22
are the absence of b-arrows to :m-states and between states with
different values for about m and k.

Typical properties of this model include Bbðm ^ kÞ, agent b knows
the values of the message m and session key k, :Cabm; m is not com-
monly known by agents a and b, and, :BcBsk agent c does not know
that the server knows the session keyk. That agents a and bdonot share

Figure 21. After Privðs ! b; kÞ.
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the knowledge about the session key, is debatable. One way out is to
modify the transition rules and have the operation Labm instead of Lb.

6. CONCLUSION

Inspired by recent work on dynamic epistemic logics, we have pro-
posed a logical language for describing (properties of) runs of security
protocols. The language contains constructs for the three basic types
of epistemic actions that happen during such runs. The semantics of
the language is based on traditional Kripke models representing the
epistemic state of the agents. Changes in the epistemic state of the
agent system as a result of the execution of a protocol are described
by means of transition rules that precisely indicate what belief up-
dates happen under certain preconditions. These belief updates give
rise to modifications of the models representing the agents’ epistemic

Figure 22. After Pubða; fmgkÞ.
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state in a way that is precisely given by semantic operations on these
models. We have illustrated our approach for two well-known
security protocols, viz. the SRA Three Pass protocol and the
Wide-Mouthed Frog protocol.

The semantic updates we used, operate on traditional Kripke
models as opposed to updates in the approaches of Gerbrandy and
Baltag et al. We believe that this will make it less troublesome
to integrate these updates into existing model checkers, which
hopefully will lead to better and new tools for verifying properties
of security protocols. However, for the development of the theory,
it is important to establish the precise connection of the explicit
approach followed here and the approach based on action models
as advocated in Baltag et al. (1998), van Ditmarsch (2000), Baltag
(2002), and Baltag and Moss (2004) A first step into this direction
has been presented here, but many others will have to follow.
Nevertheless, it points to a promising opportunity to establish a
firm relationship between logical theory and security protocol
analysis, to the benefit of the latter.

Although future research will have to justify this, we are confident
that our method, preferably with some form of computer assistance,
can be employed for a broad class of verification problems con-
cerning security protocols because of the flexibility of our approach
using transition rules for epistemic updates.
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