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A MODEL OF JURY DECISIONS WHERE ALL JURORS HAVE THE

SAME EVIDENCE

ABSTRACT. Under the independence and competence assumptions of Condorcet’s

classical jury model, the probability of a correct majority decision converges to
certainty as the jury size increases, a seemingly unrealistic result. Using Bayesian
networks, we argue that the model’s independence assumption requires that the state

of the world (guilty or not guilty) is the latest common cause of all jurors’ votes. But
often – arguably in all courtroom cases and in many expert panels – the latest such
common cause is a shared ‘body of evidence’ observed by the jurors. In the corre-

sponding Bayesian network, the votes are direct descendants not of the state of the
world, but of the body of evidence, which in turn is a direct descendant of the state of
the world. We develop a model of jury decisions based on this Bayesian network.
Our model permits the possibility of misleading evidence, even for a maximally

competent observer, which cannot easily be accommodated in the classical model.
We prove that (i) the probability of a correct majority verdict converges to the
probability that the body of evidence is not misleading, a value typically below 1; (ii)

depending on the required threshold of ‘no reasonable doubt’, it may be impossible,
even in an arbitrarily large jury, to establish guilt of a defendant ‘beyond any rea-
sonable doubt’.

1. INTRODUCTION

Suppose a jury (committee, expert panel, etc.) has to determine
whether or not a defendant is guilty (whether or not some factual
proposition is true). There are two possible states of the world: x ¼ 1
(the defendant is guilty) and x ¼ 0 (the defendant is not guilty).
Given that the state of the world is x, each juror has the same
probability (competence) p > 1/2 of voting for x and the votes of
different jurors are independent from one another. Then the proba-
bility that a majority of the jurors votes for x, given the state of the
world x, converges to 1 as the number of jurors increases. This is the
classical Condorcet jury theorem (e.g., Grofman, Owen and Feld
1983). The theorem implies that the reliability of majority decisions
can be made arbitrarily close to certainty by increasing the jury size.
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This result may seem puzzling. What if all jurors are tricked by the
same evidence, which seems ever so compelling? What if, against all
odds, the wind blows an innocent person’s hair to the crime scene and
the jurors believe that it could not have arrived there without the
person’s presence? What if the evidence is so confusing that, no
matter how many jurors are consulted, there is not enough evidence
to solve a case conclusively?

The classical Condorcet jury theorem suggests that we can rule out
such scenarios by increasing the jury size sufficiently. Suppose each
juror views the crime scene from a different perspective and obtains a
separate item of evidence about the state of the world. This requires
that, for each additional juror, a new independent item of evidence is
available. So there must exist arbitrarily many items of evidence as
the jury size tends to infinity, which are confirmationally independent
regarding the hypothesis that the defendant is guilty (on confirma-
tional independence, see Fitelson 2001). Call this case A. Then the
jury would be able to reach a correct decision with a probability
approaching 1, by aggregating arbitrarily many independent items of
evidence into a single verdict. But often there are not arbitrarily many
independent items of evidence. Rather, the jury as a whole reviews the
same body of evidence, such as that presented in the courtroom,
which does not increase with the jury size. Each juror has to decide
whether he or she believes that this evidence supports the hypothesis
that the defendant is guilty. Call this case B. Arguably, decisions in
most real-world juries and many committees and expert panels are
instances of case B. Moreover, in most legal systems, there are ‘rules
of evidence’ specifying what evidence is admissible in a court’s deci-
sion and what evidence is not. Jurors are legally required to use only
the evidence presented in the courtroom (typically the only evidence
about a case jurors come to see) and to ignore any evidence obtained
through other channels (in those rare cases where they have such
evidence).

We argue that, while case A might satisfy the conditions of the
classical Condorcet jury theorem, case B does not. We represent each
case using Bayesian networks (Bovens and Olsson 2000; Pearl 2000;
Corfield and Williamson 2001). Case A satisfies Condorcet’s inde-
pendence assumption, so long as a demanding condition holds: the
state of the world is the latest common cause of the jurors’ votes. In
the corresponding Bayesian network, votes are direct causal descen-
dants of the state of the world. This assumption, although implicit in
the classical Condorcet jury model, is not usually acknowledged.
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Case B, by contrast, violates the classical independence assumption,
as there exists an intermediate common cause between the state of the
world and the jurors’ votes, namely the body of evidence. In the
corresponding Bayesian network, the jurors’ votes are direct
descendants of the body of evidence, which in turn is a direct
descendant of the state of the world. This dependency structure has
radical implications for the Condorcet jury theorem. The model
developed in this paper is based on the Bayesian network of case B.

The main novelty of our model is that different jurors are inde-
pendent not conditional on the state of the world, but conditional on
the evidence. This follows from the requirement, formulated in terms
of the Parental Markov Condition (defined below), that indepen-
dence should be assumed conditional on the latest common cause.
While in case A the latest common cause of the jurors’ votes is the
state of the world, in case B it is the shared body of evidence. Our
model shows that, irrespective of the jury size and juror competence,
the overall jury reliability at best approaches the probability that the
evidence is not misleading, i.e., the probability that the evidence
points to the truth from the perspective of a maximally competent
‘ideal’ observer, a value typically below one. We prove further that,
depending on the required threshold of ‘no reasonable doubt’, it may
be impossible, even in an arbitrarily large jury and even when there is
unanimity, to establish guilt of a defendant ‘beyond any reasonable
doubt’. The results imply that, if real-world jury, committee or expert
panel decisions are more similar to case B than to case A, the classical
Condorcet jury theorem fails to apply to such decisions.

Previous work on dependencies between jurors’ votes has focused
on, first, opinion leaders – jurors who influence other jurors –
(Grofman, Owen and Feld 1983; Nitzan and Paroush 1984; Owen
1986; Boland 1989; Boland, Proschan and Tong 1989; Estlund 1994)
and, secondly, a lack of free speech that makes votes dependent on a
few dominant ‘schools of thought’ (e.g., Lahda 1992). These sources
of dependence differ from the one in our model. In the first case, the
votes themselves are causally interdependent. In the second, some
votes have an additional common cause: a common ‘school of
thought’ that is independent from the state of the world. But in both
cases, unlike in our model, votes are still direct descendants of the
state of the world. As a consequence, existing models with depen-
dencies have preserved the result that the probability of a correct
majority decision converges to 1 as the jury size increases, so long as
different jurors’ votes are not too highly correlated. Further, these
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models do not impose an upper bound on the total evidence available
to the jury, and they usually suggest that the difference between
Condorcet’s classical model and one with dependencies lies in a dif-
ferent (slower) convergence rate, but not in a different limit, as in our
model. By contrast, the dependency structure of our Bayesian net-
work model has been unexplored so far.

2. THE MODEL

2.1. The Classical Jury Model

There are n jurors, labelled i ¼ 1; 2; . . . ; n. The state of the world is
represented by a binary variable X taking the values 0 (not guilty) or
1 (guilty). The jurors’ votes are represented by the binary random
variables V1;V2; . . . ;Vn. Each Vi takes the values 0 (a ‘not guilty’
vote) or 1 (a ‘guilty’ vote). A juror i’s judgment is correct if and only
if the value of Vi coincides with that of X. We use capital letters to
denote random variables and small letters to denote particular values.
Condorcet’s classical model assumes the following.1

IndependenceGiven theStateof theWorld(I|X). ThevotesV1;V2; . . . ;Vn

are independent from one another, conditional on the state of the
world X.

As argued later, this implicitly assumes that each juror’s vote is di-
rectly probabilistically caused by the state of the world,2 and is
therefore independent from the other jurors’ votes once the state of
the world is given.

Competence Given the State of the World ðC|XÞ. For each state of the
world x 2 f0; 1g and all jurors i ¼ 1; 2; . . . ; n; p ¼ PðVi ¼ xjX ¼ xÞ
> 1=2.

Each juror’s vote is thus a signal about the state of the world, where the
signal is noisy, but biased towards the truth, as p > 1=2. TheCondorcet
jury theorem states that majority voting over such independent signals
reduces the noise.More precisely, letV ¼

P
i¼1;...;n Vi be the number of

votes for ‘guilty’. Then V > n=2 means that there is a majority for
‘guilty’, andV < n=2 means that there is a majority for ‘not guilty’.

THEOREM 1. (Condorcet jury theorem) If (I|X) and (C|X) hold,
then PðV > n=2jX ¼ 1Þ and PðV < n=2jX ¼ 0Þ converge to 1 as n tends
to infinity.3
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2.2. Bayesian Networks

Bayesian networks can graphically represent the (probabilistic) causal
relations between the different variables such as X and V1;V2; . . . ;Vn.
A Bayesian network is a directed acyclic graph, consisting of nodes
and (unidirectional) arrows connecting nodes. The nodes represent
the variables, and arrows ( fi ) between nodes represent direct causal
dependencies.4 The direction of an arrow represents the direction of
causality. For example, a connection of the form X! V1 means ‘X
(directly) causally affects V1’. Here X is a parent of V1, and V1 is a
child of X. One node is a descendant of another, the ancestor, if there
exists a sequence of arrows connecting the two nodes, where each
arrow points away from the ancestor node and towards the descen-
dant node. One node is a non-descendant of another if there exists no
such sequence. So the descendant relation is the transitive closure of
the child relation. Acyclicity of the graph means that no node is its
own descendant. A Bayesian tree is a Bayesian network in which
every variable has at most one parent. Many joint probability dis-
tributions of the variables at the nodes are consistent with a given
Bayesian network. Here, consistency with the network means that the
following condition is satisfied (for details on Bayesian networks, see
Pearl 2000, ch. 1):

Parental Markov Condition (PM). Any variable is independent from
its non-descendants (except itself), conditional on its parents.5

For example, consider a medical condition (say a flu) that can cause
two symptoms in a patient (a sore throat and a fever). Consider the
Bayesian tree of Figure 1, which contains three variables D, S1 and
S2, each of which takes the value 0 or 1: D is 1 if the patient has the
condition and 0 otherwise; S1 is 1 if the patient has the first symptom
and 0 otherwise; and S2 is 1 if the patient has the second symptom
and 0 otherwise.

This Bayesian tree, in which the symptoms S1 and S2 are direct
descendants of condition D, expresses that both symptoms are direct
consequences of condition D, rather than being commonly caused by
some intermediate symptom S of the condition. The two symptoms
are not independent unconditionally: a sore throat increases the
chance of having a flu, which in turn increases the chance of having a
fever. The Parental Markov Condition says that the two symptoms
are independent conditional on their common cause: given that you
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have a flu (D ¼ 1), having a sore throat and having a fever are
independent from each other, and given that you have no flu (D ¼ 0)
having a sore throat and having a fever are also independent from
each other.

2.3. The Classical Jury Model Revisited

Figure 2 shows the Bayesian tree corresponding to the classical
Condorcet jury model.

The votes V1;V2; . . . ;Vn are non-descendants of each other and
each has X as a parent. So the Parental Markov Condition holds if
and only if V1;V2; . . . ;Vn are independent from each other, condi-
tional on X, which is exactly the independence condition of the
classical jury model. So an alternative statement of that model can be
given in terms of the Bayesian tree in figure 2 together with condi-
tions (PM) and (C|X).

The Bayesian tree in figure 2 has the property that the state of the
world X is the latest common cause of the jurors’ votes. In case B in
the introduction, this property is violated. So, if real-world jury
decisions are more like case B than case A, they are not adequately
captured by the classical model.

2.4. The New Model

The new model gives up the assumption that the state of the world is
the latest common cause of the jurors’ votes. Instead, we assume that

Figure 1. A simple Bayesian tree.

Figure 2. Bayesian tree for the classical Condorcet jury model.
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there exists an intermediate common cause between the state of the
world and the votes. For simplicity, we describe that intermediate
common cause as the body of evidence.

To illustrate why introducing a common body of evidence creates a
dependency between votes that contradicts Condorcet’s independence
assumption, imagine that you, an external observer, know that the
defendant is truly guilty, and you learn that the first 10 jurors have
wrongly voted for ‘not guilty’. From this, you will infer that the jurors’
common evidence is highly misleading, which in turn implies that the
11th juror is also likely to vote for ‘not guilty’. This contradicts the
classical condition of independence given the state of the world,
according to which the first 10 votes provide no information for pre-
dicting the 11th vote once you knowwhat the true state of the world is.

We represent the common body of evidence by a random variable,
E, which takes values in some set E. Figure 3 shows the Bayesian tree
corresponding to the new model.

The value of E can be interpreted as the totality of available
information about the state of the world the jurors are exposed to,
including the testimony of witnesses, jury deliberation, the appear-
ance of the defendant in court (relaxed or stressed, smiling or
serious etc.). In Bayesian tree terms, E is a child of the state of the
world and a parent of the jurors’ votes. What matters is not the
particular nature of E, which will usually be complex, but the fact
that every juror is exposed to the same body of evidence.6 We do
not make any particular assumption about the set E of possible

Figure 3. Bayesian tree for the new model.
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bodies of evidence, which may be finite, countably infinite, or even
uncountably infinite.

The probability distribution of E depends on the state of the
world: the distribution of E given guilt (X ¼ 1) is different from that
given innocence (X ¼ 0). In the case of guilt, it is usually more likely
that the body of evidence will point towards guilt than in the case of
innocence. For instance, the defendant might be more likely to fail a
lie detector test in the case of guilt than in the case of innocence. We
prove that the Parental Markov Condition, when applied to the
Bayesian tree in Figure 3, has two implications:

Common Signal (S). The joint probability distribution of the votes
V1;V2; . . . ;Vn given both the evidence E and the state of the world X
is the same as that given just the evidence E.

So, the votes are only indirectly caused by the state of the world: they
depend on the state of the world only through the body of evidence.
Once the evidence is given, what the state of the world is makes no
difference to the probabilities of the jurors’ votes.7

Independence Given the Evidence (I|E). The votes V1;V2; . . . ;Vn are
independent from each other, conditional on the body of evidence E.

So, the votes are independent from each other not once the state of
the world is given, but once the evidence is given. Technically, this is
described by saying that the consequences are screened off by their
common cause, which means that the consequences (here the votes)
become independent when we conditionalize on their common cause.
We have:

PROPOSITION 1. (PM) holds if and only if (S) and (I|E) hold.

Proof. All proofs are given in the appendix. (

The important part of proposition 1 is that (PM) entails (S) and
(I|E), which provides a justification for using (S) and (I|E) in our jury
model. We have also proved the reverse entailment to show that all
theorems using (S) and (I|E) could equivalently use (PM).

In the new model, each juror’s vote is a signal, not primarily
about the state of the world, but about the body of evidence, which
in turn is a signal about the state of the world.8 Both signals are
noisy: the body of evidence is a noisy signal about the state of the
world; and a juror’s vote is a noisy signal about the body of evi-
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dence. But both signals are typically biased towards the truth: the
body of evidence is more likely to suggest guilt than innocence in
cases of guilt; and an individual juror’s vote is more likely to reflect
an ‘ideal’ interpretation of the evidence than not. We address these
issues below.

In essence, our new jury theorem shows that majority voting re-
duces the noise in one set of signals – in the jurors’ interpretation of
the body of evidence – but not in the other – in the body of evidence
as a signal about the state of the world.9

Let us introduce our assumption about juror competence for-
mally. Recall that, in the classical model, competence was modelled
by each juror’s probability p > 1=2 of making a correct decision,
conditional on the state of the world. We here define competence as
the probability of giving an ‘ideal’ interpretation of the evidence,
conditional on that evidence. Specifically, we assume that, for any
body of evidence e 2 E, there exists an ‘ideal’ interpretation, de-
noted f(e), that a hypothetical ideal observer of e would give. This
ideal observer does not know the true state of the world, but gives
the ideal (best possible) interpretation of the available evidence;
f(e) ¼ 1 means that the ideal observer would vote for ‘guilty’, and
f(e) ¼ 0 means that the ideal observer would vote for ‘not guilty’.
We call f(e) the ideal vote – as opposed to the correct vote, which is
the vote matching the true state of the world.10 While knowledge of
the true state of the world x would allow a correct vote, the ideal
vote results from the best possible interpretation of the evidence e.
The ideal vote and the correct vote differ in the case of misleading
evidence, such as when an innocent person’s hair is blown to the
crime scene (and the person has no other alibi, etc.). Our compe-
tence assumption states that the probability that juror i’s vote
matches the ideal vote f(e) given the evidence e exceeds 1/2. Infor-
mally, each juror is better than random at arriving at an ‘ideal’
interpretation of the evidence.11

Competence Given the Evidence (C|E). For all jurors i ¼ 1; 2; . . . ; n
and each body of evidence e 2 E; pe :¼ PðVi ¼ fðeÞjE ¼ eÞ > 1=2:
The value of pe may depend on e but not on i.12

If the body of evidence e is easily interpretable, for instance in the
case of overwhelming evidence for innocence, the probability that
an individual juror’s vote matches the ideal vote – here f(e) ¼ 0 –
might be high, say pe ¼ 0.95. If the body of evidence e is confusing
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or ambiguous, that probability might be only pe ¼ 0.55. Thus
competence is a family of probabilities, containing one pe for each
e 2 E. The term ‘competence’ here corresponds to the ability to
interpret the different possible bodies of evidence e 2 E in a way
that matches the ideal interpretation. For simplicity, one might re-
place (C|E) with the stronger (and less realistic) assumption of
homogeneous competence, according to which pe is the same for all
possible e 2 E.

Homogeneous Competence Given the Evidence (HC|E). For all jurors
i ¼ 1; 2; . . . ; n; p :¼ PðVi ¼ fðeÞjE ¼ eÞ > 1=2; for each body of evi-
dence e 2 E. The value of p depends neither on e nor on i.

3. THE PROBABILITY DISTRIBUTION OF THE JURY’S VOTE

We consider the model based on Figure 3 – assuming (PM) and hence
(S) and (I|E) – and derive the probability distribution of the jury’s
vote V ¼

P
i¼1;...;n Vi given the state of the world. This distribution

depends crucially on two parameters: pð1Þ :¼ PðfðEÞ ¼ 1jX ¼ 1Þ and
pð0Þ :¼ PðfðEÞ ¼ 0jX ¼ 0Þ. The first is the probability that the evi-
dence is not misleading (that it points to the truth for an ideal ob-
server) in the case of guilt; the second is the probability that the
evidence is not misleading in the case of innocence. Our first result
addresses the case of homogeneous competence (HC|E).

THEOREM 2. If we have (S), (I|E) and (HC|E), the probability of
obtaining precisely v out of n votes for ‘guilty’ given guilt is

PðV ¼ vjX ¼ 1Þ ¼ pð1Þ
n

v

� �
pvð1� pÞn�v

þ ð1� pð1ÞÞ
n

v

� �
pn�vð1� pÞv;

and the probability of obtaining precisely v out of n votes for ‘guilty’
given innocence is

PðV ¼ vjX ¼ 0Þ ¼ pð0Þ
n

v

� �
pn�vð1� pÞv

þ ð1� pð0ÞÞ
n

v

� �
pvð1� pÞn�v:
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By theorem 2, if there is a non-zero probability of misleading evi-
dence – specifically if 0 < pð1Þ < 1 or 0 < pð0Þ < 1 – the jury’s vote V
given the state of the world X does not have a binomial distribution,
in contrast to the classical Condorcet jury model. The reason for this
is that the votes V1;V2; . . . ;Vn; while independent given the evidence,
are dependent given the state of the world. The sum of dependent
Bernoulli variables does not in general have a binomial distribution.
If, on the other hand, the probability of misleading evidence is zero –
i.e., p(1) ¼ 1 and p(0) ¼ 1 – the probabilities in theorem 2 reduce to
those in the classical Condorcet jury model.

Our next result describes the probability P(V ¼ m|X ¼ x) for the
more general case where we assume (C|E) rather than (HC|E). Since
E is a random variable, E induces a random variable pE which takes
as its value the competence pe associated with the value e of E. To
avoid confusion with the random variable E, we write the expected
value operator as Exp(.) rather than E(.).

THEOREM 3. If we have (S), (I|E) and (C|E), the probability of
obtaining precisely v out of n votes for ‘guilty’ given guilt is

PðV¼ vjX¼ 1Þ¼

p1ð
n

v
ÞExpðpEvð1�pEÞn�vjfðEÞ¼ 1 and X¼ 1Þ

þð1�pð1ÞÞð
n

v
ÞExpðpEn�vð1�pEÞvjfðEÞ¼ 0 and X¼ 1Þ;

and the probability of obtaining precisely v out of n votes for ‘guilty’
given innocence is

PðV¼ vjX¼ 0Þ ¼

ð1� pð0ÞÞð
n

v
ÞExpðpEvð1� pEÞn�vjfðEÞ ¼ 1 and X¼ 0Þ

þ ðpð0ÞÞð
n

v
ÞExpðpEn�vð1� pEÞvjfðEÞ ¼ 0 and X¼ 0Þ:

Note that, in theorems 2 and 3, by summing P(V ¼ v|X ¼ 1) over all
v > n=2; we obtain the probability of a simple majority for ‘guilty’
given guilt; and, by summing P(V ¼ v|X ¼ 0) over all v < n=2, we
obtain the probability of a simple majority for ‘not guilty’ given
innocence. The present results allow us to compare the probability of
a correct jury verdict in our model – specifically in the case of
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homogeneous competence – with that in the classical Condorcet jury
model for the same fixed level of juror competence p.

COROLLARY 1. Suppose we have (S), (I|E) and (HC|E). Let
v > n=2: Then the probability of obtaining precisely v out of n votes for
‘guilty’ given guilt satisfies

PðV ¼ vjX ¼ 1Þ � n
v

� �
pvð1� pÞn�v;

and so the probability of obtaining a majority for ‘guilty’ given guilt
satisfies

PðV > n=2jX ¼ 1Þ � Rv>n=2
n
v

� �
pvð1� pÞn�v:

The left-hand sides of the two inequalities correspond to our new
model, the right-hand sides to the classical model. So corollary 1
implies that the probability of a majority for ‘guilty’ given guilt in our
new model is less than or equal to that in Condorcet’s model. Simi-
larly, the probability of a majority for ‘not guilty’ given innocence in
our new model is less than or equal to that in the classical model. The
probability of a correct jury verdict is equal in the two models if and
only if the probability of misleading evidence is zero. Unless the
evidence always ‘tells the truth’ – unless p(1) ¼ p(0) ¼ 1 – the jury in
our new model will reach a correct verdict with a lower probability
than in the classical model.

4. A MODIFIED JURY THEOREM

We now state our modified jury theorem. Its first part is concerned
with the probability that the majority of jurors matches the ideal
vote, and its second part with the more important probability that the
majority of jurors matches the true state of the world.

THEOREM 4. Suppose we have (S), (I|E) and (C|E).

(i) Let W be the number of jurors i whose vote Vi coincides with the
ideal vote f(E). For each x 2 f0; 1g;PðW > n=2jX ¼ xÞ converges to 1
as n tends to infinity.
(ii) PðV > n=2jX ¼ 1Þ converges to p(1) as n tends to infinity, and
P(V < n/2|X=0) converges to p(0) as n tends to infinity.
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Part (i) states that, given the state of the world, the probability that
the majority verdict matches the ideal interpretation of the evidence
converges to 1 as n tends to infinity. But the ideal interpretation
may not be correct. Part (ii) states that the probability that the
majority verdict matches the true state of the world (given that
state) converges to the probability that the ideal interpretation of
the evidence is correct, i.e., that the evidence is not misleading.
Reformulating part (i), the probability of no simple majority for the
ideal interpretation of the evidence converges to 0. Reformulating
part (ii), the probability of no simple majority matching the true
state of the world converges to the probability that the evidence is
misleading, i.e., that the ideal interpretation of the evidence is
incorrect.

This theorem allows the interpretation that, by increasing the
jury size, it is possible to approximate the ideal interpretation of the
evidence, no more and no less. The problem of insufficient or
misleading evidence cannot be avoided by adding jurors. Irrespec-
tive of the jury size, the probability of a correct majority decision at
most approaches the probability that the evidence ‘tells the truth’,
i.e., that its ideal interpretation matches the state of the world.
Since there is typically a non-zero probability of misleading evi-
dence – i.e., a non-zero probability that the evidence, even when
ideally interpreted, points to ‘guilt’ when the defendant is innocent
or vice-versa – the probability that the jury will fail to track the
truth converges to a non-zero value as the jury size increases,
regardless of how large the competence parameters pe are in con-
dition (C|E).13

5. REASONABLE DOUBT

We now discuss the implications of our findings for the Bayesian
question of when a jury is capable of establishing guilt of a defendant
‘beyond any reasonable doubt’. So far we have been concerned with
the ‘classical’ probability of a particular voting outcome – for
instance, a majority for ‘guilty’ – conditional on the state of the
world. But in a jury context, we may also be interested in the
Bayesian probability of a particular state of the world – for instance,
the guilt of the defendant – conditional on a particular voting out-
come. Suppose we initially attach a certain prior probability to the
hypothesis that the defendant is guilty. We may then ask: given that
the jury has produced a particular majority for guilty, what is the
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posterior probability that the defendant is truly guilty? Reformulated
in degree of belief terms, the question is this: what degree of belief can
we attach to the hypothesis that the defendant is truly guilty, given
that we have observed a particular voting outcome in the jury, such as
an overwhelming majority for ‘guilty’?

Formally, the probability we are concerned with here is not
PðV ¼ vjX ¼ xÞ; but PðX ¼ xjV ¼ vÞ: Note the reversed order of
conditionalization. Let r ¼ P(X ¼ 1) denote the prior probability
that the defendant is guilty. We assume that there is prior uncertainty
about the guilt of the defendant, i.e., 0 < r < 1. Below we also assume
non-trivial probabilities of misleading evidence, i.e., 0 < pð1Þ; pð0Þ < 1.
In the classical model – assuming (I|X) and (C|X) – we have:

PðX ¼ 1jV ¼ vÞ ¼ rp2v�n

rp2v�n þ ð1� rÞð1� pÞ2v�n
(List 2004a):

We can easily see that, for a sufficiently large jury and a suffi-
ciently large majority, P(X ¼ 1|V ¼ v) can take a value arbitrarily
close to 1. In the limiting case where all jurors vote unanimously,
the posterior belief converges to the alternative (‘guilty’ or ‘inno-
cent’) supported by all jurors: P(X ¼ 1|V ¼ n) converges to 1, and
P(X ¼ 1|V ¼ 0) converges to 0, as n tends to infinity. It is impor-
tant to keep this implication of the classical model in mind when we
see the results for our modified model. To simplify the exposition,
we only consider the case of homogeneous competence here, i.e.,
(HC|E). The general case is technically more involved, but essen-
tially analogous.

THEOREM 5. If we have (S), (I|E) and (HC|E), then the probability
that the defendant is guilty given that precisely v out of n jurors have
voted for ‘guilty’ is

PðX ¼ 1jV ¼ vÞ ¼ 1

1þ 1�r
r �

ð1�pð0ÞÞðp=ð1�pÞÞ2v�nþpð0Þ
pð1Þðp=ð1�pÞÞ2v�nþð1�pð1ÞÞ

:

How confident in the correctness of a jury verdict can we ever be,
given these Bayesian considerations? More formally, how close to 1
or 0 can the posterior probability P(X ¼ 1|V ¼ v) ever get? Possibly
never very close, unlike in the classical model. Consider the best-case
scenario, where all jurors vote unanimously, either for ‘guilty’ or for
‘innocent’. These two cases correspond to V ¼ n and V ¼ 0. Using
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theorem 5 we can determine the posterior probability of guilt given
V ¼ n and the posterior probability of guilt given V ¼ 0.

COROLLARY 2. Suppose we have (S), (I|E) and (HC|E). Then:

(a) The probability that the defendant is guilty given a unanimous
‘guilty’ vote is

PðX ¼ 1jV ¼ nÞ ¼ 1

1þ 1�r
r �

ð1�pð0ÞÞðp=ð1�pÞÞnþpð0Þ
pð1Þðp=ð1�pÞÞnþð1�pð1ÞÞ

;

which converges to

1

1þ ðð1� rÞ=rÞðð1� pð0ÞÞ=pð1ÞÞ ¼ PðX ¼ 1jfðEÞ ¼ 1Þ ð< 1Þ

as n tends to infinity.
(b) The probability that the defendant is guilty given a unanimous ‘not

guilty’ vote is

PðX ¼ 1jV ¼ 0Þ ¼ 1

1þ 1�r
r �

ð1�pð0ÞÞðð1�pÞ=pÞnþpð0Þ
pð1Þðð1�pÞ=pÞnþð1�pð1ÞÞ

;

which converges to
1

1þ ðð1� rÞ=rÞðpð0Þ=ð1� pð1ÞÞÞ ¼ PðX ¼ 1jfðEÞ ¼ 0Þ ð> 0Þ

as n tends to infinity.

By contrast, in the classical model P(X ¼ 1|V ¼ n) converges to 1
and P(X ¼ 1|V ¼ 0) converges to 0, as n tends to infinity.

So, as n increases, [the probability that the defendant is guilty
given a unanimous vote for ‘guilty’] converges to [the probability that
the defendant is guilty given that the evidence points towards guilt].
Likewise, as n increases, [the probability that the defendant is guilty
given a unanimous vote for ‘not guilty’] converges to [the probability
that the defendant is guilty given that the evidence points towards
innocence].

Corollary 2 describes the bounds on the posterior probability that
X ¼ 1 or X ¼ 0, given the verdict of a large jury, by assuming the
unrealistic case that V/n tends to 1 or 0. But this case occurs with
probability 0 (unless p ¼ 1), since with probability 1 the proportion
of ‘guilty’-votes V/n converges to either p or 1)p (by the law of large
numbers). The former is the case if f(E) ¼ 1, the latter if f(E) ¼ 0.
However, even in these two realistic cases – V/n converging to p and
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V/n converging to 1)p – the posterior probability of guilt, given the
jury verdict, converges to exactly the same limits as in corollary 2.

COROLLARY 3. Suppose we have (S), (I|E) and (HC|E). Let
v1; v2; . . . ; vn 2 f0; 1g and put qn :¼ ðv1 þ v2 þ � � � þ vnÞ=n for all n.
Then the probability that the defendant is guilty given that a proportion
of qn of the jurors have voted for ‘guilty’ – where qn converges to either p
or 1)p as n tends to infinity – is as follows:

(a) If qn converges to p, then PðX ¼ 1jV=n ¼ qnÞ converges to
PðX ¼ 1jfðEÞ ¼ 1Þ (<1), as n tends to infinity (as in case (a) of
corollary 2).

(b) If qn converges to 1)p, then PðX ¼ 1jV=n ¼ qnÞ converges to
PðX ¼ 1j fðEÞ ¼ 0Þ ð> 0Þ, as n tends to infinity (as in case (b) of
corollary 2).

The convergence results of corollaries 1 and 2 are identical, showing
that in sufficiently large juries it is irrelevant whether the jury
supports an alternative unanimously or by a proportion close to p
(the exact meaning of ‘close’ depends on n and on the distance of p
to 1/2).

Now we are in a position to state the key implication of these
results: it may be impossible, even in an arbitrarily large jury and
even when there is unanimity for ‘guilty’, to establish guilt of a
defendant ‘beyond any reasonable doubt’. More precisely, suppose
that the jury’s overall decision (or the judge’s decision based on the
jury vote) is required to satisfy the following decision principle:

Convict the defendant if and only if the posterior probability of guilt, given the jury

vote, exceeds c, where c is some fixed parameter close to 1 (e.g., c ¼ 0.95).

The parameter c captures the threshold of reasonable doubt: only a
posterior probability of guilt above c is interpreted as representing a
degree of belief beyond reasonable doubt. By corollary 2, we can
immediately see that, if PðX ¼ 1jfðEÞ ¼ 1Þ � c, then conviction will
never be possible according to the decision principle just introduced.
No matter how large the jury is and no matter how large the majority
for ‘guilty’ is, the jury vote will never justify a degree of belief greater
than c that the defendant is guilty, and hence will never establish guilt
of the defendant beyond any reasonable doubt. So, if PðX ¼
1jfðEÞ ¼ 1Þ � c, even a unanimous vote for ‘guilty’ in a ten-million-
member jury will be insufficient for conviction – in sharp contrast to
what Condorcet’s classical model implies.
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6. SUMMARY

Using Bayesian networks, we have developed a new model of jury
decisions. The model can represent a jury, committee or expert panel
deciding on whether or not some factual proposition is true, and
where the decision is made on the basis of shared evidence. We have
suggested that our model is more realistic than the classical Condorcet
jury model. First, it captures the empirical fact that in real-world jury,
committee or expert panel decisions the state of the world is typically
not the latest common cause of the jurors’ votes, but there exists some
intermediate common cause: the body of evidence, as described here.
Secondly, in legal contexts, the model captures the requirement that
jurors must not use any evidence other than that presented in the
courtroom. This means that, even if, hypothetically, the jurors could
each obtain an independent signal about the state of the world
(without any intermediate common cause between different such sig-
nals), they would be required by law not to use such information. Our
model makes two key assumptions:

� The Parental Markov Condition, applied to the Bayesian tree in
Figure 3, which has two implications:
s Common signal: the jurors’ votes depend on the true state of the

world only through the available body of evidence.
s Independence given the evidence: the votes of different jurors are

independent from each other given the body evidence.
� Competence given the evidence: for each possible body of evidence,
each juror has a probability greater than 1/2 of matching the ideal
interpretation of that evidence. In the homogeneous case, juror
competence is the same for all possible bodies of evidence; in the
heterogeneous case, it may depend on the evidence.

Then:

� The probability of a correct majority decision (given the state of the
world) is typically less than, and at most equal to, the corre-
sponding probability in the classical Condorcet jury model.
� As the jury size increases, the probability of a correct majority
decision (given the state of the world) converges to the probability
that the evidence is not misleading. Unless the evidence is never
misleading, the limiting probability of a correct majority decision is
strictly less than one.
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� Depending on the required threshold of ‘no reasonable doubt’, it
may be impossible, even in an arbitrarily large jury and even when
the jury unanimously votes for ‘guilty’, to establish guilt of a
defendant ‘beyond any reasonable doubt’.

Our model reduces to the classical Condorcet jury model if and only if
we assume both that the evidence is never misleading and that juror
competence is the same for all possible bodies of evidence (homo-
geneous competence). If these assumptions are inadequate in real-
world jury, committee or expert panel decisions, then the classical
Condorcet jury model, as it stands, fails to apply to such decisions.
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APPENDIX: PROOFS

Proof of proposition 1.

(i) First assume (PM). Let e 2 E be any body of evidence. We show
that given E ¼ e the variables V1; . . . ;Vn; X (votes and state of the
world) are independent, which implies in particular that given E ¼ e
the votes V1; . . . ;Vn are independent (Independence Given the Evi-
dence (I|E)) and that given E ¼ e the vote vector (V1; . . . ;Vn) is
independent of X (which is equivalent to Common Signal (S)).
To show that givenE ¼ e the variablesV1; . . . ;Vn; X are independent,
let v1; . . . ; vn;x 2 f0; 1g be any possible realizations of these variables.
First,weapply (PM)onthefirst juror’svoteV1: sinceE is theonlyparent
ofV1andallofV2; . . . ;Vn; Xarenon-descendantsofV1,by (PM),given
E ¼ e,V1 is independent of the vector of variables (V2; . . . ;Vn; X), i.e.,
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ð1Þ PðV1 ¼ v1; . . . ;Vn ¼ vn;X ¼ xjE ¼ eÞ ¼ PðV1 ¼ v1jE ¼ eÞ
PðV2 ¼ v2; . . . ;Vn ¼ vn;X ¼ xjE ¼ eÞ:

Next, we apply (PM) on V2 to decompose the second term of the last
product: since E is the only parent of V2 and all of V3; . . . ;Vn; X are
non-descendants of V2, by (PM), given E ¼ e, V2 is independent of
the vector of variables (V3; . . . ;Vn; X), i.e.,

PðV2 ¼ v2; . . . ;Vn ¼ vn;X ¼ xjE ¼ eÞ ¼ PðV2 ¼ v1jE ¼ eÞ
� PðV3 ¼ v3; . . . ;Vn ¼ vn;X ¼ xjE ¼ eÞ:

Substituting this into (1), we obtain

PðV1 ¼ v1; . . . ;Vn ¼ vn;X¼ xjE¼ eÞ ¼ PðV1 ¼ v1jE¼ eÞ
�PðV2 ¼ v2jE¼ eÞPðV3 ¼ v3; . . . ;Vn ¼ vn;X¼ xjE¼ eÞ:

By continuing to decompose joint probabilities, one finally arrives at

PðV1¼ v1; . . . ;Vn¼ vn;X¼xjE¼ eÞ
¼PðV1¼ v1jE¼ eÞ� . . .�PðVn¼ vnjE¼ eÞPðX¼xjE¼ eÞ;

which establishes the independence of V1; . . . ;Vn; X.
(ii) Now assume (S) and (I|E). To show (PM) we have to go through
all nodes of the tree. What (PM) states for the top node X is vacu-
ously true since X has no non-descendants (except itself). Regarding
E, its only non-descendant (except itself) is its parent X, and of
course, given X, E is independent of X since X is deterministic. Fi-
nally, consider vote V1 (the proof for any other vote V2; . . . ;Vn; is
analogous). We have to show that V1 is independent of its vector of
non-descendants (V2; . . . ;Vn; X) given its parent E ¼ e. (We have
excluded E from the vector of non-descendants because E is deter-
ministic given E ¼ e.) Let v2; . . . ; vn; x 2 f0; 1g be any realizations of
V2; . . . ;Vn; X. By (S), given E ¼ e, (V2; . . . ;Vn) is independent of X,
and so

PðV2 ¼ v2; . . . ;Vn ¼ vn;X ¼ xjE ¼ eÞ
¼ PðV2 ¼ v2; . . . ;Vn ¼ vnjE ¼ eÞPðX ¼ xjE ¼ eÞ:

Now we can apply (I|E) to decompose the first factor in the last
product, which yields

PðV2¼ v2; . . . ;Vn¼ vn;X¼xjE¼ eÞ
¼PðV2¼ v2jE¼ eÞ� . . .�PðVn¼ vnjE¼ eÞPðX¼xjE¼ eÞ:

This shows the independence of (V2; . . . ;Vn; X) given E ¼ e. (
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An alternative proof of proposition 1 might be given using the cri-
terion of d-separation or the theory of semi-graphoids.

Proof of theorem 2.

By (HC|E), each body of evidence e 2 E is equally easy to interpret
ideally, and so we assume for simplicity that E ¼ {0, 1}, where
e ¼ 0 is the evidence ideally interpreted as suggesting innocence
f(e) ¼ 0, and e ¼ 1 is the evidence ideally interpreted as suggesting
guilt f(e) ¼ 1. By (HC|E) and (I|E), if E ¼ 1 then the votes
V1;V2; . . . ;Vn are independently Bernoulli distributed, with a
probability p of Vi ¼ 1 and a probability 1)p of Vi ¼ 0 for each i.
If E ¼ 0 then the votes V1;V2; . . . ;Vn are also independently
Bernoulli distributed, with a probability p of Vi ¼ 0 and a prob-
ability 1)p of Vi ¼ 1 for each i. Hence, given E ¼ 1, the jury’s
vote V ¼

P
i¼1;...;n Vi has a Binomial distribution with parameters n

and p. And given E ¼ 0, V has a Binomial distribution with
parameters n and 1)p:

ð2Þ PðV ¼ vjE� 1Þ ¼ n
v

� �
pvð1� pÞn�v;

PðV ¼ vjE ¼ 0Þ ¼ n
v

� �
pn�vð1� pÞv:

Now, the probability of obtaining precisely v out of n votes for
‘guilty’ given the state of the world x is:

PðV¼ vjX¼ xÞ ¼ PðV¼ vjE¼ 1 and X¼ xÞPðE¼ 1jX¼ xÞ
þPðV¼ vjE¼ 0 and X¼ xÞPðE¼ 0jX¼ xÞ:

By (S), conditionalizing on both E ¼ e and X ¼ x is equivalent to
conditionalizing only on E ¼ e, so that:

PðV ¼ vjX ¼ xÞ ¼ PðV ¼ vjE ¼ 1ÞPðE ¼ 1jX ¼ xÞ
þ PðV ¼ vjE ¼ 0ÞPðE ¼ 0jX ¼ xÞ:

Explicitly, taking the two cases x ¼ 0 and x ¼ 1,

PðV¼vjX¼1Þ¼PðV¼vjE¼1Þpð1ÞþPðV¼vjE¼0Þð1�pð1ÞÞ;
PðV¼vjX¼0Þ¼PðV¼vjE¼0Þpð0ÞþPðV¼vjE¼1Þð1�pð0Þ:

Recall that pð1Þ :¼ PðfðEÞ ¼ 1jX ¼ 1Þ and pð0Þ :¼ PðfðEÞ ¼ 0jX ¼ 0Þ;
and here fðEÞ ¼ E. Now theorem 2 in the case E ¼ f0; 1g follows
from (2). The general case follows from theorem 3 below. (
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Proof of theorem 3.

First, we use the law of iterated expectations to write

PðV ¼ vjX ¼ xÞ ¼ ExpðPðV ¼ vjEandX ¼ xÞjX ¼ xÞ:

By (S) we havePðV ¼ vjEandX ¼ xÞ ¼ PðV ¼ vjEÞ; so that we deduce
(3) PðV ¼ vjX ¼ xÞ ¼ ExpðPðV ¼ vjEÞjX ¼ xÞ:

By (C|E) and (I|E), conditional on E the votes V1;V2; . . . ;Vn

are independent and Bernoulli distributed with parameter pE if
f(E) ¼ 1 and 1)pE if f(E) ¼ 0. Hence the sum V has a binomial
distribution with first parameter n and second parameter pE if
f(E) ¼ 1 and 1)pE if f(E) ¼ 0:

PðV ¼ vjEÞ ¼

n
v

� �
pEvð1� pEÞn�v if fðEÞ ¼ 1

n
v

� �
pEn�vð1� pEÞv if fðEÞ ¼ 0:

8>><
>>:

In other words,

PðV ¼ vjEÞ ¼ n

v

� �
pEvð1� pEÞn�v1ffðEÞ¼1g

þ n

v

� �
pEn�vð1� pEÞv1ffðEÞ¼0g;

where 1ffðEÞ¼1g and 1ffðEÞ¼0g are characteristic functions (1A is the ran-
dom variable defined as 1 if the event A holds and as 0 if it does not).
So, by (3) and the linearity of the (conditional) expectation operator
Exp (.|X ¼ x),

PðV¼vjX¼xÞ¼PðfðEÞ¼1jX¼xÞ

� n

v

� �
ExpðpEvð1�pEÞn�vjfðEÞ¼1andX¼xÞ

þPðfðEÞ¼0jX¼xÞ

� n

v

� �
ExpðpEn�vð1�pEÞvjfðEÞ¼0andX¼xÞ:

(

Proof of corollary 1.

Suppose (HC|E) holds. Assume that v>n/2 (a majority for ‘guilty’).
Then
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pn�vð1� pÞv ¼ pvð1� pÞn�vðð1� pÞ=pÞ2v�n � pvð1� pÞn�v;

since 2v� n > 0 and p > 1=2. So, by the formula for PðV ¼ vjX ¼ 1Þ
in theorem 2, we deduce.

PðV ¼ vjX ¼ 1Þ � pð1Þ
n

v

� �
pvð1� pÞn�v

þ ð1� pð1ÞÞ
n

v

� �
pvð1� pÞn�v

¼
n

v

� �
pvð1� pÞn�v; as required: (

Proof of theorem 4.

(i) We conditionalize on E. By (C|E) and (I|E), W is the sum of n
independent Bernoulli variables with parameter pE. The weak law of
large numbers implies that the average W/n converges in probability
to pE. Since pE>1/2, it follows that

lim n!1PðW > n=2jEÞ ¼ 1:

Applying the (conditional) expectation operator on both sides (which
corresponds to averaging with respect to E), we obtain

Expðlim n!1PðW > n=2jEÞjX ¼ xÞÞ ¼ Expð1jX ¼ xÞ ¼ 1:

By the dominated convergence theorem, we can interchange the
expectation operator with the limit operator on the left hand side, so
that

lim n!1ExpðPðW > n=2jEÞjX ¼ xÞ ¼ 1:

By (S) we can replace PðW > n=2jEÞ by PðW > n=2jE and X ¼ xÞ:
This leads to

lim n!1ExpðPðW > n=2jE and X ¼ xÞjX ¼ xÞ ¼ 1;

and hence by the law of iterated expectations

lim n!1ðPðW > n=2jX ¼ xÞ ¼ 1:

(ii) Using the weak law of large numbers in a similar way as in (i), it is
possible to prove that the probability PðV > n=2jEÞ ¼ PðV=n
> 1=2jEÞ converges to 1 if f(E) ¼ 1 and to 0 if f(E) ¼ 0 (as n tends to
infinity). Hence
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(4) lim n!1PðV > n=2jEÞ ¼ 1ffðEÞ¼1g;

where 1ffðEÞ¼1g is the random variable defined as 1 if f(E) ¼ 1 and as 0
if f(E) ¼ 0.
By the law of iterated expectations,

PðV > n=2jX ¼ 1Þ ¼ ExpðPðV > n=2jE and X ¼ 1ÞjX ¼ 1Þ;

which by (S) simplifies to:

(5) PðV > n=2jX ¼ 1Þ ¼ ExpðPðV > n=2jEÞjX ¼ 1Þ:
Further, we have

PðfðEÞ ¼ 1jX ¼ 1Þ ¼ Expð1ffðEÞ¼1gjX ¼ 1Þ
¼ Expðlim n!1PðV > n=2jEÞjX ¼ 1Þ;

where the last step uses (4). We now interchange the expectation
operator with the limit (by the dominated convergence theorem) and
then use (5) to obtain

PðfðEÞ ¼ 1jX ¼ 1Þ ¼ lim n!1ExpðPðV > n=2jEÞjX ¼ 1Þ
¼ lim n!1PðV > n=2jX ¼ 1Þ:

As for the case X ¼ 0, it can be shown similarly that

PðfðEÞ ¼ 0jX ¼ 0Þ ¼ lim n!1PðV<n=2jX ¼ 0Þ: (

The complexity of this proof is due to the fact that the set of possible
evidences E is arbitrarily large (and endowed with some r-algebra).
For finite or countable E, (conditional) expectation operators could
be replaced by summations.

Proof of theorem 5.

By Bayes’s theorem, for any v,

PðX¼ 1jV¼ vÞ ¼ rPðV¼ vjX¼ 1Þ
rPðV¼ vjX¼ 1Þþ ð1� rÞPðV¼ vjX¼ 0Þ :

Dividing numerator and denominator by rPðV ¼ vjX ¼ 1Þ; we get

PðX¼1jV¼vÞ¼ 1

1þð1�rÞ=ðPðV¼vjX¼0ÞÞr =ðPðV¼vjX¼1ÞÞ
:
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We use theorem 2 for expressing PðV ¼ vjX ¼ 1Þ and PðV ¼vjX ¼ 0Þ;
and we then simplify:

PðV¼vjX¼0Þ
PðV¼vjX¼1Þ¼

ð1�pð0ÞÞ
n

v

� �
pvð1�pÞn�vþPð0Þ

n

v

� �
pn�vð1�pÞv

pð1Þ
n

v

� �
pvð1�pÞn�vþð1�pð1ÞÞ

n

v

� �
pn�vð1�pÞv

¼ð1�p
ð0ÞÞðp=ð1�pÞÞ2v�nþpð0Þ

pð1Þðp=ð1�pÞÞ2v�nþð1�pð1ÞÞ
: (

Proof of corollary 2.

To prove part (a), note that the convergence to

1

1þð1�rÞ =rð1� pð0ÞÞ=pð1Þ

is clear because ðp=ð1� pÞÞn !1; so that the ratio

ð1� pð0ÞÞðp=ð1� pÞÞn þ pð0Þ

pð1Þðp=ð1� pÞÞn þ ð1� pð1ÞÞ
is asympotically equivalent to

ð1� pð0ÞÞðp=ð1� pÞÞn þ 0

pð1Þðp=ð1� pÞÞn þ 0
¼ 1� pð0Þ

pð1Þ
:

The rest follows from

1

1þð1�rÞ=rð1�pð0ÞÞ=pð1Þ

¼ 1

1þ½PðX¼0Þ=PðX¼1Þ��PðfðEÞ¼1jX¼0Þ=PðfðEÞ¼1jX¼1Þ

¼ PðX¼1ÞPðfðEÞ¼1jX¼1Þ
PðX¼1ÞPðfðEÞ¼1jX¼1ÞþPðX¼0ÞPðfðEÞ¼1jX¼0Þ:

Part (b) has an analogous proof. (

Proof of corollary 3.

In the formula of theorem 5, we replace v by nqn. If qn ! pð> 1=2Þ;
then the term

½p=ð1� pÞ�2nqn�n ¼ ½p=ð1� pÞ�2nðqn�1=2Þ

tends to 1. So the ratio
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ð1� pð0ÞÞðp=ð1� pÞÞ2nqn�n þ pð0Þ

pð1Þðp=ð1� pÞÞ2nqn�n þ ð1� pð1ÞÞ
is asymptotically equivalent to

ð1� pð0ÞÞðp=ð1� pÞÞ2nqn�n þ 0

pð1Þðp=ð1� pÞÞ2nqn�nn þ 0
¼ 1� pð0Þ

pð1Þ

which proves (a). The proof of (b) is analogous. (

NOTES

1 All conditions are formulated for a given group size n rather than beginning with

‘For all n’. However, in many of our results, the group size is not fixed and tends to

infinity. In these results, we implicitly assume that all conditions begin with ‘For all n’

(and that the competence parameter in the competence conditions is the same for all

n). Compare List (2004b).
2 We hereafter mean ‘probabilistically caused’ when we use the expression ‘caused’.

Probabilistic causation means that the cause affects the probabilities of conse-

quences, whereas deterministic causation means that the cause determines the

consequence with certainty. Probabilistic causation can arise for at least two rea-

sons. Metaphysical reasons: the process in question may be genuinely indeter-

ministic; causes determine consequences only with probabilities strictly between 0

and 1, but not with certainty. Epistemic reasons: the process in question may or

may not be deterministic at the most fundamental level, but due to its complexity

we may not be able to include, or fully describe, all relevant causal factors in the

network representation; thus probabilities come into play. We here remain neutral

on which of these two reasons apply, though it is obvious that any theoretical

representation of jury decisions will be underdescribed and thus epistemically

limited. (Our definition of probabilistic causation allows the special case where the

net causal effect on probabilities is zero, because positive and negative causes may

cancel each other out.)
3Several generalizations of the classical Condorcet jury model have been discussed in

the literature. We have already referred to existing discussions of dependencies be-

tween different jurors’ votes. Cases where different jurors have different competence

levels are discussed, for instance, in Grofman, Owen and Feld (1983), Boland (1989)

and Dietrich (2003). Cases where jurors vote strategically rather than sincerely are

discussed, for instance, in Austen-Smith and Banks (1996). Cases where choices are

not binary are discussed, for instance, in List and Goodin (2001). Cases where juror

competence depends on the jury size are discussed, for instance, in List (2004b).
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4Sometimes Bayesian networks are assumed to contain more information: each

node in the graph is endowed with a probability distribution of the variable at

this node conditional on the node’s parents (or unconditionally if there are no

parents).
5To specify a joint probability distribution of the variables satisfying the Parental

Markov Condition, it is sufficient to specify a distribution of each variable condi-

tional on its parents (an unconditional distribution if there are no parents). The

product of all these conditional probability functions then yields a joint distribution

of all variables that satisfies the Parental Markov Condition.
6So all jurors base their votes solely on the same value e of E. Differences between

jurors’ votes are not the result of the jurors’ independent – and thus potentially

different – access to the state of the world (as in the classical model), but the result of

different interpretations of the same evidence e. One juror might interpret the

defendant’s smile as a sign of innocence, whereas another might give the opposite

interpretation.
7An equivalent statement of (S) is the following: given E, the vector of votes

(V1;V2; . . . ;Vn) is independent of the state of the world X.
8One can imagine cases where (part of) the evidence E is not caused by the state of

the world X. For instance, if X is the fact of whether or not the defendant has

committed a given crime, then the information that the defendant bought a gun in

a nearby shop two days before the crime may be evidence for guilt. But this

evidence cannot be caused by the crime since the gun purchase happened before the

crime. Rather, the causal link between the gun purchase and the crime goes in the

other direction. To capture such cases, one might want to replace our causal

relation X! E by some other causal relation between X and E, e.g., by X E, or

by a bidirectional causal relation X$ E, or by a common parent of X and E. The

theorems and corollaries of this paper still apply to such modified Bayesian trees

(provided that the state X remains related to the votes only through the evidence E).

The reason is that the Parental Markov Condition (PM) still implies Common

Signal (S) and Independence Given the Evidence (I|E), so that (S) and (I|E) remain

justified assumptions.
9This model captures not only the empirical fact that in real world jury decisions the

available evidence is usually finite and limited, but also the legal norm, mentioned in

the introduction, that jurors are not allowed to obtain or use any evidence other than

that presented in the courtroom, or to discuss the case with any persons other than

the other jurors.
10Different interpretations of the ideal vote f(e) may be given. One is that the ideal

vote is 1 if and only if the objective probability of guilt given the evidence e exceeds

some threshold. Here the ideal interpreter is assumed to know the objective

likelihoods (of the evidence given guilt and given innocence) and the objective prior

probability of guilt. Another interpretation, which does not require an objective
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prior of guilt but a shared prior of guilt, is to assume that the ideal interpreter uses

the group’s shared (perhaps not objective) prior probability of guilt to calculate the

posterior probability of guilt given the evidence. We can give a Bayesian account of

both interpretations. Assume that the set E of all possible bodies of evidence is

countable. Suppose that, by knowing the evidence-generating stochastic process,

the ideal observer knows the probabilities P(E=e|X=1) and P(E=e|X=0). Sup-

pose, further, that the ideal observer assigns the (objective or shared) prior prob-

ability r := P(X=1) to the proposition that the defendant is guilty. Then, using

Bayes’s theorem, the ideal observer can calculate the posterior probability that the

defendant is guilty, given the evidence e, i.e., PðX ¼ 1jE ¼ eÞ ¼ rPðE ¼ ejX ¼ 1Þ=
ðrPðE ¼ ej X ¼ 1Þ þ ð1� rÞPðE ¼ ejX ¼ 0ÞÞ. Furthermore, the group (or the ideal

observer) might set a (normative) threshold for when to vote for ‘guilty’. Now the

ideal vote is a ‘guilty’ vote if PðX ¼ 1jE ¼ eÞ > 1� e (for a suitable e > 0) and a

‘not guilty’ vote otherwise. The prior probability r represents the degree of belief

the ideal observer assigns to the guilt of the defendant before having seen any

evidence. The value of e represents how demanding the threshold for voting for

‘guilty’ is.
11We also allow that not all jurors have observed the entire evidence e. For instance,

some jurors might have missed the smile of the defendant. What matters is not that

all jurors base their vote on the full evidence e, but that they use information con-

tained in e. A juror’s information is thus limited by e, which represents the maximally

available information for any jury size.
12This assumption is a technical simplification, but involves no real loss of gen-

erality. As in the classical Condorcet jury model (e.g., Boland 1989), our model can

be generalized by allowing differently competent jurors, so that the competence

PðVi ¼ fðeÞjE ¼ e) depends also on i, denoted pe,i. Our asymptotic results then

remain true if we replace (C|E) (respectively (HC|E)) by the weaker competence

assumption that the limiting average competence, limn!1
P

all i pe;i=n, exceeds 1/2.

In corollary 3 one has to interpret p as the limiting average competence across

jurors; since corollary 3 requires (HC|E), this limiting average competence does not

depend on e here.
13It is possible to prove a slightly stronger result than theorem 4. Given the state of

the world x, the ratio V/n converges with probability 1 to the random variable

defined by pE ð> 1=2Þ if fðEÞ ¼ 1 and 1� pEð< 1=2Þ if fðEÞ ¼ 0 ð< 1=2Þ. Among

these two possible limits the one that corresponds to a majority for the correct

alternative happens with probability pðxÞ ¼ PðfðEÞ ¼ xjX ¼ xÞ. Hence, with prob-

ability 1, there is convergence to a stable majority as the jury size increases, where

this majority supports the correct alternative with the probability that the evidence

‘tells the truth’.
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