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Abstract
Probability functions appear in constraints of many optimization problems in practice and
have become quite popular. Understanding their first-order properties has proven useful,
not only theoretically but also in implementable algorithms, giving rise to competitive al-
gorithms in several situations. Probability functions are built up from a random vector be-
longing to some parameter-dependent subset of the range of that given random vector. In
this paper, we investigate first order information of probability functions specified through
a convex-valued set-valued application. We provide conditions under which the resulting
probability function is indeed locally Lipschitzian. We also provide subgradient formulæ.
The resulting formulæ are made concrete in a classic optimization setting and put to work
in an illustrative example coming from an energy application.

Keywords Probability functions · Spherical radial-like decomposition · Set-valued
mapping · Lipschitz-like continuity · Generalized differentiation

Mathematics Subject Classification 90C15

1 Introduction

In many problems from practice, one faces the situation wherein a decision x ∈ R
n has

to be taken, ensuring some best economic outcome, all while ensuring the satisfaction of
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several constraints. The latter constraints usually represent to some degree a set of physical
restrictions or rules of use. It is not infrequent that the outcome of the “constraints” is equally
impacted by the random realization of a (random) vector. Thus, it becomes necessary to give
an appropriate meaning to what it means for x to satisfy the “constraints.” An intuitive and
elegant way of doing so is by making use of so-called chance or probabilistic/probability
constraints. The idea is clear: feasibility of x means that with high enough probability the
given inequality constraints hold true. This can thus be formalized as follows. We are given
a mapping g :Rn ×R

m → R
k , a random vector ξ ∈R

m, typically having a density w.r.t. the
Lebesgue measure and we thus define the probability function ϕ :Rn → [0,1] by setting:

ϕ(x) := P (g(x, ξ) ≤ 0) .

The user (or decision maker) then stipulates a safety-level p ∈ (0,1) and feasibility is under-
stood as x satisfying ϕ(x) ≥ p on top of any other “simple” or “deterministic” constraints.
As we have just specified, the mapping ϕ itself is clearly a non-linear map and can itself
not be concave, unless it is constant. This does not mean however that the probabilistic con-
straint itself can not define a convex feasible set - that is indeed very well possible! The
interrogation of possible analytic properties of ϕ, its upper-level sets {x ∈ R

n : ϕ(x) ≥ p},
or optimization problems having ϕ as a constituent is natural. We refer the reader to [1] for
a recent overview of the many possibilities. For instance, statements regarding convexity of
upper-level sets of probability functions are available. Results range from Prékopa’s classic
“log-concavity” Theorem, e.g., [2] asserting convexity of all upper-level sets to recent inves-
tigations regarding “eventual convexity”, e.g., [3, 4] - ensuring convexity of the upper-level
sets beyond a given computable level.

Be this as it may, significant effort has also been put into understanding “first-order”
properties of ϕ. This is quite natural if one thinks of setting up computational approaches
for actually solving the underlying optimization problems. On this front too, classic results
are available regarding the differentiability of the probability function ϕ, e.g., [5]. The latter
results are quite general - and somewhat abstract - in nature. To the best of our knowledge,
we are unaware of a concrete implementation of any “gradient formulæ” from that string
of research. Motivated by being able to efficiently compute or estimate a “gradient” of the
probability function, a different approach has turned out to be quite fruitful. Originally, by
assuming ξ to be of a specific parametric type and assuming g to have additional structure, in
addition to expected properties such as continuous differentiability, progress in this direction
has been made, e.g., [6–8]. It was also found that by using tools from nonsmooth analysis,
more could be stated, and a great many assumptions relaxed. We can briefly cite, [9–17] for
some contributions to this string of research. The latter results leverage, in part, on recent
investigations concerning Leibniz-like rules for nonsmooth analysis, e.g., [18, 19].

This, of course, interrogates on the reason for these extensions and in particular how they
relate to practice. In fact, it is inspiration from practice that drives the development. This
will also be true of the current work. In fact, we will be interested in a situation wherein
for a fixed x, the mapping g itself is not convex in the second argument, but does define a
convex set. This is a relevant case if for instance some components of the mapping g are
specified through fractions - with convex numerators and concave denominators, whereas
other components may specify a convex inequality simply. The application from energy that
we will consider falls in this class. Indeed in the application we consider the link between
wind-speed and wind-generation, which can be expressed as a quasi-convex function - a
fraction. The probability function ensures that sufficient energy is generated to meet the
load. It turns out that a fruitful way of looking at the properties of the resulting probabil-
ity functions takes abstraction from the idea of an underlying system of inequalities and
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directly considers a set-valued application. Formally, the main object studied in this work
corresponds to the following probability function

ϕ(x) := P(ω ∈ � : ξ(ω) ∈ Si (x) for all i = 1, . . . , s), (1)

where ξ : � → R
m is a random vector from a probability space (�,A,P) and Si : X ⇒R

m

with i = 1, . . . , s is a family of set-valued mappings defined in some separable reflexive Ba-
nach space X . The abstract set-valued formulation (1) of a probability function will allow us
to understand the variational properties of the function ϕ (Lipschitz continuity and subdiffer-
entials) in terms of the variational properties of the set-valued mappings Si (Lipschitz-like
continuity and coderivatives). Here, it is important to note that this approach takes advantage
of the fact that the Lipschitz-like continuity and coderivatives are proper to the set Si and do
not depend on some specific representation given by sublevel sets g(x, z) ≤ 0, as in classical
studies. Consequently the formulæ derived here provide a more general take and allow us to
consider situations not covered previously.

This paper is organised as follows. Section 2 introduces the setting and notation, and re-
calls some important notions used throughout this paper. Section 3 formulates and examines
an inner enlargement of the probability function (1). After establishing some preliminary
results, a subdifferential formula and the Lipschitz continuity of the probability function (1)
are provided in Sect. 4. Finally, Sect. 5 provides the description of a case from energy where
our results are illustrated in a computational experiment.

2 Notation, Background and Blanket Setting

2.1 Basic Notation

In the following, (X ,‖ · ‖) will be a separable reflexive Banach space, X ∗ its topological
dual and duality product 〈x∗, x〉 = x∗(x) for x ∈ X , x∗ ∈ X ∗. For a point x ∈ X and r ≥ 0
the closed ball of radius r and centered at x is denoted by Br (x). Similarly for x∗ ∈ X ∗,
Br (x

∗) denotes the closed ball in the dual space. The unit balls in X and X ∗ are denoted
by B and B

∗, respectively. The norm on X ∗ is denoted by ‖ · ‖∗ and let us denote by clw
∗
C

the closure of a subset C ⊂ X ∗ with respect to w∗, the weak∗-topology on X ∗. We adopt
the following notation: → (respectively ⇀) denotes the convergence with respect to the
norm-topology (respectively the weak∗-topology). Furthermore, for a function f and subset

C ⊆ X we write xk

f−→ x (respectively xk

C−→ x) to mean that xk → x with f (xk) → f (x)

(respectively xk → x with xk ∈ C).
We also use ‖ · ‖ to denote the Euclidean norm of the Euclidean space R

m and for a
given nonempty set C ⊆ R

m we let bdC and intC denote the boundary and interior of C,
respectively. The set of points in C at minimum distance from z ∈ R

m is the projection
PC(z) and that minimum distance is defined by d(z,C) := inf{‖z − w‖ : w ∈ C}. We recall
that when a nonempty set C ⊆ R

m is furthermore closed and convex, PC(z) is the unique
element in C such that d(z,C) = ‖z − PC(z)‖.

2.2 Tools from Variational Analysis and Generalized Differentiation

For a given closed subset C ⊆ X , the regular (Fréchet) and the basic (limiting or Mor-
dukhovich) normal cone to C at x are denoted and defined respectively by

N̂C(x) :=
⎧
⎨

⎩
x∗ ∈ X ∗ | lim sup

x′ C−→x

〈x∗, x ′ − x〉
‖x ′ − x‖ ≤ 0

⎫
⎬

⎭
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and

NC(x) :=
{
x∗ ∈ X ∗ | ∃xk

C−→ x, ∃x∗
k ⇀ x∗ : x∗

k ∈ N̂C(xk)
}

.

The (effective) domain and epigraph of a function f : X →R∪ {+∞} are the sets

dom(f ) := {x ∈ X : f (x) < +∞} and epi(f ) := {(x,α) ∈ X ×R : f (x) ≤ α} ,

respectively. For a function f with closed epigraph (i.e., f is lower semicontinuous) its
regular (Fréchet) and basic (limiting or Mordukhovich) subdifferentials at x ∈ X may be
defined through the corresponding normal cones at its epigraph (see, e.g., [20–23]), or more
explicitly, they can be represented as

∂̂f (x) =
{

x∗ ∈ X ∗ | lim inf
x′→x

f (x ′) − f (x) − 〈x∗, x ′ − x〉
‖x ′ − x‖ ≥ 0

}

and

∂f (x) :=
{
x∗ ∈ X ∗ | ∃xk

f−→ x, ∃x∗
k ⇀ x∗ : x∗

k ∈ ∂̂f (xk)
}

,

respectively.
Recall that a set-valued mapping S : X ⇒R

m is a mapping that attributes to each x ∈ X
a subset S(x) ⊂ R

m and is uniquely defined by its graph

gphS := {(x, z) ∈ X ×R
m : z ∈ S(x)}.

For a set-valued mapping S : X ⇒ R
m with closed graph we define its coderivative at

(x, z) ∈ gphS as the set-valued mapping D∗S(x, z) :Rm ⇒ X ∗ such that

D∗S(x, z)(z∗) := {
x∗ ∈ X ∗ | (x∗,−z∗) ∈ NgphS(x, z)

}
.

Let S : X ⇒ R
m be a set-valued mapping and (x, z) ∈ gphS . We say that S is locally

Lipschitz-like (has the Aubin property) around (x, z) if there exist κ > 0 and δ > 0 such that

d(z′,S(x ′)) ≤ κ‖x ′ − x ′′‖, ∀x ′, x ′′ ∈ Bδ(x) and z′ ∈ S(x ′′) ∩Bδ(z).

Sufficient conditions for the locally Lipschitz-like property of a set-valued mapping S
can be found in [20, Theorem 4.10]. In particular, [20, Sect. 4.3.1] addresses the application
of these conditions within the framework of a parametric constrained system. For instance
it is known that for differentiable constraint systems, the Aubin property is equivalent to the
Mangasarian-Fromowitz constraint qualification holding.

2.3 Assumptions on the Underlying Set-Valued Mappings and Consequences
Thereof

In this section we will gather, under the, to be stated blanket assumptions, a series of conse-
quences used throughout the manuscript. We will notably study the distance function to our
set-valued applications Si as well as some regularity of the orthogonal projection onto those
sets. These results will prove very useful for the later results.

Throughout the manuscript we will assume that given a point of interest x̄ the finite
family of set-valued mappings (Si )

s
i=1, which define the probability function (1), satisfies

following basic assumptions:
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Assumptions 1 Let x̄ ∈ X be given. There exists a neighborhood U of x̄ such that for all
i = 1, . . . , s:

⎧
⎨

⎩

a) 0 ∈ Si (x) for all x ∈ U,

b) Si is locally Lipschitz-like around all (x, z) ∈ gphSi with x ∈ U,

c) Si has closed graph and convex values.
(H)

We can readily observe that when z̄ ∈ Si (x) for all x ∈ U and all i = 1, . . . , s and Si

satisfies only conditions b) and c) of (H), that we may consider the set-valued mapping
S̃i (x) = Si (x) − z̄ which will thus satisfy (H). Condition a) can thus be seen to be a rela-
tively mild condition. Moreover if ξ is elliptically symmetric, then z̄ can be taken to be the
expectation of ξ at any point having ϕ(x) > 1

2 (see, e.g., [8, Proposition 3.11].
The next lemma is a technical result which establishes an upper-estimation of the subdif-

ferential of the function (x, z) �→ 1
2 d2(z,Si (x)) in terms of the coderivative of the mapping

Si .

Lemma 1 Let Si : X ⇒ R
m be a set-valued mapping satisfying (H) at x̄. Then, the function

u : X ×R
m → R+ given by u(x, z) = 1

2 d2(z,Si (x)) is locally Lipschitz around any (x, z) ∈
U ×R

m. Moreover, for all (x, z) ∈ U ×R
m, the following subdifferential estimate is valid:

∂u(x, z) ⊆ D∗S(x,PSi (x)(z))(PSi (x)(z) − z) × {z − PSi (x)(z)}. (2)

Proof First, let us check the local Lipschitz continuity of u around (x, z) ∈ U × R
m. In-

deed, on the one hand if (x, z) ∈ gphSi then by Assumption (H) we have that Si is lo-
cally Lipschitz-like around (x, z), hence by [20, Theorem 1.41], the distance function
(x, z) �→ d(z,Si (x)) is locally Lipschitz. The mapping u is thus also locally Lipschitz
around (x, z) as the composition with a continuously differentiable map.

On the other hand if (x, z) /∈ gphSi , we can apply [24, Corollary 5.5] to conclude that u

is locally Lipschitz around (x, z).
Now, let us verify (2). The function u can be rewritten as a marginal function in the

following way:

u(x, z) = inf{ψ(x, z, y) : y ∈ G(x, z)},

where ψ(x, z, y) := 1
2‖z − y‖2, G(x, z) := Si (x). Notice that the mapping M(x, z) := {y ∈

G(x, z) : ψ(x, z, y) = u(x, z)} is single-valued and equal to {PSi (x)(z)}. Now, since Si sat-
isfies (H) at x and ψ is continuously differentiable, we may apply [20, Theorem 3.38 i)] to
obtain

∂u(x, z) ⊆
⋃

(x∗,z∗,y∗)∈∂ψ(x,z,PSi (x)(z))

(x∗, z∗) + D∗G(x, z,PSi (x)(z))(y
∗).

Finally, the definition of G implies that D∗G(x, z,PSi (x)(z))(y
∗) = D∗Si (x,PSi (x)(z))(y

∗)×
{0}. This combined with the fact that ∂ψ(x, z,PSi (x)(z)) = (0, z − PSi (x)(z),PSi (x)(z) − z)

allow us to rewrite the above inclusion as exhibited in (2). �

The following result can be understood as an interior continuity lemma of the set-valued
mappings (Si )

s
i=1 under Assumption (H).
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Lemma 2 Let Si : X ⇒ R
m be a set valued-mapping satisfying (H) at x̄. Then for every

x ∈ U and z ∈ int(Si (x)) there exists γ > 0 such that

Bγ (z) ⊆ Si (x
′), for all x ′ ∈ Bγ (x).

Proof Fix i ∈ {1, . . . , s}, and let x ∈ U and z ∈ int(Si (x)). By the local Lipschitz-like prop-
erty of Si around (x, z) there exist ε > 0 and L > 0 such that

Si (x) ∩Bε(z) ⊆ Si (x
′) + L‖x ′ − x‖B, for all x ′ ∈ Bε(x).

Now, by considering ε > 0 small enough such that Bε(z) ⊂ Si (x) we may rewrite the above
inclusion as

Bε(z) ⊆ Si (x
′) + L‖x ′ − x‖B, for all x ′ ∈ Bε(x).

Hence, taking η ∈ (0, ε) such that Lη < ε
2 we have that

Bε(z) ⊆ Si (x
′) +B ε

2
(0), for all x ′ ∈ Bη(x). (3)

Let us fix x ′ ∈ Bη(x). Applying the support function to both sides of (3) and since Bε(z) =
B ε

2
(z) +B ε

2
(0) we have that for all h ∈ R

m

σB ε
2

(z)(h) + σB ε
2

(0)(h) = σBε(z)(h) ≤ σSi (x
′)+B ε

2
(0)(h),

which therefore implies that

σB ε
2

(z)(h) ≤ σSi (x
′)(h) for all h ∈R

m.

Due to [25, Theorem 2.4.14 (vi)] together with the convexity of Si (x
′) we obtain that

B ε
2
(z) ⊆ Si (x

′). Finally by letting γ = min{η, ε
2 } we conclude the proof. �

The next lemma shows that Assumption (H) is sufficient to ensure the continuity of the
mapping (x, z) �→ PSi (x)(z).

Lemma 3 Under Assumption (H) the mappings (x, z) �→ PSi (x)(z) are continuous on U ×
R

m for all i = 1, . . . , s.

Proof Fix i ∈ {1, . . . , s}. Consider a sequence (xk, zk) → (x, z) ∈ U ×R
m. We have that

‖PSi (xk)(zk) − PSi (x)(z)‖ ≤ ‖PSi (xk)(zk) − PSi (xk)(z)‖ + ‖PSi (xk)(z) − PSi (x)(z)‖
≤ ‖zk − z‖ + ‖PSi (xk)(z) − PSi (x)(z)‖,

where in the second inequality, we used the nonexpansiveness of the projection mapping
(see, e.g., [26, p 118]). Now, define yk := PSi (xk)(z). The sequence yk can be assumed
bounded since ‖yk − z‖ = d(z,Si (xk)) and the distance function is continuous as a result
of Lemma 1. Hence, it is enough to show that each cluster point of (yk) is equal to PSi (x)(z).
Indeed, let ykl

→ y. By closedness of the graph of Si we have that y ∈ Si (x). Furthermore,
by definition of projection we have that ‖ykl

− z‖ = d(z,Si (xkl
)) which by continuity of the

distance function (Lemma 1) yields ‖y − z‖ = d(z,Si (x)). Finally, from the uniqueness of
the projection onto convex sets we conclude that y = PSi (x)(z), and that ends the proof. �
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Next, we show that under the Assumption (H) it is possible to find a uniform lower bound
(with respect to z) for the inner product between z − PSi (x)(z) and z around any x ∈ U in
terms of the distance between z and Si (x).

Lemma 4 Consider Si satisfying Assumption (H) and suppose that 0 ∈ int(Si (x̄)). Then
there exists a neighbourhood of U ′ of x̄ and r > 0 such that for all x ∈ U ′ we have that

〈z − PSi (x)(z), z〉 ≥ r d(z,Si (x)), for all (x, z) ∈ U ′ ×R
m. (4)

Proof By Lemma 2 we can consider a neighbourhood U ′ of x̄ and r > 0 be such that rB ⊆
Si (x) for all x ∈ U ′. On the one hand if z ∈ Si (x) the inequality holds trivially. Let us now

define y := r
z−PSi (x)(z)

‖z−PSi (x)(z)‖ and observe y ∈ rB ⊆ Si (x). Then, on the other hand, for that y:

〈z − PSi (x)(z), z〉 = 〈z − PSi (x)(z), z − PSi (x)(z)〉 + 〈z − PSi (x)(z),PSi (x)(z)〉
= ‖z − PSi (x)(z)‖2 + 〈z − PSi (x)(z),PSi (x)(z) − y〉 + 〈z − PSi (x)(z), y〉
= ‖z − PSi (x)(z)‖2 + 〈z − PSi (x)(z),PSi (x)(z) − y〉 + r‖z − PSi (x)(z)‖.

We notice that 〈z − PSi (x)(z),PSi (x)(z) − w〉 ≥ 0 for any w ∈ Si (x) by definition of the
projection onto convex sets. As a result, it follows that

〈z − PSi (x)(z), z〉 ≥ r‖z − PSi (x)(z)‖ = r d(z,Si (x)),

thus concluding the proof. �

To end this subsection, let us show that the non-emptiness of the interior of the constraint
set Si (x) implies the nontriviality of the normal cone and a“transversality” condition, the
importance of which will become clear later.

Lemma 5 Under the assumptions of Lemma 4, there exists a neighbourhood of U ′ of x̄ and
r > 0 such that for all x ∈ U ′ and all z ∈ bd(Si (x)), NSi (x)(z) ∩ S

m−1 �= ∅ and 〈v∗, z〉 > r

for all v∗ ∈ NSi (x)(z) ∩ S
m−1.

Proof Using [20, Corollary 2.24] we have that NSi (x)(z)∩S
m−1 �= ∅ for every z ∈ bd(Si (x)).

Now, using Lemma 4 let us consider U ′ of x̄ and r > 0 such that (4) holds. Now,
let us consider v∗ ∈ NSi (x)(z) ∩ S

m−1, so using the finite-dimensional characterization of
normal vectors given in [20, Theorem 1.6], we can find a sequence zk → z such that
(zk − PSi (x)(zk))/d(zk,Si (x)) → v∗. Hence, (4) implies that 〈v∗, z〉 > r , which ends the
proof. �

2.4 Spherical Radial Decomposition for Set-Valued Inclusion

Our analysis of the probability function ϕ given in (1) will hinge on an alternative represen-
tation of it. This representation is inspired by the spherical radial decomposition of elliptical
symmetric random vectors. This section will introduce this representation for our case and
some notation related to it. First, let us suppose that ξ has a density called fξ with respect
to the m-dimensional Lebesgue measure λm. Moreover, throughout this work we will make
the assumption that fξ is bounded on compact sets, i.e.,

fξ ∈ L∞(K), for every compact set K ⊆ R
m. (5)
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It has been shown in [16] that (1) can be represented as

ϕ(x) =
∫

Sm−1

e(x, v)dμζ (v),

where e : X × S
m−1 →R∪ {∞} is the radial “probability-like” function given by

e(x, v) = 2π
m
2 |detL|
�(m

2 )

∫

{r≥0 : rLv∈Si (x) ∀i=1,...,s}
rm−1fξ (rLv)dr, (6)

and L is an arbitrary nonsingular matrix of dimension m × m.
In order to simplify the notation let us define the “density-like” function θ :

θ(r, v) := 2π
m
2 |det(L)|
�(m

2 )
rm−1fξ (rLv). (7)

Following [16], we define the set-valued mapping Iθ : R+ × S
m−1 ⇒R+ by

Iθ (r, v) := [θ(r, v), θ+(r, v)] ∪ [θ−(r, v), θ(r, v)], (8)

where
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

θ(r, v) := inf {k > 0 : ∃ε > 0 such that θ(u, v) ≤ k a.e. for u ∈ [r − ε, r + ε]} ,

θ̄+(r, v) := inf{k > 0 : ∃ε > 0 such that θ(u, v) ≤ k a.e. for u ∈ [r, r + ε]},
θ(r, v) := sup{k > 0 : ∃ε > 0 such that θ(u, v) ≥ k a.e. for u ∈ [r − ε, r + ε]},
θ−(r, v) := sup{k > 0 : ∃ε > 0 such that θ(u, v) ≥ k a.e. for u ∈ [r − ε, r]}.

(9)

3 Inner Enlargement of the Probability Function

In order to understand the first order variations of the probability function (1) we will con-
sider an inner enlargement of the constraint set where the probability is taken. Formally,
given ε ≥ 0 we define the probability function

ϕε(x) := P(ω ∈ � : ξ(ω) ∈ Si (x) + εB for all i = 1, . . . , s). (10)

In this way, the probability function ϕ in (1) can be expressed as the limit of ϕε as ε ap-
proaches 0. Thus, our emphasis in this section is to derive a subdifferential formula for ϕε

with ε > 0 which will provide us an intermediary step in order to achieve our main goal in
Sect. 4 which is to obtain a subdifferential formula for ϕ.

Here, it is important to notice that z ∈ Si (x)+εB if and only if d(z,Si (x)) ≤ ε. Therefore,
the probability function (10) can be rewritten using the distance function as

ϕε(x) = P(ω ∈ � : d(ξ(ω),Si (x)) ≤ ε for all i = 1, . . . , s).

Now, consider a point x̄ where Assumption (H) holds, and let U be the neighbourhood,
where this assumption is satisfied. We define on U the sets of finite and infinite directions
with respect to Si as the sets defined by

Fi (x) := {
v ∈ S

m−1 : ∃r > 0 : d(rLv,Si (x)) > 0
}
, (11)
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Ii (x) := {
v ∈ S

m−1 : ∀r ≥ 0 : d(rLv,Si (x)) = 0
}
, (12)

respectively. We also consider

F(x) :=
{

v ∈ S
m−1 : ∃r > 0 : max

1≤i≤s
d(rLv,Si (x)) > 0

}

, (13)

I(x) :=
{

v ∈ S
m−1 : ∀r ≥ 0 : max

1≤i≤s
d(rLv,Si (x)) = 0

}

. (14)

Let us introduce the radial functions associated with the spherical radial decomposition
of our enlargement (10). Given ε ≥ 0 we define ρε

i : U × S
m−1 → R∪ {+∞} by

ρε
i (x, v) := sup {r > 0 : d(rLv,Si (x)) ≤ ε} (15)

and set ρε(x, v) = min1≤i≤s ρε
i (x, v). Particularly, we simply denote ρi (x, v) := ρ0

i (x, v)

and ρ (x, v) := ρ0 (x, v). Now, let us establish some basic properties and relations of the
radial functions, which allow us a better understanding of the behaviour of these mappings.

Lemma 6 Let each Si of the of the family of set-valued mappings satisfy (H) at x̄ and let U

be the common neighbourhood. Then, we have that:

a) For all ε ≥ 0 and all x ∈ U , Fi (x) = dom(ρε
i (x, ·)) and F(x) = dom(ρε(x, ·)).

b) For all v ∈ Fi (x),

d(r1Lv,Si (x)) < d(r2Lv,Si (x)), for all r2 > r1 > ρi(x, v). (16)

c) For all v ∈ Fi (x), lim
r→∞ d(rLv,Si (x)) = +∞.

d) For all v ∈ Fi (x) and all r > ρε
i (x, v) we have d(rLv,Si (x)) > ε.

e) For all ε ≥ 0, we have ρε
i (x, v) = inf{r > 0 : d(rLv,Si (x)) > ε} with the convention

inf∅ = +∞.
f) For all v ∈ Fi (x), and all ε > 0, ρε

i (x, v) is the unique r > 0 such that d(rLv,Si (x)) = ε.

Proof Let us first prove b). Fix i, let r, β ∈ R be given and consider the function

γr,β(t) := d((t + r)Lv,Si (x)) − β for t ≥ 0.

It is easy to see that γr,β is a convex function, and therefore, whenever γr,β(0) < 0 and
γr,β(t2) ≥ 0, we have that

γr,β(t1) <
t1

t2
γr,β(t2), for all 0 < t1 < t2. (17)

We will make use of this inequality by picking appropriate r, β, t1 and t2 values. Indeed, if
v ∈ Fi (x), then, for some r ′ > 0, we have that d(r ′Lv,Si (x)) > 0. Hence, by convexity of
the distance function we have that r0 := ρi(x, v) < r ′ < +∞. Now, consider r2 > r1 > r0

and fix β ∈ (0,d(r1Lv,Si (x))). Then, using inequality (17) with t1 = r1 − r0, t2 = r2 − r0

and r = r0 we see that for all r2 > r1 > ρi(x, v)

0 < d(r1Lv,Si (x)) − β <
r1 − ρi(x, v)

r2 − ρi(x, v)
(d(r2Lv,Si (x)) − β) < d(r2Lv,Si (x)) − β, (18)
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which in fact implies that (16) holds, thus proving part b). Now, since β ∈ (0,d(r1Lv,

Si (x))), letting r2 → ∞ in (18) we have that necessarily limr2→∞ d(r2Lv,Si (x)) = +∞,
which shows c). Now, let us prove a). If v ∈ F(x) then v ∈ Fi (x) for some i ∈ {1, . . . , s}
and by Item b) and c) the set {r ≥ 0 : d(rLv,Si (x)) ≤ ε} must be bounded yielding
ρε

i (x, v) < +∞ and in consequence ρε(x, v) < +∞. On the other hand if v ∈ I(x) we
have that ρε

i (x, v) = +∞ for all i and so ρε(x, v) = +∞ concluding the proof of Item a).
Item d) follows by using (16) with r1 = ρε

i (x, v) and r2 = r . Item e) follows from Item
d) and the continuity of the distance function. Finally, Item f ) follows from Items d) and
e). �

The next definition corresponds to a growth condition over the coderivative of the set-
valued mappings Si . It corresponds to a natural extension of the growth condition used in
the (sub-)gradient formulæ obtained using the spherical radial decomposition (see, e.g., [9]).
Furthermore, this growth condition is a technical assumption, which can be easily verified in
many applications, and allows us to bound the subgradients of the radial “probability-like”
function, defined in (6), locally around x̄ and uniformly over all directions v ∈ S

m−1.

Definition 1 (η-growth condition for a family of set-valued mappings) Consider x̄ ∈ U

fixed but arbitrary. Let η :R→ [0,+∞] be a non-decreasing mapping such that

lim‖z‖→+∞‖z‖mf̄ξ (z)η(‖z‖) = 0,

where f̄ξ (z) := inf
{
k > 0 : ∃ε > 0 such that fξ (u) ≤ k a.e. for u ∈ Bε(z)

}
.

We say that the family of set-valued mappings Si satisfies the η-growth condition at x̄ if
for some l > 0,

‖D∗Si (x, z)‖ ≤ lη(‖z‖), ∀x ∈ B1/l(x̄), ∀z ∈R
m, (19)

where

‖D∗Si (x, z)‖ := sup
{‖x∗‖ : x∗ ∈ D∗Si (x, z)(z∗) and ‖z∗‖ = 1

}
.

Here, it is important to mention that as a result of the coderivative being a positively
homogeneous set-valued mapping, we can deduce the following inequality:

‖D∗Si (x, z)(z∗)‖ ≤ ‖D∗Si (x, z)‖‖z∗‖, for any z∗ ∈R
m\{0}.

Let us define, for x ∈ U , ε > 0 and v ∈ F(x)

Mε(x, v) :=
{

α · x∗
〈
z
x,v
ε − PSi (x)(z

x,v
ε ),Lv

〉 : i ∈ T ε
x (v),α ∈ Iθ (ρε(x, v), v) (20)

x∗ ∈ D∗Si (x,PSi (x)(z
x,v
ε ))(PSi (x)(z

x,v
ε ) − zx,v

ε )

}

,

where

zx,v
ε := ρε(x, v)Lv and T ε

x (v) = {
i ∈ {1, . . . , s} : ρε

i (x, v) = ρε(x, v)
}
. (21)

For convenience, we define Mε(x, v) = {0} for all v ∈ I(x).
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The following result corresponds to the main theorem of this section, which establishes
the Lipschitz continuity and a subdifferential formula for the enlarged probability function
(10). The result essentially follows from an application of Theorem 3.1 in [16], except that
the latter result is given in finite dimension and with smooth constraint system only. The
appendix therefore provides a careful extension to the infinite dimensional setting and proof
of the Theorem.

Theorem 1 Let x̄ ∈ U be given and assume that (5) holds true. Moreover, assume that the
family of set-valued mappings Si satisfies the η-growth condition at x̄ and that each Si

satisfies Assumption (H) at x̄ with common neighbourhood U . Then the probability function
(10) is locally Lipschitz around x̄ and on an appropriate neighbourhood U ′ of x̄ it holds:

∂ϕε(x) ⊆ −clw
∗
(∫

Sm−1
Mε(x, v)dμζ (v)

)

, for all x ∈ U ′, (22)

where Mε(x, v) is defined in (20). In addition, if X is finite-dimensional the closure can be
omitted in the right-hand side of (22).

4 Lipschitz Continuity and Subdifferential of Probability Function ϕ

Now, we will focus on establishing the Lipschitz continuity and subgradient formula for
the probability function ϕ given in (1). Our technique of proof relies on the use of the
subgradient estimation of the enlargement ϕε , established in Theorem 1, to approximate
the subdifferential of the probability function ϕ. The derivation of the main result will be
the topic of the first paragraph in this section. Subsequently, we will consider two derived
settings and present how the main result can be declined in such cases.

4.1 Subgradient Estimate for the Probability Function

The next lemma provides a first estimation of the subdifferential of ϕ, leveraging on our
earlier obtained results for the mapping ϕε .

Lemma 7 (Approximation of subgradients) Consider the probability function ϕ defined in
(1), and the family of probability functions ϕε given by (10). Then, for all x ∈ U :

ϕ(x) = inf
ε>0

ϕε(x), (23)

∂ϕ(x) ⊆
{

x∗ ∈ X : There exist xk → x, εk → 0+
and x∗

k ∈ ∂ϕεk
(xk) s.t. x∗

k ⇀ x∗

}

.

Proof A direct application of the continuity of the probability measure shows (23). Now,
consider a point x∗ ∈ ∂ϕ(x). It follows from definition that there are sequences xk → x with
ϕ(xk) → ϕ(x) and x∗

k ⇀ x∗ such that x∗
k ∈ ∂̂ϕ(xk). Hence, using [13, Lemma 2.1] for each

point x∗
k we can get sequences xk,j → xk with ϕ(xk,j ) → ϕ(xk) and x∗

k,j → x∗
k such that

x∗
k,j ∈ ∂̂ϕεk,j

(xk,j ). Now, since X is reflexive and separable we have that the weak∗-topology
is metrizable on bounded sets (see, e.g., [27]), and it allows us to use a diagonal argument
to conclude the result. �
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The following lemma shows that the radial functions generated by the set-valued map-
pings Si , defined in (15), are continuous with respect to all the parameters (ε, x, v).

Lemma 8 Let each Si of the family of set-valued mappings satisfy Assumption (H) at x̄ ∈
U , the latter being the common neighbourhood. Then, there exists an open neighborhood
U ′ ⊆ U , such that for every sequence [0,+∞) × U ′ × S

m−1 � (εk, xk, vk) → (ε, x, v) ∈
[0,+∞) × U ′ × S

m−1 we have that

ρε
i (x, v) = lim

k→+∞
ρ

εk

i (xk, vk) for each i = 1, . . . , s. (24)

Furthermore,

ρε(x, v) = lim
k→+∞

ρεk
(xk, vk). (25)

Proof Fix i and consider (εk, xk, vk) → (ε, x, v). Let us first prove equality (24) by assuming
that ρ

εk

i (xk, vk) → +∞. Suppose by contradiction that ρε
i (x, v) < +∞ and consider r >

ρε
i (x, v). By Lemma 6 we have that d(rLv,Si (x)) > ε, so by continuity of the distance

function (recall Lemma 1) we have that d(rLvk,Si (xk)) > εk for k large enough, which,
again by Lemma 6 means that r ≥ ρ

εk

i (xk, vk) for k large enough. In other words ρ
εk

i (xk, vk)

is bounded from above, thus contradicting the earlier assumption.
Thus, we assume that the sequence ρ

εk

i (xk, vk) admits a cluster point r ′. Then for some
subsequence we have that ρ

εkl

i (xkl
, vkl

) →l r ′. Let us prove that r ′ = ρε
i (x, v). By Lemma

6 we have the equality d(ρεkl

i (xkl
, vkl

)Lvkl
,Si (xkl

)) = εkl
which by continuity of the dis-

tance function yield us the equality d(r ′Lv,Si (x)) = ε. From the uniqueness shown in
Lemma 6 the result for the case ε > 0 follows. Thus it remains to prove it for ε = 0.
In this case, by definition of the radial function we have that r ′ ≤ ρi(x, v). Suppose by
contradiction that r ′ < ρi(x, v). Therefore, r ′Lv ∈ int(Si (x)) and hence ρ

εkl

i (xkl
, vkl

)Lv ∈
int(Si (x)) for l large enough. By Lemma 2 we have that there exists γ > 0 such that
(ρ

εkl

i (xkl
, vkl

) + γ )Lv ∈ int(Si (xk)), which particularly, by definition of the radial function,
implies that ρ

εkl

i (xkl
, vkl

) + γ ≤ ρi(xkl
, vkl

) for l large enough, which is a contradiction.
Therefore, we have that r ′ = ρi(x, v) and since this holds true for all possible cluster points
we conclude (24).

Now let us prove (25). On the one hand, there is some i ∈ {1, . . . , s} such that ρε(x, v) =
ρε

i (x, v) which together with (24) lead us to ρε(x, v) = limk ρ
εk

i (xk, vk). Since, by definition,
ρ

εk

i (xk, vk) ≥ ρεk
(xk, vk) for all k, we conclude that ρε(x, v) ≥ limk ρ

εk

i (xk, vk). On the other
hand, for each k there exists ik ∈ {1, . . . , s} such that ρεk

(xk, vk) = ρ
εk

ik
(xk, vk). Under sub-

sequence, we may assume that ρεk
(xk, vk) = ρ

εk

i (xk, vk) for some fixed i. By taking limits
on this last equality and thus by (24) we obtain that limk ρεk

(xk, vk) = ρε
i (x, v) which by

definition of ρε(x, v) lead us to limk ρεk
(xk, vk) ≥ ρε(x, v), concluding the proof of (25) and

thus of the lemma. �

Now, the following lemma provides an upper-estimation of the set-valued mapping
Mε(x, v) locally around x and uniformly with respect to v ∈ S

m−1 and ε > 0.

Lemma 9 Let each Si of the family of set-valued mappings satisfy Assumption (H) at x̄ ∈ U

with 0 ∈ int(Si (x)) for all x ∈ U , where U is a common neighbourhood. Moreover, assume
that the family of set-valued mappings satisfies the η-growth condition at x̄ and that (5)
holds true.
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Then, there exist a neighbourhood U ′ of x̄ and ε′ > 0 such that

sup{‖x∗‖ : x∗ ∈ Mε(x, v), v ∈ S
m−1, x ∈ U ′, ε ∈ (0, ε′)} < ∞.

Moreover, lim sup
(ε,x,v)→(0,x̄,v̄)

Mε(x, v) = {0} for all v̄ ∈ I(x̄).

Proof Due to the compactness of Sm−1 it is enough to show that for all v ∈ S
m−1 there are

neighbourhoods Uv of x̄, Vv of v, and εv > 0 such that

sup
{‖x∗‖ : x∗ ∈ Mε(x, v), v ∈ Vv, x ∈ Uv, ε ∈ (0, ε′

v)
}

< ∞. (26)

Fix v̄ ∈ S
m−1 and let us suppose first that v̄ ∈ F(x̄). By Lemma 8, there are neighbourhoods

Uv̄ of x̄, Vv̄ of v̄, and εv̄ > 0 such that

sup{ρε(x, v) : (ε, x, v) ∈ W := [0, εv̄] × Uv̄ × Vv̄} < +∞.

Particularly, v ∈ F(x) for all (x, v) ∈ Uv̄ × Vv̄ . Now, fix (ε, x, v) ∈ W and consider a point
w∗ ∈ Mε(x, v) of the form:

α
x∗

〈
z
x,v
ε − PSi (x)(z

x,v
ε ),Lv

〉 , (27)

for some i ∈ T ε
x (v), α ∈ Iθ (ρε(x, v), v), x∗ ∈ D∗Si (x,PSi (x)(z

x,v
ε ))(PSi (x)(z

x,v
ε ) − zx,v

ε )

where zx,v
ε := ρε(x, v)Lv. Since the set Iθ (ρε(x, v), v) remains bounded on W , we have

that α is uniformly bounded on W , let us say by ᾱ. Now, since Si has the local Lipschitz-
like property around (x,PSi (x)(z

x,v
ε )) we have that there exists κi ≥ 0 such that

‖x∗‖ ≤ κi‖zx,v
ε − PSi (x)(z

x,v
ε )‖.

On the other hand, by Lemma 4 (shrinking enough the neighbourhood Uv̄) there exists some
ri > 0 such that

〈
zx,v
ε − PSi (x)(z

x,v
ε ),Lv

〉≥ ri

ρε(x, v)
‖zx,v

ε − PSi (x)(z
x,v
ε )‖. (28)

Therefore, we obtain that ‖w∗‖ ≤ ᾱκρ̄

r
, where κ := maxκi , r := min ri and ρ̄ :=

sup{ρε(x, v) : (ε, x, v) ∈ W } which means that (26) holds for v̄ ∈ F(x̄).
Now, consider the case when v̄ ∈ I(x̄). Let γ > 0 and let l > 0 be such that the family of

Si satisfies the η-growth condition at x̄ (see Definition 1). By Lemma 8 we have that there
are neighborhoods Uv̄ of x̄, Vv̄ of v̄ and εv̄ > 0 such that ρε(x, v) > l for all (ε, x, v) ∈ W .
Moreover, by Lemma 4, there exists r > 0 such that (28) holds. Therefore, w∗ ∈ Mε(x, v)

in the form of (27) satisfies

‖w∗‖ ≤ θ̄ (ρε(x, v), v)
ρε(x, v)

r‖zx,v
ε − PSi (x)(z

x,v
ε )‖ lη(‖zx,v

ε ‖)‖zx,v
ε − PSi (x)(z

x,v
ε )‖.

Furthermore, for some constant C > 0 we have that θ̄ (ρε(x, v), v) ≤ C(2ρε(x, v))m−1 ×
f̄ξ (z

x,v
ε ) and thus

‖w∗‖ ≤ Cl2m−1

r‖Lv‖m−1
‖zx,v

ε ‖mf̄ξ (z
x,v
ε )η(‖zx,v

ε ‖).
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Since, ρε(x, v) can be chosen arbitrarily large (shrinking W if necessary) we can assume
that ‖w∗‖ ≤ γ , and that ends the proof. �

Now, we are able to show the main result of this work, which provides the locally Lips-
chitz continuity of the probability function

Theorem 2 Consider each Si in the family of set-valued mappings satisfying Assumption
(H) at x̄ ∈ U with 0 ∈ int(Si (x)) for all x ∈ U where the latter is a common neighbourhood.
Moreover, assume that the family of set-valued mappings Si satisfies the η-growth condition
at x̄ and that (5) holds true.

Then the probability function (1) is locally Lipschitz around x̄ and on an appropriate
neighbourhood U ′ of x̄ it holds:

∂ϕ(x) ⊆ −cl

⎛

⎝

∫

F(x)

M(x, v)dμζ (v)

⎞

⎠ , for all x ∈ U ′, (29)

where M(x, v) is given as follows

M(x, v) =
{

α · x∗

〈z∗,Lv〉 : α ∈ Iθ (ρ(x, v), v), z∗ ∈ NSi (x)(z
x,v) ∩ S

m−1

i ∈ Tx(v), x∗ ∈ D∗Si (x, zx,v)(−z∗)

}

for v ∈ F(x)

with

zx,v := ρ(x, v)Lv and Tx(v) = {i ∈ {1, . . . , s} : ρi(x, v) = ρ(x, v)}

and by M(x, v) = {0} for v ∈ I(x).
In addition, if X is finite-dimensional the closure can be omitted in either representation.

Proof Let U ′ be the neighbourhood of x̄, further subset of U of which the existence is
asserted in Lemma 9. Next, let x ∈ U ′ be given arbitrarily but fixed and let x∗ ∈ ∂ϕ(x)

likewise be arbitrary. We divide the proof into four claims.
Claim 1: There exist sequences xk → x, εk → 0+ and x∗

k ⇀ x∗ with

x∗
k ∈ −

∫

Sm−1

Mεk
(xk, v)dμζ (v),

where Mεk
is as in (20). Indeed, by Lemma 7 there exists x∗

k ∈ ∂ϕεk
(xk) with xk → x,

εk → 0+ and x∗
k ⇀ x∗. Furthermore, by Theorem 1,

x∗
k ∈ Ck := −clw

∗
(∫

Sm−1
Mεk

(xk, v)dμζ (v)

)

.

Let us notice that by Lemma 9 there is some k0 ∈ N such that the set ∪k≥k0Ck is bounded.
Since, X is separable and reflexive, the weak∗- topology is metrizable on bounded sets
(see, e.g., [28, Theorem 5.1], we also draw attention to [29, Aufgabe VIII.8.16], showing
the necessity of X being separable) allowing us to take sequences x∗

j,k ⇀ x∗
k with x∗

j,k ∈
− ∫

Sm−1 Mεk
(xk, v)dμζ (v) as well as to use a diagonal argument so we can construct the

desired sequence.
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Claim 2: There exists a sequence of (Bochner) integrable functions yk : Sm−1 → X such
that

y∗
k (v) ∈ Mεk

(xk, v) μζ -a.e. and x∗
k = −

∫

Sm−1
y∗

k (v)dμζ (v).

Using the definition of the integral of a set-valued mapping we get the existence of such
sequence.

Claim 3: We have that x∗ ∈ −cl
(∫

Sm−1 F(v)dμζ (v)
)
, where F(v) is the set of sequential

weak∗ limits of sequences of the form {y∗
k (v)}. Moreover, the closure can be omitted when

X is finite-dimensional.
Indeed, by Lemma 9, we have that there exists M > 0 such that ‖y∗

k (v)‖ ≤ M for almost
all v ∈ S

m−1. Now, by [30, Corollary 4.1], we have that x∗ ∈ −clw
∗ (∫

Sm−1 F(v)dμζ (v)
)
,

where the closure operation can be omitted if the space X is finite-dimensional. Further-
more, by Lyapunov’s convexity theorem, we have that the set cl

(∫

Sm−1 F(v)μζ

)
is convex,

so

clw
∗
(∫

Sm−1
F(v)dμζ

)

= cl

(∫

Sm−1
F(v)dμζ

)

,

and that ends the proof of our claim.
Claim 4: We have that F(v) ⊆ M(x, v) for almost all v ∈ S

m−1.
Indeed, consider a set of full measure S ⊆ S

m−1 such that y∗
k (v) ∈ Mεk

(xk, v) for all
k ∈ N and v ∈ S. Then, fix v ∈ S. First, if v ∈ I(x), we have by Lemma 9 that F(v) ⊆
lim supMεk

(xk, v) ⊆ {0}. Now, assume that v ∈ F(x) and consider y∗
v ∈ F(v). Then there

exists a sequence y∗
kj

(v) such that y∗
kj

(v) ⇀ y∗
v and

y∗
kj

(v) = αj · x∗
j

〈
zj − PSij

(xj )(zj ),Lv
〉 ,

for some ij ∈ T
εj
xj

(v), αj ∈ Iθ (ρεj
(xj , v), v) and x∗

j ∈ D∗Sij (xj ,PSij
(xj )(zj ))(PSij

(xj )(zj ) −
zj ), where zj := ρεj

(xj , v)Lv. Now, we may assume (by passing to a subsequence), that for

some fixed i ∈ T
εj
xj

(v),

y∗
kj

(v) = αj · x∗
j

〈
zj − PSi (xj )(zj ),Lv

〉 , (30)

with αj ∈ Iθ (ρεj
(xj , v), v) and x∗

j ∈ D∗Si (xj ,PSi (xj )(zj ))(PSi (xj )(zj ) − zj ), where zj :=
ρεj

(xj , v)Lv.
First we notice that, by Lemma 8, we have ρi(x, v) = ρ(x, v), that is, i ∈ Tx(v).

Moreover, the functions θ̄ , θ , defined in (9), are upper semicontinuous and lower semi-
continuous, respectively. Therefore, we can assume (by passing to a subsequence) that

αj → α ∈ I (ρ(x, v), v). Now, define w∗
j := zj −PSi (xj )(zj )

‖zj −PSi (xj )(zj )‖ , v∗
j := x∗

j

‖zj −PSi (xj )(zj )‖ . Since,

w∗
j ∈ R

m and it has unit norm, we can assume that the sequence converges, i.e., w∗
j → z∗ for

some z∗ ∈ S
m−1. Now, using the fact that Si is locally Lipschitz-like around (xj ,PSi (xj )(zj )),

we have that the sequence v∗
j is bounded, and from the fact that X is reflexive, we can as-

sume that v∗
j ⇀ v∗ for some v∗ ∈ X ∗. Let us now prove that z∗ ∈ NSi (x)(ρ(x, v)Lv) and

v∗ ∈ D∗Si (x, ρ(x, v)Lv)(−z∗). Indeed,
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i) z∗ ∈ NSi (x)(ρ(x, v)Lv): Since Si is closed and convex valued, we first observe that as
a result of the optimality conditions defining the projection, we have z − PSi (x)(z) ∈
NSi (x)(PSi (x)(z)) and as a result w∗

j ∈ NSi (xj )(PSi (xj )(zj )). We can apply [20, Corollary
1.96] to get that w∗

j ∈ ∂zd(zj ,Si (xj )) for all j ∈ N. Now we have that for all j ∈ N and
all w ∈R

m

〈w∗
j ,w − xj 〉 ≤ d(w,Si (xj )) − d(zj ,Si (xj )).

Hence, taking limits in the above inequality and recalling that the distance function is
Lipschitz continuous (see Lemma 1) we can conclude that z∗ ∈ ∂zd(ρ(x, v)Lv,Si (x)).
Finally, using again [20, Corollary 1.96], we get that z∗ ∈ NSi (x)(ρ(x, v)Lv).

i) v∗ ∈ D∗Si (x, ρ(x, v)Lv)(−z∗): First, by definition of coderivative, we have that the
sequence (v∗

j ,w
∗
j ) ∈ NgphSi

(xj , zj ). Moreover, by [20, Theorem 3.60] the graph of
the mapping (u, v) → NgphSi

(u, v) is locally closed with respect to the ‖ · ‖ × w∗-
topology at (x,ρ(x, v)Lv) provided that the SNC property holds at (x,ρ(x, v)Lv).
Since, Si is Lipschitz-like around (x,ρ(x, v)Lv) we can apply [20, Proposition 1.68]
to get that the mapping Si is SNC at (x,ρ(x, v)Lv) (see also [20, Definition 1.67]).
Therefore, we have that (v∗, z∗) ∈ NgphSi

(x, ρ(x, v)Lv), which by definition means that
v∗ ∈ D∗Si (x, ρ(x, v)Lv)(−z∗).

Finally, by taking limits on (30) we get that y∗
v ∈ M(x, v).

As a result, it is thus clear that formula (29) holds true. �

Remark 1 It is important to emphasize that Lemma 5 ensures that for x close enough to
x̄ the mapping M(x, v) is well-defined. Indeed, it excludes that there are some direc-
tions v ∈ F(x) such that 〈z∗,Lv〉 = 0 for z∗ ∈ NSi (x)(ρ(x, v)Lv). Such directions are not
transversal and constitute a complication as extensively discussed in [14]. In the classic sit-
uation wherein Si (x) is given by a set of convex inequalities, together with the assumption
0 ∈ intSi (x), the existence of non transversal directions can be altogether avoided - see [17,
Lemma 3]. In this work, we have also shown that no such directions exist using advanced
tools of variational analysis.

Remark 2 In Theorem 2 we have derived an outer estimate of the subdifferential of the prob-
ability function. First this is the nature of the kind of result one can expect when handling
nonsmooth and nonconvex functions in the absence of some further regularity. The results in
this form are already of interest in order to derive for instance optimality conditions. Indeed
conditions of the form 0 ∈ ∂ϕ(x) can be verified in a relaxed way with an outer estimate. In
contrast, an inner estimate would not necessarily be feasible even at a solution. Second, we
expect in practice the right-hand side to be a singleton for most relevant applications. When
dealing with Si specified through convex inequalities, it was possible to show this under a
further regularity condition (see [9]), akin to, but much weaker than, (LICQ) for the active
gradients. Corollary 1 below provides an abstract condition “b)” that in the above setting
was implied by this regularity condition. We also refer to [31, Theorem 4.1] for concrete use
of outer-estimations in mathematical programs with equilibrium constraints.

Example 1 Let us consider a 2-dimensional Gaussian random vector ξ ∼ N (0, I ) and the
set valued mapping S :R⇒R

2 given by

S(x) := {(z1, z2) : (z1 + 2)(z2 + 2) ≥ x, z1 ≥ −2 and z2 ≥ −2}. (31)
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Consider the probability function generated by this set-valued mapping in the sense of (1),
that is, ϕ(x) := P(ξ ∈ S(x)), and let us examine at the point x̄ = 1. We claim that it is
possible to find an appropriate neighbourhood of x̄ such that the assumptions of Theorem
2 hold. Indeed, it is easy to see that S has convex and closed values and 0 ∈ int(S(x)) (for
all x close enough to x̄). Moreover, thanks to [20, Corollary 4.35], we can compute the
coderivative of S for (z1 + 2)(z2 + 2) = x as

D∗S(x, z1, z2)(z
∗) =

{
‖z∗‖

√
(z1 + 2)2 + (z2 + 2)2

}

. (32)

Furthermore, for (z1 + 2)(z2 + 2) > x, we have that both D∗S(x, z1, z2)(0) = ∅ and
D∗S(x, z1, z2)(z

∗) = ∅. It shows the Lipschitz-like property required in Assumption (H).
Moreover, the above computation allows us to estimate ‖S(x)‖. Indeed, consider arbi-
trary z∗ with ‖z∗‖ = 1 and x∗ ∈ D∗S(x, z1, z2)(z

∗). Hence, by (32), we have that for
(z1 + 2)(z2 + 2) = x,

‖x∗‖ = 1
√

(z1 + 2)2 + (z2 + 2)2
= 1
√

(z1 − z2)2 + 2x
≤ 1√

x
.

Therefore, the η-growth condition holds at x̄ = 1.

Corollary 1 In the setting of Theorem 2, make the following supplementary assumptions:

a) the random vector ξ has a continuous density function,
b) the set Tx̄(v) is a singleton i(v) for μζ almost all v ∈ S

m−1,
c) the cone NSi(v)(x̄)(z

x̄,v) contains a unique element z∗
x̄ (v) of unit-norm and

D∗Si(v)(x̄, zx̄,v)(z∗
x̄ (v)) is reduced to a single element x∗

x̄ (v) for μζ almost all v ∈ S
m−1,

d) the space X is finite dimensional.

Then the probability function is differentiable at x̄ and the following formula holds:

∇ϕ(x̄) =
∫

F(x̄)

θ(ρ(x̄, v), v)
x∗

x̄ (v)

〈z∗
x̄ (v),Lv〉dμζ (v). (33)

In addition, if the above conditions hold on a neighbourhood, ϕ is continuously differen-
tiable on this neighbourhood.

Proof We may employ Theorem 2 to establish formula (29), without the closure operation
since X is finite dimensional. Moreover, the first supplementary assumption entails that α ∈
Iθ (ρ(x, v), v) is unique and of the form α = θ(ρ(x, v), v) (see e.g., the text slightly before
Proposition 3.2 in [16]). This together with the further assumptions entail that M(x, v) is a
singleton for μζ almost all v ∈ S

m−1. As a result, the right-hand side of (29) is a singleton,
exactly that of (33). Given that ∂ϕ(x) is not empty we must in fact have equality in (29).
Since ϕ is moreover locally Lipschitzian near x, we may invoke Proposition 2.2.4 in [32] to
arrive at the result. �

Example 2 (Example 1 revisited) Let us notice that due to [20, Theorem 1.17] the normal
cone to the set S(x) at any z ∈ bd(S(x)) (for x close enough to x̄) is given by

NS(x)(z) =
{

λ

(
z2 + 2
z1 + 2

)

: λ ≤ 0

}

,
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and thanks to (32) the coderivative D∗S(x, z)(z∗) reduces to one single element. Hence, by
Corollary 1 we have that the probabability function ϕ given in Example 1 is continuously
differentiable around x̄.

4.2 Application to Set-Valued Maps Presented in the Form of an Inclusion

In this section we present an application for the establishment of Lipschitz continuity and
subgradient formulæ of probability functions generated by concrete constrained systems. In
order to simplify the analysis we will assume that ξ has continuous density fξ .

Let us consider the probability function

ϕ(x) := P (ω ∈ � : �i(x, ξ(ω)) ∈ Ci ,∀i = 1, . . . , s) , (34)

where �i : Rn ×R
m → R

q are continuously differentiable mappings and Ci are closed sets
such that {z : �i(x̄, z) ∈ Ci} is convex. We can observe here that Ci could for instance be a
convex cone, such as the cone of positive definite matrices. The just given setting thus allows
us to extend the classic analysis from e.g., [9, 17] involving inequalities, to the situation of
conic programming.

We define the finite and infinite directions with respect to {�i,Ci} as the sets defined by

F�i
(x̄) := {v ∈ S

m−1 : ∃r ≥ 0 : �i(x, rLv) ∈ bdCi},
I�i

(x̄) := {v ∈ S
m−1 : ∀r ≥ 0 : �i(x, rLv) ∈ intCi},

respectively. We also consider

F�(x̄) := {v ∈ S
m−1 : ∃r ≥ 0 : �i(x, rLv) ∈ bdCi for some i = 1, . . . , s},

and the radial functions

ρ�i
(x, v) := sup{r > 0 : �i(x, rLv) ∈ Ci},

and

ρ�(x, v) := min
1≤i≤s

ρ�i
(x, v).

Definition 2 (η-growth condition for generalized constraints systems) Let η : R →
[0,+∞) be as in Definition 1. We say that the family {�i,Ci}s

i=1 satisfies the η-growth
condition at x̄ if for some l > 0,

{∇z�i(x, z) is surjective and
‖∇x�i(x, z)‖ ≤ lη(‖z‖)κi(x, z), ∀x ∈ B1/l(x̄), ∀z ∈ {z′ : �i(x, z′) ∈ bdCi}, (35)

for all i = 1, . . . , s and where κi(x, z) = inf{‖∇z�i(x, z)∗y∗‖ : ‖y∗‖ = 1}.

Corollary 2 Let us suppose that ξ has continuous density function. Suppose that a point of
interest x̄ such that the family {�i,Ci} satisfies the η-growth condition given in Definition
2 at x̄ and �i(x̄,0) ∈ int(Ci) for all i = 1, . . . , s. Moreover, suppose that there exists a
neighbourhood U of x̄ such that int{z : �i(x, z) ∈ Ci} = {z : �i(x, z) ∈ intCi} for all i =
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1, . . . , s and all x ∈ U . Then the probability function (34) is locally Lipschitz around x ∈ U ′
and

∂ϕ(x) ⊆
∫

F�(x)

⋃

i∈Tx(v)
y∗∈NCi

(�i (x,ρ(x,v)Lv))

{
θ(ρ(x, v), v)∇x�i(x,ρ(x, v)Lv)∗y∗

〈∇z�i(x,ρ(x, v)Lv)∗y∗,Lv〉 : ‖y∗‖ = 1

}

dμζ (v), (36)

for all x ∈ U ′ where Tx(v) = {i ∈ {1, . . . , s} : ρ�i
(x, v) = ρ�(x, v)}.

Proof Let us consider the set-valued mapping Si (x) := {z : �i(x, z) ∈ Ci}. Let us check that
Si satisfies the assumptions (H). Indeed, it has convex values. Using the continuity of �i ,
closedness of Ci and the fact that 0 ∈ int{z : �i(x̄, z) ∈ Ci} we can conclude that Si satisfies
Items a) and c) in Assumption (H). Let us prove that Si is locally Lipschitz-like around
(x, z) ∈ gphSi with x ∈ U . Since, intSi (x) = {z : �i(x, z) ∈ intCi} for all x ∈ U (shrinking
U if necessary), when z ∈ intSi (x) we have that (x, z) ∈ int(gphSi ) by continuity of �i and
in consequence D∗Si (x, z)(z∗) is either 0 ∈ R

n or empty for any z∗ ∈ R
m. Moreover, when

(x, z) /∈ gphSi , D∗Si (x, z)(z∗) is empty for any z∗ ∈ R
m. Therefore, it is enough to prove

the Lipschitz-like property around (x, z) such that x ∈ U and z ∈ bdSi (x) = {z : �i(x, z) ∈
bdCi}. This follows from [20, Corollary 4.37 (i)] upon noting that the conditions therein are
satisfied by the surjectivity of ∇z�i(x, z) given by (35). Now, let us prove that Si satisfies the
η-growth condition for set-valued mappings at x̄ given in Definition 1. Similarly as before,
it is enough to prove that there exists l > 0 such that (19) is satisfied for x ∈ B1/l(x̄) and
z ∈ bdSi (x). Since {�i,Ci} satisfy the growth condition in Definition 2 at x̄, we have that
there exists l > 0 such that {�i,Ci} satisfy (35). Taking l > 0 large enough if necessary we
can assume that B1/l(x̄) ⊆ U . Hence, by [20, Theorem 4.31] we get that for x ∈ B1/l(x̄) and
z ∈ bdSi (x) = {z : �i(x, z) ∈ bdCi} the following computation holds

D∗Si (x, z)(−z∗) = {x∗ : (x∗, z∗) ∈ ∇�i(x, z)∗ NCi
(�i(x, z))}.

Furthermore, by assumption on ∇z�i(x, z) we have that

‖∇z�i(x, z)∗y∗‖ ≥ κi(x, z)‖y∗‖ for all y∗ ∈ NCi
(�i(x, z)),

where κi(x, z) ∈ (0,+∞) as a result of [20, Lemma 1.18]. Then

‖D∗Si (x, z)‖ ≤ max{‖∇x�i(x, z)∗y∗‖ : ‖y∗‖ ≤ κi(x, z)−1} ≤ κi(x, z)−1‖∇x�i(x, z)‖
and hence the η-growth condition for set-valued mappings follows by considering the same
non-decreasing mapping η. Therefore, since the family Si satisfies the assumptions of The-
orem 2, we have that ϕ is locally Lipschitz around x ∈ U . Now let us verify (36). We have
that

NSi (x)(ρ(x, v)Lv) = {∇z�i(x,ρ(x, v)Lv)∗y∗ : y∗ ∈ NCi
(�i(x,ρ(x, v)Lv))}

and

D∗Si (x, ρ(x, v)Lv)(−z∗) = {x∗ : (x∗, z∗) ∈ ∇�i(x,ρ(x, v)Lv)∗ NCi
(�i(x,ρ(x, v)Lv))}.

Clearly F�i
(x) = Fi (x) entailing I�i

(x) = Ii (x). And as was stated in [16] when fξ is
continuous, θ̄ = θ and Iθ (ρ(x, v), v) = {θ(ρ(x, v), v)}. Hence (36) follows from (29) where
we omitted the closure operator due to X =R

n. �
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Example 3 Let us consider closed convex sets Ci ⊆ R
q with nonempty interior, and the

separate variable functions �i(x, z) := Ai(x) + Biz, where Ai : Rn → R
q is a continuously

differentiable mapping and Bi ∈R
q×m is a surjective matrix. Define the probability function

ϕ(x) := P (�i(x, ξ) ∈ Ci for i = 1, . . . , s) , (37)

where ξ is a random vector with (continuous) density fξ satisfying lim‖z‖→∞ ‖z‖mf (z) = 0.
The open mapping theorem implies that

int{z : �i(x, z) ∈ Ci} = {z : �i(x, z) ∈ intCi} for all x ∈ R
n and all i = 1, . . . , s.

Furthermore, let us consider a point x̄ such that Ai(x̄) ∈ int(Ci) for all i = 1, . . . , s. Hence,
by the linearity of Bi and convexity of Ci it is easy to check that {z : �i(x̄, z) ∈ Ci} is
convex. Moreover, in this particular example the functions κi are strictly positive constants
(see [20, Lemma 1.18]), so the η-growth condition for generalized constraints systems given
in Definition 2 holds at x̄ by considering η(t) = 1 and l > 0 large enough. Therefore, by
Corollary 2 the probability function ϕ given in (37) is locally Lipschitz around x̄.

4.3 Application to Set-Valued Maps Given by Quasi-Convex Inequalities

Now, for i = 1, . . . , s, we assume gi : Rn × R
m → R being continuously differentiable and

quasi-convex in z. Consider the probability function

ϕ(x) := P (ω ∈ � : gi(x, ξ(ω)) ≤ 0, ∀i = 1, . . . , s) . (38)

Associated with a point of interest x̄ such that gi(x̄,0) < 0, we define the finite and infinite
directions with respect to g as the sets defined by

Fgi
(x̄) := {v ∈ S

m−1 : ∃r ≥ 0 : gi(x̄, rLv) = 0},
Igi

(x̄) := {v ∈ S
m−1 : ∀r ≥ 0 : gi(x̄, rLv) < 0},

respectively. We also consider

Fg(x̄) := {v ∈ S
m−1 : ∃r ≥ 0 : g(x̄, rLv) = 0},

where g(x, z) = max
1≤i≤s

gi(x, z) and the radial functions

ρgi
(x, v) := sup{r > 0 : gi(x, rLv) ≤ 0},

and

ρg(x, v) := min
1≤i≤s

ρgi
(x, v).

Definition 3 (η-growth condition for inequality systems) Let η : R → [0,+∞) be as in
Definition 1. We say that the family of continuously differentiable mappings {gi}s

i=1 satisfies
the η-growth condition at x̄ if for some l > 0,

{∇zgi(x, z) �= 0 and
‖∇xgi(x, z)‖ ≤ lη(‖z‖)‖∇zgi(x, z)‖, ∀x ∈ B1/l(x̄), ∀z ∈ {z′ : gi(x, z′) = 0}

for all i = 1, . . . , s.
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Corollary 3 Let us suppose that ξ has continuous density function. Suppose that a point of
interest x̄ is such that gi(x̄,0) < 0 for all i = 1, . . . , s and that the family gi satisfies the η-
growth condition given in Definition 3 at x̄. Assume, moreover, that int{z ∈ R

m : gi(x, z) ≤
0} = {z ∈ R

m : gi(x, z) < 0} for all i = 1, . . . , s and all x in some neighbourhood of x̄. Then
the probability function (38) is locally Lipschitz around x ∈ U ′ and

∂ϕ(x) ⊆
∫

Fg(x)

⋃

i∈Tx(v)

θ(ρg(x, v), v)∇xgi(x, ρg(x, v)Lv)

〈∇zgi(x, ρg(x, v)Lv),Lv〉 dμζ (v), for all x ∈ U ′ (39)

where Tx(v) = {i ∈ {1, . . . , s} : ρgi
(x, v) = ρg(x, v)}. Furthermore, if #Tx(v) = 1 for a.e.

v ∈ Fg(x), for all x ∈ U ′, then the probability function (38) is continuously differentiable
for all x ∈ U ′ and

∇ϕ(x) = −
∫

Fg(x̄)

θ(ρ(x, v), v)
∇xgTx(v)(x, ρg(x, v)Lv)

〈∇zgTx(v)(x, ρg(x, v)Lv),Lv〉dμζ (v), for all x ∈ U ′. (40)

Proof It Follows from Corollary 2 with gi = �i and Ci = (−∞,0]. Here, it is easy
to see that κi(x, z) = ‖∇zgi(x, z)‖ and NCi

(gi(x, z)) = {λ ≥ 0 : λgi(x, z) = 0}. Clearly
Igi

(x) = I�i
(x) entailing Fgi

(x) = F�i
(x). Hence (39) follows from (36). Furthermore,

when #Tx(v) = 1 a.s. v ∈ Fg(x), then the subdifferential of ϕ reduces to a singleton, so
(40) follows due to [22, Theorem 4.17]. �

Remark 3 (On the abstract singleton active set requirement) We say that the inequality
system gi(x, z) ≤ 0 for all i = 1, . . . , s satisfies the rank-2-contraint qualification at x ∈ R

n

if

rank
{∇zgi(x, z),∇zgj (x, z)

}= 2,

for all i, j ∈ {1, . . . , n} such that gj (x, z) = gi(x, z) = 0 and for all z ∈ R
n such that

gi(x, z) ≤ 0 for all i = 1, . . . , s. In [9] it was shown that if the rank-2-constraint qualification
condition is satisfied locally around x̄, that then the additional condition for the continuous
differentiability of ϕ in Corollary 3, i.e. #Tx(v) = 1 for a.e. v ∈ Fg(x) holds locally around
x̄.

Example 4 Consider the separate variable function g : Rm × R
m → R given by g(x, z) =

f (x) + 1
2 ln(1 + ∣

∣cTz
∣
∣2) and ξ ∼ N (0,R), where h is a continuously differentiable function

and c ∈ R
m\{0}. Hence, the function g is continuously differentiable and quasi-convex but

not convex in z. Moreover, at a point x̄ where f (x̄) < 0. We have that g(x̄,0) < 0 and
∇zg(x, z) = c�z

1+∣∣cTz
∣
∣2

c, then

‖∇zg(x, z)‖ ≥ (
e−2f (x) − 1

)1/2 ‖c‖

for all z ∈ {z′ : g(x, z′) = 0} and x ∈ f −1(−∞, f (x̄)/2). The above shows that the η-growth
condition for inequality systems given in Definition (3) holds at x̄. Furthermore, it is straight-
forward that int{z ∈ R

m : gi(x, z) ≤ 0} = {z ∈R
m : gi(x, z) < 0} for all x closed enough to x̄.

Consequently, by Corollary 3 we have that the probability function ϕ(x) := P[g(x, ξ) ≤ 0}]
is continuously differentiable at x̄.
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5 Application to Energy Management

Optimization problems involving probabilistic constraints have been popular in energy man-
agement problems. It is indeed so, since the latter constraints offer an intuitive representation
of uncertainty. Depending on the context, various resolution strategies have been investi-
gated, most of which not based on non-linear programming approaches trying to deal with
the probability function “as is”. The classic non-linear programming approach has also been
investigated for these problems and found useful. It is typically the case that very precise
solutions can be found with it. Here precise means - feasible solutions offering a good bal-
ance between computational cost and conservativeness. Depending on the nature of possibly
competing approximations, a difficult-to-find balance has to be found between computa-
tional cost and obtaining a feasible solution. This is especially true when the random vector
is replaced with a discrete sample and the overarching problem with a combinatorial ver-
sion of it, i.e., selecting the subsets of samples on which to enforce the constraints. Here,
typically for small sample sizes, depending on the overall underlying structure fast computa-
tions can be achieved, but at the cost of yielding a typically unfeasible solution. In contrast,
in order to achieve a “feasible solution”, a very large sample size is required. This increases
computational time significantly, thus allowing for much room for approaches alternative to
sampling to be competitive. This is particularly the case for the classic non-linear program-
ming approach. Although here it is not our intention to provide a numerical assessment of
alternatives, this discussion does show the interest for examining the non-linear program-
ming approach.

We will now present a possible structure arising in energy management that fits the
overall scheme presented in this paper. To this end we will consider a set of time instants
t = 1, . . . , T and energy system involving a (or several) classic generators generating p

g
t

(MW) at time t as well as a wind turbine generating pw
t (MW). The system also has a cus-

tomer load (MW) that needs to be satisfied at each time step. We will make the assumption
that a wind turbine has a cubic dependency on underlying wind speed, see e.g., [33] and that
it is reasonable to represent the latter using a Gaussian random vector. Similarly, customer
load can be represented using a Gaussian random vector as well. We can thus assume that we
are given ξ ∈ R

2T , where ξ = (ξ1, ξ2) and ξ1 ∈ R
T represents wind speed, whereas ξ2 ∈ R

T

represents customer load. It is particularly worthwhile to highlight that using this structure
allows us to naturally represent the dependency between wind and load - recalling that this
is meaningful since both depend on the underlying climate as load depends partially on tem-
perature. We will now assume that the amount of power that the turbine generates has to be
allocated to the satisfaction of load prior to actually observing the amount generated. Any
excess generation will be assumed to be curtailed. Likewise, the amount of power generated
through the conventional generator(s) has to be decided upon prior to observing load. The
underlying inequality system will be of the form:

pw
t ≤ c(z1

t )
3, t = 1, . . . , T

pw
t + p

g
t ≥ z2

t , t = 1, . . . , T (41)

0 ≤ z1
t , t = 1, . . . , T .

Upon observing that the term (z1
t )

3 can likewise be written as (z1
t )

4/z1
t , one can equally write

pw
t + c(z1

t )4

−z1
t

≤ 0 as the first inequality. It is so that the given fraction is, as function of z, quasi-

convex, resulting from the division of a convex map by a concave one. The last constraint,
stating that wind-speed should be positive, ensures that the system is well defined on the
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relevant set of variables. The conventional generator can be assumed to have a proportional
cost of generation c

g
t in e/MW . As a result we would be facing an optimization problem of

the form:

min
pw,pg

T∑

t=1

c
g
t p

g
t

s.t. P[(41) holds with ξ as z] ≥ p,

pw ∈ P W,pg ∈ P g,

where P w , P g represent classic constraints such as physical limitations on generation in-
duced by the installed capacity. With the help of Corollary 3 a first order optimization ap-
proach for the latter problem can be set up. A particularly favorable approach is the recently
developed DCWC algorithm [34]. However, due to the non-convex nature of the just pro-
vided optimization problem, at best, a local solution, in fact a weaker so called critical point
can be expected. This is the nature of the situation.

We have set up a concrete instance of the given optimization problem. To this end we
have taken T = 4, c = 0.032 (see [33]), μ = (μ1,μ2), with each component of μ1 having
the value 4.23 and each component of μ2 having the value 10. The “wind” random variable
is supposed to be auto-correlated with coefficient 0.96 and the “load” one with coefficient
0.8. Wind and load themselves are negatively correlated with coefficient −0.3. The total
2T × 2T correlation matrix thus has a specific 2 × 2 block structure where the (1,2) block
is the pointwise product of appropriate elements in the (1,1) and (2,2) block and −0.3.
The (2,1) block is set up symmetrically. The variances v = (v1, v2) consists of two constant
vectors, the first with elements 1.54, the second the all-one vector. The cost cg is set as
follows: cg = 5. Finally the decision vector has a lower and upper bound, 0 ≤ pw

t ≤ 8,
0 ≤ p

g
t ≤ 20. The probability level was taken to be p = 0.8.

The DCWC algorithm manages to solve the problem finding a high quality numerically
almost feasible solution after about 130 iterations. The total number of iterations to reach
convergence is 907. The found solution is found to exactly have a probability value of 0.8.

6 Conclusions

In this paper we have given gradient formulæ of probability functions of which one of the
main ingredients is a set-valued application. We have managed to establish under reasonable
assumptions generalized differentiability of the latter probability functions with respect to
the external parameter playing the role of the argument of the set-valued maps. The given
results allow us to extend previous works investigating first order properties of probability
functions. Moreover we have put the resulting formulæ to use within the context of a given
algorithm. This demonstrates the practicality as well.

Appendix. Spherical Radial Decomposition for Nonsmooth Inequality
Constraints

The intention of this section is to provide an extension of [16, Theorem 3.1] to the infinite
dimensional nonsmooth setting. Given a family of functions gi : X × R

m → R with i =
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1, . . . , s, the probability function that we consider here is

ϕ(x) := P[{ω ∈ � : gi(x, ξ(ω)) ≤ 0∀i = 1, . . . , s}], (A1)

where ξ is a m-dimensional random vector admitting a density called fξ with respect to the
Lebesgue measure λm. Let us recall that fξ is assumed bounded on compact sets (see (5)).

Using the spherical radial decomposition we get that

ϕ(x) =
∫

Sm−1

e(x, v)dμζ (v),

where e : X × S
m−1 →R∪ {∞} is the radial probability-like function given by

e(x, v) =
∫

{r≥0:g(x,rLv)≤0}
θ(r, v)dr,

where g(x, z) := max{gi(x, z) : i = 1, . . . , s} and θ is the density-like function defined in
(7). Given a point of interest x̄ we assume that on a neighborhood U of x̄ we have that
gi is locally Lipschitz around any (x, z) ∈ U × R

m, convex in the second variable for all
i = 1, . . . , s, and that

gi(x,0) < 0, for all x ∈ U and i = 1, . . . , s. (A2)

For x ∈ U we define the sets of finite and infinite directions with respect to gi as

Fgi
(x) := {v ∈ S

m−1 : ∃r ≥ 0 : gi(x, rLv) = 0}, (A3)

Igi
(x) := {v ∈ S

m−1 : ∀r ≥ 0 : gi(x, rLv) < 0}, (A4)

respectively. The finite and infinite directions with respect to g can be defined analogously
and in fact they identify with Fg(x) = ∪s

i=1Fgi
(x) and Ig(x) = ∩s

i=1Igi
(x).

Now, let us define the radial functions

ρgi
(x, v) := sup {r > 0 : gi(x, rLv) ≤ 0} for all i = 1, . . . , s, (A5)

and

ρg(x, v) = min{ρgi
(x, v) : i = 1, . . . , s}. (A6)

Finally, let us denote the active set at (x, v) with ρg(x, v) < +∞ as

Tx(v) := {i = 1, . . . , s : ρgi
(x, v) = ρg(x, v)}.

The following lemma corresponds to a generalization of [16, Lemma 3.4].

Lemma 10 Let x ∈ U be given, then we have that

∂xρgi
(x, v) ⊆ −cl co

{
1

〈z∗,Lv〉x
∗ : (x∗, z∗) ∈ ∂gi(x,ρgi

(x, v)Lv)

}

, (A7)

for all i = 1, . . . , s and v ∈ Fgi
(x) Moreover,

∂xρg(x, v) ⊆ −cl co

{
1

〈z∗,Lv〉x
∗ : (x∗, z∗) ∈ ∂gi(x,ρg(x, v)Lv)

and i ∈ Tx(v)

}

. (A8)
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Proof Fix x̄ ∈ U , i ∈ {1, . . . , s} and v̄ ∈ Fgi
(x̄). To obtain (A7) let us first prove that for

every y∗ ∈ ∂xρgi
(x̄, v̄) and every w ∈ X , there exists (x∗, z∗) ∈ ∂gi(x̄, ρgi

(x̄, v̄)Lv̄) such
that

〈y∗,w〉 ≤ −1

〈z∗,Lv̄〉 〈x
∗,w〉.

By continuity of ρgi
(see [17, Lemma 1]) and since gi are locally Lipschitz, there exists

ε′ > 0 such that for every x ∈ Bε′(x̄) and z ∈ Bε′(ρgi
(x̄, v̄)Lv̄) we have that

ρgi
(x, v̄) ≤ M , gi(x,0) ≤ −γ (A9)

and

∂gi(x, z) ⊆ rB∗ (A10)

for some constants γ,M, r > 0. Now, let δ < ε′ be such thatρgi
(x, v̄)Lv ∈ Bε′/3(ρgi

(x̄,

v̄)Lv) for all x ∈ Bδ/3(x̄).
We claim that for every y∗ ∈ ∂̂xρgi

(x, v̄) with x ∈ Bδ/3(x̄) and every w ∈ X there exists
(x∗, z∗) ∈ ∂gi(x,ρgi

(x, v̄)Lv̄) such that

〈y∗,w〉 ≤ −1

〈z∗,Lv̄〉 〈x
∗,w〉.

To see this, let w ∈ X and consider tk → 0+ such that

x + tkw ∈ Bδ/3(x̄) and ρgi
(x + tkw, v̄)Lv̄ ∈ Bδ/3(ρgi

(x, v̄)Lv̄), for all k.

Applying the mean value inequality in [20, Corollary 3.51] we get

gi(x + tkw,ρgi
(x + tkw, v̄)Lv̄) − gi(x,ρgi

(x, v̄)Lv̄) ≤
− tk〈x∗

k ,w〉 + [ρgi
(x, v̄) − ρgi

(x + tkw, v̄)]〈z∗
k ,Lv̄〉,

for some

(x∗
k , z

∗
k) ∈ ∂gi(xk, zk)

with

xk ∈ [x + tkw, x) and zk ∈ [ρgi
(x + tkw, v̄)Lv̄, ρgi

(x, v̄)Lv̄
)
.

Hence, taking into account, from the definition of ρi , that

gi(x,ρgi
(x, v̄)Lv̄) = 0 and gi(x + tkw,ρgi

(x + tkw, v̄)Lv̄) = 0,

it follows that

[ρgi
(x + tkw, v̄) − ρgi

(x, v̄)]〈z∗
k ,Lv̄〉 ≤ −tk〈x∗

k ,w〉.
Considering εk → 0+ with εk < δ/3 for all k, by definition of the basic subdifferential we
have that there exists (x̂∗

k , ẑ
∗
k) ∈ ∂̂gi(x̂k, ẑk) with ‖x̂k −xk‖ ≤ εk , ‖ẑk − zk‖ ≤ εk , ‖ẑ∗

k − z∗
k‖ ≤

εk and such that

ρgi
(x + tkw, v̄) − ρgi

(x, v̄)

tk
〈z∗

k ,Lv̄〉 ≤ −(〈x̂∗
k ,w〉 − εk). (A11)
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Now using (A10), we have that ‖x̂∗
k ‖ ≤ r and ‖ẑ∗

k‖ ≤ r . Since X is reflexive there exists
a subsequence (x̂∗

nk
, ẑ∗

nk
) and some (x∗, z∗) ∈ X × R

m such that x̂∗
nk

⇀k x∗ and ẑ∗
nk

→ z∗.
Thus, by taking inferior limit in (A11), we obtain that

lim inf
k→∞

ρgi
(x + tkw, v̄) − ρgi

(x, v̄)

tk
〈z∗,Lv̄〉 ≤ −〈x∗,w〉,

where (x∗, z∗) ∈ ∂gi(x,ρgi
(x, v̄)Lv̄). Now, by Lemma [35, Lemma 4.8], z∗ ∈ ∂zgi(x,

ρgi
(x, v̄)Lv̄)). Hence, by [17, Lemma 3] together with (A9), we have that 〈z∗,Lv̄〉 > 0.

Therefore, by recalling the definition of the regular subdifferential, we have that

〈y∗,w〉〈z∗,Lv̄〉 ≤ −〈x∗,w〉,
concluding the proof of the claim.

Now, let y∗ ∈ ∂xρgi
(x̄, v̄). Then there exist y∗

l → y∗ and xl → x̄ with y∗
l ∈ ∂̂xρgi

(xl, v̄).
For l large enough such that ‖xl − x̄‖ ≤ δ/3 we apply the claim proved above to obtain that
there exists (x∗

l , z
∗
l ) ∈ ∂gi(xl, ρgi

(xl, v̄)Lv̄) such that

〈y∗
l ,w〉 ≤ −1

〈z∗
l ,Lv̄〉 〈x

∗
l ,w〉.

By definition of the basic subdifferential and considering εl → 0+ with εl < δ/3 for all l,
there exists (x̂∗

l , ẑ
∗
l ) ∈ ∂̂gi(x̂l , ẑl) with ‖x̂l − xl‖ ≤ εl , ‖ẑl − ρgi

(xl, v̄)Lv̄ + z̄‖ ≤ εl , ‖ẑ∗
l −

z∗
l ‖ ≤ εl and such that

〈y∗
l ,w〉 ≤ −1

〈z∗
l ,Lv̄〉 (〈x̂

∗
l ,w〉 − εl). (A12)

Again, using (A10) we obtain that (under subsequence) (x̂∗
l , ẑ

∗
l ) ⇀l (x∗, z∗) ∈ ∂gi(x̄, ρgi

(x̄,

v̄)Lv̄). Therefore, letting l → ∞ in (A12), we conclude that

〈y∗,w〉 ≤ −1

〈z∗,Lv̄〉 〈x
∗,w〉,

for some (x∗, z∗) ∈ ∂gi(x̄, ρgi
(x̄, v̄)Lv̄). Let us notice that this last result implies that

〈y∗,w〉 ≤ σA(x̄,v̄)(w) for all y∗ ∈ ∂xρgi
(x̄, v̄) and for all w ∈ X ,

where

A(x̄, v̄) :=
{ −1

〈z∗,Lv̄〉x
∗ : (x∗, z∗) ∈ ∂gi(x̄, ρgi

(x̄, v̄)Lv̄)

}

.

Therefore, σ∂xρg(x̄,v̄)(w) ≤ σA(x̄,v̄)(w), for all w ∈ X , which entails (A7) due to [25, Theorem
2.4.14 (vi)]. Finally, (A8) follows from [20, Proposition 1.113]. �

Let us recall the function Iθ :R+ × S
m−1 ⇒R+ given in (8) by

Iθ (r, v) := [θ(r, v), θ+(r, v)] ∪ [θ−(r, v), θ(r, v)], (A13)

where, θ , θ̄+, θ and θ− were defined in (9). As deduced in [16], property (5) implies that

Iθ (r, v) ⊆ [0, θ(r, v)] ⊆ [0,+∞). (A14)
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Furthermore, from the definition of θ(r, v), we have

θ(r, v) ≤ Mθ, ∀r ≤ M, and v ∈ S
m−1 (A15)

where Mθ is the (finite) constant defined by

Mθ := esssup
(r,v)∈[0,M+1]×Sm−1

θ(r, v).

Definition 4 (ηθ -growth condition) Consider x̄ ∈ U and v̄ ∈ Ig(x̄). Let ηθ : R × S
m−1 →

[0,+∞] be a mapping such that

lim
x→x̄
v→v̄

ρg(x, v)θ̄(ρg(x, v), v)ηθ (ρg(x, v), v) = 0.

We say that the family of mappings {gi}s
i=1 satisfies the ηθ -growth condition at (x̄, v̄) if

for some l > 0,

‖πx(∂gi(x, ρg(x, v)Lv))‖ ≤ lηθ (ρg(x, v), v), ∀;
for all (x, v) ∈ B1/l(x̄) × B1/l(v̄), v ∈ F(x) and i ∈ Tx(v), where ‖πx(∂gi(x, ρgi

(x,

v)Lv))‖ := sup{‖x∗‖ : (x∗, z∗) ∈ ∂gi(x,ρgi
(x, v)Lv) for some z∗}.

Theorem 3 Let x̄ ∈ X be given and assume that the family of mappings {gi}s
i=1 satisfies the

ηθ -growth condition at (x̄, v) for all v ∈ Ig(x̄) and that (A2) holds true. Then the probability
function (A1) is locally Lipschitz around x̄ and

∂ϕ(x̄) ⊆ −clw
∗

⎛

⎝

∫

Sm−1

G(x̄, v)dμζ (v)

⎞

⎠ , (A16)

where

G(x, v) =

⎧
⎪⎨

⎪⎩

{
α

〈z∗,Lv〉x
∗ : (x∗, z∗) ∈ ∂gi(x,ρg (x, v)Lv)

i ∈ Tx(v), α ∈ Iθ (ρg(x, v), v)

}

, if v ∈ Fg(x),

{0}, if v ∈ Ig(x),

with Iθ given by (A13). Moreover, the closure operator can be omitted in (A16) if X is
finite-dimensional.

Proof First let us notice that due to Lemma 10 and [16, Proposition 3.2] we have that
∂xe(x, v) ⊂ −cl coG(x, v) for all x ∈ U and all v ∈ Fg(x). Moreover, similarly as in [16,
Proposition 3.4 i)], ∂̂xe(x, v) ⊆ {0} = −cl coG(x, v) if v ∈ Ig(x).

Claim 1: For every fixed v̄ ∈ S
m−1 with v̄ ∈ Fg(x̄), there exist neighborhoods Uv̄ of x̄

and Vv̄ of v̄ and Kv̄ > 0 such that

∂xe(x, v) ⊂ −cl coG(x, v) ⊆ Kv̄B
∗ for all (x, v) ∈ Uv̄ × Vv̄.

By the continuity of ρ (see [17, Lemma 1]) there exist neighborhoods Uv̄ of x̄, Vv̄ of
v̄ and a constant M > 0 such that ρg(x, v) ≤ M and g(x,0) < 0 for all (x, v) ∈ Uv̄ × Vv̄ .
Hence, it follows that

∂xe(x, v) ⊂ cl coG(x, v) for all (x, v) ∈ Uv̄ × Vv̄. (A17)
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Now, for each (x∗, z∗) ∈ ∂gi(x,ρg (x, v)Lv) in (A17) we have that z∗ ∈ ∂zgi(x, ρg (x, v)Lv)

(see [35, Lemma 4.8]) and in consequence (see [17, Lemma 3])

〈z∗,Lv〉 ≥ − gi(x,0)

ρg(x, v)
> 0.

Hence, by (A17) and (A14), for each y∗ ∈ ∂xe(x, v) there exists (x∗, z∗) ∈ ∂gi(x,ρg(x,

v)Lv) with i ∈ Tx(v) such that

‖y∗‖ ≤ −1

|gi(x,0)|ρg(x, v)θ(ρg(x, v), v)‖x∗‖

Therefore, by (A15), the continuity of ρg and the fact that the functions gi are locally Lips-
chitz, we conclude the claim.

Claim 2: For every fixed v̄ ∈ S
m−1 with v̄ ∈ Ig(x̄) and ε > 0, there exist neighborhoods

Uv̄ of x̄ and Vv̄ of v̄ such that

∂̂xe(x, v) ⊆ −cl coG(x, v) ⊆ εB∗ for all (x, v) ∈ Uv̄ × Vv̄.

Let ε > 0 and consider l > 0 given by the ηθ -growth condition in Definition 4. By conti-
nuity of ρg (see [17, Lemma 1]), there exist neighborhoods Uv̄ of x̄ and Vv̄ of v̄, contained
in B1/l(x̄) and B1/l(v̄) respectively, such that

ρg(x, v) ≥ l and ρg(x, v)θ̄(ρg(x, v), v)ηθ (ρg(x, v), v) ≤ ε′ for all (x, v) ∈ Uv̄ × Vv̄.

where ε′ := (supx∈U
1

|g(x,0)| )
−1ε. Now, when v ∈ Fg(x), we may follow as in Claim 1 to

obtain

α

|〈z∗,Lv〉| ‖x
∗‖ ≤ 1

|g(x,0)|ρg(x, v)θ̄(ρg(x, v), v)ηθ (ρ(x, v), v) ≤ ε,

which proves that cl coG(x, v) ⊆ εB∗ for all (x, v) ∈ Uv̄ × Vv̄ . Finally, the first inclusion
follows from the first paragraph of the proof.

Claim 3: For every fixed v̄ ∈ S
m−1 with v̄ ∈ Ig(x̄) we have that

∂xe(x̄, v̄) ⊆ {0} = −cl coG(x̄, v̄).

Let y∗ ∈ ∂xe(x̄, v̄) and choose xn → x̄ and y∗
n ⇀ y∗ with y∗

n ∈ ∂̂xe(xn, v̄). Considering a
sequence εn → 0+ and claim 2 with εn we obtain that y∗ = 0.

Claim 4: There exists a neighborhood U ′ of x̄ such that

∂̂xe(x, v) ⊆ κB∗ for all (x, v) ∈ U ′ × S
m−1.

Indeed, by claims 1 and 2, we have that for every fixed v̄ ∈ S
m−1 there exist neighbor-

hoods Uv̄ of x̄ and Vv̄ of v̄ and Kv̄ > 0 such that

∂̂xe(x, v) ⊆ Kv̄B
∗ for all (x, v) ∈ Uv̄ × Vv̄.

Now, since the family of neighborhoods Vv̄ covers the compact set Sm−1 we can pick a
finite subcover, that is, there exists N ∈ N and some v1, . . . , vN ∈ S

m−1 such that

S
m−1 ⊂

N⋃

i=1

Vvi
.
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Therefore, we choose a neighborhood U ′ of x̄ such that

U ′ ⊂
N⋂

i=1

Uvi

and define κ := max{Kvi
: i = 1 . . . ,N} to conclude the claim.

Claim 5: Now by [17, Proposition 3], it follows that the probability function (A1) is
locally Lipschitz around x̄ and

∂ϕ(x̄) ⊆ −clw
∗
(∫

Sm−1
cl coG(x̄, v)dμζ (v)

)

.

From [36, Corollary 4.4] together with claim 4 we obtain the inclusion

∂ϕ(x̄) ⊆ clw
∗
(∫

Sm−1
∂xe(x̄, v)dμζ (v)

)

.

Hence, by the first paragraph of the proof together with claim 3, it follows that ∂xe(x̄, v) ⊆
−cl coG(x̄, v), concluding the proof of the claim.

Claim 6: The inclusion (A16) holds. Notice that G(x, v) is integrably bounded (see [37,
p. 326]) by claims 1 and 2. Therefore, the claim follows as a consequence of [37, Theorem
8.6.4] since X is a separable reflexive Banach space and μζ is nonatomic. �

We are now in measure to apply the just given Theorem 3 in the setting of Sect. 3.
Proof of Theorem 1 Let us notice that the probability function (10) can be written as

ϕε(x) := P(ω ∈ � : g(x, ξ(ω)) ≤ 0),

where g(x, z) := max{gi(x, z) : i = 1, . . . , s} and gi(x, z) = 1
2 d2(z,Si (x)) − ε2

2 . Let us
prove that the assumptions of Theorem 3 are satisfied. Indeed, by Assumption (H) we have
that gi(x,0) = − ε2

2 < 0 and that the gi
′s are convex in the second variable. Due to Lemma

1 the functions gi
′s are locally Lipschitz around (x, z) ∈ U × R

m. Also, by Lemma 6 Item
f ), the sets of finite direction Fi defined in (11) coincide with the sets of finite directions
Fgi

(x) defined in (A3). That is, Fi (x) = Fgi
(x), and so, by taking complements we also

have that Ii (x) = Igi
(x) where Ii(x) is the set of infinite directions defined in (A4) and

Ii (x) is defined in (12). As a consequence the set of finite and infinite directions defined
in (13) and (14), respectively, coincide with the sets of directions defined in this Appendix,
that is, F(x) = Fg(x) and I(x) = Ig(x). The radial functions ρε

i (x, v) are equal to the ra-
dial functions defined in (A5), and so, ρε(x, v) is equal to the radial function defined in
(A6). Now, let us prove that the family of functions g′

i s that we defined above satisfy the
ηθ -growth condition given in Definition 4 for all v ∈ I(x̄). Consider v̄ ∈ I(x̄). Since, the
family of set-valued mappings Si satisfies the η-growth condition for set-valued mappings
at x̄, we have that there exists l̂ > 0 such that the family Si satisfies (19). Let us set l := l̂ε

and consider (x, v) ∈ B1/l(x̄) ×B1/l(v̄) with v ∈ F(x) and ρi
ε(x, v) ≥ l with i ∈ T ε

x (v). Let
us notice that ‖zx,v

ε −PSi (x)(z
x,v
ε )‖ = ε, where zx,v

ε is defined in (21). Now, by Lemma 1, the
fact that η is nondecreasing, PSi (x)(0) = 0 and by the non-expansiveness of the projection
mapping we obtain the following sequence of inequalities

‖πx(∂xgi(x, zx,v
ε ))‖ ≤ ‖D∗Si (x,PSi (x)(z

x,v
ε ))‖ε ≤ l̂εη(‖PSi (x)(z

x,v
ε )‖) ≤ lη(‖zx,v

ε ‖).
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Hence it is enough to consider ηθ (ρε(x, v), v) = η(‖zx,v
ε ‖). Therefore, using Theorem 3 and

the fact that

G(x, v) = Mε(x, v)

for all v ∈ S
m−1, we conclude that ϕε is locally Lipschitz around x̄ and that

∂ϕε(x̄) ⊆ −clw
∗
(∫

Sm−1
Mε(x̄, v)dμζ (v)

)

.

Finally, upon noticing that the family of set-valued mappings Si satisfies the η-growth condi-
tion for set-valued mappings at all x ∈ U ′ := B 1

2l̂

(x̄) or more specifically the family satisfies

(19) with 3l̂, we obtain (22) where without loss of generality we considered l̂ large enough
such that U ′ ⊂ U .
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