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Abstract
We develop a new epi-convergence based on the use of bounded convergent nets on the
product topology of the strong topology on the primal space and weak star topology on the
dual space of a general real Banach space. We study the propagation of the associated varia-
tional convergences through conjugation of convex functions defined on this product space.
These results are then applied to the problem of construction of a bigger-conjugate repre-
sentative function for the recession operator associated with a maximal monotone operator
on this real Banach space. This is then used to study the relationship between the recession
operator of a maximal monotone operator and the normal–cone operator associated with the
closed, convex hull of the domain of that monotone operator. This allows us to show that the
strong closure of the domain of any maximal monotone operator is convex in a general real
Banach space.

Keywords Maximal monotone operators · Representative functions · Almost convexity ·
Recession operators

Mathematics Subject Classification 47H05 · 46N10 · 47H04 · 49J53

Introduction

Monotone operators have attracted the attention of researchers for many decades due to
their important place in the theory of functional analysis and optimisation [2, 26, 30] and
[3]. In [18, 21] Martínez-Legaz, Svaiter and Penot pioneered the use of monotone operator
theory using representative functions, a tool which has come to be indispensable for the
study of this topic. Representative functions are proper convex functions on X × X∗ that
characterise their associated monotone operator as the set of points of coincidence with the
duality pairing. Indeed for any representative function this contact set is always a monotone
set and so each representative function represents a given monotone operator. The notion of
a representative function was introduced by Fitzpatrick in [14] where he gives an explicit
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formula for the minimal such function which is now called the Fitzpatrick representative
function which may be used to represent any maximal monotone operator.

When one constructs a monotone operator from other maximal monotone operators the
question arises as to how to obtain a representative function for the resultant operator, based
on the knowledge of the Fitzpatrick function of the constituent maximal monotone operators.
There have been many studies that have covered this issue from the point-of-view of certain
binary operations of convex analysis [2, 30, 33] (and other references contained therein) but
we wish, here, to single out constructions where we have a family of monotone operators
and take a set-valued limit in the construction [15, 16, 19, 20, 22–24, 27]. The content of the
last list of publications is much more varied in the nature of the convergences that are used
in these constructions. Moreover, the spaces on which these constructions work are often
affected by the convergence used, and the desired interaction of these convergences with
conjugation (a necessary tool in the use of representative functions and convex analysis to
study monotonicity). This has often resulted at least in one of two restrictive assumptions.
The convergence is defined via a strong metric characterization (and possibly other addi-
tional assumptions on the family) or the space is assumed to be reflexive where conjugation
is characterised in a fashion consistent with imposition of strong topologies on the primal
space X × X∗ and weak topologies on the dual space (X × X∗)∗† = X × X∗ (the conjugate
transpose operation).

When X is reflexive, we conveniently find that the closures of a convex set with respect
to all combinations of weak and strong product topologies that are possible for a convex
set C ⊆ X × X∗, all coincide due to the coincidence of the weak and weak∗ topologies and
coincidence of the strong and weak continuous linear forms. Outside of a reflexive space
this happy situation is completely missing and we must face the issue of compatibility of
convergences and duality (and hence conjugacy) directly. This endeavour constitutes part of
the study undertaken in this paper.

In this paper we also continue the study the recession operator [5, 13, 25] associated with
any monotone operator T . We will focus on a construction of a bigger–conjugate represen-
tative function for the recession operator of a maximal monotone operator T .

Definition 1 Let T : X ⇒ X∗ be an operator. The recession operator, recT : X ⇒ X∗ (see
[5] for a sequential version)

(recT ) (z) := {z∗ ∈ X∗ | ∃tα → 0+,
(
zα, z

∗
α

) ∈ T such that
(
zα, tαz

∗
α

)→s×bdw∗ (
z, z∗)},

where zα →s z denote strong (norm) convergence in X along the net and tαz
∗
α →w∗

z∗ de-
notes weak∗ convergence in the dual space X∗ and

(
zα, tαz

∗
α

)→s×bdw∗
(z, z∗) denotes this

joint convergence with norm bounded nets.

One of the reason for interest in this operator is that it provides a natural connection
between the domain of the original maximal monotone operator T and its strong closure in
that it is shown in [13, Lemma 11] that dom (recT ) = domT .

In our study we single out a particular subclass of representative functions for study,
those whose conjugate–transpose are pointwise larger that the original representative func-
tion. This class of bigger–conjugate representative functions interact with closure operations
in interesting ways [13, Theorem 8]. In this paper we show how one may construct bigger–
conjugate representative functions from the Fitzpatrick function of the original maximal
monotone operator T that represents the recession monotone operator recT , in the sense
that the set-of-contact with the duality product (the set which it represents) contains the
graph of recT . Indeed the monotone operator it represents is Nco domT , where co domT de-
notes the (strong) convex closure of the domain of T . Indeed whenever recT is maximal this
result implies co domT = domT . Convexity of the closure of the domain, for a monotone
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operator, is here referred to as the almost convexity property. We note that the maximality of
recT for maximal operators T has already been shown to be true in reflexive spaces in [11],
providing a another proof of the almost–convexity property in this context. The almost–
convexity problem is important for two reasons: 1) its resolution would be helpful as a tool
to aid studies of the sum theorem (where domain assumptions can be essential); 2) a coun-
terexample to almost–convexity for a maximal monotone operator is also a counterexample
to the sum theorem (it is well known that if the sum theorem holds in a given Banach space,
then on this space maximal monotone operators possess the almost–convexity property).
We provide necessary and sufficient condition for almost–convexity similar to the necessary
conditions used in [30] and the related works of [6] and these conditions also generalise the
recent result of [32] (which only applied to bounded domains). We go on to establish the
almost–convexity for maximal monotone operators on any real Banach space, establishing
a long-held conjecture.

The main obstacle to the program revolves around the study of the variational conver-
gence of convex functions on X × X∗ with respect to an epi-convergence based on bounded
s × w∗-convergent nets. This being a convergence that is not (in general) induced by a
topology, we need to undertake a study of its interaction with conjugation (based on X ×X∗
endowed with the s × w∗ topology paired with X∗ ×X, endowed with the w∗ × s topology).
This requires the building of a theory of epi-convergence based on this new convergence
notion. The primary target is the development of some result on the propagation of these
variational convergences through conjugation. This allows us to demonstrate that the repre-
sentative function we construct is indeed bigger–conjugate and also allows us to obtain an
explicit formula for it.

The paper is organised as follows: basic definitions are given in Sect. 1, in Sect. 2 we
begin our discussion of the “closure operation” induced by the convergence of bounded
strong×weak∗ convergent nets on X × X∗. In Sect. 3 we define the variational s × bdw∗-
convergence concept and consider the problem of characterising the convergence for mono-
tone families of convex functions. Section 4 is devoted to the study of the propagation of the
conjugation operation through s × bdw∗-epiconvergence of variational convergent families.
In Sect. 5 we summarise some tools we use from monotone operator theory. In Sect. 6 we
carry the construction of the bigger–conjugate representative function discussed above. Fi-
nally in Sects. 7 and 8 we use these tools to study the almost convexity property for maximal
monotone operators. In the final Sect. 8 we provide a proof of almost–convexity.

1 Preliminaries

We denote by X a real Banach space and X∗ is its topological dual, paired via the duality
product 〈x, x∗〉 : X × X∗ → R. In this and the papers [11, 13] all topological closures of
set in X × X∗ are with respect to the s × w∗ topology so as to respect the basic duality
relationships for conjugation on X × X∗ paired with X∗ × X, with the latter endowed with
the w∗ × s topology. The interior of a set C ⊆ X is denoted by intC and its (strong) closure
by C. The convex hull of a set T ⊆ X × X∗ (which is often identified with the graph of the
associated operator T : X ⇒ X∗ taking x ∈ X to T (x) ⊆ X∗) will be denoted by coT and
the convex (s × w∗)-closure by coT . The complement of set T (in the ambient space) will
be denoted T c . The indicator function δC (x) of a set C ⊆ X takes the value 0 for x ∈ C and
+∞ otherwise. Denote by † : (x∗, x) ↔ (x, x∗) the transpose operator. We denote both the
s × w∗ (resp. w∗ × s)- closed ball of radius K > 0 by

BK (0) := {(
x, x∗) (resp.

(
x∗, x

)
) | max{‖x‖ ,

∥
∥x∗∥∥∗} ≤ K

}⊆ X × X∗ (resp. ⊆ X∗ × X),
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and by BK (0) the corresponding open ball (this is to avoid cumbersome notation like

BK

†
(0) ⊆ X∗ ×X). By PC (X × X∗) we denote the proper convex functions f : X×X∗ →

R+∞ := R∪{+∞}. Denote by � (X × X∗) the set of all (w∗ × s)-lower–semicontinuous,
proper convex functions. When going from sets in X×X∗ to ones in X×X∗ ×R (i.e. epif )
we may use the norm ‖(x, x∗, α)‖ = max {‖(x, x∗)‖ , |α|} i.e. when dealing with epi-graphs
we will also use the box norm to extend to the extra single dimension. All closures can be
interpreted according to its context, strong in X and w∗ in X∗, which closure or ball will be
clear from the context. Noting that convergent weak∗ sequences are necessarily bounded, a
slight generalisation on this type of limit involves bounded s ×w∗–convergent nets. This is a
convergence notion and is not directly associated with a topological convergence (differing
in nature from the bounded–weak∗ topology [17] denoted by bw∗).

We can embed a convex set C ⊆ X × X∗ into the space X∗∗ × X∗ in the usual isometric
sense that one usually considers X ⊆ X∗∗. When we do this with epigraphs of functions
f : X × X∗ → R+∞: we denote the resulting function by f̂ : X∗∗ × X∗ → R+∞. We also
denote the conjugation with respect to pairing σw (X × X∗) with σw∗

(
(X × X∗)∗) by f �→

f �̂. Note that f �̂ acts on the space (X × X∗)∗ = X∗ × X∗∗. Denote the transpose operator
† : (x∗, x) ↔ (x, x∗) and the transpose conjugate of f by

f ∗† (x, x∗) := f ∗ (x∗, x
)= sup

(z,z∗)∈X×X∗

{〈(x, x∗) ,
(
z, z∗)〉 − f

(
z, z∗)} (1)

The conjugate f ∗† in the sense of (1) and the traditional conjugate f �̂† are compatible in the
sense that

(f �̂†)|X×X∗ ≡ f ∗† on X × X∗ i.e. epif �̂† ∩ (X × X∗ ×R
)= epif ∗†. (2)

A representative function for a monotone operator T is a convex function f : X × X∗ →
R+∞ with f ≥ 〈·, ·〉 and T ⊆ {(x, x∗) | f (x, x∗) = 〈x, x∗〉} := Mf . The interest in rep-
resentative functions stems from that fact that Mf is always monotone. Martínez-Legaz
and Svaiter [18] also introduced the monotone polar for a monotone set T ⊆ X × X∗,
by T μ := {(x, x∗) ∈ X × X∗ | 〈x − y, x∗ − y∗〉 ≥ 0, ∀ (y, y∗) ∈ T }. In [18] it is noted that:
T ⊆ T μ means T is monotone; with T maximal if and only if T μ = T . Related notions are
of pre-maximal monotonicity, T μμ = T μ (i.e. T μ is maximal and T has a unique maximal
extension) and of monotonic closure, T μμ = T .

The class of bigger–conjugate representative functions for T is defined as

bR (T ) := {
f ∈ PC(X × X∗) | f ∗† ≥ f ≥ 〈·, ·〉, T ⊆ Mf

}
.

The interest in the f ∈ bR (T ) stems from the fact that Mf = Mf ∗† , with their assured
maximality as monotone sets when X is reflexive [10]. In [13] it is shown that in a general
real Banach space, representable monotone extensions of T , which are given by Mf for
f ∈ bR (T ), are maximal–like in that they are monotonically closed i.e. M

μμ

f = Mf .
Denoting the restriction of a function F : X∗ × X∗∗ → R∞ by F̂ : X∗ × X → R∞ given

by F̂ (x∗, x) = F (x∗, x∗∗) when x̂ = x∗∗ then the Fitzpatrick function

FT

(
x, x∗)= ̂

[
(〈·, ·〉 + δT )�̂

]† (
x, x∗)= sup

(z,z∗)∈T

{〈(x, x∗) ,
(
z, z∗)〉 − 〈z, z∗〉}

is a representative function for T , when T is maximal monotone [14]. As the Fitzpatrick
function is defined via a conjugate-transpose restricted to X×X∗ it is (by definition) s ×w∗-
closed (and hence strongly closed as well). We note that almost all duality theorems for con-
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jugation (i.e. Fenchel duality) are based on the duality pairing that gives rise to the conjugate
f �→ f �̂ which unfortunately will not be available when using the transpose conjugate (1).

2 A Closure Operation for Convex Subsets in X × X∗

When X is not reflexive it is well known that (x, x∗) �→ 〈x, x∗〉 is not continuous under any
topology s × τ compatible with duality (i.e. (X∗, τ )∗ = X) unless X is at least reflexive,
[33]. Indeed to be continuous with respect to τ = bw∗ we need X finite dimensional [33].
This is why we are interested in w∗-convergence of bounded nets as it is well known that
the duality product is continuous with respect to this convergence [13].

In the following we study the closure for convex sets C ⊆ X×X∗ with respect to bounded
s × w∗ convergent nets since in the subsequent analysis we need to construct a bigger-
conjugate representative function h ∈ bR (recT ). The main difficulty is actually showing
our construction indeed has a bigger conjugate. This necessitates the introduction of the
following closure operation in order to develop an appropriate duality theory. The product
topology s × w∗ is problematic to study directly as one member is sequentially determined
and the other is not. We will discuss in this section a novel way of characterising this product
topology that allows a classical approach to its study.

Definition 2 For C ⊆ X × X∗ denote

C
s×bdw∗ :=

⋃

K>0

C ∩ BK (0)
s×w∗

. (3)

Clearly C ⊆ C
s×bdw∗ ⊆ C

s×w∗
and it is immediate that when C is s × w∗-closed, have

C = C
s×bdw∗

. Note that C
s×bdw∗

consists of all s× w∗ accumulation points of bounded nets
from C, motivating the notation.

This closure must be strictly stronger than the s × w∗ closure (indeed for the case C =
{0} × C∗, this closure corresponds to that associated with the classical bounded–weak∗-
topology on X∗ which is itself also strictly stronger than the weak∗ topology). We say C is

s × bdw∗-closed iff C ⊇ C
s×bdw∗

(and so C = C
s×bdw∗

).

Lemma 3 Let C ⊆ X × X∗.

1. Then C ∩ BK (0)
s×w∗

⊆ C
s×bdw∗ ∩ BK (0) for all K > 0.

2. If C is convex so is C
s×bdw∗

.
3. If {Ci}i∈I are s × bdw∗-closed then so is ∩i∈ICi .

Proof The first inclusion follows from definitions. Since C
s×bdw∗

is a union of the nested

convex sets

{
C ∩ BK (0)

s×w∗}

K>0

we have C
s×bdw∗

convex. For the last conclusion, since

Ci ⊇ C
s×bdw∗
i ,

⋂

i∈I

Ci ⊇
⋂

i∈I

C
s×bdw∗
i =

⋂

i∈I

⋃

K>0

Ci ∩ BK (0)
s×w∗

⊇
⋃

K>0

(
⋂

i∈I

Ci

)

∩ BK (0)

s×w∗

=
⋂

i∈I

Ci

s×bdw∗
. �
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We will now assume C is convex to obtain a much stronger result. We will need to
appeal to the following variant of a separation theorem. Denote Y := X∗ × X and consider
the canonical embedding of a subset C ⊆ X × X∗ into Y ∗ = (X∗ × X)∗ = X∗∗ × X∗ by
JY (C) ∩ (X∗∗ × X∗) (later we will simply write either Ĉ or C ⊆ X∗∗ × X∗, accepting
the abuse of notation). We impose the w∗-topology on the dual space Y ∗ := (X∗ × X)∗ =
X∗∗ × X∗.

Proposition 4 Suppose C,D ⊆ X × X∗ are convex. Denote the w∗-closure of JX×X∗ (C) ∩
(X∗∗ × X∗) (and JX×X∗ (D) ∩ (X∗∗ × X∗)) as a subset of Y ∗ by C

w∗
(and D

w∗
).

1. For any convex set C,

C
w∗ |X×X∗ = C

s×w∗
. (4)

2. Suppose that C
w∗ ∩ D

w∗ = ∅ with D bounded. Then there exists (z∗, z) ∈ Y (= X∗ × X)
such that

δ∗
C

(
z∗, z

)≤ α < δ∗
D

(
z∗, z

)
. (5)

Conversely if C, D can be strictly separated by a s × w∗-continuous hyperplane, in the

sense of (5), then C
w∗ ∩ D

w∗ = ∅.

Proof Part 1: With Y = X∗ × X, then from the embedding of Y into Y ∗, we may view C

and D as subsets of Y ∗ = X∗∗ × X∗. Now C
s×w∗

is the intersection of enclosing half-spaces

in X × X∗ formed from (x∗, x) ∈ X∗ × X , and C
w∗

is the intersection of those in X∗∗ × X∗
formed from (x∗, x) ∈ X∗ × X = Y . Hence

C
s×w∗ = C

w∗ ∩ (X × X∗)= C
w∗ |X×X∗ ,

which is (4).

Part 2: Now suppose C
w∗ ∩ D

w∗ = ∅. We then have D
w∗

compact in Y ∗ and C
w∗

closed.
We now invoke Theorem 1.1.5 of [34] to obtain (z∗, z) ∈ X∗ × X satisfying

〈(z∗, z
)
,
(
v∗∗, v∗)〉 ≤ α1 < α2 ≤ 〈(z∗, z

)
,
(
u∗∗, u∗)〉

for all (v∗∗, v∗) ∈ C
w∗

and (u∗∗, u∗) ∈ D
w∗

. As C ⊆ C
s×w∗ ⊆ C

w∗
(and similarly for D) we

have (5). Thus when C
w∗ ∩ D

w∗ = ∅ we can strictly separate then with a s × w∗-continuous
hyperplane.

On the other hand whenever this possible, we have (z∗, z) ∈ Y := X∗ × X which is the
pre-dual of Y ∗ := (X∗ × X)∗ = X∗∗ × X∗ and α1, α2 such that for all (v , v∗) ∈ C and
(u ,u∗) ∈ D, we have

〈(z∗, z
)
,
(
v , v∗)〉 ≤ α1 < α2 ≤ 〈(z∗, z

)
,
(
u ,u∗)〉.

Hence for Hα := {(y∗∗, y∗) | 〈(z∗, z) , (y∗∗ , y∗)〉 ≤ α} we have

C
w∗ ⊆ Hα1 and D

w∗ ⊆ Hc
α2

and so C
w∗ ∩ D

w∗ ⊆ Hα1 ∩ Hc
α2

= ∅. �
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Corollary 5 Suppose C ⊆ X × X∗ is convex. Denote Y = X∗ × X and the w∗-closure of

JX (C) ∩ (X∗∗ × X∗) as a subset of Y ∗ := (X∗ × X)∗ by C
w∗

. Then C is s × w∗-closed
iff there exists a w∗-closed convex set D ⊆ Y ∗ such that C = D|X×X∗ . In particular C is

s × w∗-closed iff C = C
w∗ ∩ (X × X∗).

Proof We have C is s × w∗-closed iff C = C
s×w∗ = C

w∗ ∩ (X × X∗) and so for D := C
w∗

we have C = D|X×X∗ . On the other hand when C = D|X×X∗ for D = D
w∗

then C = D
w∗ ∩

(X × X∗) with this set s × w∗-closed. �

Remark 6 Note, that by Corollary 5, a convex set A is s × w∗-closed iff there exists a w∗-
closed set B in Y ∗ = X∗∗ × X∗ with A = B ∩ (X × X∗) from which it then follows that

A = B ∩ (X × X∗)
w∗ ∩ (X × X∗).

3 Variational Limits

The recession operator recT is defined as a Kuratowski-Painlevé limit of a family of sets
{tT }t>0 with respect to the s × bdw∗-convergence. This leads us to study such limits in
more detail. A problem that arises often in defining variational limits, in the context of
convergences that are not defined by a topology, is that of devising a consistent set of funda-
mental definitions (this also arises with sequential convergences based on weak topologies).
We must do this in our context, and so pursue the framework of a Kuratowski/Painlevé-
type convergence (see [1, Sect. 5.2]), based on bounded convergent s × w∗ nets. Denote
by (s × w∗)-lim supt→+∞ At and (s × w∗)-lim inft→+∞ At the usual Kuratowski–Painlevé
convergence with respect to the product topology of strong with weak∗. Denote

N
(
x, x∗) := {

U × W | x ∈ U ∈ N (x) and x∗ ∈ W ∈ N
(
x∗)}

where N (x) is the strong neighbourhood basis at x (in X) and N (x∗) is a weak∗ neigh-
bourhood basis at x∗ (in X∗).

Definition 7 Let {At }t>0 be a family of subsets of X × X∗. Then, we define

bdsw∗- lim sup
t→+∞

At :=
{(

x, x∗) | ∃ net
(
xα, x

∗
α, tα

)→s×w∗ (
x, x∗,+∞)

with
(
xα, x

∗
α

) ∈ Atα and
{
x∗

α

}
bounded

}
, (6)

bdsw∗- lim inf
t→+∞ At :={(x, x∗) | ∃K > 0 :

∀V ∈ N
(
x, x∗) (∃tV > 0)(∀t > tV ) (At ∩ BK (0) ∩ V �= ∅} . (7)

We always have bdsw∗-lim supt→+∞ At ⊇ bdsw∗-lim inft→+∞ At . The set
bdsw∗-lim supt→+∞ At may not be s × w∗-closed.

Remark 8 These notions have an obvious extension to subsets of X × X∗ × R (to include
epigraphs of functions on X × X∗) where s × w∗ then stands for s × w∗ × τR, the product
with the standard topology on the reals.
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Remark 9 We note that when (x, x∗) ∈ bdsw∗-lim inft→+∞ At and U ×W ∈ N (x, x∗) then
there exists K > 0 such that

{
t ∈R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ } is residual. Moreover
(x, x∗) ∈ bdsw∗-lim supt→+∞ At then we have

{
t ∈ R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ }
contains a cofinal subset.

Remark 10 Note that if we define 1
t
T := {(

x, 1
t
x∗) | (x, x∗) ∈ T

}
then

bdsw∗- lim sup
t→+∞

1

t
T = recT (8)

once again identifying recT with its graph and recT (x) with the image of the associated
multi-function.

Definition 11 We say that a family {ft }t>0 of proper functions s×w∗- boundedly converges
at (x, x∗) as t → ∞ iff both of the following coincide:

(
bd-e- lim inf

t→+∞ ft

)
(
x, x∗) := inf{α | (x, x∗, α

) ∈ bdsw∗- lim sup
t→+∞

(epift )} and

(
bd-e- lim sup

t→+∞
ft

)(
x, x∗) := inf{α | (x, x∗, α

) ∈ bdsw∗- lim inf
t→+∞ (epift )}.

When these coincide for all (x, x∗) then we denote the associated function f by:

f = bd-e- lim
t→+∞ft .

We also note in passing that order is preserved when applying these limits, in that ft ≤ gt

implies bd-e-lim inft→+∞ ft ≤ bd-e-lim inft→+∞ gt etc.

This definition is used to take into account the possibility that the infimal value may
not actually be in the limit of epigraphs. When {ft }t>0 is monotonically non-decreasing
this problem does not occur and we can then simply identify epi (bd-e- limt→+∞ ft ) =
bdsw∗-limt→+∞ (epift ) (see later for details).

Clearly

bd-e- lim inf
t→+∞ ft ≤ bd-e- lim sup

t→+∞
ft .

We may move from a limit with t → +∞ to one with τ → 0+ (as is later done in Sect. 6)
via the simple transformation τ = 1

t+α
for any α > 0 and so for now we focus on limits with

t → +∞. Characterisation similar to those of other epi-limits of functions can be made, but
in this case the attainment of the infimum in the following is not assured. We say an epi-limit
is attained if there exists a net attaining the infimum in (9). In the case when X is reflexive
then we find that weak∗ and weak topologies coincide and so for convex functions this
convergence is characterised sequentially (using Mazur characterisation of weak vs strong
closures of convex sets). Hence a diagonalisation argument may be used to assert attainment
as weakly convergent sequences are bounded.

Lemma 12 Let {ft }t>0 be a family of proper functions. Then
(

bd-e- lim inf
t→+∞ ft

)
(
x, x∗)= inf{(

xα,x∗
α

)→s×bdw∗ (
x,x∗)}

{tα→+∞}

lim inf
α

ftα

(
xα, x

∗
α

)
. (9)
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Proof We have

γ := bd-e- lim inf
t→+∞ ft

(
x, x∗)

= inf
{
β | ∃ net

(
xα, x

∗
α, tα

)→s×w∗ (
x, x∗,+∞)

with β = lim inf
α

ftα

(
xα, x

∗
α

)}

and so for any ε > 0 we have the existence of
(
xα, x

∗
α, tα

) →s×w∗
(x, x∗,+∞) such that(

xtα , x
∗
tα
, γα

) ∈ epiftα with γα → γ̂ ≤ γ + ε
2 . That is, for any ε > 0

(
bd-e- lim inf

t→+∞ ft

)
(
x, x∗)+ ε ≥ inf(

xα,x∗
α

)→s×bdw∗
(x,x∗)

inf
{tα→+∞}

lim inf
α

ftα

(
xα, x

∗
α

)

or

(
bd-e- lim inf

t→+∞ ft

)(
x, x∗)≥ inf(

xα,x∗
α

)→s×bdw∗
(x,x∗)

inf
{tα→+∞}

lim inf
α

ftα

(
xα, x

∗
α

)
.

Take an arbitrary tα → +∞ and suppose
(
xα, x

∗
α

) →s×bdw∗
(x, x∗). Place γ ′ :=

lim infα ftα

(
xα, x

∗
α

)
. Then for γ ′

tα
:= ftα

(
xα, x

∗
α

)
we have

(
xα, x

∗
α, γ

′
tα

) ∈ epiftα and
lim infα γ ′

tα
= γ ′. Then

(
x, x∗, γ ′) ∈ bdw∗-lim supt→+∞ epift . Hence

lim inf
α

ftα

(
xα, x

∗
α

)= γ ′ ≥ bd-e- lim inf
t→+∞ ft

(
x, x∗) .

As this holds for all tα → +∞ and
(
xα, x

∗
α

)→s×bdw∗
(x, x∗) we have

inf{(
xt .x

∗
t

)→s×bdw∗
(x,x∗)

} inf
{tα→+∞}

lim inf
α

ftα

(
xtα , x

∗
ta

)≥
(

bd-e- lim inf
t→+∞ ft

)
(
x, x∗) . �

Note that for any K > 0 we have (s × w∗)-lim supt→+∞
(
At ∩ BK (0)

) = bdsw∗-
lim supt→+∞

(
At ∩ BK (0)

)
(and similarly for the limit infimum). We may now give a char-

acterisation of these limits, paralleling that given for the Kuratowski–Painlevé limit of vari-
ational analysis. Note that the final union means that the limiting sets are not necessarily
s × w∗-closed.

Proposition 13 Consider a family {At }t>0 of subsets of X × X∗. Then

bdsw∗- lim sup
t→+∞

At =
⋃

K>0

⋂

η>0

[(
⋃

t≥η

At

)

∩ BK (0)

]s×w∗

and (10)

bdsw∗- lim inf
t→+∞ At =

⋃

K>0

⋂

I⊆R+
cofinal

[(
⋃

t∈I

At

)

∩ BK (0)

]s×w∗

. (11)

Moreover we have bdsw∗-lim supt→+∞ At = A if (s × w∗)-lim supt→+∞
(
At ∩ BK (0)

) =
A ∩ BK (0) for all sufficiently large K > 0, and bdsw∗-lim inft→+∞ At = A if (s × w∗)-
lim inft→+∞ At ∩BK (0) = A∩BK(0) for all sufficiently large K > 0. When all {At }t>0 are
convex then so is bdsw∗-lim inft→+∞ At .

Proof See the Appendix for proof. �
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We can interpret such limits for subsets {At }t>0 of Y = X∗ × X by embedding Ât :=
JX×X∗ (At ) ∩ (X∗∗ × X∗) ⊆ Y ∗ where Y = X∗ × X.

Definition 14 Suppose {At }t>0 are a family of subsets of Y := X∗ × X. Embedding Ât :=
JX×X∗ (At ) ∩ (X∗∗ × X∗) ⊆ Y ∗ denote:

bd
(
w × w∗) - lim sup

t→+∞
At :=

⎡

⎣
⋃

K>0

⋂

η>0

[
⋃

t≥η

Ât ∩ BK (0)

]w∗⎤

⎦∩ (X × X∗)

=
[
⋃

K>0

w∗- lim sup
t→+∞

[
Ât ∩ BK (0)

]
]

∩ (X × X∗) and

bd
(
w × w∗) - lim inf

t→+∞ At :=
⎡

⎢
⎣
⋃

K>0

⋂

I⊆R+
cofinal

[
⋃

t∈I

Ât ∩ BK (0)

]w∗⎤

⎥
⎦∩ (X × X∗)

=
[
⋃

K>0

w∗- lim inf
t→+∞

[
Ât ∩ BK (0)

]]

∩ (X × X∗) .

Remark 15 Note that the limit–infimum and –supremum on the right-hand-side are in the
Kuratowski–Painlevé sense.

Definition 16 For g : X × X∗ → R+∞ form ĝ : X∗∗ × X∗ → R+∞ by ĝ (x, x∗) = g (x, x∗)
if (x, x∗) ∈ X × X∗ and +∞ otherwise. Denote, for (x∗∗, x∗) ∈ X∗∗ × X∗,

(
bdw∗-e- lim inf

t→+∞ ĝt

)(
x∗∗, x∗)

:= inf

{

γ

∣∣
∣∣
∣
(
x∗∗, x∗, γ

) ∈
[
⋃

K>0

w∗- lim sup
t→+∞

[
epi ĝt ∩ BK (0)

]
]}

and

bd
(
w × w∗) -e- lim inf

t→+∞ f
∗†
t :=

(
bdw∗-e- lim inf

t→+∞ f̂t
∗†
)

|X×X∗ .

Note that
⋃

K>0 w∗-lim supt→+∞
[
epi ĝt ∩ BK (0)

]
consists of the limits of all selections

of bounded w∗-convergent subnets. The set epi (bdw∗-e- lim inft→+∞ ĝt ) has the vertical
recession direction we associate with an epi-graph but the set may not be closed. Note that
f̂ �

t acts on the space (X × X∗)∗ = X∗ × X∗∗. Note the conjugate in our prior sense f ∗† and
that f

�̂†
t which passes from Y := X ×X∗ to Y ∗ = X∗∗ ×X∗ are compatible in the sense that

(ft
�̂†)|X×X∗ ≡ ft

∗† on X × X∗ i.e. epift
�̂† ∩ (X × X∗ ×R

)= epift
∗†. (12)

In general we only have
(

bdw∗-e- lim sup
t→+∞

epift
�̂†
)∣∣
∣∣
X×X∗

= bd
(
w × w∗) - lim sup

t→+∞
epift

∗†

due the potential failure of the limit set to be convex. Note, that by Corollary 5, for convex
sets At are s × w∗-closed iff there exists a w∗-closed set Bt in X∗∗ × X∗ with At = Bt ∩
(X × X∗) from which it then follows that At = Bt ∩ (X × X∗)

w∗ ∩ (X × X∗).
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The following may be proved along similar lines to that in Lemma 12 and so the proof is
omitted.

Lemma 17 Let {ft }t>0 be a family of proper functions on X × X∗. Then

(
bdw∗-e- lim inf

t→+∞ f̂t

)(
x∗∗, x∗)= inf{(

xα,x∗
α

)→bdw∗ (
x∗∗,x∗)}

{tα→+∞}

lim inf
α

f̂tα

(
xα, x

∗
α

)
. (13)

Let us now consider monotonic limit of families of functions.

Proposition 18 Let {ft }t>0 be a family of [−∞,+∞]-valued functions.

1. When {ft }t>0 are convex then so is f := bd -e-lim supt→+∞ ft .
2. Assume for each (x, x∗) that t �→ ft (x, x∗) is monotonically non-decreasing (as t → ∞).

We have

⋂

t>0

epift

s×bdw∗ =
⋂

t>0

⋃

K>0

epift ∩ BK (0)
s×w∗

⊇ bdsw∗- lim sup
t→+∞

epift (14)

=
⋃

K>0

⋂

t>0

epift ∩ BK (0)
s×w∗

= bdsw∗- lim inf
t→+∞ epift ⊇

⋂

t>0

epift

s×bdw∗

and so bd-e-limt→+∞ epift exists.
3. When all ft are s × bdw∗ (resp. s × w∗)-closed then f := bd-e-limt→∞ ft is also

s × bdw∗ (resp. s × w∗)-closed and coincides with the pointwise limit (i.e. epif =
∩t>0 epift ), and (s × w∗)-limt→+∞

[
epift ∩ BK (0)

]= epif ∩ BK (0) for each K > 0.

Proof 1) Convexity of f := bd-e-lim supt→+∞ ft follows immediately from the last asser-
tion of Proposition 13.

2) Assume t �→ ft (x, x∗) is monotonically non-decreasing. As epift ⊆ epifτ for all
t ≥ τ , it follows that

⋃
t≥τ epift = epifτ so

bdsw∗- lim sup
t→+∞

epift =
⋃

K>0

⋂

t>0

epift ∩ BK (0)
s×w∗

⊆ epifτ

s×bdw∗
for all τ > 0

(15)

so bdsw∗- lim sup
t→+∞

epift ⊆
⋂

τ>0

epifτ

s×bdw∗ =
⋂

t>0

⋃

K>0

epift ∩ BK (0)
s×w∗

.

To show equality of the limits we need to demonstrate that bdsw∗-lim inft→+∞ epift ⊇
bdsw∗-lim supt→+∞ epift . Let (x, x∗) ∈ bdw∗-lim supt→+∞ epift . Then there exists K >

0 and {tα} with tα → +∞ and
{(

xα, x
∗
α

)}
with

(
xα, x

∗
α

) → (x, x∗) for which
(
xα, x

∗
α

) ∈
epiftα ∩BK (0) for all α. Let W be a neighbourhood of (x, x∗). Then, there exists ᾱ such that
for all α ≥ ᾱ we have

(
xα, x

∗
α

) ∈ epiftα ∩ BK (0) ∩ W . Let τ ≥ tᾱ . Then (since tα → +∞)
there exists tα′ ≥ τ with α′ ≥ ᾱ, so epifτ ∩ BK (0) ∩ W ⊇ epiftα′ ∩ BK (0) ∩ W . Therefore
(x, x∗) ∈ bdw∗-lim inft→+∞ epift .

3) When each epifη is s × bdw∗ (or s × w∗)-closed, by Lemma 3 part 3 we have⋂
t>0 epift is s × bdw∗ (or s × w∗)-closed, and so, by (14) the limit exists, as epif =
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⋂
η>0 epifη , which is s × bdw∗ (or s × w∗)-closed. Moreover, as

epif ∩ BK (0) =
⋂

η>0

epifη ∩ BK (0)
s×w∗

=
⋃

H>0

⎡

⎣
⋂

η>0

⋃

t≥η

epift ∩ BK (0)
s×w∗

⎤

⎦∩ BH (0)

we have (s × w∗)-lim supt→+∞ epift ∩ BK (0) = epif ∩ BK (0). A similar calculation can
be used to show (s × w∗)-lim inft→∞ epift ∩ BK (0) = epif ∩ BK (0). �

We briefly discuss monotonically non-increasing families.

Proposition 19 Assume for each (x, x∗) ∈ X × X∗ we have t �→ gt (x, x∗) is monotonically
non-increasing (as t → ∞), where the family {gt }t∈R+ are [−∞,+∞]-valued functions.

1. Then

bdsw∗- lim inf
t→∞ epigt = bdsw∗- lim sup

t→+∞
epigt =

(
⋃

t≥0

epigt

)s×bdw∗

,

and so g := bd-e-limt→∞ gt exists.
2. If each gt is convex, then g := bd-e-limt→+∞ gt is convex.

Proof As {gt }t>0 is monotonically non-increasing, which implies epigt ⊆ epigτ for t ≤ τ ,
we have

(⋃
t∈I epigt

) = (⋃
t≥0 epigt

)
for any residual or cofinal set I ⊆ R+. Let K > 0.

Then for epig := bdw∗-lim supt→+∞ epigt , by Proposition 13, for all τ > 0,

epig =
⋃

H>0

⋂

η>0

(
⋃

t≥η

epigt

)

∩ BH (0)

s×w∗

=
⋃

H>0

(
⋃

t≥0

epigt

)

∩ BH (0)

s×w∗

=
⋃

H>0

(
⋃

t≥τ

epigt

)

∩ BH (0)

s×w∗

= bdsw∗- lim
t→∞ epigt =

(
⋃

t≥0

epigt

)s×bdw∗

When {gt }t>0 is a family of convex functions then
⋃

t≥0 epigt is convex (being a monoton-

ically non-decreasing nested set of convex sets) and hence
(⋃

t≥0 epigt

)s×bdw∗
is convex by

Lemma 3. �

Utilising these observations about monotonic limits we find that the limit–infimum lends
itself to another useful interpretation.

Lemma 20 Suppose {ft }t>0 is a family of extended-real-valued functions. Then

bd-e- lim inf
t→∞ ft = bd-e- lim

η→∞

(
inf
t≥η

ft

)
≥ bd-e- lim

η→∞

(
inf
t≥η

ft

s×bdw∗)
.
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Proof Note that gη := inft≥η ft

s×bdw∗
is a monotonically non-decreasing family of s ×

bdw∗-closed functions and so by Proposition 18 we have existence of the epi-limits
bd-e-limt→∞ gt = supη gη and bd -e-limη→∞

(
inft≥η ft

)
. By Proposition 13 with At :=

epift

bdsw∗- lim sup
t→+∞

epift

=
⋃

K>0

⋂

η>0

[(
⋃

t≥η

epift

)

∩ BK (0)

]s×w∗

=
⋃

K>0

⋂

η>0

(
epi

(
inf
t≥η

ft

))
∩ BK (0)

s×w∗

= bdsw∗- lim
η→+∞ epi

(
inf
t≥η

ft

)
⊆
⋃

K>0

⋂

η>0

(
epigη

)∩ BK (0) =
⋂

η>0

epigη

= epi

(
sup

η

gη

)
= epi

(
bd-e- lim

η→∞gt

)
= epi

[
bd-e- lim

η→∞

(
inf
t≥η

ft

s×w∗)]
. �

4 The s × bdw∗-Convergence and Conjugation

We will need to understand how the limits used in construction of a representative function
for the monotone operator recT , interact with conjugacy, in order to show that such a func-
tion is bigger-conjugate. In this section we explore the interaction of conjugation with this
new convergence notion.

The following has been observed for almost all viable epi-limits (see [21, Lemma 1]).
We provide a proof for our context.

Proposition 21 Let {ft }t>0 be a family of functions. Then

(
bd-e- lim inf

t→∞ f ∗
t

)∗ ≤ bd-e- lim sup
t→∞

ft . (16)

If {ft }t>0 are proper convex, so is bd-e -lim supt→∞ ft .

Proof By Proposition 18, the convexity of ft yields same for f := bd-e-lim supt→∞ ft . Let
H := bd-e -lim inft→+∞ f ∗

t and we will show f ≥ H ∗. If f (x, x∗) = +∞ or H ≡ +∞ (so
H ∗ ≡ −∞) there is nothing to prove. We may now assume f (x, x∗) < +∞ and H is not
identically +∞. Let +∞ > γ > f (x, x∗). As (x, x∗) ∈ bdsw∗-lim inft→+∞ epift , then for
some K > 0, we have for all U × W ∈ N (x, x∗) there exists tV > 0 such that for t > tV
we have (epift )∩ [U × W ] ∩ BK (0) �= ∅, and so there exists

(
xt , x

∗
t

) ∈ epift ∩ BK (0)∩
[U × W ] so ft

(
xt , x

∗
t

) ≤ γt with
(
xt , x

∗
t

) ∈ U × W and
∥∥(xt , x

∗
t

)∥∥ ≤ K . Now for +∞ >

β > H (y,y∗) we have (y, y∗) ∈ bdsw∗-lim supt→+∞ epif ∗
t so there exists

(
ytα , y

∗
tα
, βtα

)→
(y, y∗, β) as t → ∞ with

∥∥y∗
tα

∥∥ ≤ K ′ < +∞ bounded and +∞ > βtα ≥ f ∗
tα

(
y∗

tα
, ytα

)
. We

know that f ∗
tα

(
y∗

tα
, ytα

)
> −∞ since the presumption that f ∗

tα

(
y∗

tα
, ytα

) = −∞ would im-
ply ftα ≥ f ∗∗

tα
≡ +∞ and we know that f (x, x∗) < +∞. Similarly if it was the case that

ftα

(
xtα , x

∗
tα

) = −∞ then f ∗
tα

≡ +∞, implying βtα = +∞, counter to construction. By the
Fenchel inequality for all α we have,

γtα + βtα ≥ ftα

(
xtα , x

∗
tα

)+ f ∗
tα

(
y∗

tα
, ytα

)≥ 〈(xtα , x
∗
tα

)
,
(
y∗

ta
, ytα

)〉.
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For each ε > 0 we may take W ∈ N (x∗) such that supu∗∈W 〈y,u∗ − x∗〉 ≤ ε where
Bε (x) × W × Iε (γ ) ∈ N (x, x∗, γ ) has (x, x∗) ∈ Bε (x) × W ∈ N (x, x∗) and γtα ≤ γ + ε

with
(
xtα , x

∗
tα

) ∈ Bε (x) × W . In this case we observe that lim supα〈
(
xtα , x

∗
tα

)
,
(
y∗

tα
, ytα

)〉 ≤
γ + β + ε. Now

〈(xtα , x
∗
tα

)
,
(
y∗

tα
, ytα

)〉 = 〈(x, x∗) ,
(
y, y∗)〉 + 〈x, y∗

tα
− y∗〉 + 〈y, x∗

tα
− x∗〉

+ 〈xtα − x, y∗
tα
〉 + 〈ytα − y, x∗

tα
〉

≥ 〈(x, x∗) ,
(
y, y∗)〉 + 〈x, y∗

tα
− y∗〉 + 〈y, x∗

tα
− x∗〉

− K ′ ∥∥xtα − x
∥
∥+ K

∥
∥ytα − y

∥
∥ .

Since y∗
tα

→w∗
y∗, x∗

tα
→w∗

x∗, xtα →s x it follows that

γ + β + ε ≥ 〈(x, x∗) ,
(
y, y∗)〉 − ε

(
K + K ′)+ lim sup

α

〈y, x∗
tα

− x∗〉

≥ 〈(x, x∗) ,
(
y, y∗)〉 − ε

(
K + K ′ + 1

)
.

As ε > 0 was arbitrary we have γ +β ≥ 〈(x, x∗) , (y∗, y)〉 and so γ ≥ 〈(x, x∗) , (y∗, y)〉 −β .
As β > H (y∗, y) and γ > f (x, x∗) are arbitrary we get (for any (y∗, y) with H (y∗, y) <

+∞)

f
(
x, x∗)≥ 〈(x, x∗) ,

(
y∗, y

)〉 − H
(
y∗, y

)
, for all

(
y, y∗) so f (x, x∗) ≥ H ∗ (x, x∗) .

Then bd-e-lim supt→∞ ft = f ≥ H ∗ = (
bd-e- lim inft→∞ f ∗

t

)∗
. �

We may leverage this result for non-decreasing nets to obtain a continuity result for
conjugates.

Proposition 22 Let {ft }t>0 be a family of functions with t �→ ft (x, x∗) monotonically non-
decreasing (as t → ∞). Then

(
bd-e- lim

t→∞f ∗∗
t

)∗ = bd-e- lim
t→∞f ∗

t

w∗×s
. (17)

When all ft are s ×w∗-closed, convex with ft > −∞ then bd-e-limt→∞ ft exists and is also
s × w∗-closed and convex with

bd-e- lim
t→∞ft =

(
bd-e- lim

t→∞f ∗
t

)∗
and

(
bd-e- lim

t→∞ft

)∗ = bd-e- lim
t→∞f ∗

t

w∗×s
. (18)

Proof Let gt := f
∗†
t then {gt }t>0 is monotonically non-increasing. Hence by Proposition 19

we have gt ≥ g := bd-e-limt→∞ gt for all t > 0 and so g∗
t ≤ g∗, implying bd-e-limt→∞ g∗

t ≤
g∗bdw∗×s = g∗ and hence

(
bd-e- lim

t→∞f ∗∗
t

)∗† =
(
bd-e- lim

t→∞g∗
t

)∗ ≥ g∗∗ = bd-e- lim
t→∞f

∗†
t

s×w∗
.

Now apply Lemma 21 to gt to get

(
bd-e- lim inf

t→∞ g∗
t

)∗ ≤ bd-e- lim sup
t→∞

gt or
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(
bd-e- lim

t→∞f ∗∗
t

)∗† ≤ bd-e- lim
t→∞f

∗†
t ,

implying
(
bd-e- lim

t→∞f ∗∗
t

)∗ ≤ bd-e- lim inf
t→∞ f ∗

t

w∗×s ≤
(
bd-e- lim

t→∞f ∗∗
t

)∗
.

For the case when ft is convex and s × w∗–closed with ft > −∞, then f ∗∗
t = ft , so

(bd-e- limt→∞ ft )
∗ = bd-e- limt→∞ f ∗

t

s×w∗
and in particular, due to Proposition 18 then

bd-e-limt→∞ ft = supt ft > −∞ is closed and convex so bd-e-limt→∞ ft =
(bd-e- limt→∞ ft )

∗∗ along with
(
bd-e- limt→∞ f ∗

t

s×w∗)∗ = (
bd-e- limt→∞ f ∗

t

)∗
, via the fact

that our conjugation is based on the pairing of X × X∗ with X∗ × X and associated s × w∗-
continuous linear functions on X × X∗ (so the s × w∗-closure does not affect the value of
the conjugate). �

Again we may utilise the symmetry that is present in the pairing of σs×w∗ (X × X∗)
with σw∗×s (X∗ × X). A result that uses the passage of the conjugate ∗ : σs×w∗ (X × X∗) →
σw∗×s (X∗ × X) is also applicable to inverse ∗ : σw∗×s (X∗ × X) → σs×w∗ (X × X∗) (using
the transpose operator).

Proposition 23 Let {ft }t>0 be a family of convex functions, ft �≡ +∞ with t �→ ft (x, x∗)
monotonically non-increasing (as t → ∞). Then bd-e-limt→∞ f ∗

t is (w∗ × s)–closed and

bd-e- lim
t→∞f ∗

t = bd-e- lim
t→∞f ∗

t

w∗×s =
(
bd-e- lim

t→∞ft

)∗
. (19)

Proof If {ft }t>0 is monotonically non-increasing then for gt := f ∗
t we have {gt }t>0 is mono-

tonically non-decreasing and closed. Hence applying Proposition 22 we have (noting that
either gt > −∞ or ft ≥ f ∗∗

t = g∗
t ≡ +∞)

bd-e- lim
t→∞f ∗

t = bd-e- lim
t→∞gt =

(
bd-e- lim sup

t→∞
g∗

t

)∗

=
(

bd-e- lim sup
t→∞

f ∗∗
t

)∗
=
(

bd-e- lim sup
t→∞

ft

s×w∗)∗
. (20)

In the following, by Proposition 19 we have the first equality, with the inequality following
from ft ≥ inft>0 ft so

bd-e- lim sup
t→∞

ft

s×w∗ = inf
t>0

ft

s×w∗ s×bdw∗
≥ inf

t>0
ft

s×w∗ =
(

inf
t>0

ft

s×bdw∗
)s×w∗

(21)

Thus, as the conjugate is not affected by the s × w∗-closure, and by Proposition 19 we have

bd-e-limt→∞ ft = inft>0 ft

s×bdw∗
, it follows from (20)-(21) that:

bd-e- lim
t→∞f ∗

t ≤
⎛

⎝
(

inf
t>0

ft

s×bdw∗
)s×w∗⎞

⎠

∗

=
(

inf
t>0

ft

s×bdw∗)∗
=
(
bd-e- lim

t→∞ft

)∗
. (22)

By Proposition 21 we have
(
bd-e- limt→∞ f ∗

t

)∗ ≤ bd-e -limt→∞ ft so

bd-e- lim
t→∞f ∗

t ≥ bd-e- lim
t→∞f ∗

t

w∗×s =
(
bd-e- lim

t→∞ f ∗
t

)∗∗ ≥
(
bd-e- lim

t→∞ft

)∗
. (23)

Combining (22) and (23) we get (19). �
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We note the following for later use when further investigating the continuity of conjuga-
tion in relation to these variational limits.

Lemma 24 Let {ft }t>0 be a family of s × bdw∗-(resp. s × w∗-)closed functions on X × X∗
for which (inft ft ) (x, x∗) > −∞ for all (x, x∗). Recalling that f̂t denotes the embedding of
ft within the conjugate space (X × X∗)∗ = X∗ × X∗∗, (by setting f̂t = ft on the subspace
X × X∗ and +∞ otherwise) with the associated conjugation �̂ : X × X∗ → (X × X∗)∗ =
X∗ × X∗∗. Then on X × X∗

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂†s×bdw∗

=
(
bd-e- lim inf

t→∞ ft

)∗†
. (24)

Proof We have, using the w∗-continuity of (x∗∗, x∗) �→ 〈(x∗∗, x∗) , (y∗, y)〉 = 〈x∗∗, y∗〉 +
〈x∗, y〉, the Fenchel inequality 〈(xα, x

∗
α

)
, (y∗, y)〉−ftα

(
xα, x

∗
α

)≤ f ∗
t (y∗, y) and Lemma 17

that

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂† (
y, y∗)

= sup
(x∗,x∗∗)

⎧
⎪⎪⎨

⎪⎪⎩
〈(x∗∗, x∗) ,

(
y∗, y

)〉 − inf{(
xα,x∗

α

)→bdw∗ (
x∗∗,x∗)}

{tα→+∞}

lim inf
α

f̂t

(
xt , x

∗
t

)

⎫
⎪⎪⎬

⎪⎪⎭

= sup
{(

xα,x∗
α

)→bdw∗ (
x∗∗,x∗)∈X∗∗×X∗}

{tα→+∞}

lim sup
α

[{〈(xα, x
∗
α

)
,
(
y∗, y

)〉 − ftα

((
xα, x

∗
α

))}]

≤ sup
{tα→+∞}

lim sup
α

f
∗†
tα

(
y, y∗)= lim

η→+∞ sup
t≥η

f
∗†
t

(
y, y∗)

= lim
η→+∞

(
inf
t≥η

ft

)∗† (
y, y∗) .

That is, we have a monotonically nondecreasing family
{
gη = inft≥η ft

}
where

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂†

|X×X∗ ≤ lim
η→+∞

(
gη

)∗†
. (25)

As
{
g∗

η

}
is closed and monotonically non-increasing, Proposition 19 implies

bd-e- lim
η→∞

(
gη

)∗† = inf
η

(
gη

)∗†s×bdw∗
= lim

η→+∞
(
gη

)∗†s×bdw∗
.

Using this observation and Proposition 22 (18), we have

lim
η→+∞

(
gη

)∗†s×bdw∗
= bd-e- lim

η→∞
(
gη

)∗† = bd-e- lim
η→∞

(
gη

)∗†s×w∗

=
(

bd-e- lim
η→∞gη

)∗†
.
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Combining this with (25) and Lemma 20 we have

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂†s×bdw∗

≤ lim
η→+∞

(
gη

)∗†s×bdw∗
=
(

bd-e- lim
η→∞gη

)∗†

=
(

bd-e- lim
η→∞

(
inf
t≥η

ft

))∗†
=
(
bd-e- lim inf

t→∞ ft

)∗†
.

Hence

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂†s×bdw∗

≤
(
bd-e- lim inf

t→∞ ft

)∗
.

The reverse inequality is immediate from epi
(
bdw∗-e- lim inft→+∞ f̂t

) ⊇
̂epi (bd-e- lim inft→∞ ft ) as then, when restricting to X∗ × X, we have

(
bdw∗-e- lim inf

t→+∞ f̂t

)�̂

≥
(

̂bd-e- lim inf
t→∞ ft

)̂� =
(
bd-e- lim inf

t→∞ ft

)∗
.

The last inequality is preserved on taking the (bdw∗ × s)-closure as the conjugate
(bd-e- limt→∞ ft )

∗ is actually (w∗ × s)-closed. This gives the reverse inequality. �

We will strengthen our conjugation results by adapting Theorem 2 of [21]. We first show
the following result.

Proposition 25 Assume that {ft }t∈R+ is a family of (s × w∗)–closed, proper, convex func-
tions. Assume in addition that for any cofinal subset I1 ⊆ R+ there exists a cofinal subset
I2 of I1 and a bounded net

{(
x∗

α, xα

)}
tα∈I2

such that
{
f ∗

tα

(
x∗

α, xα

)}
tα∈I2

is bounded above.
Denote f := bd-e-lim supt→∞ ft . Then, on X × X∗ we have

f
s×bdw∗ ≤

(
bdw-e- lim inf

t→+∞ f̂ �
t

)�̂

. (26)

Furthermore, if inft f ∗
t (x∗, x) > −∞ for all (x∗, x) ∈ X∗ × X then on X × X∗:

bd-e- lim sup
t→∞

ft

s×bdw∗ =
(
bd-e- lim inf

t→∞ f ∗
t

)∗
. (27)

Proof Given (x̄, x̄∗) ∈ X × X∗ and γ̄ < f
s×bdw∗

(x̄, x̄∗) we note that (x̄, x̄∗, γ̄ ) /∈
bdsw∗- lim inft→∞ (epift )

s×bdw∗
, so for any K > max{|γ̄ |,‖(x̄, x̄∗)‖} ≥ 0 we can find a

cofinal subset I1 of R+, a norm ball U � x, a weak∗ neighbourhood W � x∗ and ρ > 0 for
which

[[(U × W)] × [γ̄ + (−ρ,ρ)]] ∩ epiftα ∩ BK (0)

= ([[(U × W) ∩ BK (0)] × [γ̄ + [−ρ,ρ]] ∩ [−K,K]])∩ epiftα

= ∅
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for each tα ∈ I1. After adjusting ρ > 0 accordingly we may claim

[
[
(
{x̄} × W ∩ BK (0)

w∗)] × [γ̄ + [−ρ,ρ]]
]
∩ epiftα

⊆ ([(U × W)] × [γ̄ + [−ρ,ρ]]) ∩ epiftα ∩ BK (0) = ∅.

The Hahn-Banach separation theorem holds (for the separation of the (s×w∗)-closed convex

set epiftα and the (s ×w∗)-compact convex set {x̄}×W ∩ BK (0)
w∗

) within a locally convex
linear topological space [34, Theorem 1.1.3] and X ×X∗ is made so by endowing (as usual)
X with the strong topology and X∗ with the weak∗ topology. Hence we have

(
y∗

α, yα,−λα

) ∈
X∗ × X × R of unit norm (the λα ≥ 0 implied by the epigraphical recession direction in
epiftα ) for which

〈(y∗
α, yα

)
,
(
x, x∗)〉 − λαγ ≤ 〈(y∗

α, yα

)
,
(
z, z∗)〉 − λαr for all

(
x, x∗, γ

) ∈ epiftα

and
(
z, z∗, r

) ∈ [({x̄} × W ∩ BK (0)
)] × [γ̄ + (−ρ,ρ)] .

Using the fact this holds for all r ∈ γ̄ + (−ρ,ρ) we have

〈(y∗
α, yα

)
,
(
x, x∗)〉 − λαγ ≤ 〈(y∗

α, yα

)
,
(
x̄, x̄∗)〉 − λα (γ̄ − ρ)

for all
(
x, x∗, γ

) ∈ epiftα . (28)

Now let I2 be cofinal in I1 and take a bounded
{(

x∗
α, xα

)}
tα∈I2

be such that f ∗ (x∗
α, xα

)

is bounded above i.e. f ∗
tα

(
x∗

α, xα

)
< b and

∥∥(x∗
α, xα

)∥∥≤ H (some H ). Then for each tα ∈ I2

we have

〈(x∗
α, xα

)
,
(
x, x∗)〉 − γ ≤ b for all

((
x, x∗) , γ

) ∈ epiftα . (29)

Taking (28) along I2 ⊆ I1 we may multiply (28) by q > 0 and add to (29) to get

〈(x∗
α, xα

)+ q
(
y∗

α, yα

)
,
(
x, x∗)〉 − (1 + λαq) γ

≤ 〈(x∗
α, xα

)+ q
(
y∗

α, yα

)
,
(
x̄, x̄∗)〉 − 〈(x∗

α, xα

)
,
(
x̄, x̄∗)〉 + b − λαqγ̄ − λαqρ

≤ 〈(x∗
α, xα

)+ q
(
y∗

α, yα

)
,
(
x̄, x̄∗)〉

− (1 + λαq) γ̄ + γ̄ + ‖xα‖
∥∥x̄∗∥∥+ ∥∥x∗

α

∥∥‖x̄‖ + b − λαqρ

≤ 〈(x∗
α, xα

)+ q
(
y∗

α, yα

)
,
(
x̄, x̄∗)〉 − (1 + λαq) γ̄

+ [
γ̄ + (∥∥x̄∗∥∥+ ‖x̄‖)H + b − λαqρ

]
. (30)

Now choose q̄ > 0 sufficiently large so that [γ̄ + [‖x̄∗‖ + ‖x̄‖]H + b − qρ] ≤ 0 for all
q ≥ q̄ . Indeed we may take

q̄ = 1

ρ

{
γ̄ + [∥∥x̄∗∥∥+ ‖x̄‖]H + b

}
.

Let q = 2q̄ and set
(
z∗
α, zα

) := (1 + 2λαq)−1
[(

x∗
α, xα

)+ 2q
(
y∗

α, yα

)]
; on division of (30) by

(1 + 2λαq) we obtain

〈(z∗
α, zα

)
,
(
x, x∗)〉 − γ ≤ 〈(z∗

α, zα

)
,
(
x̄, x̄∗)〉 − γ̄ for all

((
x, x∗) , γ

) ∈ epiftα .
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Thus f ∗
tα

(
z∗
α, zα

) ≤ γα := 〈(z∗
α, zα

)
, (x̄, x̄∗)〉 − γ̄ for tα ∈ I2. As

{(
x∗

α, xα

)}
tα∈I2

and
{(

y∗
α, yα

)}
tα∈I2

are bounded, as q = 2q we have
{(

z∗
α, zα, γα

)}
tα∈I2

bounded for all α (in

norm by, say, K = (‖(x̄, x̄∗)‖ + γ̄ ) (H + 2q̄)) and so may extract a w∗-convergent (in
X∗ × X∗∗ = (X × X∗)∗) subnet

{(
z∗
α, zα

)}
tα∈I3⊆I2

with

(
z∗
α, zα

) := (1 + λαq)−1
[(

x∗
α, xα

)+ q
(
y∗

α, yα

)]→w∗
α∈I3

(
y∗, y∗∗) ∈ BK̄ (0) .

Also as γα → 〈(y∗, y∗∗) , (x̄, x̄∗)〉 − γ̄ (≤ K) we have

(
y∗, y∗∗, 〈(y∗, y∗∗) ,

(
x̄, x̄∗)〉 − γ̄

) ∈ w∗- lim sup
t→+∞

(
epi f̂ �

t ∩ BK (0)
)

⊆
⋃

K>0

w∗- lim sup
t→+∞

(
epi f̂ �

t ∩ BK (0)
)
.

That is,
(
bw∗-e- lim inft→+∞ f̂ �

t

)
(y∗, y∗∗) ≤ 〈(y∗, y∗∗) , (x̄, x̄∗)〉 − γ̄ , which implies

γ̄ ≤
(

bdw∗-e- lim inf
t→+∞ f̂ �

t

)�̂ (
x̄, x̄∗) ,

and so f
s×bdw∗

(x̄, x̄∗) ≤ (
bw∗-e- lim inft→+∞ f̂ �

t

)̂�
(x̄, x̄∗). As we have this inequality for

arbitrary (x̄, x̄∗) we get (26). Using (24), it follows that on X × X∗, have f
s×bdw∗ ≤

(
bdw∗-e- lim inft→+∞ f̂

�†
t

)̂�
s×bdw∗

=
(
bd-e- lim inft→∞ f

∗†
t

)∗†
. To get (27), using (16) we

have f ≥
(
bd-e- lim inft→∞ f

∗†
t

)∗†
with the latter (s × w∗)-closed and hence also for

s × bdw∗. Taking a s × bdw∗-closure we have the reverse inequality, giving the results. �

Again we may utilise the symmetry that is present in the pairing of σs×w∗ (X × X∗) with
σw∗×s (X∗ × X).

Corollary 26 Assume that {ft }t∈R+ is a family of (s × w∗)-closed, proper, convex functions
for which (inft ft ) (x, x∗) > −∞ for all (x, x∗), and that for any cofinal subset I1 of R+
there is a cofinal I2 ⊆ I1 and a bounded net

{(
xα, x

∗
α

)}
tα∈I2

such that
{
ftα

(
xα, x

∗
α

)}
tα∈I2

is
bounded above. Then we have

bd-e- lim sup
t→∞

f ∗
t

s×bdw∗ =
(
bd-e- lim inf

t→∞ ft

)∗
. (31)

Proof We apply (27) to the family of convex functions
{
f

∗†
t

}

t>0
that are well defined on

X × X∗. We then we need to assume that for any cofinal subset I2 of I1 there is a bounded
net

{(
xα, x

∗
α

)}
tα∈I2

such that
{(

f ∗
tα

)∗ (
xα, x

∗
α

)}
tα∈I2

is bounded above. As
(
f ∗

tα

)∗ = ftα this
corresponds to our stated assumption. The result now follows. �

5 Some Tools from Monotone Operator Theory

When h ∈ PC (X × X∗) may not be representative (i.e. h need not majorise the duality
product on X × X∗), we form M

≤
h := {(x, x∗) ∈ X × X∗ | h(x, x∗) ≤ 〈x, x∗〉}, and note that
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when, instead, h ≥ 〈·, ·〉 (i.e. h is representative) it is well known that we have M
≤
h = Mh,

a monotone set. Denote R (T ) := {h ∈ PC(X × X∗) | h ≥ 〈·, ·〉 and T ⊆ Mh}. When FT =
〈·, ·〉 − inf(y,y∗)∈T 〈· − y, · − y∗〉 is not representative we may study the set T μ = M

≤
FT

. One
always has T μμμ = T μ and if T is monotone then T ⊆ T μ. In [18] T �→ T μ is shown to be a
polarity and as a consequence A ⊆ B implies Aμ ⊇ Bμ, T ⊆ T μμ and (A ∪ B)μ = Aμ ∩Bμ

(for any sets A,B ⊆ X × X∗). From definitions it is clear that T μ always has w∗-closed
convex images. If T is monotone but not maximal, the Fitzpatrick function FT may not be
representative. On the other hand the Penot/Svaiter function PT := F

∗†
T ≥ 〈·, ·〉, does indeed

represent T in that T ⊆ MPT
. Following [18] we say T is representable when there exists

h ∈ R(T ) with T = Mh.
Recall bR (T ) := {

h ∈ PC(X × X∗) | PT ≥ h∗† ≥ h ≥ 〈·, ·〉} are the bigger–conjugate
representative functions with T ⊆ Mh ⊆ T μ. It is known, [18, 30] that when h ∈ R (T )

is closed or if h ∈ bR(T ), then h ∈ [FT ,PT ] where [FT ,PT ] = {g ∈ PC (X,X∗) | FT ≤ g ≤
PT }, in the pointwise partial order [12, Lemma 2.1]. Note that if h ∈ bR(T ) then we have
T ⊆ Mh and h ∈ bR(Mh) (see [13, Lemma 3]). When h ∈ bR(T ) then h ≥ FMh

, a detailed
proof of which may be found in [12, Lemma 2.6B] or [13, Lemma 3].

Proposition 27 ([13, Theorem 8]) (Monotonic Closure Theorem) Let h ∈ bR (T ). Then Mh

is monotonically closed, i.e. M
μμ

h = Mh.

Moreover this set is unique in the following sense.

Lemma 28 [12, Lemma 2.11], [30] Let T : X ⇒ X∗ be a monotone operator, let k,h ∈
bR (T ) for which h ≤ k. Then Mk = Mh ⊇ T .

We note that in [31, Theorem 11.2] are examples of representable operators that are not
monotonically closed and so the use of bigger–conjugate representative functions plays an
important role.

Remark 29 As noted in [13] if FMh
≥ 〈·, ·〉, then h

s×w∗∈ bR (T ) which indicates that we
only really need to consider (s × w∗)–closed representative functions when seeking to char-
acterise maximality but this not mandatory and may be difficult to enforce in some construc-

tions. Of course when h ∈ bR (T ) and h ≥ h
s×w∗ ∈ bR (T ) then M

h
s×w∗ = Mh.

We will summarise some results we require that appear in [13]. First note that in [7] it is
shown that not every maximal monotone operator has a (s × w∗)-closed graph (even for the
case of a subdifferential of a convex function). As we do not a priori assume any closure
property for elements of R (T ) or bR (T ) we study an appropriate closure.

Lemma 30 ([13, Lemma 5]) Suppose T is monotone, and
{(

xα, x
∗
α

)}
α

⊆ T is a bounded net

converging in the (s ×w∗)–topology to (x, x∗). Then (x, x∗) ∈ T μμ i.e. T ⊆ T
s×bdw∗ ⊆ T μμ.

In particular when T is monotonically closed (as is the case when h ∈ bR (T ) and T = Mh)

we have T (= T μμ) = T
s×bdw∗

.

Proof Let (y, y∗) ∈ T μ. Then as
{(

xα, x
∗
α

)}
α

⊆ T is bounded, there is K > 0 such that∥
∥x∗

α

∥
∥≤ K for all α so that

0 ≤ 〈y − xα, y
∗ − x∗

α〉
= 〈y − x, y∗ − x∗

α〉 + 〈x − xα, y
∗ − x∗

α〉
≤ 〈y − x, y∗ − x∗

α〉 + [∥∥y∗∥∥+ K
]‖x − xα‖ . (32)
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As xα → x in the norm topology and x∗
α → x∗ in the weak∗ topology we have, on taking the

limit,

0 ≤ 〈y − x, y∗ − x∗〉 for all
(
y, y∗) ∈ T μ.

Hence (x, x∗) ∈ T μμ and so T ⊆ T
s×bdw∗ ⊆ T μμ. �

This closure is particularly well suited to the study of representative functions. Denote

by h
s×bdw∗

the convex function with epigraph epih
s×bdw∗

.

Lemma 31 Let h ∈ R (T ).

1. Then h
s×bdw∗ ∈ R (T ) and M

h
s×bdw∗ ⊇ Mh

s×bdw∗ ⊇ Mh ⊇ T , and so when h
s×bdw∗ = h

we have Mh = Mh

s×bdw∗
.

2. When h ∈ bR (T ) then h
s×bdw∗ ∈ bR (T ) and M

h
s×bdw∗ = Mh

s×bdw∗ = (Mh)
μμ = Mh ⊇

T .

Proof Part 1) First we note that h
s×bdw∗

majorises the duality product. Indeed, as h ≥ 〈·, ·〉
we have, from (32) (with (y, y∗) = (x, x∗)), that there is

(
xα, x

∗
α

)→s×bdw∗
(x, x∗) for which

h
s×bdw∗ (

x, x∗)= lim
α

h
(
xα, x

∗
α

)≥ lim
α

〈xα, x
∗
α〉 = 〈x, x∗〉,

giving the inequality for the closure.

On the other hand, if (x, x∗) ∈ Mh

s×bdw∗
, and

(
xα, x

∗
α

)→s×bdw∗
(x, x∗) with

(
xα, x

∗
α

) ∈
Mh we have

〈x, x∗〉 = lim
α

h
(
xα, x

∗
α

)≥ h
s×bdw∗ (

x, x∗)≥ 〈x, x∗〉

and so (x, x∗) ∈ M
h
s×bdw∗ . It follows that Mh ⊆ Mh

s×bdw∗ ⊆ M
h
s×bdw∗ .

Part 2) When h ∈ bR (T ) then h ≤ h∗†, so from the first part, 〈·, ·〉 ≤ h
s×bdw∗ ≤ h ≤

h∗† ≤
(
h

s×bdw∗)∗†
and so h

s×bdw∗ ∈ bR (T ). This implies, using [30], that M
h
s×bdw∗ = Mh

(= Mh

s×bdw∗
). �

We make note of the following for later use. Recall Definition 1 for the recession operator
recM .

Proposition 32 ([13, Proposition 5]) Suppose T : X ⇒ X∗ is a monotone operator. If x, y ∈
domT then for any λ ∈ [0,1] we have (λx + (1 − λ)y,0) ∈ (recT )μμ and so

co domT ⊆ PX

[
(recT )μμ

]
. (33)

Moreover when recT is monotonically closed then domT is convex.

Remark 33 When X is reflexive it is well known that for maximal monotone T the strong
closure of the domain domT is convex. When X is reflexive and T is maximal monotone,
then it is shown in [13] that (recT ) (x) = Nco domT (x) for all x ∈ domT . Consequently
that recT = Nco domT on domT and hence (recT )μμ = (Nco domT )μμ = Nco domT being max-
imally monotone.
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6 A Bigger-Conjugate Representative Function for recT

The objective of the section is to construct a concrete representative h ∈ bR (recT ) using a
variational limit. In doing so we further connect to this operator, the normal cone operator
associated with the convex closure of the domain of T . The construction we use is the
following.

Definition 34 Let X be an arbitrary Banach space. Suppose T : X ⇒ X∗ is maximal mono-
tone and denote its Fitzpatrick function by FT . Then we form

FT 0+
2 := bd-e- lim inf

t→+0
FtT

s×bdw∗
.

where (tT ) (x) := tT (x).

We begin by taking (z, z∗) ∈ T and translating this point to (0,0) noting that as

FT −(z,z∗)

(
x, x∗)= FT

(
x + z, x∗ + z∗)− (〈x + z, x∗ + z∗〉 − 〈x, x∗〉) , (34)

any analysis based on s × w∗ convergent bounded nets will be unaffected by such a trans-
lation, which is the case for the arguments to follow. Thus without loss of generality we
assume (0,0) ∈ T , so that FT , FT 0+ ≥ 0 on X × X∗.

We will build up the properties of this function in a series of Lemmas and Propositions.

Lemma 35 Let X be an arbitrary real Banach space. Suppose T : X ⇒ X∗ is monotone,
with Fitzpatrick function FT . Suppose also that (0,0) ∈ T . Then:

1. On X × X∗,

FT 0+
2 ≥ 0.

Moreover, denoting gt (x, x∗) := FtT (x, x∗) = tFT

(
x, x∗

t

)
then for all (y, y∗) ∈ X ×

X∗,

g
∗†
t

(
y, y∗)= tPT

(
y,

y∗

t

)
= PtT

(
y, y∗)≥ FtT

(
y, y∗)= tFT

(
y,

y∗

t

)
= gt

(
y, y∗) .

2. We have

PrX domFT 0+
2 ⊆ PrX domFT , and, when T maximal,

PrX domFT 0+
2 ⊆ co domT .

(35)

Furthermore when T is maximal, then FT 0+
2 ≥ 〈·, ·〉 on X × X∗, with also (FT 0+

2 )(x,

x∗) = 〈x, x∗〉 for all (x, x∗) ∈ recT , so FT 0+
2 ∈ R (recT ) (i.e. recT ⊆ MFT 0+

2
).

3. We have
(
FT 0+

2

)∗† ≥ FT 0+
2 , and so if FT 0+

2 is convex and T maximal, then FT 0+
2 ∈

bR (recT ). Furthermore, if FT 0+
2 = bd-e- limt→+0 FtT

s×bdw∗
(i.e. exists as an epi-limit)

then also FT 0+
2 is convex with FT 0+

2 ≥ FrecT and so

(FrecT )∗† = PrecT ≥ (
FT 0+

2

)∗†
on X × X∗.
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Proof Part 1: As (0,0) ∈ T it is immediate that for all (x, x∗) we have FT (x, x∗) ≥ 〈x,0〉 +
〈x∗,0〉 − 〈0,0〉 = 0, so clearly FT 0+

2 ≥ 0. Next note that

tFT

(
x,

x∗

t

)
= 〈x, x∗〉 iff FT

(
x,

x∗

t

)
= 〈x,

x∗

t
〉 iff x∗ ∈ tT (x) .

Indeed

FtT

(
x, x∗)= sup

(y,ty∗)∈tT

(〈x, ty∗〉 + 〈y, x∗〉 − t〈y, y∗〉)

= t sup
(y,y∗)∈T

(
〈x, y∗〉 + 〈y,

x∗

t
〉 − 〈y, y∗〉

)
= tFT

(
x,

x∗

t

)
= gt

(
x, x∗) .

Hence g
∗†
t = F

∗†
tT = PtT . Furthermore, we have (as t > 0) and PT := F

∗†
T that

g
∗†
t

(
y, y∗)= sup

(x,x∗)

{
〈(x, x∗) ,

(
y, y∗)〉 − tFT

(
x,

x∗

t

)}

= t sup
(x,x∗)

{〈(
x,

x∗

t

)
,

(
y,

y∗

t

)〉
− FT

(
x,

x∗

t

)}

= t sup
(x,x∗)

{〈
(
x, x∗) ,

(
y,

y∗

t

)〉
− FT

(
x, x∗)

}

= tPT

(
y,

y∗

t

)
≥ tFT

(
y,

y∗

t

)
= gt

(
y, y∗) . (36)

Part 2: Clearly we always have PrX domFT 0+
2 ⊆ PrX domFT while co domT =

PrX domFT , when T is maximal [6, Theorem 3.6] which gives (35). Now assume T is
maximal monotone. Take (x, x∗) ∈ recT so there exist nets tα → 0 and x∗

α ∈ tαT (xα), with{(
xα, x

∗
α

)}
bounded and

(
xα, x

∗
α

)→s×w∗
(x, x∗). That x∗

α ∈ tαT (xα), implies (for all α ) that

FT

(
xα,

x∗
α

tα

)
= 〈xα,

x∗
α

tα
〉 or tαFT

(
xα,

x∗
α

tα

)
= 〈xα, x

∗
α〉. Thus

lim inf
α

tαFT

(
xα,

x∗
α

tα

)
= lim

α
〈xα, x

∗
α〉 = 〈x, x∗〉. (37)

Furthermore for arbitrary (x, x∗) ∈ X × X∗, and any net
(
wα,w

∗
α

) → (x, x∗) with
{
w∗

α

}

bounded and tα →+ 0, we have

lim inf
α

tαFT

(
wα,

w∗
α

tα

)
≥ lim inf

α
tα〈wα,

w∗
α

tα
〉 = lim

α
〈wα,w

∗
α〉 = 〈x, x∗〉.

Hence

bdw∗- lim sup
t→+0

(epigt ) ⊆ epi〈·, ·〉 or bd-e- lim inf
t→+0

gt ≥ 〈·, ·〉 , giving (38)

FT 0+
2 ≥ bd-e- lim inf

t→+0
gt

s×bdw∗ ≥ 〈·, ·〉, on X × X∗,
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the last inequality following from the (s×bdw∗)-continuity of the duality product. Moreover
by (37) and Lemma 12 we have

FT 0+
2

(
x.x∗)= bd-e- lim inf

t→+0
gt

s×bdw∗ (
x, x∗)≤ lim inf

α
FtαT

(
xα, x

∗
α

)

= lim inf
α

tαFT

(
xα,

x∗
α

tα

)
= 〈x, x∗〉,

for any (x, x∗) ∈ recT . Thus FT 0+
2 = 〈·, ·〉 on recT .

Part 3: We now show that h := FT 0+
2 satisfies h ≤ h∗†. In order to apply Proposition

25 to gt = FtT we need to supply a bounded family
{(

xτ , x
∗
τ

)}
τ>0

with
{
g

∗†
1/τ

(
xτ , x

∗
τ

)}

bounded (then given a cofinal subnet I1 we have same holding on I2 = I1). To this
end, note that as (0,0) ∈ T then PT (0,0) = 〈0,0〉 = 0 where PT is strongly–closed
convex on X × X∗. Let

(
xt , x

∗
t

) ∈ Bt (0,0) ∩ domPT be such that limt→0 PT

(
xt , x

∗
t

) =
lim inf(y,y∗)→(0,0) PT (y, y∗) = 0. Then for t ∈ (0,1], we have

{(
xt , tx

∗
t

)}
t∈(0,1] a bounded net,

for which g
∗†
t

(
xt , tx

∗
t

)= tPT

(
xt ,

tx∗
t

t

)
= tPT

(
xt , x

∗
t

)→t→0 0. Using the convention τ = 1
t

we have provided the desired bounded family
{(

xτ , x
∗
τ

)}
τ>0

with
{
g

∗†
1/τ

(
xτ , x

∗
τ

)}
bounded.

We note that the family
{
g

∗†
t := PtT

}

t>0
consists of positive functions. Thus, Proposition 25

yields

bd-e- lim sup
τ→+∞

g1/τ

s×bdw∗ =
(

bd-e- lim inf
τ→+∞ g∗

1/τ

)∗
, (39)

and by (36) we have g1/τ ≤ g
∗†
1/τ . Using these facts we obtain

h = FT 0+
2 = bd-e- lim inf

t→+0
FtT

s×bdw∗ ≤ bd-e- lim sup
τ→+∞

g1/τ

s×bdw∗ =
(

bd-e- lim inf
τ→+∞ g

∗†
1/τ

)∗†

≤
(

bd-e- lim inf
τ→+∞ g1/τ

)∗†
=
(

bd-e- lim inf
t→+0

gt

s×bdw∗)∗†
= h∗†.

Thus if FT 0+
2 is convex, then it is bigger–conjugate convex. In particular this holds when

FT 0+
2 exists as an epi-limit. Assume now this epi–limit condition on FT 0+

2 . Consider the
Fitzpatrick function for recT i.e.

FrecT

(
x, x∗)= (〈·, ·〉 + δrecT )∗ (x, x∗)

=
(
〈·, ·〉 + δbdw∗- lim supt→+0 tT

)∗ (
x, x∗)

=
(

bd-e- lim inf
t→+0

(〈·, ·〉 + δtT )

)∗ (
x, x∗)

≤
(

bd-e- lim inf
t→+0

cos×w∗
(〈·, ·〉 + δtT )

)∗ (
x, x∗)

= bd-e- lim sup
t→+0

(〈·, ·〉 + δtT )∗s×bdw∗ (
x, x∗)= (FT 0+

2 )
(
x, x∗) ,
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where the third equality follows easily from definitions, the inequality from the order
reversal of conjugation and the following equality from an application of Proposition
25. For Proposition 25 to be applicable we observed that from the above g

∗†
t = PtT =

cos×w∗
(〈·, ·〉 + δtT ) ≥ 0 has already been shown to satisfy the necessary boundedness pre-

conditions for the application of Proposition 25.
Finally we note that we have already shown that when T is maximal, (FT 0+

2 ) (x, x∗) =
FrecT (x, x∗) = 〈x, x∗〉 for (x, x∗) ∈ recT always i.e. MFT 0+

2
⊇ recT . �

We recall the following results from [28] and [11, Corollary 23].

Remark 36 If C ⊆ X×X∗ is closed convex, then the usual concept of recession corresponds
to the “asymptotic cone” 0+C defined by: (y, y∗) ∈ 0+C iff for some c ∈ C (and hence for
any c ∈ C) c+R+ (y, y∗) ⊆ C or C + t (y, y∗) ⊆ C for all t > 0. When C is not closed, 0+C

may itself not be closed. When C is not closed, 0+C can be defined by a limiting process.

In [28] we have 0+C = lim supλ↓0 λC :=⋂
ε>0

[⋃
0<λ<ε λC

]
(where the limit supremum is

taken with respect to an appropriate topology associated with the duality pairing).

Lemma 37 ([11, Lemma 22]) Let f ∈ � (X × X∗). The polar of the convex cone generated
by domf ∗ i.e.

(
cone domf ∗)◦ := {(

x, x∗) | δ∗
domf ∗

(
x∗, x

)≤ 0
}

is the same as the asymptotic cone 0+ [f ≤ α] for any α > inff .

The transpose operator can take a polar set (which resides in the dual X∗ × X) back into
the primal space X ×X∗. This permits statements which otherwise would not be possible in
general Banach space theory.

Corollary 38 ([11, Corollary 23]) Suppose C ⊆ X × X∗ is a s × w∗-closed convex set. Then

(
dom δ∗

C

)◦ =
{(

w,w∗) | δ∗
dom δ∗

C

(
w∗,w

)≤ 0
}

= 0+C.

Thus for h ∈ bR (T ) we have

dom
s×w∗

δ∗
coMh

= (
0+coMh

)◦
and dom

s×w∗
δ∗

domFMh
=
(

0+domFMh

s×w∗)◦
. (40)

Recall that the asymptotic function f 0+ of a proper, (s × w∗)-closed, convex function f

defined on X × X∗ is given by

(f 0+)
(
x, x∗) := lim

τ→∞
1

τ

[
f
((

y, y∗)+ τ
(
x, x∗))− f

(
y, y∗)]

= sup
τ>0

1

τ

(
f
((

y, y∗)+ τ
(
x, x∗))− f

(
y, y∗)) ,

for any (or all) (y, y∗) ∈ domf , noting that the above expression is independent of the
choice of (y, y∗) ∈ domf .

Remark 39 Recall from [28, Theorem 3B] that (f 0+) (x, x∗) ≤ μ equivalent to the follow-
ing:
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1. f ((y, y∗) + τ (x, x∗)) ≤ f (y, y∗) + τμ for some (and equivalently for all) (y, y∗) ∈
domf and τ ≥ 0.

2. f ((y, y∗) + (x, x∗)) − f (y, y∗) ≤ μ for all (y, y∗) ∈ domf .
3. There exists a net

(
xi, x

∗
i

)
and ti > 0 such that limi ti = 0 and limi

(
xi, x

∗
i

)= (x, x∗) with

lim
i

tif

(
1

ti

(
xi, x

∗
i

)
)

≤ μ.

4. 〈(x, x∗) , (w,w∗)〉 ≤ μ for all (w,w∗) ∈ domf ∗†.

Remark 40 We note that 0+domF
Mh

s×w∗
is closed while 0+ domF

Mh
may not be.

Proposition 41 ([11, Proposition 26]) Suppose h ∈ bR (T ). Then

FMh
0+ = δ

∗†
cos×w∗

Mh
(41)

Furthermore, for any α > infFMh
,

0+[F
Mh

≤ α] ⊆ dom δ
∗†
cos×w∗

Mh
⊆ 0+ domF

Mh
. (42)

We have seen that the problem of constructing a member of bR (recT ) for any monotone
operator T , has been reduced to the problem of showing the existence of a particular epi-
limit. We will now consider the recession function associated with the Fitzpatrick function.

Proposition 42 Let X be an arbitrary real Banach space. Suppose T : X ⇒ X∗ is monotone
and (0,0) ∈ T . Denote its Fitzpatrick function by FT . For (x, x∗) , (y, y∗) ∈ X ×X∗, define:

fτ

((
y, y∗) ,

(
x, x∗)) :=

{
1
τ

[FT ((y, y∗) + τ (x, x∗)) − FT (y, y∗)] if (y, y∗) ∈ domFT

+∞ otherwise
.

(43)
Then τ �→ fτ is monotonically nondecreasing as τ → ∞, and convex in (x, x∗). Also the
pointwise limit of the family τ �→ fτ ((y, y∗), (·, ·))) is independent of the choice of (y, y∗) ∈
domFT , and exists as a convex function coinciding with FT 0+ on X×X∗, with domFT 0+ ⊆
domFT . Moreover for any (x, x∗) ∈ domFT 0+

2 ⊆ domFT

s×bdw∗
we have

(
FT 0+

2

) (
x, x∗)= bd-e- lim

τ→+∞fτ ((x, x∗) , ·)s×bdw∗ (
0, x∗) with the epi-limit existing,

with also,
(
FT 0+

2

) (
x, x∗)= (FT 0+(0, ·))bdw∗ (

x∗)+ δPrX domFT
(x)

for all
(
x, x∗) ∈ X × X∗.

Furthermore, when T is maximal

(
FT 0+

2

) (
x, x∗)= (FT 0+(0, ·))bdw∗ (

x∗)+ δco domT (x) for all
(
x, x∗) ∈ X × X∗. (44)

(In particular, when T maximal, then FT 0+
2 is convex.)

Proof Due to the convexity of FT , [29, Theorems 23.1 or 8.5] we have τ �→ fτ (point-
wise) monotonically nondecreasing (on domFT ) as τ → ∞, and infinite when (y, y∗) /∈
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domFT . So, τ �→ fτ is pointwise monotonically nondecreasing as τ → ∞. Moreover,
supτ>0 fτ ((y, y∗) , (x, x∗)) ≤ μ is equivalent to

((
y, y∗) ,FT

(
y, y∗))+ τ

((
x, x∗) ,μ

) ∈ epiFT for all τ > 0

or
((

x, x∗) ,μ
) ∈ 0+ epiFT ,

using the fact that epiFT is (s × w∗)-closed. This means the bound of μ holds for
all choices of (y, y∗) ∈ domFT (including (0,0) ∈ domFT , and (y, y∗) = (x, x∗), when
(x, x∗) ∈ domFT ). Note that there exists μ < +∞ with ((x, x∗) ,μ) ∈ 0+ epiFT iff
(FT 0+) (x, x∗) < +∞ iff (x, x∗) ∈ domFT 0+. As (0,0) ∈ domFT and FT (0,0) = 0 we
have ((x, x∗) ,μ) ∈ 0+ epiFT with μ < +∞ iff τ ((x, x∗) ,μ) ∈ epiFT for all τ > 0 and
hence (x, x∗) ∈ domFT follows (take τ = 1). Thus

domFT 0+ ⊆ domFT . (45)

Moreover it then follows that ((x, x∗) ,μ) ∈ 0+ epiFT iff ((x, x∗) ,FT (x, x∗)) + τ((x, x∗) ,

μ) ∈ epiFT for all τ > 0 iff fτ ((x, x∗) , (x, x∗)) ≤ μ for all τ > 0 iff (FT 0+) (x, x∗) =
supτ fτ ((x, x∗) , (x, x∗)) ≤ μ.

Define h : X × X∗ →R+∞ as follows:

h
(
x, x∗) := sup

τ

fτ

((
x, y∗) ,

(
0, x∗))= (FT 0+)

(
0, x∗) , (46)

for any y∗ such that (x, y∗) ∈ domFT , if such y∗ exists; with h(x, x∗) := +∞ other-
wise. Such a y∗ exists iff x ∈ PrX domFT . Utilising these observations we note h(x, x∗) =
supτ fτ ((x, x∗) , (0, x∗)) is clearly finite if (x, x∗) ∈ domFT 0+ ⊆ domFT . In summary:

h
(
x, x∗)=

{(
FT 0+) (0, x∗) if x ∈ PrX domFT

+∞ otherwise
. (47)

Note that (47) implies h ≥ 0, and h(x,0) = 0 for x ∈ PrX domFT , together with

dom
(
FT 0+ (0, ·))∩ (PrX domFT × X∗) (48)

⊆ domh ∩ (PrX domFT × X∗)= domh.

By definitions, on X × X∗,

h
(
x, x∗)≥ (

FT 0+) (0, x∗) .

Thus domh ⊆ dom
(
FT 0+ (0, ·)) and utilising (48)

dom
(
FT 0+ (0, ·))∩ (PrX domFT × X∗)= domh. (49)

Denote by h the function with the epigraph epih
s×bdw∗

and similarly for (FT 0+(0, ·))s×bdw∗=
(FT 0+(0, ·))bdw∗

. Using the identity (47) and inclusion (49), on taking lower closures we
have

h
(
x, x∗)= (FT 0+(0, ·)) + δPrX domFT ×X∗ (·)s×bdw∗ (

x, x∗)

= (FT 0+(0, ·))bdw∗ (
x∗)+ δPrX domFT

(x) . (50)
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Now we address the relationship of these quantities to FT 0+
2 . By Proposition 18, part

3, and the (s × bdw∗)-closedness of fτ ((y, y∗), (·, ·))) (for any fixed (y, y∗) ∈ domFT ) we
have bd-e-limτ→+∞ fτ ((y, y∗) , ·) = FT 0+ on X × X∗ existing as an epi-limit, and is also a
(s × bdw∗)-closed convex function. Consequently the epi-limit is independent of the choice
of (y, y∗) ∈ domFT .

Taking (y, y∗) = (0,0) ∈ domFT then fτ ((0,0) , ·) = 1
τ
FT (τ ·) and for all (x, x∗) ∈ X ×

X∗

(FT 0+)
(
x, x∗)= sup

τ

fτ

(
(0,0) ,

(
x, x∗))

=
(

bd-e- lim
t→+0

tFT

(
(·, ·)

t

))(
x, x∗) .

Let (x, x∗) ∈ X × X∗. For any ε > 0, suppose the net
(
xα, x

∗
α

)→s×bdw∗ (x, x∗) is chosen

so that limα tαFT

(
xα,

x∗
α

tα

)
≤ (

bd-e- lim inft→+0 FtT

)
(x, x∗)+ε whenever the latter is finite.

Then
(
tαxα, x

∗
α

)→tα→0 (0, x∗) so that

(FT 0+)
(
0, x∗)= sup

τ>0
fτ ((0,0), (0, x∗)) ≤ lim inf

α
tαFT

(
1

tα

(
tαxα, x

∗
α

))

= lim inf
α

tαFT

(
xα,

x∗
α

tα

)
≤
(

bd-e- lim inf
t→+0

FtT

)(
x, x∗)+ ε.

As ε > 0 is arbitrary we conclude, for all (x, x∗) ∈ X × X∗,

(FT 0+)
(
0, x∗)= sup

τ>0
fτ ((0,0), (0, x∗)) ≤ (bd-e- lim inf

t→+0
FtT )(x, x∗) , (51)

and so

(FT 0+(0, ·))bdw∗ (
x∗)≤ bd-e- lim inf

t→+0
FtT

s×bdw∗ (
x, x∗)= (FT 0+

2 )
(
x, x∗) . (52)

On the other hand, FT (0,0) = 0 so

(FT 0+)
(
0, x∗)= sup

τ>0

1

τ

[
FT

(
(0,0) + τ

(
0, x∗))− FT (0,0)

]= sup
τ>0

fτ ((0,0), (0, x∗))

= sup
τ>0

1

τ
FT

(
τ
(
0, x∗))= lim

t→+0
FtT

(
0, x∗)

≥ inf{(
xα,x∗

α

)→s×bdw∗ (
0,x∗)}

{tα→+∞}

lim inf
α

FtαT

((
xα, x

∗
α

))

=
(

bd-e- lim inf
t→+0

FtT

)
(
0, x∗)≥ (FT 0+

2 )
(
0, x∗) .

Combining this with (51) we have

(FT 0+)
(
0, x∗)= sup

τ>0
fτ ((0,0), (0, x∗)) = (bd-e- lim inf

t→+0
FtT )(0, x∗) (53)

and, combining instead with (52), gives (FT 0+(0, ·))bdw∗
(x∗) = (FT 0+

2 ) (0, x∗), for all x∗ ∈
X∗.
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Recall that h denotes the closure h
s×bdw∗

. Then for each (x, x∗) ∈ X × X∗ there exists a
bounded net

(
xα, x

∗
α

)→s×bdw∗
(x, x∗) such that

h
(
x, x∗)= lim

α
h
(
xα, x

∗
α

)
.

Suppose h(x, x∗) < +∞ (noting that we have h ≥ 0). Let
(
xα, x

∗
α

)→s×bdw∗
(x, x∗) be any

fixed bounded net with limα h
(
xα, x

∗
α

)= h(x, x∗). Then, for
(
xα, y

∗
α

) ∈ domFT , as −∞ <

f̂τ

(
xα, x

∗
α

) := fτ

((
xα, y

∗
α

)
,
(
0, x∗

α

))≤ h
(
xα, x

∗
α

)
, we have for any ε > 0, and τα → +∞ that

eventually,

f̂τα

(
xα, x

∗
α

)− ε ≤ h
(
x, x∗) .

Due to (43), with τ = 1
t
, in the expression for f̂τ (w,w∗) := fτ ((w,y∗) , (0,w∗)) (w ∈

PrX domFT ) we have, recalling (for any y∗ for which (w,y∗) ∈ domFT ),

gt

(
w,w∗)= 1

τ
FT

(
w,y∗ + τw∗) , that

gt

(
w,w∗)= f̂τ

(
w,w∗)+ tFT

(
w,y∗) . (54)

As we have chosen a fixed bounded net
(
xα, x

∗
α

)→s×w∗
(x, x∗) so for any tα ↓ 0+ and associ-

ated τα → ∞ we will have −∞ < lim supα f̂τα

(
xα, x

∗
α

)≤ lim supα h
(
xα, x

∗
α

)≤ h(x, x∗) <

+∞. Thus we eventually have xα ∈ PrX domFT and for any
(
xα, y

∗
α

) ∈ domFT with y∗
α

τα
→ 0

(which we achieve via our selection of tα) we have a bounded net
(
xα, x

∗
α + y∗

α

τα

)
→s×bdw∗

α

(x, x∗) with

(FT 0+
2 )
(
x, x∗)≤ lim inf

α
gtα

(
xα, x

∗
α

)= lim inf
α

1

τα

FT

(
xα, τα

(
x∗

α + y∗
α

τα

))
,

noting that by Lemma 35, PrX domFT 0+
2 ⊆ PrX domFT . Then from

gtα

(
xα, x

∗
α

)− f̂τα

(
xα, x

∗
α

)= tαFT

(
xα, y

∗
α

)
we get

lim inf
α

gtα

(
xα, x

∗
α

)− lim sup
α

f̂τα

(
xα, x

∗
α

)≤ lim inf
α

[
gtα

(
xα, x

∗
α

)− f̂τα

(
xα, x

∗
α

)]

= lim inf
α

tαFT

(
xα, y

∗
α

)

and so (FT 0+
2 )
(
x, x∗)≤ lim inf

α
gtα

(
xα, x

∗
α

)

≤ lim sup
α

f̂τα

(
xα, x

∗
α

)+ lim inf
α

tαFT

(
xα, y

∗
α

)

≤ lim sup
α

h
(
xα, x

∗
α

)+ lim inf
α

tαFT

(
xα, y

∗
α

)

≤ h
(
x, x∗)+ lim inf

α
tαFT

(
xα, y

∗
α

)
, (55)

where the fourth inequality follows from the fact that f̂τα ≤ h. Note that FT

(
xα, y

∗
α

)
is finite

for all α. Since this inequality holds for all tα → 0, (with tαy
∗
α = y∗

α

τα
→ 0) we select tα :=

min
{

εα∣
∣FT

(
xα,y∗

α

)∣∣+1
, εα∥
∥y∗

α

∥
∥

}
where εα → 0 so that tα → 0. Then 0 ≤ lim infα tαFT

(
xα, y

∗
α

) ≤
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εα → 0 and y∗
α

τα
= tαy

∗
α → 0. Thus

(FT 0+
2 )
(
x, x∗)≤ (bd-e- lim inf

t→+0
FtT )(x, x∗) ≤ lim inf

α
gtα (xα, x

∗
α)

≤ lim sup
α

fτα (xα, x
∗
α), (0, x∗

α)) ≤ h
(
x, x∗) .

In particular we have established

(bd-e- lim inf
t→+0

FtT )(x, x∗) ≤ h(x, x∗) ≤ h(x, x∗) for all (x, x∗) ∈ X × X∗, (56)

and so FT 0+
2 ≤ h on X × X∗. For the reverse inequality, we note, for (x, x∗) ∈ domFT 0+

2 ,
that from (35), have x ∈ PrX domFT so that using (50) and (52), it follows that

h
(
x, x∗)= (FT 0+(0, ·))bdw∗ (

x∗)+ δPrX domFT
(x) ≤ (FT 0+

2 )
(
x, x∗) , (57)

forcing equality on X × X∗ and verifying the result.
Note that when maximal, the relation (44) obtains from use of [6, Thm 3.6]. �

Corollary 43 Let X be an arbitrary real Banach space. Suppose T : X ⇒ X∗ is maximal
monotone and (0,0) ∈ T . Denote its Fitzpatrick function by FT . Then there exists a convex
function h on X × X∗ for which: (i)

h = bd-e- lim inf
t→+0

FtT on PrX domFT × X∗ ; (58)

(ii) h
s×bdw∗ = FT 0+

2 ; (iii) domh = PrX domFT ×domFT 0+(0, ·) where domFT 0+(0, ·) is a
convex cone in X∗. Furthermore for any x ∈ PrX domFT we have the epi-limit (58) attained
in that there exists y∗ such that (x, y∗) ∈ domFT and

h(x, x∗) = lim
t→0

FtT (x, x∗ + ty∗).

Proof We have already defined a convex function via (46) which we will show satisfies
the assertions of this Corollary. First we note that from (56) it follows that h(x, x∗) ≥
(bd-e- lim inft→+0 FtT )(x, x∗). Then, from the representation (54) of gt , the fact that when
x ∈ PrX domFT there exists y∗ ∈ X∗ such that (x, y∗) ∈ domFT and FT ≥ 0 we have: (re-
calling the functions f̂ from the preceding proof)

(bd-e- lim inf
t→+0

FtT )(x, x∗) = (bd-e- lim inf
t→+0

gt )(x, x∗)

= bd-e- lim inf
t→+0

(f̂ 1
t

(
x, x∗)+ tFT

(
x, y∗))

≥ bd-e- lim
τ→+∞ f̂τ

(
x, x∗)= h(x, x∗)

where we have used Proposition 18 part 3 and the pointwise monotonicity of τ �→ f̂τ (·) to
obtain that last equality. This implies, for x ∈ PrX domFT that we have equality:

h(x, x∗) = (bd-e- lim inf
t→+0

FtT )(x, x∗) = sup
τ>0

fτ ((x, y∗), (0, x∗)) = (FT 0+)
(
0, x∗) , (59)
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where we have used (53) and the independence of the recession function on the choice of
base-point (x, y∗) ∈ domFT .

As supτ>0 fτ ((x, y∗), (0, x∗)) = limt→0(tFT (x,
x∗+ty∗

t
) − tFT (x, y∗)) = limt→0 FtT (x,

x∗ + ty∗) (on placing τ = 1
t
) it is evident that the associated epi-limit is actually attained

when x ∈ PrX domFT i.e. (bd-e- lim inft→+0 FtT )(x, x∗) = limt→0 FtT (x, x∗ + ty∗). From
(49) and (50) it is evident that domh = PrX domFT × domFT 0+(0, ·). Finally we note
that positive homogeneity implies domFT 0+(0, ·) is a cone in X∗ and the convexity of
x∗ �→ FT (0, x∗) implies that this (fixed) cone is convex i.e. the domain of h is rectangu-
lar. �

The next result augments that of [25, Lemma 2] which deals with a parallel characterisa-
tion of the representative function of the range recession operator in a reflexive space.

Corollary 44 Let g ∈ bR (T ) and assume (0,0) ∈ Mg . Then we have the following.

1. When Mg is maximal, then (FMg 0+
2 ) (x, x∗) = δ∗

co domMg
(x∗) + δco domMg (x) for all

(x, x∗) ∈ X × X∗.
2. When co domMg = PrX domFMg (which is true when Mg is maximal, [6]) we have

MFMg 0+
2

= Nco domMg ,

which is maximal.
3. When a monotone operator T � (0,0) is maximal, then MFT 0+

2
= Nco domT is also maxi-

mal and FT 0+
2 = δ∗

co domT + δco domT ≥ 〈·, ·〉.

Proof We use Proposition 41 and 42 to note that

(FMg 0+)(0, ·) = δ
∗†
coMg

(
0, x∗)= δ∗

co domMg

(
x∗)

which is w∗-lower–semicontinuous. Moreover, co domMg ⊆ PX domPMg ⊆ PX domFMg

with co domMg = PrX domFMg (when Mg is maximal) so (FMg 0+(0, ·))bdw∗
(x∗) =

δ∗
co domMg

(x∗) and

(FMg 0+
2 )
(
x, x∗)= (FMg 0+(0, ·))bdw∗ (

x∗)+ δPrX domFMg
(x)

= δ∗
co domMg

(
x∗)+ δPrX domFMg

(x)

= δ∗
co domMg

(
x∗)+ δco domMg (x) when Mg is maximal.

Thus whenever co domMg = PrX domFMg we have

M
≤
FMg 0+

2
=
{
(
x, x∗)

∣
∣∣
∣ 〈x, x∗〉 = δ∗

co domMg

(
x∗)+ δPrX domFMg

(x)

}

= {(
x, x∗) | x ∈ co domMg and 〈y − x, x∗〉 ≤ 0 for all y ∈ co domMg

}

= Nco domMg . (60)

When T is maximal, so g := FT ∈ bR (T ), then Mg = T is established, so by Part 2,
MFT 0+

2
= Nco domT which is maximal. �
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Recall that we call a monotone operator T of type “Brøndsted-Rockafellar” (BR) [4], if,
whenever (x, x∗) ∈ X × X∗ and α,β > 0 satisfy

inf
(y,y∗)∈T

〈x − y, x∗ − y∗〉 ≥ −αβ ,

then there exists (w,w∗) ∈ T with ‖x − w‖ ≤ α and ‖x∗ − w∗‖ ≤ β .

Remark 45 Note that when (x, x∗) ∈ domFT we have +∞ > FT (x, x∗) = 〈x, x∗〉 −
inf(y,y∗)∈T 〈x − y, x∗ − y∗〉 so

inf
(y,y∗)∈T

〈x − y, x∗ − y∗〉 = 〈x, x∗〉 − FT

(
x, x∗)≥ −b > −∞

and if T is of BR-type then hence for any α,β > 0 such that αβ = b we have existence
of (w,w∗) ∈ T with ‖x − w‖ ≤ α and ‖x∗ − w∗‖ ≤ β . Hence (using the α = 1

n
and β =

bn) we have existence of wn ∈ domT such that wn → x and hence x ∈ domT . That is,
PrX domFT ⊆ domT (⊆ PrX domFT ). Hence domT = PrX domFT is convex.

The following obtains by a similar argument as given in [13, Proposition 13].

Lemma 46 Suppose T : X ⇒ X∗ is a monotone operator of type (BR) where X is an ar-
bitrary real Banach space. Then for all x ∈ domT (= co domT from remark 45) we have
NdomT (x) = (recT ) (x) = rec (T μ) (x). Thus recT = NdomT and hence recT is maximal.

Proof See appendix for proof. �

7 Conditions for the Almost–Convexity Property

It is conjectured that the domain of a maximal monotone operator T has the almost convex
property.

Definition 47 We say that the almost convex property (ACP) holds for a monotone operator
T iff we have domT convex.

This property has been studied by a number of authors and good summary of the best
results to date may be found in [6]. Also see [32] for some recent insights. Note that
by definition dom (recT ) ⊆ domT —indeed, in [13] equality is shown by demonstrating
that x ∈ domT implies (x,0) ∈ recT . Thus maximality of recT immediately delivers the
almost–convexity property. We note that the maximality of recT has already been shown to
be true in reflexive spaces in [11], providing another proof of the almost convexity property
in reflexive spaces. In non-reflexive spaces we know that all monotone operators that are
subdifferentials and those with non-empty interiors in their domains also possess the almost
convexity property.

Proposition 48 Let X be an arbitrary real Banach space and T : X ⇒ X∗ be monotone.
Suppose g ∈ bR(T ) is such that co domMg = PrX domFMg (which is true when Mg is max-
imal [6]). Then recMg is a “pre-maximal monotone operator”, in the sense that

(
recMg

)μ = M
≤
FrecMg

= MFMg 0+
2

= Nco domMg iff dom
(
recMg

)μ ⊆ PrX domFMg .

Thus when T and recT are maximal, we have recT = Nco domT .
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Proof First we note that by [13, Lemma 11], dom
(
recMg

) = domMg so we have 0 ∈
recMg (x) for all x ∈ domMg and

FrecMg (x, x∗) = sup
(y,y∗)∈recMg

〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉

≥ sup
y∈domMg

〈x,0〉 + 〈y, x∗〉 − 〈y,0〉 = δ∗
co domMg

(
x∗)

and by Lemma 35 part 3, FrecMg ≤ FMg 0+
2 and so we have from Corollary 44 part 2 that

MFMg 0+
2

= Nco domMg ⊆ (
recMg

)μ = M
≤
FrecMg

⊆
{(

x, x∗) | δ∗
co domMg

(
x∗)≤ 〈x∗, x〉

}
.

So, we have dom
(
recMg

)μ ⊆ PrX domFMg = co domMg iff

(
recMg

)μ = M
≤
FrecMg

⊆
{(

x, x∗) | δ∗
co domMg

(
x∗)≤ 〈x∗, x〉, x ∈ co domMg

}
= Nco domMg .

This implies
(
recMg

)μ
is maximal (confirming pre-maximality). Furthermore when(

recMg

)μ = Nco domMg we have dom
(
recMg

)μ = co domMg = PrX domFMg .
When T and recT are maximal we may choose g = FT and get dom

(
recMg

)μ =
dom (recT μ)μ = dom recT ⊆ PrX domFMg and so

(
recMg

)μ = recT = Nco domT . �

We now focus on studying when FM0+
2 is a bigger–conjugate representative function for

recT with the domain domT . In the following the condition (61) has a striking similarity to
that used in [30] and related works [6].

Proposition 49 Let X be an arbitrary Banach space. Suppose T : X ⇒ X∗ is maximal mono-
tone with Fitzpatrick function FT . Denote g := FT 0+

2 . Suppose also that

sup
(y,y∗)∈T

〈x − y, y∗〉 = +∞ for all x /∈ domT . (61)

Then recT ⊆ Mg and dom (recT )μμ ⊆ domMg ⊆ domT .

Proof Via the maximality of T the Fitzpatrick function FT represents T in that T = MFT
.

We note that by Lemma 35, g ∈ bR (recT ) and Mg = Nco domT for g = FT 0+
2 . We will make

use of the following inequality: for any (x, x∗) ∈ X×X∗ and (y, y∗) ∈ T and τ > 0 we have
from the convexity of FT ∈ bR (T ) that

1

τ + 1
FT

(
x, (1 + τ) x∗)+ τ

1 + τ
FT

(
y, y∗)≥ FT

(
1

τ + 1
x + τ

1 + τ
y, x∗ + τ

1 + τ
y∗
)

≥ 〈 1

τ + 1
x + τ

1 + τ
y, x∗ + τ

1 + τ
y∗〉

and when (y, y∗) ∈ T we have FT (y, y∗) = 〈y, y∗〉 and there follows:

1

τ + 1
FT

(
x, (1 + τ) x∗) ≥

(
1

τ + 1

)2

〈x + τy, (1 + τ) x∗ + τy∗〉 − τ

1 + τ
〈y, y∗〉

= 〈x, x∗〉 − τ

(τ + 1)2 〈x − y, x∗ − y∗〉 −
(

τ

1 + τ

)2

〈x − y, x∗〉
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= 〈x, x∗〉 + τ (τ − 1)

(τ + 1)2 〈x − y, x∗〉 + τ

(τ + 1)2 〈x − y, y∗〉. (62)

We next show that domMg ⊆ domT . We assume x /∈ domT . Thus there exists δ > 0 such
that Bδ (x)∩domT = ∅. We may also assume that x ∈ co domT , otherwise by (44) we have(
FT 0+

2

)
(x, x∗) = +∞ > 〈x, x∗〉 and x /∈ Mg is deduced immediately.

Taking the supremum over all (y, y∗) ∈ T in (62) we obtain

g 1
τ+1

(
x,x

∗)= 1

τ + 1
FT

(
x, (1 + τ) x∗)

≥ 〈x, x∗〉 + τ (τ − 1)

(τ + 1)2 sup
y∈domT

〈x − y, x∗〉 + τ

(τ + 1)2 sup
(y,y∗)∈T

〈x − y, y∗〉 = +∞.

As this holds also for all Bδ (x) × X∗ we have bd-e-lim inft→+0 gt ≥ +∞ on Bδ (x) × X∗
for some δ > 0. Hence

(
FT 0+

2

) (
x, x∗)=

(
bd-e- lim inf

t→+0
gt

s×bdw∗)(
x,x

∗)= +∞ > 〈x, x∗〉 for all x∗ ∈ X∗.

Hence
(
x,x

∗) /∈ domMFT 0+
2

and so domMFT 0+
2

⊆ domT . As domMg ⊆ domT it immedi-

ately follows, since (recT ) ⊆ Mg by Lemma 35, that we have (recT )μμ ⊆ (
Mg

)μμ = Mg

(due to Proposition 27) so dom (recT )μμ ⊆ domMg ⊆ domT . �

We will link the almost–convexity to the recession operator and also generalise the recent
result of [32].

Theorem 50 Let X be an arbitrary Banach space. Suppose T : X ⇒ X∗ is maximal mono-
tone with Fitzpatrick function FT and denote g := FT 0+

2 . When domMg ⊆ domT (as is the
case under the assumptions of Proposition 49) then it follows that T is almost-convex. More-
over the condition (61) of Proposition 49 is necessary and sufficient for almost-convexity of
T .

Proof By Proposition 42, g is convex, so Lemma 35 gives g ∈ bR(recT ) with recT ⊆ Mg .
Since Mg = (Mg)

μμ (thanks to Proposition 27), then Proposition 32 yields

co domT ⊆ PX

[
(recT )μμ

]= dom (recT )μμ ⊆ domMg ⊆ domT ,

whence domT = co domT , implying convexity of the closure of the domain. Thus (61) of
Proposition 49 is sufficient for almost-convexity of T .

For the converse, suppose domT has convex closure. Then by Corollary 44 (part 3) we
have (FT 0+

2 ) (x, x∗) = δ∗
domT

(x∗) + δdomT (x) and so x /∈ domT iff (FT 0+
2 ) (x, x∗) = +∞.

For any tβ → 0+,
(
xβ, x∗

β

)→s×bdw∗
(x, x∗) with x∗

β ∈ (domT )⊥ we have from the identity
gtβ = FtβT , the definition of the Fitzpatrick function FtβT , (and direct calculation) that

lim inf
β

gtβ

(
xβ, x∗

β

)= lim inf
β

sup
(y,y∗)∈T

tβ〈xβ − y, y∗〉 ≥ (FT 0+
2 )
(
x, x∗)= +∞.

Hence sup(y,y∗)∈T 〈xβ − y, y∗〉 = +∞ eventually. In particular we have sup(y,y∗)∈T 〈x −
y, y∗〉 = +∞ for x /∈ domT . �
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We have g = FMg 0+
2 ∈ bR (recT ) but do not yet know in general that recMg

s×bdw∗ =(
Mg

)μμ
.

Lemma 51 Suppose X be an arbitrary real Banach space and T : X ⇒ X∗ is a maximal
monotone operator. Then FT 0+

2 ∈ bR (recT ) with

recT
s×bdw∗ = bdsw∗- lim sup

t→+0
(tT )μs×bdw∗

⊆ MFT 0+
2

= Nco domT .

Proof The first equality holds since maximality of T implies (tT )μ = tT , so we may apply
(8) to obtain recT = bdsw∗-lim supt→+0 (tT )μ. We next investigate

recT = bdsw∗- lim sup
t→+0

(tT )μ =
{(

x, x∗)
∣
∣∣
∣∃
(
xα, x

∗
α, tα

)→s×bdw∗ (
x, x∗,0

)

with
(
xα, x

∗
α

) ∈ MFtαT
= (tαT )μ

}

=
{(

x, x∗) ∣∣∃ (xα, x
∗
α, tα

)→s×bdw∗ (
x, x∗,0

)
with FtαT

(
xα, x

∗
α

)≤ 〈xα, x
∗
α〉
}

=
{(

x, x∗) | ∃ (xα, x
∗
α, tα, βα

)→s×bdw∗ (
x, x∗,0, β

)

with
(
xα, x

∗
α, βα

) ∈ epiFtαT and βα ≤ 〈xα, x
∗
α〉
}

⊆
{(

x, x∗)
∣
∣∣
∣∃β :

(
x, x∗, β

) ∈ bdsw∗- lim sup
t→0

epiFtT with β ≤ 〈x, x∗〉
}

.

Absorbing the extra dimension into the closure of the epi-graph, applying Lemma 31 part 2
(since FT 0+

2 ∈ bR (recT ), by Proposition 42)

recT
s×bdw∗ ⊆

{
(
x, x∗)

∣∣
∣∣∃β : (x, x∗, β

) ∈ bdsw∗- lim sup
t→0

epiFtT

s×bdw∗
with β ≤ 〈x, x∗〉

}

=
{
(
x, x∗)

∣∣
∣∣∃β : (x, x∗, β

) ∈ epi

(
bd-e- lim inf

t→+0
FtT

s×bdw∗)
and β ≤ 〈x, x∗〉

}

= {(
x, x∗) | ∃β : (x, x∗, β

) ∈ epiFT 0+
2 and β ≤ 〈x, x∗〉}

= {(
x, x∗) | (FT 0+

2 )
(
x, x∗)≤ 〈x, x∗〉}= MFT 0+

2
= Nco domT . �

Definition 52 Suppose X be an arbitrary real Banach space and T : X ⇒ X∗ is a maximal
monotone operator. We define the ε-maximal enlargement of T as

T μ[ε] := {(
x, x∗) | FT

(
x, x∗)≤ 〈x, x∗〉 + ε

}

≡ {(
x, x∗) | 〈x − y, x∗ − y∗〉 ≥ −ε for all

(
y, y∗) ∈ T

}
.

Note that this set is clearly (s ×bdw∗)-closed (but not necessarily (s ×w∗)-closed). Note
that as tT = {(x, tx∗) | (x, x∗) ∈ T } then if follows that t

(
T μ[ε])= (tT )μ[tε].

Proposition 53 Suppose X be an arbitrary real Banach space and T : X ⇒X∗ is a maximal
monotone operator. Then for rec (T μ0) := bdsw∗-lim supt→+0

ε→+0
(tT )μ[ε] we have

rec (T μ0)
s×bdw∗ = MFT 0+

2
= Nco dom t ⊇ recT

s×bdw∗
.
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Proof Consider ε > 0 and
{
(
x, x∗)

∣
∣∣
∣∣
∃β :

(
x, x∗, β

) ∈ bdsw∗- lim sup
t→0

epiFtT

s×bdw∗
, with β ≤ 〈x, x∗〉

}

=
{
(
x, x∗)

∣
∣∣
∣∃
(
yγ , y∗

γ , tγ , βγ

)→s×bdw∗ (
xα, x

∗
α,0, βα

)
and

(
xα, x

∗
α, βα

)→s×bdw∗
α

(
x, x∗, β

)

εγ →+ 0, with
(
yγ , y∗

γ , βγ

) ∈ epiFtγ T and βγ − εγ ≤ 〈yγ , y∗
γ 〉}

=
{(

x, x∗)
∣
∣∣
∣∃
(
yγ , y∗

γ , tγ , εγ

)→s×bdw∗ (
xα, x

∗
α,0,0

)

with Ftγ T

(
yγ , y∗

γ

)≤ 〈yγ , y∗
γ 〉 + εγ ,

(
xα, x

∗
α

)→s×bdw∗
α

(
x, x∗)

}

=
{(

x, x∗)
∣∣
∣∣∃
(
yγ , y∗

γ , tγ
)→s×bdw∗ (

xα, x
∗
α,0

)
, εγ →+ 0,

with
(
yγ , y∗

γ

) ∈ (
tγ T

)μεγ ,
(
xα, x

∗
α

)→s×bdw∗
α

(
x, x∗)

}

= bdsw∗- lim sup
t→+0
ε→+0

(tT )μ[ε]s×bdw∗
.

Hence

rec (T μ0)
s×bdw∗

=
{(

x, x∗)
∣
∣∣
∣
(
FT 0+

2

) (
x, x∗)=

(
bd-e- lim inf

t→+0
FtT

s×bdw∗)(
x, x∗)≤ 〈x, x∗〉

}

= {(
x, x∗) | (FT 0+

2 )
(
x, x∗)= 〈x, x∗〉}= MFT 0+

2
= Nco domT . �

Again the condition (63) is known to hold in reflexive space [9, Corollary 3.8].

Theorem 54 Suppose X is an arbitrary real Banach space and T : X ⇒ X∗ is a maximal
monotone operator. Then dom rec (T μ0) ⊆ domT is a sufficient condition for the domain of
T to be almost convex.

Proof We have this condition implying

dom rec (T μ0)
s×bdw∗ = dom recT , (63)

which is a sufficient condition for the domain of T to be almost convex since by Proposition

53 we have dom recT
s×bdw∗ ⊇ domNco domT = co domT . Lemma 51 provides the reverse

inclusion. It is clear that dom recT
s×bdw∗ = domT so domT = co domT . �

Once again we note that it has already been shown in [8, Corollary 5.3.16] that in a
reflexive Banach space one has d (T με , T ) ≤ √

2ε and dom T με ⊆ domT for any maximal
monotone operator. Consequently condition (63) may be verified in a reflexive space as
t (T με ) = (tT )μεt where tT is maximal when T is maximal.
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8 Almost Convexity

We will need to utilise the duality mapping which can be viewed as the subdifferential of
convex functions:

JX (x) = ∂

(
1

2
‖·‖2

)
(x) ⊆ X∗ and JX∗

(
x∗)= ∂

(
1

2
‖·‖2

∗

)(
x∗)⊆ X∗∗.

When X is reflexive we may assume x∗ �→ 1
2 ‖x∗‖2

∗ is Fréchet differential and then
JX∗ (x∗) ⊆ X. In the context of non-reflexive spaces it is unclear whether either JX (resp.
JX∗ ) are onto X∗ (resp. X). We will need to consider the (approximate) minimisers for the
problem for a maximal monotone operator T : given (z, z∗) ∈ T μ[ε/2] solve for the minimum
(for λ > 0) of:

Gλ

(
y, y∗) := FT

(
y, y∗)− 〈y, y∗〉 + 1

2λ

∥
∥(z, z∗)− (

y, y∗)∥∥2
. (64)

Note that ε
2 ≥ FT (z, z∗) − 〈z, z∗〉 = Gλ(z, z

∗) ≥ infX×X∗ Gλ. Note also that any point sat-
isfying ε

2 ≥ Gλ (y, y∗) ≥ 0 satisfies (y, y∗) ∈ T μ[ε/2]. When X is reflexive we may seek a
solution of inf(y,y∗)∈X×X∗ Gλ (y, y∗) by considering the optimality condition for the problem
(note that in the Fréchet sense D(u,u∗)〈u,u∗〉 (·) = 〈(u∗, u) , ·〉):

(0,0) ∈ ∂FT

(
y, y∗)− (

y∗, y
)+ 1

λ
(−JX×X∗)

((
z, z∗)− (

y, y∗)) .

To ensure a solution we need the onto property, so in absence of this we will focus on
approximate minimisers and variational principles. This is partly motivated by the following
observation.

Proposition 55 Suppose X is an arbitrary real Banach space and T : X ⇒ X∗ is a monotone
operator. Then {(x, x∗) | (x∗, x) ∈ ∂εFT (x, x∗)} ⊆ T μ[ε/2].

When M is maximal we have T μ[ε/2] = {(x, x∗) | (x∗, x) ∈ ∂εFT (x, x∗)}, and hence

(0,0) ∈ ∂εFT

(
z, z∗)− (

z∗, z
)+ 1

λ
(−JX×X∗)

((
z, z∗)− (

z, z∗))

for any (z, z∗) ∈ T μ[ε/2].

Proof See the Appendix. �

Let us return to the problem (64). The following is a consequence of the Ekeland varia-
tional principle.

Proposition 56 Suppose X is an arbitrary real Banach space, T : X ⇒X∗ a maximal mono-
tone operator. Then for any (z, z∗) ∈ X × X∗, there exists a constant � = �(z, z∗) > 0 such
that for all 0 < λ < �:

FT

(
z, z∗)− 〈z, z∗〉 ≥ λ

2(1 + λ)2
[d ((z, z∗) , T

)]2. (65)

Moreover for any (z, z∗) we have:

(FT 0+
2 )(z, z∗) − 〈z, z∗〉 ≥ 1

2
[d (z,domT

)]2. (66)
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Proof If (z, z∗) ∈ T or (z, z∗) /∈ domFT , we may take �(z, z∗) = 1, as a trivial case. Here-
after, consider (z, z∗) ∈ (domFT )\T . Place ε := FT (z, z∗) − 〈z, z∗〉, so ε > 0.

As (z, z∗) /∈ T there exist (x, x∗) ∈ T and δ > 0 such that 〈x − z, x∗ − z∗〉 = −2δ < 0

(with also ε
2 ≥ Gλ (z, z∗) ≥ 2δ > 0 for all λ > 0). Because T is maximal we have T

s×s∗ = T

and so we may assume ‖(z, z∗) − (x, x∗)‖ = max {‖x − z‖ ,‖x∗ − z∗‖} = Nδ̄ > 0 where
δ̄,N > 0 are chosen so that Bδ (z, z∗)∩T = ∅ and 〈x−u,x∗ −u∗〉 ≤ −δ < 0 for all (u,u∗) ∈
Bδ (z, z∗). Note that since (x, x∗) ∈ T we have (x∗, x) ∈ ∂FT (x, x∗) so for all (u,u∗) ∈
X × X∗,

Gλ

(
u,u∗)≥ FM

(
x, x∗)+ 〈(x, x∗) ,

(
u,u∗)− (

x, x∗)〉 − 〈u,u∗〉

+ 1

2λ

∥
∥(z, z∗)− (

u,u∗)∥∥2

= 〈(x, x∗) ,
(
u,u∗)〉 − 〈x, x∗〉 − 〈u,u∗〉 + 1

2λ

∥∥(z, z∗)− (
u,u∗)∥∥2

= −〈x − u,x∗ − u∗〉 + 1

2λ

∥∥(z, z∗)− (
u,u∗)∥∥2 =: gλ

(
u,u∗) .

Then gλ (z, z∗) = −〈x − z, x∗ − z∗〉 = 2δ for all λ > 0. Now for (u,u∗) ∈ Bδ̄ (z, z∗) we
have gλ (u,u∗) ≥ δ + 1

2λ
‖(z, z∗) − (u,u∗)‖2 ≥ δ > 2δ − ε

2 ≥ gλ (z, z∗) − ε for any λ > 0.
Moreover, for all (u,u∗) ∈ X × X∗, we have

gλ

(
u,u∗)≥ −‖x − z‖∥∥x∗ − z∗∥∥− max

{‖x − z‖ ,
∥∥x∗ − z∗∥∥} [‖z − u‖ + ∥∥z∗ − u∗∥∥]

− ‖z − u‖∥∥z∗ − u∗∥∥+ 1

2λ
‖z − u‖2 + 1

2λ

∥∥z∗ − u∗∥∥2

i.e. gλ

(
u,u∗)+ ‖x − z‖∥∥x∗ − z∗∥∥≥ −Nδ [α + β] − αβ + 1

2λ

[
α2 + β2

]

= −Nδ [α + β] +
(

1

2λ
− 1

2

)[
α2 + β2

]+ (α − β)2

≥ −Nδ [α + β] + 1

2λ
(1 − λ)

[
α2 + β2

]
(67)

where Nδ = max {‖x − z‖ ,‖x∗ − z∗‖} and α := ‖z − u‖, β := ‖z∗ − u∗‖. Next, note for all
(u,u∗) /∈ Bδ̄ (z, z∗) that max{α,β} ≥ δ̄. As the right hand side of (67) tends to infinity as λ →
0, we have the existence of λ1 > 0 for which 0 < λ ≤ λ1 implies for all (u,u∗) /∈ Bδ̄ (z, z∗)
that gλ (u,u∗) ≥ 2δ, and so gλ (u,u∗) ≥ 2δ = gλ (z, z∗) ≥ gλ (z, z∗)− ε for 0 < λ ≤ λ1. Thus
for 0 < λ ≤ λ1 we have gλ (u,u∗) ≥ gλ (z, z∗) − ε for all (u,u∗) ∈ X × X∗.

As (u,u∗) �→ gλ (u,u∗) = −〈x − u,x∗ − u∗〉 + 1
2λ

‖(z, z∗) − (u,u∗)‖2 is jointly lower–
semicontinuous with respect to the strong (norm) topologies, and bounded below, we are
able to apply the Ekeland variational principle for any fixed 0 < λ ≤ λ1. Thus for any η > 0
there exists a point (y, y∗) such that i) gλ (y, y∗) + η

2 ‖(y, y∗) − (z, z∗)‖ ≤ gλ (z, z∗); ii)
‖(y, y∗) − (z, z∗)‖ ≤ ε

η
; iii) gλ (u,u∗) + η

2 ‖(y, y∗) − (u,u∗)‖ > gλ (y, y∗) for all (u,u∗) �=
(y, y∗) i.e. (y, y∗) is a strict minimiser. Suppose (y, y∗) /∈ Bδ̄ (z, z∗) then gλ (y, y∗) ≥ 2δ and
so i) implies 2δ + η

2 δ̄ ≤ gλ (y, y∗) + η

2 ‖(y, y∗) − (z, z∗)‖ ≤ gλ (z, z∗) = 2δ, a contradiction.
Thus (y, y∗) ∈ Bδ̄ (z, z∗) and −〈x − y, x∗ − y∗〉 ≥ δ > 0 and hence i) implies (for any fixed
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0 < λ ≤ λ1 and any given η > 0)

FT

(
z, z∗)− 〈z, z∗〉 = G

(
z, z∗) ≥ gλ

(
z, z∗)≥ gλ

(
y, y∗)

= −〈x − y, x∗ − y∗〉 + 1

2λ

∥∥(z, z∗)− (
y, y∗)∥∥2

≥ 1

2λ

∥
∥(z, z∗)− (

y, y∗)∥∥2
.

Now we consider the necessary optimality condition at (y, y∗) for (u,u∗) �→ gλ (u,u∗) +
η

2 ‖(u,u∗) − (y, y∗)‖ i.e.

(
u,u∗) �→ −〈x − u,x∗ − u∗〉 + 1

2λ

∥∥(z, z∗)− (
u,u∗)∥∥2 + η

2

∥∥(u,u∗)− (
y, y∗)∥∥ .

Applying the Clarke subdifferential and its calculus, noting that D(u,u∗)〈u,u∗〉 (·) =
〈(u∗, u) , ·〉 in the Fréchet sense and that both 1

2 ‖·‖2 and ‖·‖ are finite, convex and hence
also regular, we obtain

(0,0) ∈ (x∗, x
)− (

y∗, y
)+ 1

λ
(−J )X×X∗

((
z, z∗)− (

y, y∗))+ η

2
B1 (0)

and so
(
z, z∗)− (

x, x∗) ∈ (z, z∗)− (
y, y∗)+ 1

λ
(−J )X×X∗

((
z, z∗)− (

y, y∗))+ η

2
B1 (0) .

That is

d
((

z, z∗) , T
)≤ ∥

∥(z, z∗)− (
x, x∗)∥∥≤

(
1 + 1

λ

)∥
∥(z, z∗)− (

y, y∗)∥∥+ η

2
.

Hence for a given 0 < λ ≤ λ1 and any given η > 0

FT

(
z, z∗)− 〈z, z∗〉 ≥ 1

2λ

(
1 + 1

λ

)−2 [
d
((

z, z∗) , T
)− η

2

]2
.

As η is arbitrary we have FT (z, z∗) − 〈z, z∗〉 ≥ 1
2

λ

(1+λ)2 d2 ((z, z∗) , T ) as long as 0 < λ ≤ λ1

and so we may take � = λ1, and we have (65) following.
Proof of (66): As done earlier (without loss of generality) we will translate the graph of T

so that we may assume (0,0) ∈ T . By Corollary 43 we have a convex function h for which

FT 0+
2 = h

s×bdw∗
with domh = PrX domFT × domFT 0+(0, ·) and that for (z, z∗) ∈ domh

there exists a net attaining the epi-limit defining h i.e. there exists y∗ such that h(z, z∗) =
limτ→+0 FτT (z, z∗ + τy∗). From the positive homogeneity of h we have additionally that
for any λ′ > 0:

h(x, x∗) = 1

λ′ h(z,λ′z∗) = lim
t→+0

1

λ′ FtT (z, λ′z∗ + ty∗)

= lim
t→+0

(
t

λ′

)
FT (z, y∗ +

(
λ′

t

)
z∗) = lim

τ→+0
τFT (z, y∗ + 1

τ ′ z
∗)

and so we may take a convergent sequence τn → 0 and place tn
(
λ′)= λ′τn and get

h(x, x∗) = lim
n

1

λ′ Ftn(λ′)T (z, λ′z∗ + tn
(
λ′)y∗).
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Note that when 0 < λ < λ′ we have tn(λ) < tn(λ
′). Now for each n, there exists a

�n → 0 such that (65) holds for the maximal monotone operator tn(λ
′)T and the point

(z, λ′∗ + tn(λ
′∗) for 0 < λ < �n. In the following we will use the fact that for each n we have

sup0<λ′<�′(·) ≥ inf0<λ′<�n(·) ≥ inf0<λ′<�n
n≥�

(·) irrespective of the relative sizes of �n and �′.

Indeed suppose �′ ≥ �n then sup0<λ′<�′(·) ≥ sup0<λ′<�n
(·) ≥ inf0<λ′<�n(·). On the other

hand when �′ < �n we have sup0<λ′<�′(·) ≥ inf0<λ′<�′(·) ≥ inf0<λ′<�n(·) again.
Then as FT (0,0) = 0 implies h(z,0) = 0 for all z, we have, for any z ∈ co domT (using

the fact that a limit can be written as a limit supremum) that:

(h(z, ·))′
x∗(0; z∗)

= inf
λ′≥0

1

λ′ (h(z,0 + λ′∗) − h(z,0)) = lim
λ′→0

1

λ′ (h(z,0 + λ′∗) − h(z,0))

= lim
λ′→0

lim
n

1

λ′ Ftn(λ′)T (z, λ′z∗ + tn
(
λ′)y∗)

= inf
�′ sup

0<λ′<�′
sup

�

inf
n≥�

Ftn(λ′)T (z, λ′z∗ + tn
(
λ′)y∗)

= inf
�′ sup

�

sup
0<λ′<�′

inf
n≥�

1

λ
Ftn(λ′)T (z, λ′z∗ + tn

(
λ′)y∗)

≥ sup
�

inf
0<λ′<�n

n≥�

inf
n≥�

1

λ′ Ftn(λ′)T (z, λ′z∗ + tn
(
λ′)y∗)

≥ sup
�

inf
n≥�

inf
0<λ<�n

1

λ′ Ftn(λ′)T (z, λ′z∗ + tn
(
λ′)y∗) (and as tn

(
λ′)= λ′τn)

≥ lim inf
n

inf
0<λ′≤�n

(
〈z, z∗ + τny

∗〉 + 1

2
(

1

1 + λ′ )
2d2((z, λ′z∗ + tn

(
λ′)y∗), tn(λ′)T )

)

≥ 〈z, z∗〉 + lim inf
n

1

2
(

1

1 + λn

)2 inf
0<λ≤�n

d2((z, λ′z∗ + tn
(
λ′)y∗), t (λ)nT )

≥ 〈z, z∗〉 + 1

2
lim inf

n
d2(z,PrX

[
⋃

0<λ≤�n

tn(λ)T )

]

) ≥ 〈z, z∗〉 + 1

2
d2(z,domT ), (68)

where we have used the fact that for all t > 0 we have PrX(tT ) ⊆ domT .
As the λ �→ 1

λ
(h(z,0 + λz∗) − h(z,0)) non-decreasing we have (as h(z,0) = 0)

h(z, z∗) = h(z,0 + z∗) − h(z,0) ≥ (h(z, ·))′
x∗(0; z∗)

from which (66) follows from (68) when z ∈ co domT = PrX domFT , since FT 0+
2 =

h
s×bdw∗

. When z /∈ co domT then by Proposition 42, the left hand side of (66) is +∞. �

We may now provide a proof of the conjectured almost–convexity for general monotone
operators.

Theorem 57 Suppose X is an arbitrary real Banach space and T : X ⇒ X∗ is a maximal
monotone operator. Then T is almost–convex, in that domT = co domT , which is convex.
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Proof Suppose z ∈ co domT . Using (66) we find that these exists (z, z∗) ∈ MFT 0+
2

=
Nco domT and we have

0 = (FT 0+
2 )(z, z∗) − 〈z, z∗〉 ≥ 1

2
[d(z,domT )]2.

Hence co domT ⊆ domT . �

Appendix

Proof of Proposition 13 (Proof of (10)): When (x, x∗) ∈ bdsw∗-lim supt→+∞ At then there
exists I = {tα} cofinal in R+ and

(
xtα , x

∗
tα

) → (x, x∗) as tα → +∞ with
(
xtα , x

∗
tα

) ∈ Atα

and
∥
∥x∗

tα

∥
∥ ≤ K (for some fixed bound K > 0). Let η ∈ R+ and U a norm–open ball

around x and W a weak∗ neighbourhood of x∗. There exists tα ∈ I with tα ≥ η so that[
[U × W ] ∩ BK (0)

] ∩ Atα �= ∅ and so
[
[U × W ] ∩ BK (0)

] ∩ At �= ∅ for some t ≥ η. Thus

(x, x∗) ∈
[(⋃

t≥η Atα

)
∩ BK (0)

]s×w∗

from which the inclusion

bdsw∗- lim sup
t→+∞

At ⊆
⋃

K>0

⋂

η>0

[(
⋃

t≥η

At

)

∩ BK (0)

]s×w∗

follows. For the inverse inclusion, suppose (x, x∗) /∈ bdsw∗-lim supt→+∞ At . We claim that
(for each K > 0) there exists U a norm–open ball around x and W a weak∗ neighbourhood
of x∗ such that

{
t ∈R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ } fails to be cofinal:
(To prove this claim, presume otherwise. Then for some K > 0 and any neighbourhood

U × W , we have
{
t ∈R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ } cofinal. Then

(U × W)η :=
⋃

t≥η
t∈I

{[
[U × W ] ∩ BK (0)

]∩ At

} �= ∅,

since I is cofinal. Then we note that FI := {(U × W)η �= ∅ | U ×W nbhd of (x, x∗) , η > 0}
is a filterbase in that for any pair (U × W)ηi

∈ F for i = 1,2 we have for all η ≥ max {η1, η2}
that

(U1 × W1)η1
∩ (U2 × W2)η2

⊇
⋃

t≥η
t∈T

{[
[(U1 ∩ U2) × (W1 ∩ W2) ] ∩ BK (0)

]∩ At

}

= ((U1 ∩ U2) × (W1 ∩ W2))η .

As we have U × W ⊇ (U × W)η ∈ FI it follows that FI → (x, x∗). As we may construct a
net from a filter basis (via selection

(
xtα , x

∗
tα

) ∈ (U × W)tα
, for tα ∈ I where α ≡ U × W ∈

N (x, x∗) partially ordered via set-inclusion). Indeed for any U × W � (x, x∗) and η > 0
there exists tα ∈ I , tα ≥ η such that

(
xtα , x

∗
tα

) ∈ [[U × W ] ∩ BK (0)
]∩Atα . Thus there exists

a net
(
xtα , x

∗
tα

) ∈ Atα ∩ BK (0), with tα ∈ I (tα → ∞), converges to (x, x∗). Hence (x, x∗) ∈
bdsw∗-lim supt→+∞ At , counter to assumption. This establishes the claim.)

Hence the complement

{
t ∈R+ | [[U × W ] ∩ BK (0)

]∩ At = ∅ }
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contains a residual set, implying (x, x∗) /∈
[(⋃

t≥η At

)
∩ BK (0)

]s×w∗

, for some η > 0, irre-

spective of the size of K > 0.
(Proof of (11)): Consider (x, x∗) ∈ bdsw∗-lim inft→+∞ At first. Let I ⊆ R+ be a cofinal

set and let V ∈ N (x, x∗). Then V ∩∪t∈T At ∩BK (0) ⊇ V ∩At ′
V

∩BK (0) �= ∅ for some t ′V >

tV with t ′V ∈ I . Then (x, x∗) ∈ ⋃
t∈T At ∩ BK (0)

s×w∗
. As I was arbitrary, (x, x∗) ∈⋂I ⊆̄R+

cofinal
[(⋃

t∈T At

)∩ BK (0)
]s×w∗

with the existence of K > 0 providing the union.
Conversely, suppose (x, x∗) /∈ bdsw∗-lim inft→+∞ At . Then we claim that for each

K > 0 there exists U × W ∈ N (x, x∗) such that
{
t ∈ R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ }
is not residual. (Indeed, if this claim is false, then ∃K > 0: ∀U × W ∈ N (x, x∗),{
t ∈R+ | [[U × W ] ∩ BK (0)

]∩ At �= ∅ } is residual so there exists tV with [[U × W ] ∩
BK (0)] ∩ At �= ∅ for all t > tV which means that (x, x∗) ∈ bdsw∗-lim inft→+∞ At counter
to assumption.) Hence I := {

t ∈R+ | [[U × W ] ∩ BK (0)
]∩ At = ∅ } is cofinal, so

(
x, x∗) /∈

[(
⋃

t∈I

At

)

∩ BK (0)

]s×w∗

⊇
⋂

I⊆R+
cofinal

[(
⋃

t∈I

At

)

∩ BK (0)

]s×w∗

.

As K > 0 was arbitrary we have (x, x∗) /∈⋃K>0

⋂
I⊆R+
cofinal

[(⋃
tα∈I Atα

)∩ BK (0)
]s×w∗

. This

establishes (11).
When (s × w∗)-lim supt→+∞

(
At ∩ BK (0)

) = A ∩ BK (0) for all K > 0 sufficiently
large, then taking the union across K > 0 in the last identity

A =
⋃

K>0

[
A ∩ BK (0)

]=
⋃

K>0

⋂

η>0

[
⋃

t≥η

At ∩ BK (0)

]s×w∗

= bdsw∗- lim sup
t→+∞

At .

A similar argument covers the other case.
Finally assume all {At }t>0 are convex. Let (x, x∗), (y, y∗) ∈ bdsw∗-lim inft→+∞ At and

W ∈ N (0,0) such that W + W ′ ⊆ V ∈ N (0,0). Then there exist K ′,K ′′ > 0 such that
for t > t1

W there exists
(
xt , x

∗
t

) ∈ At ∩ BK ′ (0) ∩ [(x, x∗) + W ] and for t > t2
W we have(

yt , y
∗
t

) ∈ At ∩ BK ′′ (0) ∩ [(y, y∗) + W ] so for λ ∈ [0,1], t > tV := max
{
t1
W , t2

W

}
and

K := max{K ′,K ′′}
λ
(
xt , x

∗
t

)+ (1 − λ)
(
yt , y

∗
t

)

∈ At ∩ BK (0) ∩ [λ [(x, x∗)+ W
]+ (1 − λ)

[(
y, y∗)+ W

]]

= At ∩ BK (0) ∩ [λ (x, x∗)+ (1 − λ)
(
y, y∗)+ λW + (1 − λ)W

]

⊆ At ∩ BK (0) ∩ [λ (x, x∗)+ (1 − λ)
(
y, y∗)+ V

]

and so At ∩ BK (0) ∩ [λ (x, x∗) + (1 − λ) (y, y∗) + V ] �= ∅ for t > tV . So λ (x, x∗) +
(1 − λ) (y, y∗) ∈ bdsw∗-lim inft→+∞ At . �

Proof of Lemma 46 We show that Nco domT (x) ⊆ (recT ) (x) = rec (T μ) (x) for any x ∈
domT and as a consequence of the inclusion (recT μ) (x) ⊆ Nco domT (x) of [13, Propo-
sition 13] gives the desired equality. Take arbitrary (x, x∗) ∈ rec (T μ), (y, y∗) ∈ T and
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z∗ ∈ Nco domT (x). Then there exists tα ↓ 0 and x∗
α ∈ T μ (xα) with xα → x and a bounded

net tαx
∗
α → x∗. Consider

〈y − xα, y
∗ −

(
x∗

α + 1

tα
z∗
)

〉 = 〈y − xα, y
∗ − x∗

α〉 − 1

tα
〈y − xα, z

∗〉

= 1

tα
〈x − y, z∗〉 − 1

tα
〈x − xα, z

∗〉 ≥ − 1

tα
‖x − xα‖

∥
∥z∗∥∥ := −εα.

As (y, y∗) ∈ T was arbitrary we have
(

xα, x
∗
α + 1

tα
z∗
)

∈ {(
w,w∗) | 〈w − y,w∗ − y∗〉 ≥ −εα , ∀ (y, y∗) ∈ T

}
.

We may now apply the (BR) property to assert that for any η > 0 there exists
(
wα,w

∗
α

) ∈ T

such that ‖wα − xα‖ ≤ εα

η
and

∥∥∥w∗
α −

(
x∗

α + 1
tα

z∗
)∥∥∥≤ η. Consequently we have

‖wα − x‖ ≤ ‖wα − xα‖ + ‖x − xα‖

≤ 1

ηtα
‖x − xα‖

∥
∥z∗∥∥+ ‖x − xα‖ = ‖x − xα‖

[‖z∗‖
ηtα

+ 1

]

and
∥
∥tαw∗

α − (
tαx

∗
α + z∗)∥∥≤ ηtα. (69)

Using the freedom we have on the choice of η for each given α, we take η = ηα := ‖x−xα‖ 1
2

tα
>

0; then we find that ‖x−xα‖
ηαtα

= ‖x − xα‖ 1
2 → 0 and ηαtα = ‖x − xα‖ 1

2 → 0. As we have

a bounded net tαx
∗
α →w∗

x∗ it follows for (69) that
{
tαw

∗
α

}
α

is bounded with tαw
∗
α →w∗

x∗ + z∗ and as
(
wα,w

∗
α

) ∈ T with wα → x we have x∗ + z∗ ∈ (recT ) (x). As x∗ = 0 ∈
rec (T μ) (x) it follows z∗ ∈ (recT ) (x) and so that Nco domT (x) ⊆ (recT ) (x). Moreover as
z∗ = 0 ∈ Nco domT (x) we also have rec (T μ) (x) ⊆ (recT ) (x), forcing equality. As domT is
convex we have NdomT (x) = (recT ) (x) for all x ∈ domT = co domT and hence NdomT =
recT . �

Proof of Proposition 55 When (x, x∗) ∈ ∂εFT (x, x∗) then FT (y, y∗)−FT (x, x∗) ≥ 〈(x, x∗) ,

(y, y∗) − (x, x∗)〉 − ε for all (y, y∗) so

〈(x, x∗) ,
(
x, x∗)〉 − FT

(
x, x∗)≥ sup

(y,y∗)

[〈(x, x∗) ,
(
y, y∗)〉 − FT

(
y, y∗)]

= F
∗†
T

(
x, x∗)− ε

= PT

(
y, y∗)− ε ≥ FT

(
x, x∗)− ε

and hence 2〈x, x∗〉 − 2FT

(
x, x∗)≥ −ε or

ε

2
+ 〈x, x∗〉 ≥ FT

(
x, x∗) .

Thus (x, x∗) ∈ T μ[ε/2]. On the other hand when T is maximal FT (y, y∗) ≥ 〈y, y∗〉 for all
(y, y∗) and we have (x, x∗) ∈ T μ[ε/2], implying

〈x, x∗〉 − 〈(x, x∗) ,
(
y, y∗)〉 + 〈y, y∗〉 = 〈x − y, x∗ − y∗〉 ≥ −ε

2

so FT

(
y, y∗)− FT

(
x, x∗)≥ 〈y, y∗〉 − FT

(
x, x∗)
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≥ 〈(x, x∗) ,
(
y, y∗)〉 − 〈x, x∗〉 − ε

2
− FT

(
x, x∗)

≥ 〈(x, x∗) ,
(
y, y∗)〉 − 2〈x, x∗〉 − ε

using FT (x, x∗) ≤ 〈x, x∗〉 + ε
2 (as (x, x∗) ∈ T μ[ε/2]) in the last inequality. This implies

FT

(
y, y∗)− FT

(
x, x∗)≥ 〈(x, x∗) ,

(
y, y∗)− (

x, x∗)〉 − ε for all
(
y, y∗)

so (x, x∗) ∈ ∂εFT (x, x∗). �
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34. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.


	Representative Functions, Variational Convergence and Almost Convexity
	Abstract
	Introduction
	Preliminaries
	A Closure Operation for Convex Subsets in X×X∗
	Variational Limits
	The s×bdw∗-Convergence and Conjugation
	Some Tools from Monotone Operator Theory
	A Bigger-Conjugate Representative Function for recT
	Conditions for the Almost--Convexity Property
	Almost Convexity
	Appendix
	References


