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Abstract
In this paper we study the existence and properties of solutions for a discontinuous sweeping
process involving prox-regular sets in a Hilbert spaces. The variation of the moving set is
controlled by a positive Radon measure and the perturbation is the sum of two multivalued
mappings. The values of the first one are closed, bounded, not necessarily convex sets. It is
measurable in the time variable, Lipschitz continuous in the phase variable, and it satisfies
a conventional growth condition. The values of the second one are closed, convex, not nec-
essarily bounded sets. We assume that this mapping has a closed with respect to the phase
variable graph.

Other assumptions concern the intersection of the second mapping with the multivalued
mapping defined by the growth conditions. We suppose that this intersection has a measur-
able selector and it possesses some compactness properties.

We prove the existence of right-continuous solutions of bounded variation for our inclu-
sion. If the values of the first inclusion are closed convex sets, then the solution set is a closed
subset of the space of right-continuous functions of bounded variation with sup-norm. If, in
addition, the values of the moving sets are compact sets, then the solution set is compact in
the space of right-continuous functions of bounded variation endowed with the topology of
uniform convergence on an interval.

The proofs are based on the author’s theorem on continuous with respect to a parameter
selectors passing through fixed points of contraction multivalued maps with closed, noncon-
vex, decomposable values depending on the parameter and some compactness criteria (an
analog of the Arzelà–Ascoli theorem) for sets in the space of right-continuous functions of
bounded variation with sup-norm. The classical Ky Fan fixed point theorem is also used.
The results that we obtain are new.
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1 Introduction

Let H be a separable Hilbert space with the norm ‖ · ‖, metric d(·, ·), inner product 〈·, ·〉
and zero element �. We introduce the following notation: R+ = [0,+∞), T = [0, a] ⊂ R+,
a > 0,C : T ⇒ H is a multivalued mapping with closed r-prox regular values [1], U,V :
T × H ⇒ H is a multivalued mapping with closed values.

By L1(T ,H) we denote the space of Lebesgue integrable functions from T to H . The
symbol ω-L1(T ,H) denotes the space L1(T ,H) endowed with the weak topology.

The space of all right continuous functions of bounded variation x : T → H with the
norm

‖x(·)‖BV = sup{‖x(t)‖; t ∈ T }
is denoted by BV+(T ,H).

By λ we denote the Lebesgue measure. In what follows, without explicitly mentioning
this, we assume that the inequality

|d(y,C(t)) − d(y,C(s))| ≤ μ(]s, t]), y ∈ H, (1.1)

s ≤ t, s, t ∈ T , holds, where μ is a positive Radon measure on T satisfying the inequality

sup
s∈]0,a]

μ({s}) < r/2. (1.2)

Consider the measurable sweeping process

−dx ∈ N (C(t);x(t)) + F(t, x(t)), (1.3)

F(t, x) = U(t, x) + V (t, x), (1.4)

x(0) = x0 ∈ C(0),

where N (C(t);x) is the proximal normal cone [2] to the a C(t) at a point x ∈ C(t) and
U,V : T × H ⇒ H are multivalued mappings with closed values.

Definition 1.1 By a solution to the inclusions (1.3) we mean a triplet (x(u;v)(·), u(·), v(·))
such that

1) x(u;v)(·) is a right continuous function of bounded variation from T to H ,
x(u;v)(0) = x0, x(u;v)(t) ∈ C(t), t ∈ T and u(·), v(·) ∈ L1(T ,H);

2) there exists a positive Radon measure ν absolutely continuously equivalent to the mea-
sure μ+λ such that the differential measure dx(u;v) generated by the function x(u;v)(·) is
absolutely continuous with respect to the measure ν and the density dx(u;v)

dν
(·) of the measure

dx(u;v) with respect to the measure ν and functions u(·), v(·) satisfy the inclusions

−dx(u;v)

dν
(t) − (u(t) + v(t))

dλ

dν
(t) ∈ −N (C(t);x(u;v)(t)) ν a.e., (1.5)

u(t) ∈ U(t, x(u;v)(t)) λ a.e., (1.6)

v(t) ∈ V (t, x(u;v)(t)) λ a.e. (1.7)

Positive Radon measures are absolutely continuously equivalent, if each of them is abso-
lutely continuous with respect to the other.
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In the definition of a solution to a measurable sweeping process we follow [3, 4] and
others.

We note that the definition of solution does not depend on the measure ν in the sense
that a mapping x(u;v) : T → H with the property 1) is a solution of the inclusion (1.3) if
and only if the inclusion (1.5) holds for any positive Radon measure ν that is absolutely
continuously equivalent to the measure λ + μ. The solution set of the inclusion (1.3) we
denote by R(x0). In what follows, a solution in the sense of Definition (1.1) is called a BV
solution.

Let B be the unit closed ball in H centered at the point �. For a bounded set D ⊂ H we
denote

‖D‖ = {sup‖x‖; x ∈ D}.
By haus(·, ·) we denote the Hausdorff metric on the space of all nonempty, closed,

bounded sets from H .
We make the following assumptions.

Hypothesis H(U) The multivalued mapping U : T ×H ⇒ H with closed, not necessary con-
vex values has the properties:

1) the mapping t → U(t, x) is measurable;
2) the following inequalities hold

haus(U(t, x),U(t, y)) ≤ k(t)‖x − y‖ λ a.e., (1.8)

x, y ∈ H , k(·) ∈ L1(T ,R+),

‖U(t, x)‖ = sup{‖u‖; u ∈ U(t, x)} ≤ m1(t) + n1(t)‖x‖, (1.9)

x ∈ H, m1(·), n1(·) ∈ L1(T ,R+).

Hypothesis H(V) The multivalued mapping V : T × H → H with closed convex values has
the properties:

1) the following inequality holds

d(�,V (t, x)) < m2(t) + n2(t)‖x‖ λ a.e., (1.10)

x ∈ H, m2(·), n2(·) ∈ L1(T ,R+);
1)∗ the following inequality holds

‖V (t, x)‖ ≤ m2(t) + n2(t)‖x‖ λ a.e., (1.11)

x ∈ H, m2(·), n2(·) ∈ L1(T ,R+);
2) the mapping

t → V (t, x) ∩ (m2(t) + n2(t)‖x‖)B, x ∈ H

has a λ-measurable selector and the mapping x → V (t, x) has closed graph for λ almost
every t ∈ T ;

3) for every bounded set D ⊂ H the set

V (t,D) ∩ (m2(t) + n2(t)‖D‖)B
is relatively compact for λ almost every t ∈ T , where V (t,D) = {∪V (t, x); x ∈ D}.
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Since the inequality (1.10) is strict, for λ almost every t the set V (t, x) ∩ (m2(t) +
n2(t)‖x‖)B , x ∈ H is not empty. Consequently, Hypothesis H(V) 2) makes sense.

1.1 Main Results

Theorem 1.1 Let Hypotheses H(U) 1),2),3) and H(V ) 1),2),3) hold. Then, the set R(x0)

is not empty and

‖x(u;v)(t) − x(u;v)(t − 0)‖ ≤ μ({t}), t ∈]0, a], (1.12)

∥
∥
∥
dx(u;v)

dν
(t) + (u(t) + v(t))

dλ

dν
(t)

∥
∥
∥ ≤

≤ dμ

dν
(t) + (‖u(t)‖ + ‖v(t)‖)dλ

dν
(t) ν a.e. (1.13)

for any solution (x(u;v)(·), u(·), v(·)) ∈ R(x0) and any Radon measure ν absolutely con-
tinuously equivalent to the measure μ + λ.

Theorem 1.2 Let for multivalued mappings U,V : T × H ⇒ H with closed convex values
Hypotheses H(U) 1),2), 3) and H(V ) 1)∗, 2), 3) hold. Then, the set R(x0) is a closed
subset of the space

BV+(T ,H) × ω-L1(T ,H) × ω-L1(T ,H).

If, in addition, the set C(t) ∩ rB , t ∈ T is relatively compact for r > d(�,C(t)), then the
set R(x0) is compact in the space BV+(T ,H) × ω-L1(T ,H) × ω-L1(T ,H).

The existence of solutions to the inclusion (1.3) with a perturbation was studied in the
works [2–6].

In the works [2, 3, 5], the values of the multivalued mapping C : T ⇒H are closed r-prox
regular set and the inequalities (1.1), (1.2) hold.

In the work [2], one proved the existence of a unique BV solution in the case when the
perturbation f : T × H → H is single-valued. This perturbation is measurable in the first
variable, Lipschitz continuous in the second variable and satisfies conventional linear growth
conditions. A priori estimates for a solution were given.

A multivalued perturbation F : T ×H ⇒H with convex compact values, that is scalarly
upper semicontinuous and satisfies the inclusion

F(t, x) ⊂ β(t)(1 + ‖x‖K), t ∈ T , x ∈ Us∈T C(s),

where β(·) ∈ L1(T ,R) and K ⊂ B is a compact set, was considered in the work [3]. In this
work, one proved the existence of a BV solution.

In the work [4], the inclusion (1.3) with a multivalued mapping C : T ⇒ H with the
values being closed r-prox regular sets satisfying the inequality

|d(y,C(t)) − d(y,C(s))| ≤ |v(t) − v(s)|,
y ∈ H, s, t ∈ T , where v : T → R is an absolutely continuous function, was studied.

The multivalued perturbation G : T × H ⇒H in this work has the form

G(t, x) = F(t, x) + f (t, x), (1.14)
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where F(t, x) is a multivalued mapping with convex compact values and with the properties
as in the work [3], and the single-valued perturbation f (t, x) has the same properties as in
the work [2]. In this work, one proved the existence of an absolutely continuous solution.
The existence of a BV solution with a perturbation of the form (1.14) and with the same
properties for the mappings F(t, x) and f (t, x) as in the work [4], was proved in the work
[5].

In the work [6], one proved the existence of a unique BV solution with a multivalued
mapping C : T ⇒ H having closed r-prox regular values and a single-valued perturbation
f : T × H → H . It was supposed that the inequality (1.2) holds and:

(i) the mapping t → f (t, x) is measurable for every x ∈ ∪t∈T C(t), for every bounded set
D ⊂ H the mapping x → f (t, x) is uniformly continuously on D for every t ∈ T and
there exists a function lD(·) ∈ L1(T ,R+) such that

〈f (t, x1) − f (t, x2), x1 − x2〉 ≥ −lD(t)‖x1 − x2‖2,

t ∈ T , x1, x2 ∈ D;
(ii) there exists a function α(·) ∈ L1(T ,R+) with 1 − 2

∫

T
α(s)dλ(s) > 0 such that

‖f (t, x)‖ ≤ α(t)(1 + ‖x‖), t ∈ T , x ∈ H ;
(iii) there exists ρ0 > ‖x0‖ + μ(]0, a]) and ρ ∈]0,+∞], ρ ≥ (ρ0 + 2

∫

T
α(s)dλ(s))/(1 −

2
∫

T
α(s)dλ(s)) and η > 0 such that

ĥausρ(C(s),C(t)) ≤ μ(]s, t]), t, s ∈ T , s ≤ t,

for μ(]s, t]) < η.

Here,

ĥausρ(C(s),C(t)) = max{ sup
x∈C(s)∩ρB

d(x,C(t)), sup
x∈C(t)∩ρB

d(x,C(s))}.

All the main results of the works [2–5] follow from our Theorem 1.1. A distinctive feature of
Theorem 1.1, as compared to similar theorems in [2–6], is that the values of the multivalued
perturbation can be closed nonconvex sets. We have been able to consider such perturbations
employing methods different from those used in the works [2–6]. In these works, the proofs
are based on various versions of the catching-up algorithm originated in the work [7]. Such
an approach is applicable only in the case when the values of perturbation are closed convex
sets, because in the proof one uses the Mazur theorem for weakly converging sequences.

Our approach is based on the classical Ky Fan fixed point theorem and the author’s
theorem on parameter-continuous selectors whose values are fixed points of parameter-
dependent multivalued maps with closed, convex, decomposable values in the space of in-
tegrable functions.

Regarding the results of Theorem 1.2, the author is not aware of any work studying prop-
erties of BV solutions of sweeping processes with r-prox regular sets and with multivalued
perturbations.

2 Main Notation, Definitions and Preliminaries

Let Y be a metric space, cY the family of all nonempty closed sets from Y , cbY the family
of all bounded sets from cY with the Hausdorff metric hausY (·, ·). For a topological vector
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space Z by ω-Z we denote the space Z endowed with the weak topology. If D ⊂ Z, then
ω-D means that the set D is endowed with the topology induced by the topology of the
space ω-Z. By coD we denote the closed convex hull of a set D ⊂ Z.

Let W be a topological space. A multivalued mapping F : W ⇒ Y is called lower semi-
continuous, if for any open set E ⊂ Y the set F−1(E) = {w ∈ W ; F(w) ∩ E �= ∅} is open.

If W is a metric space, the definition of lower semicontinuity is equivalent to the follow-
ing one: for any w ∈ W , y ∈ F(w) and any sequence wn ∈ W , n ≥ 1, wn → w, there exists
a sequence yn ∈ F(wn), n ≥ 1, converging to y.

A multivalued mapping F : W → Y is called upper semicontinuous, if for any open set
E ⊂ Y the set F+(E) = {w ∈ W ; F(w) ⊂ E} is open.

If Y is a compact metric space and F : W → Y is a multivalued mapping with closed val-
ues, then the upper semicontinuity equivalent to the closedness of the graph of the mapping.

A multivalued mapping F : T → cH is called measurable [8], if for any closed set E ⊂
H the set F−1(E) = {t ∈ T ; F(t) ∩ E �= ∅} is an element of the σ -algebra � of Lebesgue
measurable sets from T .

A set K of measurable mappings u : T → H is called decomposable, if for any u,v ∈ K,
� ∈ � the element χ(�)u+χ(T \�)v belongs to the set K, where χ(�) is the characteristic
function of the set �.

A measurable multivalued mapping � : T → cbH is called integrally bounded, if there
exists a function m(·) ∈ L1(T ,R+) such that

‖�(t)‖ = sup{‖u‖; u ∈ �(t)} ≤ m(t) a.e.

The space of all measurable, integrally bounded mappings � : T → cbH with closed
values we denote by L1(T , cbH), and by dcbL1(T ,H) we denote the family of all closed,
bounded, decomposable sets from L1(T ,H).

If �(·) ∈ L1(T , cbH), then by S� we denote the family of all integrable with respect to
the measure λ selectors of the mapping t → �(t). It is known that it is an element of the
space dcbL1(T ,H).

Denote by BV+(T ,H) the space of all right continuous functions x : T → H of bounded
variation with the topology of uniform convergence on T . The topology of the space
BV+(T ,H) is generated by the norm

‖x(·)‖BV+ = sup{‖x(t)‖; t ∈ T }.
It is known that a function x(·) ∈ BV+(T ,H) has the left limit x(t − 0) at every point
t ∈]0, a].

Let U ⊂ BV+(T ,H). The set U is called right equicontinuous at a point s ∈ [0, a[, if for
any ε > 0 there exists δ > 0 such that ‖x(s) − x(t)‖ ≤ ε for all x(·) ∈ U and t ∈ [s, s + δ[.

A set U ⊂ BV+(T ,H) is called left equicontinuous at a point s ∈]0, a], if for any ε > 0
there exists δ > 0 such that ‖x(s − 0) − x(t)‖ ≤ ε for all x(·) ∈ U and t ∈]s − δ, s[.

A set U ⊂ BV+(T ,H) is called unilaterally equicontinuous, if it is both right and left
equicontinuous at every point s ∈]0, a[, right equicontinuous at the point 0 and left equicon-
tinuous at the point a.

The variation of a function x(·) ∈ BV+(T ,H) we denote by var x(·). A set U ⊂
BV+(T ,H) is called uniformly bounded in norm and in variation, if there exists a constant
M > 0 such that

‖x(t)‖ ≤ M, t ∈ T , x(·) ∈ U,

var x(·) ≤ M, x(·) ∈ U.
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Let B be the σ -algebra of Borel sets from T . A positive Radon measure is a scalar positive
measure defined on the σ -algebra B. In what follows, by a Radon measure we mean a scalar
positive Radon measure. The variation of the measure m : B → H we denote by |m|(·). If
|m|(T ) < ∞, then the measure m is called a measure with bounded variation. In this case,
the variation |m|(·) of the measure m(·) is a Radon measure.

A Radon measure ν is absolutely continuous with respect to a Radon measure μ, if
μ(A) = 0, A ∈ B implies that ν(A) = 0. If the converse is also true, then the measures μ

and ν are called absolutely continuously equivalent.
A measure m : B → H is absolutely continuous with respect to a Radon measure μ(·), if

the measure |m|(·) is absolutely continuous with respect to the measure μ(·).
For a Radon measure ν on T by L1

ν(T ,H) we denote the set of equivalency classes of all
ν measurable mappings g : T → H such that the function t → ‖g(t)‖ is an element of the
space L1

ν(T ,R+). If a measure of bounded variation m : B → H is absolutely continuous
with respect to a Radon measure μ, then according to the Radon-Nikodym theorem there
exists a function m̂ ∈ L1

μ(T ,H) such that

m(A) =
∫

A

m̂(τ ) dμ(τ), A ∈ B.

The function t → m̂(t) is called the density of the measure m with respect to the measure μ

and is denoted by dm
dμ

(·).
Let S ⊂ H be a nonempty subset,

dS(x) = inf
s∈S

‖x − s‖, x ∈ H

and

ProjS(x) = {y ∈ S; dS(x) = ‖x − y‖}.
The proximal normal cone to the set S at a point x ∈ S is the set

NP (S;x) = {v ∈ H ; ∃r > 0, x ∈ ProjS(x + rv)},
which is, evidently, a cone containing �. One sets NP (S;x) = ∅, if x ∈ H\S.

Definition 2.1 A nonempty closed set S ⊂ H is called r-prox regular, if for any x ∈ S and
for all v ∈ NP (S;x) ∩ B and all t ∈]0, r[ the inclusion x ∈ ProjS(x + tv) holds.

Lemma 2.1 Let U ⊂ BV+(T ,H) and:
1) the set U is unilaterally equicontinuous;
2) the set

U(t) = {x(t); x(·) ∈ U}, t ∈ T

is relatively compact;
3) the set U is uniformly bounded in variation.

Then, the set U is relatively compact in the space BV+(T ,H), i.e. from any sequence
xn(·) ∈ U , n ≥ 1 one can extract a subsequence xnk

(·) ∈ U , k ≥ 1, uniformly converging to
some function x(·) ∈ BV+(T ,H).

Lemma 2.1 follows from Theorem 2.3 [9].
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Lemma 2.2 ([9]) Let Hypothesis H(V) hold. Then, for any function x(·) ∈ BV+(T ,H) the
mapping

t → V (t, x(t)) ∩ (m2(t) + n2(t)‖x(t)‖)B
has a selector which is an element of the space L1T ,H).

Lemma 2.3 If a function of bounded variation x : T → H is right continuous, then there
exists a unique measure m : B → H such that for any 0 ≤ c ≤ d ≤ a we have

m(]c, d]) = x(d) − x(c), (2.1)

m(]c, d[) = x(d − 0) − x(c). (2.2)

Lemma 2.3 follows from Theorem 1 [10, p. 358].
The measure m(·) is usually called the differential measure (Stieltjes measure) generated

by the function x(·) and is denoted by dx.
If x̂(·) ∈ L1

ν(T ,H) and x(t) = x(0) + ∫

]0,t]
x̂(τ ) dν(τ ), t ∈ T , then x(t) is a right contin-

uous function of bounded variation, the differential measure dx generated by the function
x(·) is absolutely continuous with respect to the measure ν and x̂(·) is the density of the
measure dx with respect to the measure ν, i.e.

dx

dν
(t) = x̂(t) ν a.e. (2.3)

and

x̂(t) = lim
s↑t

dx(]s, t] ∩ T )

ν(]s, t] ∩ T )
ν a.e. (2.4)

It is known [11, chapter V, p. 43, theorem 1] that if the Lebesgue measure λ is absolutely
continuous with respect to a Radon measure ν, then the function x̂ : T → H is integrable
with respect to the measure λ if and only if the function t → x̂(t) dλ

dν
(t) is ν integrable. In

this case, we have
∫

]0,t]
x̂(t) dλ(t) =

∫

]0,t]
x̂(t)

dλ

dν
(τ) dν(τ ), t ∈ T , (2.5)

and if t ∈]0, a] and ν({t}) > 0, then

dλ

dν
(t) ν({t}) = 0. (2.6)

Proposition 2.1 Let x : T → H be a right continuous function of bounded variation with
the differential measure dx absolutely continuous with respect to a Radon measure ν. Then,
t → ‖x(t)‖2 is a right continuous function of bounded variation and

‖x(t)‖2

2
≤ ‖x(0)‖2

2
+

∫

]0,t]
〈x(τ),

dx

dν
(τ )〉dν(τ). (2.7)

The proposition follows from Proposition 3.3 in [3].
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Theorem 2.1 ([5]) Let S ⊂ H be a nonempty closed set. Then, the following conditions are
equivalent:

(a) the set S is r-prox regular;
(b) for any x1, x2 ∈ S and for all v ∈ NP (S;x1) we have

〈v, x2 − x1〉 ≤ 1

2r
‖v‖‖x1 − x2‖2;

(c) for all x1, x2 ∈ S and v1 ∈ NP (S;x1), v2 ∈ NP (S, x2) the inequality

〈v1 − v2, x1 − x2〉 ≥ − 1

2r
(‖v1‖ + ‖v2‖)‖x1 − x2‖2

holds.

In the sequel, following [2], the cone NP (S, x) is denoted by N(S,x).

Lemma 2.4 ([12]) Let ν be a Radon measure on T and g,ϕ : T → R+ are two functions
such that

(i) for some θ ∈ R+ and for all t ∈]0, a]
0 ≤ g(ν)ν({t}) ≤ θ < 1, g(·) ∈ L1

ν(T ,R+);
(ii) for some fixed α ∈ R+ and all t ∈ T we have

ϕ(t) ≤ α +
∫

]0,t]
g(s)ϕ(s)dν(s), ϕ ∈ L∞

ν (T ,R+).

Then, for all t ∈ T

ϕ(t) ≤ α exp

⎛

⎝
1

1 − θ

∫

]0,t]
g(s)dν(s)

⎞

⎠ .

Lemma 2.5 Let μ be a Radon measure on T , m(·), n(·) ∈ L1
μ(T ,R+) and u : T → R+ is a

right continuous function of bounded variation. If

1

2
u2(t) ≤ 1

2
c2 +

∫

]0,t]
(m(τ) + n(τ)u(τ))u(τ )dμ(τ), (2.8)

t ∈ T , c ≥ 0, then

u(t) ≤ c + 2
∫

]0,t]
(m(τ) + n(τ)u(τ))dμ(τ), t ∈ T . (2.9)

Proof We assume that the functions m(t), n(t) are defined for all t ∈ T . Let ε > 0 be arbi-
trary and

vε(t) = 1

2
(c + ε)2 +

∫

]0,t]
(m(τ) + n(τ)u(τ))u(τ )dμ(τ). (2.10)
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Then, vε(t) is a right continuous function of bounded variation, the differential measure dvε

of which is absolutely continuous with respect to the measure μ and

dvε

dμ
(t) = (m(t) + n(t)u(t))u(t) μ a.e. (2.11)

Consider the function t → √
vε(t), which is positive, right continuous and increasing.

Consequently, it is a function of bounded variation. The differential measure d
√

vε has pos-
itive values and, thus, it is a Radon measure.

From the inequality

d
√

vε(]s, t]) = √

vε(t) − √

vε(s) ≤
1

2

1√
vε(0)

(vε(t) − vε(s)) = 1

2
√

vε(0)
dvε(]s, t]),

s ≤ t, s, t ∈ T ,

the absolute continuity of the measure dvε with respect to the measure μ and Theorem 1
[13] it follows that the measure d

√
vε is absolutely continuous with respect to the measure

μ. Using (2.4), we obtain

d
√

vε

dμ
(t) = lim

s↑t

1√
vε(s) + √

vε(t)
· lim

s↑t

dvε(]s, t])
μ(]s, t]) ≤

≤ 1√
vε(t − 0) + √

vε(t)
· dvε

dμ
(t) (2.12)

for μ almost all t ∈]0, a]. Since dvε(0) = 0, the inequality (2.12) holds for almost all t ∈
[0, a]. From (2.8), (2.10), (2.11) we see that

dvε

dμ
(t) ≤ √

2(m(t) + n(t)u(t))
√

vε(t),

for μ almost all t ∈ [0, a].
Using this inequality and (2.12), we obtain

d
√

vε

dμ
(t) ≤ √

2(m(t) + n(t)u(t)),

μ a.e. on [0, a].
Consequently,

√

vε(t) ≤ √

vε(0) + √
2
∫

]0,t]
(m(τ) + n(τ)u(τ))dμ(τ), t ∈ T . (2.13)

Now the inequality (2.9) follows from the arbitrariness of ε > 0 and the inequalities (2.8),
(2.10), (2.13). �

Remark 2.1 If the measure μ is not atomic, then from the inequality (2.8) we infer that

u(t) ≤ c +
∫

]0,t]
(m(τ) + n(τ)u(τ))dμ(τ). (2.14)
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3 Auxiliary Results

Lemma 3.1 Let C : T ⇒ H be a multivalued mapping with r-prox regular values and the
inequalities (1.1), (1.2) hold. Then, for any u(·), v(·) ∈ L1(T ,H) the sweeping process

−dx ∈ N (C(t);x(t)) + u(t) + v(t), (3.1)

x(0) = x0 ∈ C(0)

has a unique BV solution x(u;v)(·), satisfying the inclusion (1.5) and the inequalities

‖x(u;v)(t) − x(u;v)(t − 0)‖ ≤ μ({t}), t ∈]0, a], (3.2)

‖dx(u;v)

dν
(t) + (u(t) + v(t))

dλ

dν
(t)‖ ≤

≤ dμ

dν
(t) + ‖u(t) + v(t)‖dλ

dν
(t) ν a.e. (3.3)

for any Radon measure ν absolutely continuously equivalent to the measure μ.

The lemma follows from Theorem 5.1 [2].
In the rest of the paper, unless otherwise specified, we assume that for the multivalued

mapping C : T ⇒H with r-prox regular values the inequalities (1.1), (1.2) hold.
Consider the differential equation

ṙ(t) = 2(m(t) + n(t)r(t)), r(0) = ‖x0‖ + μ([0, a]), (3.4)

that has a unique solution r(t), where

m(t) = m1(t) + n1(t), n(t) = n1(t) + n2(t). (3.5)

In what follows, we assume that Hypothesis H(U) 1)–3) and H(V) 1)–3) hold.
Consider the set

SU = {u(·) ∈ L1(T ,H); ‖u(t)‖ ≤ m1(t) + n1(t)r(t) a.e.}, (3.6)

SV = {v(·) ∈ L1(T ,H); ‖u(t)‖ ≤ m2(t) + n2(t)r(t) a.e.} (3.7)

and the multivalued mapping � : T ⇒ H

�(t) = (m1(t) + n1(t)r(t))B, t ∈ T , (3.8)

that is measurable with closed convex values. It is well known that for any measurable
function u : T → H the function

t → Proj�(t) u(t)

is uniquely defined and measurable. Since m1(·), n1(·) ∈ L1(T ,H), the operator L :
L1(T ,H) → SU

L(u)(t) = Proj�(t) u(t) (3.9)

is well defined.
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Lemma 3.2 The operator L : L1(T ,H) → SU has the properties

‖L(u1)(t) −L(u2)(t)‖ ≤ ‖u1(t) − u2(t)‖, t ∈ T , (3.10)

ui(·) ∈ L1(T ,H), i = 1,2,

L(u)(t) = u(t), t ∈ T , u(·) ∈ SU (3.11)

and

‖L(u)(t)‖ ≤ m1(t) + n1(t)r(t) a.e., u(·) ∈ L1(T ,H). (3.12)

The lemma follows from the properties of projection onto a closed convex set in a Hilbert
space and (3.8).

Lemma 3.3 For any u(·) ∈ L1(T ,H), v(·) ∈ SV , the sweeping process

−dx ∈ N (C(t), x(t)) +L(u)(t) + v(t), (3.13)

x(0) = x0 ∈ C(0) has a unique BV solution x(L(u);v) with the properties

‖x(L(u);v)(t) − x(L(u);v)(t − 0)‖ ≤ μ(t), t ∈]0, a], (3.14)

‖x(L(u);v)‖ ≤ r(t), t ∈ T , (3.15)
∥
∥
∥
∥

dx(L(u);v)

dν
(t)

∥
∥
∥
∥

≤ dμ

dν
(t) + 2(‖L(u)(t)‖ + ‖v(t)‖)dλ

dν
(t) ν a.e. (3.16)

for any Radon measure ν absolutely continuously equivalent to the Radon measure μ + λ.

Proof The existence of a unique BV solution x(L(u);v) follows from Lemma 3.1 and (3.7),
(3.12). The inequalities (3.14), (3.16) follow from (3.2), (3.3).

Using (3.16) and (2.5), we obtain

‖x(L(u);v)‖ ≤ ‖x0‖ + μ([0, a]) + 2
∫

[0,t]
(‖L(u)(τ )‖ + ‖v(t)‖)dλ(τ).

From this inequality, (3.7), (3.12) and (3.5) we deduce that

‖x(L(u);v)(t)‖ ≤ ‖x0‖ + μ([0, a]) + 2
∫

[0,t]
(m(τ) + n(τ))r(τ ))dλ(τ).

The last inequality and (3.4) give the inequality (3.15). Lemma is proved. �

Denote by � : L1(T ,H) × SV → BV+(T ,H) the operator

�(u;v) = x(L(u);v), u(·) ∈ L1(T ,H), v ∈ SU . (3.17)

From (3.11), (3.17) we directly see that

�(u;v) = x(u;v), u(·) ∈ SU , v ∈ SV . (3.18)
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Theorem 3.1 There exists a constant L > 0 such that

‖�(u1;v1)(t) − �(u2;v2)(t)‖ ≤

≤ L

∫

]0,t]
(‖u1(τ ) − u2(τ )‖ + ‖v1(τ ) − v2(τ )‖)dλ(τ), t ∈ T , (3.19)

ui(·) ∈ L1(T ,H), vi(·) ∈ SV , i = 1,2.

Proof Let ui(·) ∈ L1(T ,H), vi(·) ∈ SV , i = 1,2. According to Lemma 3.3 the inclusion
(3.13) has BV solutions x(L(ui);vi, ), i = 1,2, which, as follows from (1.5), satisfy the
inclusion

−dx(L(ui);vi)

dν
(t) − (L(ui)(t) + vi(t))

dλ

dν
(t) ∈

∈ N(C(t);x(L(ui);vi)(t)) ν a.e. (3.20)

From these inclusions, Proposition 2.1, Theorem 2.1 (c) and Lemma 2.5 it follows that

‖x(L(u1);v1)(t) − x(L(u2);v2)(t)‖ ≤

≤ 2
∫

]0,t]
(‖L(u1)(τ ) −L(u2)(τ )‖ + ‖v1(τ ) + v2(τ )‖)dλ

dν
(τ)dν(τ )+

+1

r

∫

]0,t]

{

‖x(L(u1;v1)(τ ) − x(L(u2);v2)(τ )‖·

·
[

2
∑

i=1

(‖dx(L(ui);vi)

dν
(τ )‖ + (‖L(ui)(τ ) + vi(τ )‖)dλ

dν
(τ))

]}

dν(τ). (3.21)

Let t∗ ∈]0, t] be arbitrary and fixed. Denote

α = 2
∫

]0,t∗]
(‖u1(τ ) − u2(τ )‖ + ‖v1(τ ) + v2(τ )‖)dλ(τ), (3.22)

g(t) = 1

r

2
∑

i=1

(‖dx(L(ui);vi)

dν
(t)‖ + (‖L(ui)(τ )‖ + ‖vi(τ )‖)dλ

dν
(τ)). (3.23)

Using (2.5), (3.10), (3.21)–(3.23), we arrive at the inequality

‖x(L(u1);v1)(t) − x(L(u2);v2)(t)‖ ≤

α +
∫

]0,t]
g(τ)‖x(L(u1);v1)(τ ) − x(L(u2);v2)(τ )‖dν(τ), t ∈]0, t∗]. (3.24)

From (3.23), (2.6) we obtain

g(t)ν({t}) = 1

r

2
∑

i=1

∥
∥
∥
∥

dx(L(ui);vi)

dν
(t)

∥
∥
∥
∥

ν({t}). (3.25)
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Let

γ = 2 sup
s∈]0,a]

μ({s}).

As follows from (1.2), (3.14), we have

2 max
1≤i≤2

sup
τ∈]0,a]

‖x(L(ui);vi)(τ ) − x(L(ui);v)(τ − 0)‖ ≤ γ < r.

Since
∥
∥
∥
∥

dx(L(ui);vi)

dν
(t)

∥
∥
∥
∥

ν({t}) = ‖x(L(ui);vi)(t) − x(L(ui);vi)(τ − 0)‖ ,

from (3.25) and the last inequality we obtain

0 ≤ g(t)ν({t}) ≤ γ

r
< 1, t ∈]0, a].

From this inequality, (3.24) and Lemma 2.4 we see that

‖x(L(u1);v1)(t) − x(L(u2);v2)(t)‖ ≤

≤ α exp

⎛

⎝
1

1 − θ

∫

]0,t]
g(τ)dν(τ )

⎞

⎠ , t ∈]0, t∗], (3.26)

where

θ = γ

r
. (3.27)

Using (2.5), (3.7), (3.5), (3.12), (3.16), (3.23), we infer that
∫

]0,t]
g(τ)dν(τ ) ≤ 2

r
μ(]0, a]) + 4

r

∫

T

(m(t) + n(t)r(t))dλ(t), t ∈ T . (3.28)

Using (3.26), (3.22), (3.28) and the arbitrariness of t∗ ∈]0, a], we derive (3.19) with the
constant L,

L = 2 exp

⎛

⎝
1

1 − θ

⎡

⎣
2

r
μ([0, a]) + 4

r

∫

T

(m(t) + n(t)r(t))dλ(t)

⎤

⎦

⎞

⎠ .

The theorem is proved. �

According to Hypothesis H(V) 3), the set

V (t, r(a))B) ∩ (m2(t) + n2(t)r(a))B, t ∈ T = [0, a]
is relatively compact for almost every t ∈ T .

Let

W(t) = V (t, r(t)B) ∩ (m2(t) + n2(t)r(t))B, t ∈ T = [0, a]. (3.29)
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Since W(t) ⊂ V (t, r(a)B) ∩ (m2(t) + n2(t)r(a))B , t ∈ T , the values of multivalued map-
ping t → coW(t) are convex compact sets and

‖ coW(t)‖ ≤ m2(t) + n2(t)r(t). (3.30)

Let

ScoW = {v(·) ∈ L1(T ,H); v(t) ∈ coW(t) a.e.}. (3.31)

From Lemma 2.2 it follows that the multivalued mapping

t → V (t,�(u;v)(t)) ∩ (m2(t) + n2(t)‖�(u;v)(t)‖)B
has a measurable selector that is an element of the space L1(T ,H). Hence, the set ScoW is
not empty.

Lemma 3.4 ([14]) The following statements are true:
a) ScoW is a nonempty, convex, compact subset of the space L1(T ,H);
b) for any v(·) ∈ ScoW we have

‖v(t)‖ ≤ m2(t) + n2(t)r(t) a.e.; (3.32)

c) the set

ScoW(t) = {v(t); v(·) ∈ ScoW } ⊂ H

is compact for almost all t ∈ T .

Theorem 3.2 The operator � is continuous from L1(T ,H) × ω-ScoW to BV+(T ,H).

Proof Since ScoW is a convex metrizable compact set in the topology of the space
ω-L1(T ,H), it is enough to show the sequential continuity of the operator �(u;v).

Let a sequence un(·) ∈ L1(T ,H), n ≥ 1 converge in the space L1(T ,H) to u0(·), and
a sequence vn ∈ ScoW , n ≥ 1 converge to v0(·) in the space ω-L1(T ,H). Recalling (3.17),
denote

xn(·) = �(un;vn)(·) = x(L(un);vn)(·), n ≥ 0, (3.33)

where x(L(un);vn)(·), n ≥ 0 are solutions of the inclusion (3.13) corresponding to
un(·), vn(·), n ≥ 0.

From (3.16) it follows that
∥
∥
∥
∥

dxn

dν
(t)

∥
∥
∥
∥

≤ dμ

dν
(t) + 2(‖L(un)(t)‖ + ‖vn(t)‖dλ

dν
(t).

From this inequality and (3.7), (3.12), (3.5), (2.5) we obtain

‖xn(t) − xn(s)‖ ≤ μ(]s, t]) + 2
∫

]s,t]
(m(τ) + n(τ)r(t))dλ(τ),

n ≥ 0, s ≤ t, s, t ∈ T .
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From this inequality and (3.15) it follows that the sequence xn(·), n ≥ 1 is uniformly
bounded in norm and in variation. From Theorem 2.1 [15, Chap. 0] we know that there
exists a subsequence xnm(·),m ≥ 1 of the subsequences xn(·), n ≥ 1, pointwise converging
in the space ω-H to some function y : T → H of bounded variation.

Let

Jm
1 (t) =

∫

]0,t]
〈L(u0)(τ ) −L(unm)(τ ), xnm(τ ) − x0(τ )〉dλ(τ), (3.34)

Jm
2 (t) =

∫

]0,t]
〈v0(τ ) − vnm(τ ), xnm(τ ) − y(τ)〉dλ(τ), (3.35)

Jm
3 (t) =

∫

]0,t]
〈v0(τ ) − vnm(τ ), y(τ ) − x0(τ )〉dλ(τ), (3.36)

m ≥ 1.
Since unm(·) → u0(·), m → ∞ in the space L1(T ,H), from (3.10), (3.15) and (3.34) we

infer that

lim
m→∞ sup

t∈]0,a]
|Jm

1 (t)| = 0. (3.37)

From Lemma 3.4 it follows that the set

{∪(v0(τ ) − vnm(τ ); m ≥ 1} ⊂ H

is relatively compact for almost all t ∈ T .
Since the sequence xnm(τ ) − y(τ),m ≥ 1, τ ∈ T is bounded, the sequence of functions

h → 〈h,xnm(τ ) − y(τ)〉, m ≥ 1

is equicontinuous. It is well known that on every equicontinuous set the topology of point-
wise convergence coincides with the topology of uniform convergence on compact sets.
Therefore,

lim
m→∞〈v0(τ ) − vnm(τ ), xnm(τ ) − y(τ)〉 = 0 a.e.

From this equality, (3.15), (3.7), (3.35) and Lebesgue’s dominated convergence theorem it
follows that

lim
m→∞ sup

t∈]0,a]
|Jm

2 (t)| = 0. (3.38)

Consider the functions t → Jm
3 (t), m ≥ 1. Since vnm(·) → v0(·), m → ∞ in the space

ω-L1(T ,H), we have Jm
3 (t) → 0, m → ∞, t ∈ T . From (3.32), (3.15), (3.36) we see that

|Jm
3 (t) − Jm

3 (s)| ≤ 4
∫

]s,t]
(m2(τ ) + n2(τ )r(τ ))r(τ )dλ(τ).
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From this inequality it follows that the sequence of functions t → Jm
3 (t), m ≥ 1 is equicon-

tinuous. Hence,

lim
m→∞ sup

t∈T

|Jm
3 (t)| = 0. (3.39)

Since xnm(·),m ≥ 1 is a solution of the inclusion (3.13), the inclusion (3.20) holds. From
this inclusion, Proposition 2.1 and Theorem 2.1 (c) we obtain the inequality

1

2
‖xnm(t) − x0(t)‖2 ≤ Jm

1 (t) + Jm
2 (t) + Jm

3 (t) + 1

2r

∫

]0,t]
‖xnm(τ ) − x0(τ )‖2·

·(‖dxnm

dν
(τ )‖ + ‖dx0

dν
(τ)‖ + (‖L(unm(τ )‖ + ‖L(u0)(τ )‖+

+‖vnm(τ )‖ + ‖v0(τ )‖)dλ

dν
(τ))dν(τ ). (3.40)

From (3.37)–(3.40) it follows that for any ε > 0 there exists m(ε) ≥ 1 such that

‖xnm(τ ) − x0(τ )‖2 ≤ ε +
∫

]0,t]
‖xnm(τ ) − x0(τ )‖2gm(τ)dν(τ ), (3.41)

m ≥ m(ε), t ∈]0, a], where

gm(t) = 1

r
(‖dxnm

dν
(t)‖ + ‖dx0

dν
(t)‖) + ‖L(unm(t)‖+

+‖L(u0)(t)‖ + ‖vnm(t)‖ + ‖v0(t)‖dλ

dν
(t), m ≥ m(ε). (3.42)

Reasoning as in the proof of Theorem 3.1, we see that

0 ≤ gm(t)ν({t}) ≤ θ < 1, t ∈]0, a],
where θ is defined by the equality (3.27).

Using Lemma 2.4, we arrive at the inequality

‖xnm(t) − x0(t)‖2 ≤ ε exp

⎛

⎝
1

1 − θ

∫

]0,t]
gm(τ)dν(τ )

⎞

⎠ , (3.43)

m ≥ m(ε).
Using (3.42) and reasoning as in the proof of Theorem 3.1, we obtain an analogue of the

inequality (3.28)
∫

]0,t]
gm(τ)dν(τ ) ≤ 2

r
μ([0, a]) + 4

r

∫

T

(m(t) + n(t)r(t))dλ(τ).

From this inequality and (3.43) we derive

‖xnm(t) − x0(t)‖2 ≤ εL1, m ≥ 1, t ∈ T , (3.44)



2 Page 18 of 27 A. Tolstonogov

where L1 is defined by the equality

L1 = exp

⎛

⎝
1

1 − θ

⎡

⎣
2

r
(μ([0, a]) + 2

∫

T

(m(t) + n(t)r(t))dλ(τ)

⎤

⎦

⎞

⎠ . (3.45)

From the arbitrariness of ε > 0 and (3.44) it follows that the sequence xnm(·),m ≥ 1 con-
verges in the space BV+(T ,H) to x0(·).

We have thus shown that if a sequence un(·), n ≥ 1 converges to u0(·) in L1(T ,H), a se-
quence vn(·) ∈ ScoW , n ≥ 1 converges to v0 in ω-L1(T ,H), then there exists a subsequence
xnm(·),m ≥ 1 of the sequence xn(·), n ≥ 1, converging to x0 in the space BV+(T ,H).

Suppose that the sequence xn(·), n ≥ 1 itself does not converge to x0(·) in the space
BV+(T ,H). Then, there exists a subsequence xnk

(·), k ≥ 1 of the sequence xn(·), n ≥ 1
such that any subsequence of the sequence xnk

(·), k ≥ 1 does not converges to x0. Repeating
the reasoning above to the sequences xnk

(·) and vnk
(·) and taking into account the fact that

for u0(·), v0(·) the inclusion (3.13) has a unique solution, we arrive at a contradiction. Con-
sequently, the sequence xn(·), n ≥ 1 converges to x0(·) in the space BV+(T ,H). Recalling
the notation (3.33), we obtain the statement of the theorem. The theorem is proved. �

4 Multivalued Nemytskii Operator

Let u(·) ∈ L1(T ,H), v(·) ∈ ScoW . Consider the multivalued mapping t → U(t,�(u;v)(t)).
Since t → �(u;v)(t) is a right continuous function of bounded variation, it is Lebesgue
measurable. Hence, from Hypothesis H(U) it follows that the mapping t → U(t,�(u;v)(t))

is an element of the space L1(T , cbH). Then, the set

�(u;v) = {f (·) ∈ L1(T ,H); f (t) ∈ U(t,�(u;v)(t)) a.e.} (4.1)

is an element of the space dcbL1(T ,H). Consequently, we can define a multivalued map-
ping � : L1(T ,H) × ScoW → dcbL1(T ,H), which is called the Nemytskii multivalued op-
erator.

On the space L1(T ,H) consider the function

P (x) =
∫

T

ρ(t, x(t)) dt, x(·) ∈ L1(T ,H), (4.2)

with

ρ(t, x(t)) = exp(−2L

t∫

0

k(τ ) dτ)‖x(t)‖, (4.3)

where the function k(·) is from the inequality (1.8), and the constant L > 0 is from the
inequality (3.19). It is clear that the function P (x) is a norm equivalent to the standard norm
of the space L1(T ,X).

The Hausdorff distance between elements of the space cbL1(T ,H), when the space
L1(T ,H) is endowed with the standard norm, we denote by hausL (·, ·).
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When the space L1(T ,H) is endowed with the norm (4.2), the Hausdorff distance be-
tween elements from cbL1(T ,H) we denote by hausP (·, ·).

Theorem 4.1 The Nemytskii operator �(u;v) has the properties:
1) the operator �(u;v) is continuous from L1(T ,H)×ω-ScoW to the space dcbL1(T ,H)

with the Hausdorff metric hausL (·, ·);
2) the following inequality holds

hausL(�(u1;v),�(u2;v)) ≤ L2‖u1 − u2‖L1 , (4.4)

ui(·) ∈ L1(T ,H), i = 1,2, v ∈ ScoW ,

L2 = L‖k(·)‖L1; (4.5)

hausP (�(u1;v);�(u2;v)) ≤ 1

2
P (u1 − u2), (4.6)

ui(·) ∈ L1(T ,H), i = 1,2, v ∈ ScoW .

Proof From Proposition 4.2 in [16] and (4.1) we infer that

hausL1(�(u1;v1),�(u2;v2)) ≤
∫

T

haus(U(t,�(u1;v1)(t)),U(t,�(u2;v2)(t)))dt.

Then, using the inequality (1.8), we obtain

hausL1(�(u1;v1),�(u2;v2)) ≤ ‖k(·)‖L1‖�(u2;v2) − �(u1;v1)‖BV+ . (4.7)

And the statement 1) of Theorem 4.1 follows from this inequality and Theorem 3.2.
The inequality (4.4) follows from the inequality (4.7) and (3.19), (4.5).
Now, we prove the inequality (4.6).
From (1.8), (3.19) we deduce that

haus(U(t,�(u1;v)(t)),U(t,�(u2;v)(t))) ≤ k(t)L

t∫

0

‖u1(τ ) − u2(τ )‖dτ.

From this inequality and (4.1)–(4.3) we obtain

hausP (�(u1;v),�(u2;v)) ≤

≤
∫

T

⎛

⎝exp(−2L

t∫

0

k(τ ) dτ)

⎞

⎠k(t))L

⎛

⎝

t∫

0

‖u1(τ ) − u2(τ )‖dτ

⎞

⎠ dt.

Integrating by parts the right-hand side of this inequality we arrive at the inequality

hausP (�(u1;v),�(u2;v)) ≤ 1

2

∫

T

(exp(−2L

t∫

0

k(τ ) dτ))‖u1(t) − u2(t)‖dt. (4.8)
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Now the inequality (4.6) follows from the inequalities (4.8) and (4.2), (4.3). Theorem is
proved. �

For a fixed v(·) ∈ ω-ScoW denote by (Fix)(v) the set of fixed points of the operator
�(u;v).

Theorem 4.2 The following statements hold:
a) for any v(·) ∈ ω-ScoW the set (Fix�)(v) is not empty;
b) there exists a continuous function u : ω-ScoW → L1(T ,H) such that u(v) ∈

(Fix�)(v), i.e.

u(v) ∈ �(u(v);v), v ∈ ω-ScoW ; (4.9)

c) u(v)(t) ∈ U(t, x(u(v);v)(t)) a.e., v(·) ∈ ω-ScoW . (4.10)

Proof From the statement 1) of Theorem 4.1 it follows that for a fixed u(·) ∈ L1(T ,H) the
mapping v → �(u;v) is lower semicontinuous from the compact metric space ω-ScoW to
the space L1(T ,H) with closed, bounded, decomposable values. Now the statements a), b)
of theorem follow from the inequality (4.6) and Theorem 1.1 [17].

From (4.1) and (4.9) it follows that

u(v)(t) ∈ U(t,�(u(v);v)(t)) a.e., v(·) ∈ ScoW . (4.11)

From this inclusions and (3.6), (3.15), (3.17), (1.9) we infer that

u(v) ∈ SU , v ∈ ScoW . (4.12)

Then, according to (3.18) we have

�(u(v);v) = x(u(v);v), v ∈ ScoW . (4.13)

Using (4.11), (4.13), we obtain the inclusion (4.10). The theorem is proved. �

5 Proof of the Main Results

Consider the operator �(u;v) defined by the equality (3.17). Then, as follows from the
equality (4.13), Theorem 3.2 and the statement b) of Theorem 4.2, the mapping v →
�(u(v);v) is continuous from ω-ScoW to BV+(T ,H).

Let

Q(t, x) = V (t, x) ∩ (m2(t) + n2(t)‖x‖)B (5.1)

and

SQ(v) = {f (·) ∈ L1(T ,H); f (t) ∈ Q(t,�(u(v);v)(t) a.e.}, (5.2)

v ∈ ScoW .
From Lemma 2.2 and (5.1) it follows that SQ(v) is a nonempty, convex, compact subset

of the space ω-L1(T ,H). Using (5.1), (5.2), (3.29), (3.31), (4.13), (3.15), we obtain the
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inclusion

SQ(v) ⊂ ScoW, v(·) ∈ ScoW . (5.3)

Thus, the multivalued mapping v → SQ(v) from the set ω-ScoW to the set ω-ScoW is well
defined. Its values are nonempty, convex, compact subsets of the space ω-L1(T ,H).

Let

K = {�(u(v);v); v(·) ∈ ω-ScoW }.
Then, the set K is a compact subset of the space BV+(T ,H). From Corollary 2.4 in [9] it
follows that there exists a compact set D ⊂ H such that

�(u(v);v)(t) ∈ D, t ∈ T , v(·) ∈ ScoW . (5.4)

According to Hypothesis H(V) 3), the values of mapping t → V (t,D) ∩ (m2(t) +
n2(t)‖D‖)B are relatively compact sets for almost every t ∈ T .

Let

V ∗(t) = V (t,D) ∩ (m2(t) + n2(t)‖D‖)B.

Then the values of mapping t → coV ∗(t) are convex compact sets for almost all t ∈ T .
Since Q(t, x) ⊂ coV ∗(t, x), x ∈ D, from H(V )2) it follows that the mapping x → Q(t, x),
x ∈ D is upper semicontinuous with convex compact values for almost all t ∈ T .

Let a sequence vn ∈ ω-ScoW , n ≥ 1 converge to v(·) ∈ ω-ScoW in the space ω-L1(T ,H).
Then, the sequence �(u(vn);vn) converges to �(u(v);v) in the space BV+(T ,H). Accord-
ing to (5.4) we have

�(u(v)n;vn)(t) ∈ D, vn(·) ∈ ScoW . (5.5)

Then, from (5.5) and the upper semicontinuity of the mapping x → Q(t, x), x ∈ D for
almost every t ∈ T we see that

∞∩
n=1

co{ ∞∪
k≥n

Q(t,�(u(vn);vn)(t))} ⊂ Q(t,�(u(v);v)(t)) a.e. (5.6)

If a sequence fn(·) ∈ SQ(vn), n ≥ 1 converges in the space ω-L1(T ,H) to f (·), then from
(5.2), (5.6) and the Mazur lemma for weakly converging sequences it follows that

f (t) ∈ Q(t,�(u(v);v)(t)) a.e.

From this inclusions and (5.2) we infer that f (·) ∈ SQ(v). Consequently, the mapping v →
SQ(v), v ∈ ω-ScoW has closed graph in the topology of the space ω-L1(T ,H). Then, from
(5.3) and the metrizability of the compact set ω-ScoW it follows that the mapping v → SQ(v),
v ∈ ω-ScoW is upper semicontinuous from ω-ScoW to ω-ScoW with convex compact values.
According to the Ky Fan fixed point theorem [18] there exists a fixed point v∗ of the mapping
v → SQ(v), i.e.

v∗ ∈ SQ(v∗). (5.7)

Denote u∗ = u(v∗). Then, from (4.13) it follows that

x(u∗;v∗) = �(u(v∗);v∗). (5.8)
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Using (5.1), (5.2), (5.7), (5.8), (4.10), (3.1), (3.2), (3.3), we obtain

−dx(u∗;v∗)
dν

(t) − (u∗(t) + v∗(t))
dλ

dν
(t) ∈ N (C(t);x(u∗;v∗)(t)) ν a.e.,

u∗(t) ∈ U(t, x(u∗;v∗)(t)) a.e.,

v∗(t) ∈ V (t, x(u∗;v∗)(t)) a.e.,

‖x(u∗;v∗)(t) − x(u∗;v∗)(t − 0)‖ ≤ μ({t}), t ∈ T .

Consequently, according to (1.5)–(1.7) the triplet (x(u∗;v∗)(·), u∗(·), v∗(·)) is a BV solu-
tion of the inclusion (1.3). Finally, the inequalities (1.12), (1.13) follow from (3.2), (3.3).
Theorem 1.1 is proved.

Proof of Theorem 1.2 Under the assumptions of Theorem 1.2, Hypotheses H(U) 1), 2), 3)
hold for the mapping U : T × H ⇒ H with closed convex values, and Hypotheses H(V )

1)∗, 2), 3) hold for the mapping V : T × H ⇒H with convex compact values. Theorem 1.1
implies that the set R(x0) is not empty. Now, we show that

‖x(u;v)‖ ≤ M (5.9)

for any (x(u;v)(·), u(·), v(·)) ∈ R(x0) for some M > 0. From (3.3), (1.9), (1.11), (3.5) and
(2.5) we infer that

‖x(u;v)(t)‖ ≤ ‖x0‖ + μ([0, a]) + 2
∫

T

m(t)dλ(t)+

+2
∫

]0,t]
‖x(u;v)(τ )‖n(τ)dλ(τ). (5.10)

From (5.10) and the Bellman–Gronwall inequalities we obtain

‖x(u;v)(t)‖ ≤ (‖x0‖ + μ([0, a]) + 2
∫

T

m(t)dλ(t)) exp(2
∫

T

n(τ )dλ(τ)).

This inequality implies directly the inequality (5.9).
Let

S∗
U = {u(·) ∈ L1(T ,H); ‖u(t)‖ ≤ m1(t) + n1(t)M},

S∗
V = {v(·) ∈ L1(T ,H); ‖v(t)‖ ≤ m2(t) + n2(t)M}.

Since for any (x(u;v),u(·), v(·)) ∈ R(x0) the inclusions u(·) ∈ S∗
U , v(·) ∈ S∗

V are valid and
the sets SU∗ , SV ∗ are convex, metrizable, and compact in the space ω-L1(T ,H), for the
closedness of the set R(x0) in the space BV+(T ,H) × ω-L1(T ,H) × ω-L1(T ,H) it is
enough to prove its sequential closedness.

Let (x(un;vn), un(·), vn(·)) ∈ R(x0), n ≥ 1 and sequences un(·), vn(·), n ≥ 1 converge in
the space ω-L1(T ,H) to u0(·) and v0(·), and the sequence x(un;vn)(·), n ≥ 1 converges to
y(·) in BV+(T ,H).
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Let x(u0;v0) be a solution of the inclusion

−dx(u0;v0)(t) ∈ N (C(t);x(u0;v0)(t)) + u0(t) + v0(t). (5.11)

Denote

xn(·) = x(un;vn)(·),wn(t) = un(t) + vn(t), n ≥ 0. (5.12)

Consider the functions

I n
1 (t) =

∫

]0,t]
〈w0(τ ) − wn(τ), xn(τ ) − y(τ)〉dλ(τ), (5.13)

I n
2 (t) =

∫

]0,t]
〈w0(τ ) − wn(τ), y(τ ) − x0(τ )〉dλ(τ), (5.14)

n ≥ 1.
Since wn(·) → w0(·) in ω-L1(T ,H) and xn(·) → y(·) in BV+(T ,H) and, consequently,

in L1(T ,H), from (5.13) we obtain

lim
n→∞ sup

t∈T

|I n
1 (t)| = 0. (5.15)

From the convergence wn(·) → w0(·) in ω-L1(T ,H) and (5.14) we infer that

I n
2 (t) → 0, n → ∞, t ∈ T . (5.16)

Using (5.14), (5.9), (3.5), (5.12) and the inclusions un(·) ∈ S∗
U , vn(·) ∈ S∗

V , we obtain the
inequality

|I n
2 (t) − I n

1 (s)| ≤ 4
∫

[s,t]
(m(t) + n(t)M)Mdλ(τ), s ≤ t.

From this inequality it follows that the sequence of functions t → I n
2 (t), n ≥ 1 is equicon-

tinuous on T . Since on every equicontinuous set the topology of pointwise convergence
coincides with the topology of uniform convergence on T , from (5.16) we see that

lim
n→∞ sup |I n

2 (t)| = 0. (5.17)

By analogy with (3.40) we obtain the inequality

1

2
‖xn(t) − x0(t)‖2 ≤ I n

1 (t) + I n
2 (t)+

+ 1

2r

∫

]0,t]
‖xn(τ ) − x0(τ )‖2 · (‖dxn

dν
(τ‖ + ‖dx0

dν
(τ)‖+

+(‖un(t)‖ + ‖vn(t)‖ + ‖u0(t)‖ + ‖v0(t)‖dλ

dν
(t))dν(τ ). (5.18)
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From (5.15), (5.17) and (5.18) it follows that for any ε > 0 there exists n(ε) ≥ 1 such that

‖xn(t) − x0(t)‖2 ≤ ε +
∫

]0,t]
‖xn(τ ) − x0(τ )‖2gn(τ )dν(τ ), n ≥ n(ε), t ∈]0, a],

where

gn(t) = 1

r
(‖dxn

dν
(t‖ + ‖dx0

dν
(t)‖+

+(‖un(t)‖ + u0(t)‖ + ‖vn(t)‖ + ‖u0(t)‖)dλ

dν
(τ),

n ≥ n(ε).
Using the inequality ‖xn(t)‖ ≤ M , n ≥ 0, un(·) ∈ S∗

U , vn(·) ∈ S∗
V , n ≥ 0 and reasoning as

in the proof of Theorem 3.2, we obtain the inequality

‖xn(t) − x0‖2 ≤ εL∗
1, n ≥ n(ε), t ∈ T ,

where the constant L∗
1 is defined by the equality

L∗
1 = exp

⎛

⎝
1

1 − θ

⎡

⎣
2

r
(μ([0, a]) + 2

∫

T

(m(t) + n(t)M)dλ(τ))

⎤

⎦

⎞

⎠ ,

and θ by the equality (3.27).
From the last inequality it follows that

xn(·) → x0(·) in BV+(T ,H). (5.19)

Since un(t) ∈ U(t, xn(t)) a.e., from the convergence un(·) → u0 in ω-L1(T ,H), Hypotheses
H(V ) and the convexity and closedness of the values of mapping U(t, x), according to the
Mazur theorem for weakly converging sequences, we infer that

u0(t) ∈ ∞∩
n=1

co
∞∪

k≥n
U(t, xk(t)) ⊂ U(t, x0(t)) a.e. (5.20)

From the inequality (1.11) and Hypothesis H(V) 3) it follows that the values of mapping
t → coV (t,MB) are convex compact sets. Hence, according to Hypothesis H(V) 2) for
almost every t ∈ T the mapping x → V (t, x), x ∈ MB is upper semicontinuous with convex
compact values.

Now, from the inclusions

vn(t) ∈ V (t, xn(t)), n ≥ 1,

(5.19), the convergence of vn(·) to v0 in the space ω-L1(T ,H) and the Mazur theorem for
weakly converging sequences we obtain the inclusion

v0(t) ∈ ∞∩
n=1

co
∞∪

k≥n
V (t, xk(t)) ⊂ V (t, x0(t)) a.e. (5.21)

From (5.11), (5.20), (5.21) it follows that (x(u0;v0)(·), u0(·), v0(·)) ∈ R(x0). Therefore, the
set R(x0) is closed in the space BV+(T ,H) × ω-L1(T ,H) × ω-L1(T ,X).



BV Sweeping Process Involving Prox-Regular Sets and a Composed. . . Page 25 of 27 2

Let (x(u;v)(·), u(·), v(·)) ∈ R(x0). We call the function t → (x(u;v)(t) a trajectory. The
family of all trajectories we denote by T r(x0). Since ‖x(u;v)(t)‖ ≤ M , t ∈ T , u(·) ∈ S∗

U ,
v ∈ S∗

V , using the inequality (3.3), we obtain the inequality

‖dx(u;v)

dν
(t)‖ ≤ dμ

dν
(t) + 2(m(t) + n(t)M)

dλ

dν
dt,

where m(t) and n(t) are defined by the equality (3.5).
From this inequality we have

‖x(u;v)(t) − x(u;v)(s)‖ ≤ μ(]s, t]) + 2
∫

]s,t]
(m(τ) + n(τ)M)dλ(τ), s ≤ t, s, t ∈ T ,

‖x(u;v)(t − 0) − x(s)‖ ≤ μ(]s, t[) + 2
∫

]s,t[
(m(τ) + n(τ)M)dλ(τ), s ≤ t, s, t ∈ M.

From these inequalities and (5.9) it follows that the set T r(x0) is uniformly bounded in norm
and in variation and unilaterally equicontinuous.

If for any r > d(�,C(t)) the set C(t) ∩ rB , t ∈ T is relatively compact, then the
set {∪x(u;v)(t) : x(u;v) ∈ T r(x0)} is relatively compact. According to Lemma 2.1, the
set T r(x0) is relatively compact in the space BV+(T ,H). Now, from the compactness
of sets S∗

U , S∗
V in the space ω-L1(T ,H), the relative compactness of T r(x0) in the

space BV+(T ,H) and the closedness of R(x0) in the space BV+(T ,H) × ω-L1(T ,H) ×
ω-L1(T ,H) we derive the compactness of the set R(x0) in BV+(T ,H) × ω-L1(T ,H) ×
ω-L1(T ,H). The theorem is proved. �

Let C(T ,H) be the space of continuous functions from T to H with sup-norm.

Corollary 5.1 Let under conditions of Theorem 1.1 instead of the inequality (1.1) we have

|d(y,C(t)) − d(y,C(s))| ≤ |β(t) − β(s)|, y ∈ H, s, t ∈ T , (5.22)

where β : T → R is an absolutely continuous function. Then, there exists an abso-
lutely continuous function x(u;v) : T → H and functions u(·), v(·) ∈ L1(T ,H) such that
x(u;v)(0) = x0, x(u;v)(t) ∈ C(t), t ∈ T

−dx(u;v)(t)

dt
∈ N (C(t);x(u;v)(t)) + u(t) + v(t) a.e.

and the inclusions (1.6), (1.7) hold.

We denote by AR(x0) the set of (x(u;v)(·), u(·), v(·)) having the properties indicated in
Corollary 5.1.

Corollary 5.2 Let under conditions of Theorem 1.2 instead of the inequality (1.1) the in-
equality (5.2) holds. Then, the set AR(x0) is a closed subset of the space C(T ,H) ×
ω-L1(T ,H)×ω-L1(T ,H). If, in addition, the set C(t)∩ rB , t ∈ T is relatively compact for
r > d(�,C(t)), then the set AR(x0) is a compact set in the space C(T ,H)×ω-L1(T ,H)×
ω-L1(T ,H.)
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Corollaries 5.1 and 5.2 follow directly from Theorems 1.1 and 1.2.
In fact, let

μ(A) =
∫

A

|β(t)|dt, A ∈ B. (5.23)

Then μ(·) is a Radon measure.
From (5.22), (5.23) it follows that the inequality (1.1) holds with the measure μ(·) de-

fined by the equality (5.23). From (5.23) it follows that the measures λ and ν = μ + λ

are absolutely continuously equivalent. Hence, in Definition 1.1 and in (1.5) instead of the
measure ν one can take the measure λ.

It is well known [19] that the function x(u;v)(·) appearing in Definition 1.1, when the
measure ν is replaced with the measure λ, is absolutely continuous and we have

dx(u;v)

dλ
(t) = dx(u;v)(t)

dt
a.e.

Hence, Corollaries 5.1 and 5.2 are restatements of Theorems 1.1 and 1.2 applied to the
Lebesgue measure λ instead of the measure ν.

Declarations

Competing Interests The author declares no competing interests.

References

1. Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions. Trans. Am.
Math. Soc. 352, 5231–5249 (2000)

2. Adly, S., Nacry, F., Thibault, L.: Discontinuous sweeping process with prox-regular sets. ESAIM: Con-
trol Optim. Calc. Var. 23, 1293–1329 (2017)

3. Edmond, J.F., Thibault, L.: BV solution of nonconvex sweeping process differential inclusions with
perturbation. J. Differ. Equ. 226, 135–179 (2006)

4. Azzam-Laouira, D., Makhlouf, M., Thibault, L.: On perturbed sweeping process. Appl. Anal. 95,
303–322 (2016)

5. Nacry, F.: Perturbed BV sweeping process involving prox-regular sets. J. Nonlinear Convex Anal. 18(7),
1619–1651 (2017)

6. Nacry, F., Thibault, L.: BV prox-regular sweeping process with bounded truncated variation. Optimiza-
tion 69(7–8), 1391–1437 (2020)

7. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ.
26, 347–374 (1977)

8. Himmelberg, C.J.: Measurable relations. Fundam. Math. 87, 53–72 (1975)
9. Tolstonogov, A.A.: Compactness of BV solutions of a convex sweeping process of measurable differen-

tial inclusion. J. Convex Anal. 27, 675–697 (2020)
10. Dinculeanu, N.: Vector Measures. Veb Deutscher Verlag der Wissenschaften, Berlin (1966)
11. Bourbaki, N.: Integration. Chapter V. Hermann, Paris (1967)
12. Monteiro Marques, M.D.P.: Perturbations convexes semi-continues superieurement de problemes d’evo-

lution dais les espaces de Hilbert. Travaux. Sem. Anal. Convexe. Montpellier (1984). Expose 2
13. Tolstonogov, A.A.: Densities of measures as an alternative to derivatives for measurable inclusions.

Funct. Anal. Appl. 53, 281–290 (2019)
14. Tolstonogov, A.: BV solutions of a convex sweeping process with composed perturbation. Evol. Equ.

Control Theory 11(2), 537–557 (2022)
15. Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooths Mechanical Problems. Shocks and

Dry Friction. Birkhäuser, Basel (1993)
16. Tolstonogov, A.A., Tolstonogov, D.A.: Lp-continuous extreme selectors of multifunctions with decom-

posable values. Existence theorems. Set-Valued Anal. 4, 173–203 (1996)



BV Sweeping Process Involving Prox-Regular Sets and a Composed. . . Page 27 of 27 2

17. Tolstonogov, A.A.: Continuous selectors of fixed point sets of multifunctions with decomposable valued.
Set-Valued Anal. 6, 129–147 (1998)

18. Ky, F.: Fixed point and minimax theorems in locally convex topological linear spaces. Proc. Natl. Acad.
Sci. USA 38, 121–126 (1952)

19. Thibault, L.: Moreau sweeping process with bounded truncated retraction. J. Convex Anal. 23,
1051–1098 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a pub-
lishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript
version of this article is solely governed by the terms of such publishing agreement and applicable law.


	BV Sweeping Process Involving Prox-Regular Sets and a Composed Perturbation
	Abstract
	Introduction
	Main Results

	Main Notation, Definitions and Preliminaries
	Auxiliary Results
	Multivalued Nemytskii Operator
	Proof of the Main Results
	References


