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Abstract
A controlled sweeping process with prox-regular set,W 1,2-controls, and separable endpoints
constraints is considered in this paper. Existence of optimal solutions is established and local
optimality conditions are derived via strong converging continuous approximations, whose
state entirely resides in the interior of the prox-regular set. Consequently, subdifferentials
smaller than the standard ones are now employed in the optimality results.
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1 Introduction

This paper addresses the following fixed timeMayer-type optimal control problem involving
W 1,2-controlled sweeping systems

(P) : Minimize g(x(0), x(1))

over (x, u) ∈ AC([0, 1];Rn) × W such that
⎧
⎪⎨

⎪⎩

(D)

[
ẋ(t) ∈ f (x(t), u(t)) − ∂ϕ(x(t)), a.e. t ∈ [0, 1],
x(0) ∈ C0 ⊂ domϕ,

x(1) ∈ C1,

Communicated by Giovanni Colombo

Chadi Nour and Vera Zeidan contributed equally to this work. This paper is dedicated to our PhD advisor
Francis H. Clarke on the occasion of his 75th birthday.

B Vera Zeidan
zeidan@msu.edu

Chadi Nour
cnour@lau.edu.lb

1 Department of Computer Science and Mathematics, Lebanese American University, Byblos
Campus, P.O. Box 36, Byblos, Lebanon

2 Department of Mathematics, Michigan State University, East Lansing 48824-1027, MI, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-023-00686-z&domain=pdf
http://orcid.org/0000-0003-4378-7459
http://orcid.org/0000-0003-0100-5316


   23 Page 2 of 33 C. Nour and V. Zeidan

where, g : Rn×R
n −→ R∪{∞}, f : Rn×R

m −→ R
n , ϕ : Rn −→ R∪{∞}, ∂ stands for the

Clarke subdifferential, C := domϕ is the zero-sublevel set of a function ψ : Rn −→ R, that
is, C = {x ∈ R

n : ψ(x) ≤ 0}, C0 ⊂ C , C1 ⊂ R
n , and, for U : [0, 1] ⇒ R

m a multifunction
and U := ⋃

t∈[0,1] U (t), the set of control functions W is defined by

W := W 1,2([0, 1];U) = {
u ∈ W 1,2([0, 1];Rm) : u(t) ∈ U (t), ∀t ∈ [0, 1]} . (1)

Note that if (x, u) solves (D), it necessarily follows that x(t) ∈ C , ∀t ∈ [0, 1].
A pair (x, u) is admissible for (P) if x : [0, 1] −→ R

n is absolutely continuous, u ∈ W ,
and (x, u) satisfies the perturbed and controlled sweeping process (D), called the dynamic
of (P).

An admissible pair (x̄, ū) for (P) is said to be a W 1,2-local minimizer (also known as
intermediate local minimizer of rank 2) if there exists δ > 0 such that

g(x̄(0), x̄(1)) ≤ g(x(0), x(1)), (2)

for all (x, u) admissible for (P) with ‖x − x̄‖∞ ≤ δ, ‖ẋ − ˙̄x‖22 ≤ δ, ‖u − ū‖∞ ≤ δ and
‖u̇− ˙̄u‖22 ≤ δ.Note that if (2) is satisfied for any admissible pairs (x, u), then (x̄, ū) is called
a global minimizer (or an optimal solution) for (P).

J.J. Moreau introduced in [29–31] the model of sweeping processes for problems ema-
nating from friction and plasticity theory. Since then, this model and its modified forms have
surfaced in many applications not only in physics, but also in engineering, social sciences
including economics, etc. (see, e.g., [1] and the references listed therein). This model is dis-
tinguished by having in its dynamic the subdifferential of the indicator function of C , that is,
the normal cone to the set C which is discontinuous and unbounded, and hence, rendering
the subject of sweeping processes disjoint from that of the standard differential inclusions.
Therefore, new approaches are needed to tackle optimal control problems over sweeping
processes.

In [3, 17, 18, 20, 34, 39], necessary optimality conditions in the form of a maximum
principle for optimal control problems involvingmeasurably-controlled sweeping processes
are derived using continuous-time approximations. The continuous approximation employed
in [17, 20, 34, 39] is based on replacing the normal cone in (D) by an exponential penalization
term leading to the following standard control system

(Dγk ) ẋ(t) = f (x(t), u(t)) − ∇Φ(x(t)) − γke
γkψ(x(t))∇ψ(x(t)), a.e. t ∈ [0, 1],

where Φ is a smooth extension to Rn of ϕ, and γk > 0 with γk −→ ∞ as k −→ ∞. In these
papers, the authors showed that any solution x of the system (D) can be approximated by
solutions of (Dγk ) whose velocities converge weakly in L2 to ẋ . This weak approximation of
(D) by (Dγk ) is used in [19, 33] to construct numerical algorithms that solve certain forms
of (P), and in [17, 20, 34, 39] to derive necessary optimality conditions via approximating
weakly the optimal solution of (P) by a sequence of optimal solutions for standard optimal
control problems over (Dγk ).

Strong convergence of velocities is well-known to be an essential property for numerical
purposes, as it accelerates the convergence of the numerical algorithm, see e.g., [7, 8, 14,
17]. In other words, it is important that the solutions of (P) be strongly approximated (in
the W 1,2-norm) by the solutions of approximating problems that are computable via exist-
ing numerical algorithms. This question of strong convergence of velocities was previously
addressed using discrete-time approximations, see for instance, [5–8, 13, 14, 16], where the
authors considered optimal control problems involving various forms of controlled sweeping
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processes including the W 1,2-controls. In [6–8], this approach also served to derive neces-
sary optimality conditions phrased in terms of the weak-Pontryagin-type maximum principle
when the control space is W 1,2([0, 1];Rm). Therein, these optimality criteria are applied to
real-life models, whose optimal controls turn out to be W 1,2.1

The main goal of the paper is motivated by the importance of approximating a solution
x of the sweeping process (D) by solutions of (Dγk ) whose velocities strongly converges to
the velocity ẋ as described above. We establish the validity of this result when the controls
in (Dγk ) are chosen to be uniformly bounded in W 1,2. As a consequence, we approximate
a given optimal solution (x̄, ū) by a sequence (xγk , uγk ) of optimal solutions for standard
optimal control problems over (Dγk )with initial conditions and objective functions carefully
formulated to guarantee that (i) the optimal states xγk remains entirely in the interior of
C , see Remark 4.5, and (i i) the optimal controls uγk are uniformly bounded in W 1,2, and
hence, the solution velocities ẋγk strongly converges to ˙̄x . To our knowledge, this is a first-of-
its-kind result that uses continuous approximations, as opposed to discrete approximations,
to obtain strong convergence of velocities. Furthermore, necessary optimality conditions
are established for W 1,2-local minimizers of (P) upon taking the limit of the optimality
conditions for the corresponding approximating optimal control problems. This latter task
requires meticulous analysis.

One may expect that the necessary optimality conditions for (P) could be obtained via
a reformulation of the dynamic by considering the state as the pair (x, u) satisfying the
sweeping process, and the control to be v := u̇, where v(t) ∈ R

m a.e., and u(t) ∈ U (t)
for all t , is an explicit state constraint. However, to our knowledge, there is no optimality
conditions in the literature for this type of problems.

In the next section, we provide notations and definitions fromnonsmooth analysis. A list of
assumptions and their analysis are provided in Section 3. In addition, we present some needed
results from [34, Sections 4&5] including the connection between (Dγk ) and (D) under
measurable controls. Section 4 is devoted to (i) showing that (Dγk ) strongly approximates
(D) when W 1,2-bounded controls are utilized, (i i) establishing an existence theorem for an
optimal solution of (P), (i i i) constructing for (P) a continuous approximating sequence of
standard optimal control problems (Pγk ), and (iv) deriving necessary optimality conditions
in the form of weak-Pontryagin-type maximum principle for W 1,2-local minimizers of (P)

whose utility is illustrated by an example. To maintain an easy flow of the main results, we
postpone the proofs of Theorems 4.1 and 4.7 to Section 5.

2 Preliminaries

2.1 Basic Notations

We denote by ‖ · ‖, 〈·, ·〉, the Euclidean norm and the usual inner product, respectively. For
c ∈ R

n and r > 0, we define the open (resp. closed) ball centered at c with radius r by
Br (c) := c + r B (resp. B̄r (c) := c + r B̄), where B and B̄ denotes the open and the closed
unit ball, respectively. For S ⊂ R

n , the boundary, the interior, the closure, the convex hull,
the complement, and the polar of S are denoted by bdry S, int S, cl S, conv S, Sc, and S◦,
respectively. For x ∈ R

n and S ⊂ R
n , d(x, S) denotes the distance from x to S. The effective

1 In [22], a new exact penalization technique is introduced to derive Pontryagin-type maximum principle for
problem (P), where the control is measurable, ϕ is the indicator of C , C0 = {x0} and C1 = R

n , and C is the
intersection of moving zero sublevel sets of smooth functions. As stated in [22, Remark 2.13], these results
have atypical nontriviality condition that requires further study.
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domain and the epigraph of an extended-real-valued function h : Rn −→ R∪{∞} are denoted
by dom h and epi h, respectively. For amultifunction F : Rn ⇒ R

m , Gr F ⊂ R
n×R

m denotes
the graph of F . The space L p([a, b];Rn) designates the Lebesgue space of p-integrable
functions h : [a, b] −→ R

n . We denote by ‖ · ‖p and ‖ · ‖∞ the norms of L p([a, b];Rn)

and L∞([a, b];Rn) (or C([a, b];Rn)), respectively. The set of all m × n-matrix functions
on [a, b] is denoted by Mm×n([a, b]). For the set of all absolutely continuous functions
from [a, b] to R

n , we use AC([a, b];Rn). A function h : [a, b] −→ R
n is said to be a

BV -function, if h has a bounded variation, that is, V b
a (h) < ∞, where V b

a (h) is the total
variation of h. The set of all such functions is denoted by BV ([a, b];Rn). We denote by
NBV [a, b] the normalized space of BV -functions on [a, b] that consists of those BV -
functions h such that h(a) = 0 and h is right continuous on (a, b) (see e.g., [27, p.115]). The
spaceC∗([a, b];R) denotes the dual ofC([a, b];R) equipped with the supremum norm. The
induced normonC∗([a, b];R) is denoted by ‖·‖T.V.. As a consequence ofRiesz representation
theorem, we can interpret the elements of C∗([a, b];R) as being in M([a, b]), the set of
finite signed Radon measures on [a, b] equipped with the weak* topology. Thereby, to each
element of C∗([a, b];R) it corresponds a unique element in NBV [a, b] related through the
Stieltjes integral and both elements have the same total variation. The setC⊕(a, b) designates
the subset of C∗([a, b];R) taking nonnegative values on nonnegative-valued functions in
C([a, b];R). For A ⊂ R

d compact, the set of continuous functions from A to Rn is denoted
byC(A;Rn). ByWk,p([a, b];Rn), k ∈ N and p ∈ [0,+∞], we denote the classical Sobolev
space. Note that in this paper, the Sobolev spaceW 1,2([a, b];Rn)will be considered with the
norm ‖x(·)‖W 1,2 := ‖x(·)‖∞ + ‖ẋ(·)‖2. Hence, the convergence of a sequence xn strongly
in the norm topology of the spaceW 1,2([a, b];Rn) is equivalent to the uniform convergence
of xn on [a, b] and the strong convergence in L2 of its derivative ẋn .

2.2 Notions in Nonsmooth Analysis

We begin by listing standard notions for normal cones and subdifferentials, and nonstandard
notions for subdifferentials.We refer the reader to [9, 11, 28, 37], for the standard notions, and
to [34, 39], for the nonstandard notions. Let S ⊂ R

n be closed, and let h : Rn −→ R ∪ {∞}
and H : Rn −→ R

n be two functions such that h is lower semicontinuous.

• For s ∈ S, we denote by N P
S (s), NL

S (s), and NS(s), the proximal, theMordukhovich (or
limiting), and the Clarke normal cones to S at s, respectively.

• For x ∈ dom h, we denote by ∂ Ph(x), ∂Lh(x), and ∂h(x) the proximal, theMordukhovich
(or limiting), and the Clarke subdifferential of h at x , respectively. Note that if h is
Lipschitz near x , then the Clarke generalized gradient of h at x is also denoted by ∂h(x).

• If h is C1,1 near x , then the Clarke generalized Hessian of h at x is denoted by ∂2h(x).
On the other hand, if H is Lipschitz near x ∈ R

n , then the Clarke generalized Jacobian
of H at x is denoted by ∂H(x).

• For A ⊂ dom h closed with int A �= ∅, and x ∈ cl (int A), we denote by ∂L
� h(x) the

limiting subdifferential of h relative to int A at the point x (see [34, Equation (8)]).
• If dom h is closed with int (dom h) �= ∅ and h is locally Lipschitz on int (dom h), then
for x ∈ cl (int (dom h)), we denote by ∂�h(x) the extended Clarke generalized gradient
of h at x (see [34, Equation (9)]).

• If h is C1,1 on int (dom h) and x ∈ cl (int (dom h)), thenwe denote by ∂2� h(x) the extended
Clarke generalized Hessian of h at x (see [34, Equation (10)]).
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• For A ⊂ R
n closed with int A �= ∅, if h is C1,1 on an open set containing A, then for

x ∈ A, we denote by ∂2� h(x) the Clarke generalized Hessian of h relative to int S at x
(see [34, Equation (11)]).

• For A ⊂ R
n closed with int A �= ∅, if H is locally Lipschitz on int A, then for x ∈

cl (int A), we denote by ∂�H(x) the extended Clarke generalized Jacobian of H at x (see
[34, Equation (12)]).

We proceed to introduce three geometric properties, namely, prox-regular, epi-Lipschitz,
and quasiconvex, that will be used in different places of the paper. For more information
about these properties, see [12, 15, 21, 32, 35] for prox-regularity, [9, 11, 37] for epi-Lipschitz
property, and [4] for quasiconvexity.

Definition 2.1 Let S ⊂ R
n be a nonempty and closed set.

• Let r > 0. We say that S is r -prox-regular if for all s ∈ S and for all ζ unit in N P
S (s),

we have

〈ζ, x − s〉 ≤ 1

2r
‖x − s‖2, ∀x ∈ S.

Note that, in this case, we have N P
S (s) = NL

S (s) = NS(s) for all s ∈ S.

• We say that S is epi-Lipschitz at s ∈ S if the Clarke normal cone to S at s is pointed,
that is, NS(s) ∩ −NS(s) = {0}. The set S is said to be epi-Lipschitz if it is epi-Lipschitz
at s for all s ∈ S. Note that a convex set is epi-Lipschitz if and only if it has a nonempty
interior.

• The set S is said to be quasiconvex if there exists c ≥ 0 such for any s1, s2 ∈ S, one can
find a polygonal line γ in S joining s1 to s2, and satisfying

l(γ ) ≤ c‖s1 − s2‖, where l(γ ) is the length of γ.

Note that the quasiconvexity of C is an essential property for constructing a special
smooth extension to Rn of the function ϕ, see Lemma 3.2.

3 Assumptions, Consequences, and known Results

In this section, we introduce assumptions on the data of (P) and we present some of their
useful consequences. We also display some needed results from [34, Sections 4&5], where
the connection between (Dγk ) and (D) under measurable controls is studied. We note that
for each result of this paper, we may use a different combination of these assumptions. On
the other hand, a local version of (A1), namely, condition (∗), is used in Subsections 4.3 and
4.4.

A1: There exist M > 0 and ρ̃ > 0 such that f is M-Lipschitz on C × (U + ρ̃ B̄) with
‖ f (x, u)‖ ≤ M for all (x, u) ∈ C × (U + ρ̃ B̄).

A2: The set C := domϕ is given by C = {x ∈ R
n : ψ(x) ≤ 0}, where ψ : Rn −→ R.

A2.1: There exists ρ > 0 such that ψ is C1,1 on C + ρB.
A2.2: There is a constant η > 0 such that ‖∇ψ(x)‖ > 2η for all x : ψ(x) = 0.
A2.3: The function ψ is coercive, that is, lim‖x‖−→∞ ψ(x) = +∞.2

2 This assumption is only needed to get the compactness ofC , and then, it can be replaced by the boundedness
of C .
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A2.4: The set C has a connected interior.3

A3: The function ϕ is globally Lipschitz on C and C1 on intC . Moreover, the function ∇ϕ

is globally Lipschitz on intC .
A4: For the sets C0, C1, and U (·) we have:
A4.1: The set C0 ⊂ C is nonempty and closed.
A4.2: The graph ofU (·) is a L×B measurable set, and, for t ∈ [0, 1],U (t) is closed, and

bounded uniformly in t .
A4.3: The set C1 ⊂ R

n is nonempty and closed.
A4.4: The multifunction U (·) is lower semicontinuous.

Remark 3.1 For C ⊂ R
n defined as the sub-level set of a function ψ , one can show that:

(i) Whenever C is nonempty and compact, ψ is merely C1 on C + ρB, and (A2.2) holds,
then there exists ε > 0 such that

x ∈ C and ‖∇ψ(x)‖ ≤ η �⇒ ψ(x) < −ε. (3)

(i i) When ψ is merely C1 on C + ρB and satisfies (A2.2)-(A2.3), by [34, Lemma 3.3],

(a) bdryC �= ∅ and bdryC = {x ∈ R
n : ψ(x) = 0},

(b) intC �= ∅ and intC = {x ∈ R
n : ψ(x) < 0}.

The following important properties of the compact setC were obtained in [39, Proposition
3.1], where ψ is assumed to be C1,1 on all of Rn . However, a slight modification in the proof
of that proposition is performed in [34] to conclude that these properties are actually valid
under our assumption (A2.1).

Here and throughout the paper, M̄ψ denotes an upper bound of ‖∇ψ(·)‖ on the compact
set C , and 2Mψ is a Lipschitz constant of ∇ψ(·) over the compact set C + ρ

2 B̄ chosen large

enough so that Mψ ≥ 4η
ρ

.

Lemma 3.2 [34, Lemma 3.4] Under (A2.1)-(A2.3), we have the following:
(i) The nonempty set C is compact, amenable (in the sense of [37]), epi-Lipschitzian,

C = cl (intC), and C is η
Mψ

-prox-regular.

(i i) For all x ∈ bdryC we have NC (x) = N P
C (x) = NL

C (x) = {λ∇ψ(x) : λ ≥ 0}.
(i i i) If also (A2.4) holds, then intC is quasiconvex. Furthermore, if in addition (A3) is

satisfied, then there exists a function Φ ∈ C1(Rn) such that:
• Φ is bounded on Rn, and Φ(x) = ϕ(x) for all x ∈ C.
• Φ and ∇Φ are globally Lipschitz on Rn.
• For all x ∈ C we have

∂ϕ(x) = {∇Φ(x)} + NC (x). (4)

Remark 3.3 Lemma 3.2(i i i) yields the existence of K > 0 and a C1-extension Φ of ϕ to Rn

such that (4) is satisfied and

|Φ(α)| ≤ K , ‖∇Φ(α)‖ ≤ K , and ‖∇Φ(α) − ∇Φ(β)‖ ≤ K‖α − β‖, ∀α, β ∈ R
n .

3 Assumption (A2.4) is only needed in Lemma 3.2(i i i) to guarantee the quasiconvexity ofC used to construct
the extensionΦ of ϕ. Hence, when such an extension is trivially accessible, condition (A2.4) would be omitted.
This is the case when ϕ is the indicator function of C .
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Employing (4), (D) is equivalently phrased in terms of the normal cone toC and the extension
Φ of ϕ, as follows

(D)

[
ẋ(t) ∈ fΦ(x(t), u(t)) − NC (x(t)), a.e. t ∈ [0, 1],
x(0) ∈ C0 ⊂ C,

where fΦ : Rn × R
m −→ R

n is defined by

fΦ(x, u) := f (x, u) − ∇Φ(x), ∀(x, u) ∈ R
n × R

m . (5)

Therefore, throughout this paper we will indistinguishably employ the given form of (D)

expressed in terms of ∂ϕ and f , or its equivalent form displayed in Remark 3.3 in terms of
NC (·) and the function fΦ . Note that assumptions (A1)-(A3) imply that, for M̄ := M + K ,
fΦ satisfies the following properties:

(A1)Φ : The function fΦ is M̄-Lipschitz on C × (U + ρ̃ B̄) with ‖ fΦ(x, u)‖ ≤ M̄ for all
(x, u) ∈ C × (U + ρ̃ B̄).

We define U to be

U := {u : [0, 1] → R
m : u is measurable and u(t) ∈ U (t), t ∈ [0, 1] a.e.}.

Remark 3.4 Using [39, Lemma 4.3], it is easy to see that the assumptions (A1)-(A3) and
the boundedness of C by some MC > 0 yield that any solution x of (D) corresponding to
(x0, u) ∈ C0 × U satisfies

x(t) ∈ C, ∀t ∈ [0, 1]; ‖x‖∞ ≤ MC ; and ‖ẋ‖∞ ≤ 2M̄ . (6)

For given x(·) : [0, 1] → R
n, we use the following notations throughout this paper:

I 0(x) := {t ∈ [0, 1] : x(t) ∈ bdryC} and I (x) := [0, 1] \ I 0(x).
The next result characterizes the solutions of (D) in terms of the solutions of a standard

control system containing an extra control ξ that satisfies the mixed control-state degenerate
constraint, ξ(t)ψ(x(t)) = 0. The sufficiency part is straightforward and was used in [39],
while the necessary part follows from applying Filippov selection theorem ([38, Theorem
2.3.13]).

Lemma 3.5 [34, 39] Assume that (A1)-(A3) hold. Let u ∈ U and x ∈ AC([0, 1];Rn) with
x(0) ∈ C0 and x(t) ∈ C for all t ∈ [0, 1]. Then, x is a solution for (D) corresponding to the
control u if and only if there exists a nonnegative measurable function ξ supported on I 0(x)
such that (x, u, ξ) satisfies

ẋ(t) = fΦ(x(t), u(t)) − ξ(t)∇ψ(x(t)), t ∈ [0, 1] a.e. (7)

In this case, the nonnegative function ξ supported in I 0(x) with (x, u, ξ) satisfying (7), is
unique, belongs to L∞([0, 1];R+), and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ(t) = 0 for t ∈ I−(x),

ξ(t) = ‖ẋ(t)− fΦ(x(t),u(t))‖
‖∇ψ(x(t))‖ ∈

[
0, M̄

2η

]
for t ∈ I 0(x) a.e.,

‖ξ‖∞ ≤ M̄
2η .

(8)

Throughout the paper we shall employ the following notations, where η and M̄ are the
constants given in (A2.2) and (A1)Φ , respectively.
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• (γk)k is a sequence satisfying

γk >
2M̄

η
for all k ∈ N, and γk −−−−→

k−→∞ ∞. (9)

• The sequence (αk)k is defined by

αk :=
ln
(

ηγk
2M̄

)

γk
, k ∈ N (10)

By (9) and (10), we have that

γke
−αkγk = 2M̄

η
, αk > 0, αk ↘ and lim

k−→∞ αk = 0. (11)

• The sequence (ρk)k is defined by ρk := αk
η
for all k ∈ N. By (11) we have that ρk > 0

for all k ∈ N, ρk ↘ and lim
k−→∞ ρk = 0.

• For k ∈ N, we define the set

C(k) := {x ∈ C : ψ(x) ≤ −αk}. (12)

The system (Dγk ) is defined as

(Dγk )

[
ẋ(t) = fΦ(x(t), u(t)) − γkeγkψ(x(t))∇ψ(x(t)) a.e. t ∈ [0, 1],
x(0) ∈ C .

An important property shown in [34] is the invariance of C for the dynamic (Dγk ), see [34,
Lemma 4.1]. This fact is behind disposing of the state constraint in (Dγk ), which represents
a good approximation for (D) (see Theorem 3.9 and Corollary 3.12).

Lemma 3.6 ([34], Invariance of C and uniform convergence) Let (A1)-(A3) be satisfied.
Then, for each k, the system (Dγk ) with given x(0) = cγk ∈ C and uγk ∈ U, has a unique
solution xγk ∈ W 1,2([0, 1];Rn) such that xγk (t) ∈ C for all t ∈ [0, 1], and, for α0 > 0 a
bound of (cγk )k we have

‖xγk‖∞ ≤ α0 +
√
M̄2 + 2 and

∫ 1

0
‖ẋγk (t)‖2dt ≤ M̄2 + 2. (13)

Hence, being equicontinuous and uniformly bounded, (xγk )k admits a subsequence that con-
verges uniformly to some x ∈ W 1,2([0, 1];Rn) whose values are in C and whose derivative
ẋγk converges weakly in L2 to ẋ .

The properties of the sets C(k) and the role of the sequence (ρk)k are established in [34,
Theorem 3.1 and Remark 3.6]. We enlist here the items that deem important for this paper
when constructing the initial constraint set for the approximating problems (Pγk ).

Theorem 3.7 ([34], Properties of (C(k))k) Under (A2.1)-(A2.3), the following assertions
hold:

(i) For all k, the set C(k) ⊂ intC and is compact, and, for k sufficiently large,

• bdryC(k) = {x ∈ R
n : ψ(x) = −αk} and intC = {x ∈ R

n : ψ(x) < −αk};
• (C(k))k is a nondecreasing sequence whose Painlevé-Kuratowski limit is C.
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(i i) There exist ro > 0 and k̄ ∈ N such that

[
C ∩ B̄ro(c)

]− ρk
∇ψ(c)

‖∇ψ(c)‖ ⊂ intC(k), ∀k ≥ k̄ and ∀c ∈ bdryC . (14)

(i i i) For c ∈ intC, there exist k̂c ∈ N and r̂c > 0 satisfying

B̄r̂c (c) ⊂ intC(k̂c) ⊂ intC(k), ∀k ≥ k̂c. (15)

Remark 3.8 From Theorem 3.7, it follows that for any c ∈ C , there exists a sequence (ck)k
such that, for k large enough, ck ∈ intC(k) and ck −→ c. Indeed, for c ∈ bdryC , take
ck := c − ρk

∇ψ(c)
‖∇ψ(c)‖ for all k, and for c ∈ intC , take ck = c for all k.

The following theorem will be used repeatedly in this paper. It is a special case of [34,
Theorem 4.1 & Lemma 4.2]. It provides a sufficient condition for the uniform limit x of
the solution xγk of (Dγk ) to be a solution of (D), and it connects the multiplier function
ξ corresponding to x , via Lemma 3.5, to the positive continuous penalty multiplier ξγk ,
associated with xγk and defined by

ξγk (·) := γke
γkψ(xγk (·)). (16)

Theorem 3.9 ([34], (Dγk )k & ξγk approximate (D) & ξ ) Assume that (A1)-(A4.1) hold.
Let xγk be the solution of (Dγk ) corresponding to (cγk , uγk ), as in Lemma 3.6, and x ∈
W 1,2([0, 1];Rn) be its uniform limit. Then, the following statements are valid :

(i) The sequence (ξγk )k admits a subsequence, we do not relabel, that converges weakly
in L2 to a nonnegative function ξ ∈ L2 supported on I 0(x).

(i i) If for some u ∈ U, the sequence uγk (t)
a.e. t−−−→ u(t), then x is the unique solution of

(D) corresponding to (x0, u), and (x, u, ξ) satisfies equations (7)-(8). In particular,
ξ ∈ L∞([0, 1];R+) and is supported on I 0(x).

Remark 3.10 Note that when establishing Theorem 3.9(i i) in [34], the arguments used to
prove that (x, u, ξ) satisfies (7) are independent of having ξγk defined through (16), and
hence, this proof is valid for ξγk being any sequence of L2-functions converging weakly in
L2 to ξ . Therefore, we have that (x, u, ξ) satisfies (7) whenever (x j , u j , ξ j ) j is a sequence
solving (7) with x j converging uniformly to x , u j (t) converging pointwise a.e. to u(t), and
ξ j converging weakly in L2 to ξ .

The following result is extracted from [34, Theorem 5.1], in which more properties are
derived. It reveals the significance of initiating in Theorem 3.9 the solutions xγk of (Dγk )

from the subset C(k), defined in (12).

Theorem 3.11 ([34], xγk ∈ C(k), ẋγk & ξγk bounded) Assume (A1)-(A4.1) hold. Let (cγk )k
be a sequence such that cγk ∈ C(k), for k sufficiently large. Then there exists ko ∈ N such
that for all sequences (uγk )k inU and for all k ≥ ko, the solution xγk of (Dγk ) corresponding
to (cγk , uγk ) satisfies:

(i) xγk (t) ∈ C(k) ⊂ intC for all t ∈ [0, 1].
(i i) 0 ≤ ξγk (t) ≤ 2M̄

η
for all t ∈ [0, 1].

(i i i) ‖ẋγk (t)‖ ≤ M̄ + 2M̄ M̄ψ

η
for a.e. t ∈ [0, 1].

The next result is a simplified version of [34, Corollary 5.1]. It is the converse of Theorem
3.9, as it confirms that any given solution of (D) is approximated by a solution of (Dγk ) that
remains in the interior of C and enjoys all the properties displayed in Theorem 3.11.
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Corollary 3.12 ([34], Solutions of (D) are approximated by sequences in C(k)) Assume that
(A1)-(A4.1) are satisfied. Let x̄ be the solution of (D) corresponding to (x̄(0), ū) ∈ C0 ×
U. Consider (c̄γk )k the sequence in Remark 3.8 that converges to c := x̄(0), and x̄γk the
solution of (Dγk ) corresponding to (c̄γk , ū). Then, there exists k̂o ∈ N such that x̄γk and its
associated ξ̄γk via (16) satisfy the conclusions (i)-(i i i) of Theorem 3.11 for all k ≥ k̂o, and
the following holds true: The sequence x̄γk admits a subsequence, we do not relabel, that
converges uniformly to x̄ , the corresponding subsequence for ξ̄γk converges weakly in L2 to
some ξ̄ ∈ L∞, and (x̄, ū, ξ̄ ) satisfies (7)-(8). That is, ξ̄ is the unique function corresponding
to (x̄, ū) via Lemma 3.5.

4 Main Results

This section consists of the main results of this paper, namely, the strong approximation of
(D) by (Dγk ) whenever the controls are W

1,2-bounded (Theorem 4.1 and Corollary 4.2), an
existence theorem for an optimal solution of (P) (Theorem 4.4), a strong converging contin-
uous approximation for (P) (Theorem 4.7), and nonsmooth necessary optimality conditions
in the form of weak-Pontryagin-type maximum principle (Theorem 4.10).

4.1 (D�k) Strongly Approximates (D)withW1,2-Controls

The following theorem constitutes the backbone of this paper. It shows that, when the under-
lying control space isW (defined in (1)) and (‖u̇γk‖2)k is bounded, the velocities ẋγk and the
functions ξγk corresponding to the approximating sequence xγk in Theorem 3.11, converge
strongly in L2 to, respectively, ẋ and ξ , the functions obtained in Theorem 3.9. The proof of
this theorem is postponed to Section 5.

Theorem 4.1 (Strong convergence of the velocity sequence ẋγk ) Let the assumptions (A1)-
(A4.2) be satisfied.Consider a sequence xγk solving (Dγk ) for some (cγk , uγk ), where cγk ∈ C,
cγk −→ x0 ∈ C0, uγk ∈ W, and (‖u̇γk‖2)k is bounded. Denote by (x, ξ) the pair in W 1,2×L2

obtained via Lemma 3.6 and Theorem 3.9(i) such that a subsequence (not relabeled ) of
(xγk , ξγk ) has xγk converging uniformly in the set C to x and (ẋγk , ξγk ) converging weakly in
L2 to (ẋ, ξ). Then, the following hold:

(i) There exist a subsequence (not relabeled ) of uγk , and u ∈ W such that (xγk , uγk )

converges uniformly to (x, u), and (ẋγk , u̇γk , ξγk ) converges weakly in L2 to (ẋ, u̇, ξ).
The function x is the unique solution to (D) corresponding to (x0, u), and (x, u, ξ)

satisfies (7)-(8). In particular, ξ ∈ L∞ and is supported on I 0(x).
(i i) Assume that cγk ∈ C(k), for k large. Then, in addition to the conclusions in The-

orem 3.11, the following holds: The sequence (ẋγk , ξγk ) is in W 1,2([0, 1];Rn) ×
W 2,2([0, 1];R+), has uniform bounded variations, and admits a subsequence, not
relabeled, that converges pointwise, and hence, strongly in L2 to (ẋ, ξ), with ẋ ∈
BV ([0, 1];Rn) and ξ ∈ BV ([0, 1];R+). In this case, (7)-(8) hold for all t ∈ [0, 1],
and xγk −→ x strongly in the norm topology of W 1,2([0, 1];Rn).

Applying Theorem 4.1(i i) to c̄γk , uγk := ū, x̄γk , and ξ̄γk , the function associated to x̄γk

via (16), we obtain the following corollary that shows how the results in Corollary 3.12 are
improved when W 1,2-controls are utilized.
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Corollary 4.2 ((Dγk )k strongly approximates (D)) If, in addition to the assumptions of Corol-
lary 3.12, we have that x̄ solves (D) for ū ∈ W (not only in U), then ξ̄γk , therein, converges
pointwise to ξ̄ ∈ BV ([0, 1];R+) with ξ̄ satisfying (53), and x̄γk , therein, converges to x̄
strongly in the norm topology of W 1,2([0, 1];Rn). Moreover, (x̄, ū, ξ̄ ) satisfies (7)-(8) for all
t ∈ [0, 1], and ˙̄x ∈ BV ([0, 1];Rn).

An important consequence of Corollary 4.2 is the following compactness result for the
solutions of (D), where the controls are restricted to be inW and x(1) ∈ C1. We note that this
compactness result will be used in the next subsection to prove the existence of an optimal
solution for the problem (P).

Proposition 4.3 (Compact trajectories and controls for (D)) Assume that (A1)-(A4.3) hold.
Let (x j , u j ) j be a sequence in W 1,∞ × W satisfying (D) with x j (1) ∈ C1, for all j ∈ N,
and (‖u̇ j‖2) j be bounded. Consider (ξ j ) j the corresponding sequence in L∞([0, 1];R+)

obtained via Lemma 3.5, that is, (x j , u j , ξ j ) satisfies (7)-(8), for all j . Then there exist a
subsequence of (x j , u j , ξ j ) j , we do not relabel, and (x, u, ξ) ∈ W 1,∞([0, 1];Rn) × W ×
L∞([0, 1];R+) such that (x j , u j ) j converges uniformly to (x, u), (ẋ j , ξ j ) j now converges
pointwise to (ẋ, ξ) ∈ BV ([0, 1];Rn)× BV ([0, 1];R+), u̇ j converge weakly in L2 to u̇, and
(x, u, ξ) satisfies (7)-(8)with x(1) ∈ C1. In particular, (x, u) is admissible for (P) and (x j ) j
converges to x strongly in the norm topology of W 1,2([0, 1];Rn).

Proof Using (6) in Remark 3.4 for the sequence (x j ) j , the boundedness of (‖u̇ j‖2) j , that
u j (t)) ∈ U (t) for all t ∈ [0, 1], and that the setsU (t) are compact and uniformly bounded, by
(A4.2), thenArzela-Ascoli’s theoremproduces a subsequence,we do not relabel, of (x j , u j ) j ,
that converges uniformly to an absolutely continuous pair (x, u)with (x(t), u(t)) ∈ C×U (t)
for all t ∈ [0, 1], and (ẋ j , u̇ j ) j converging weakly in L2 to (ẋ, u̇). Since, for all j ∈ N,
x j (0) ∈ C0 and x j (1) ∈ C1, then (A4.1) and (A4.3) yield that x(0) ∈ C0 and x(1) ∈ C1.

UsingCorollary 4.2,we obtain ‖ξ j‖∞ ≤ M̄
2η , ξ j ∈ BV ([0, 1];R+), andV 1

0 (ξ j ) ≤ M̃2,where

M̃2 depends on the uniform bound of (‖u̇ j‖2) j . By Helly’s first theorem, (ξ j ) j convergence
pointwise to ξ ∈ BV ([0, 1];R+). On the other hand, Corollary 4.2 also gives that (7) holds
for all t ∈ [0, 1], that is,

ẋ j (t) = fΦ(x j (t), u j (t)) − ξ j (t)∇ψ(x j (t)), ∀t ∈ [0, 1]. (17)

Thus, upon taking the pointwise limit as j −→ ∞ in (17), it follows that (ẋ j ) j converges
pointwise to its weak L2-limit ẋ , and hence, ẋ ∈ BV ([0, 1];Rn). As (x j , u j ) solves (D), (6)
yields that (‖ẋ j‖∞) j is uniformly bounded, and hence, (ẋ j ) j converges to ẋ strongly in L2.

We now show that ξ(t) is supported in I 0(x). Let t ∈ I (x) be fixed, that is, x(t) ∈ intC .
Since (x j ) j converges uniformly to x , then we can find δo > 0 and jo ∈ N such that, for
all s ∈ (t − δ, t + δ) ∩ [0, 1] and for all j ≥ jo, we have x j (s) ∈ intC , and hence, as ξ j
satisfies (8), ξ j (s) = 0. Thus, ξ j (s) −→ 0 for s ∈ (t − δo, t + δo) ∩ [0, 1], and whence,
ξ(t) = 0, proving that ξ is supported in I 0(x). Therefore, applying Lemma 3.5 to (x, u, ξ),
we conclude that (x, u) solves (D) and (x, u, ξ) satisfies (8). ��

4.2 Existence of Optimal Solution for (P)

Parallel to [6, 8, Theorems 4.1], where a discretization technique is used, the following
existence theorem of an optimal solution for the problem (P) is established based on
Corollary 4.2.
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Theorem 4.4 (Existence of solution for (P))Assumehypotheses (A1)-(A4.3), g : Rn×R
n →

R ∪ {∞} is lower semicontinuous, and that a minimizing sequence (x j , u j ) for (P) exists
such that (‖u̇ j‖2) j is bounded. Suppose that (P) has at least one admissible pair (yo, vo)
with (yo(0), yo(1)) ∈ dom g, then the problem (P) admits a global optimal solution (x̄, ū)

such that, along a subsequence, we have

x j
strongly−−−−−−−−→

W 1,2([0,1];Rn)
x̄, u j

uniformly−−−−−−−→
C([0,1];Rm )

ū, and u̇ j
weakly−−−−−−−→

L2([0,1];Rm )

˙̄u.

Proof Given that (P) has an admissible pair (yo, vo) with (yo(0), yo(1)) ∈ dom g, then
inf(x,u)(P) < ∞. As g is lower semicontinuous and all admissible solutions of (P) satisfy
(x(0), x(1)) ∈ C0 × (C1 ∩ C), which is compact, we deduce that inf(x,u)(P) is finite.
On the other hand, being admissible for (P), the minimizing sequence (x j , u j ) j satisfies
(D) with x j (1) ∈ C1. Hence, using that the sequence (‖u̇ j‖2) j is bounded, Proposition
4.3 implies the existence of (x̄, ū) ∈ W 1,∞([0, 1];Rn) × W satisfying (D) and x̄(1) ∈
C1, with (x j , u j ) converges uniformly to (x̄, ū), (ẋ j ) j converges strongly in L2 to ˙̄x ∈
BV ([0, 1];Rn), and u̇ j converges weakly in L2 to ˙̄u. Thus, (x̄, ū) is admissible for (P).
Owed to the lower semicontinuity of g and to (x̄, ū) being the uniform limit of theminimizing
sequence (x j , u j ) j , the optimality of the pair (x̄, ū) for the problem (P) follows readily. ��

4.3 Continuous Approximation for (P)

On the journey of seeking for an optimal process (x̄, ū) of (P) a continuous approximations
consisting of optimal solutions for properly-designed standard control problems, it is impor-
tant that the convergence to (x̄, ū) be strong in the norm topology of the considered space,
namely, the space W 1,2([0, 1];Rn) × W. Corollary 4.2 already answered this question for
the W 1,2-strong approximation of a solution (x̄, ū) of (D) by solutions of (Dγk ), in which
the same control ū is used. However, ū may not necessarily be optimal for approximating
optimal control problems over (Dγk ).

In this subsection, we approximate the problem (P) by a certain sequence of optimal
control problems over (Dγk )with special initial and final state endpoints constraints (C0(k) ⊂
C(k) and C1(k) in a band around C1), and with an objective function particularly crafted
so that an optimal control, uγk , exists and has (‖u̇γk‖2)k uniformly bounded, and hence,
the strong convergence of the optimal state velocities shall be deduced from Theorem 4.1.
The necessary optimality conditions for (P) are then established by taking the limit of the
optimality conditions for the corresponding approximating problem.

For given δ > 0 and z ∈ C([0, 1];Rs), we define the projection onRs of the closed δ-tube
around z by B̄δ(z) := ⋃

t∈[0,1]
B̄δ(z(t)).

Let (x̄, ū) ∈ W 1,2([0, 1];Rn) × W be a W 1,2-local minimizer for (P) with associated δ.

We fix δo > 0 such that

δo ≤
{
min{r̂x̄(0), δ} if x̄(0) ∈ intC,

min{ro, δ} if x̄(0) ∈ bdryC,

where ro > 0 is the constant in Theorem 3.7(i i), and r̂x̄(0) > 0 with k̂x̄(0) ∈ N are the
constants in Theorem 3.7(i i i) corresponding to c := x̄(0).
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In the remaining part below, we will assume that f satisfies the following local version
of (A1):

∃ ρ̃ > 0 such that f is Lipschitz on [C ∩ B̄δ(x̄)] × [(U + ρ̃ B̄) ∩ B̄δ(ū)]. (∗)
Note that under the assumption (∗), the function f can be extended to a globally Lipschitz
function f̃ : Rn × R

m −→ R by applying [23, Theorem 1] to each component of f . Since
in the rest of this section we only consider local optimality notions, then, without loss of
generality, we shall use the function f instead of f̃ . Hence, when in this section f is assumed
to satisfy (∗), it is implied that f also satisfies assumption (A1).

We proceed to suitably-formulate a sequence of approximating problems (Pγk ) and show
that its optimal solutions strongly converges in W 1,2([0, 1];Rn) × W to the W 1,2-local
minimizer (x̄, ū) of (P). This naturally requires the domain of the approximating problem
(Pγk ) to be in W 1,2([0, 1];Rn) ×W. The initial state constraint is taken to be x(0) ∈ C0(k),
where C0(k) is the sequence of sets defined by

C0(k) :=
{
C0 ∩ B̄δo(x̄(0)) , ∀k ∈ N, if x̄(0) ∈ intC,
[
C0 ∩ B̄δo(x̄(0))

]− ρk
∇ψ(x̄(0))

‖∇ψ(x̄(0))‖ , ∀k ∈ N, if x̄(0) ∈ bdryC .
(18)

and the final state constraint is x(1) ∈ C1(k), where

C1(k) := [(
C1 ∩ B̄δo(x̄(1))

)− x̄(1) + x̄γk (1)
] ∩ C, k ∈ N,

in which x̄γk is the solution of (Dγk ) corresponding to (c̄γk , ū), where c̄γk in C0(k)∩ intC(k),
for k large, and is defined via Remark 3.8 for c := x̄(0), that is,

c̄k :=
{
x̄(0), ∀k ∈ N, if x̄(0) ∈ intC,

x̄(0) − ρk
∇ψ(x̄(0))

‖∇ψ(x̄(0))‖ , ∀k ∈ N, if x̄(0) ∈ bdryC .

Note that C0(k) and C1(k) are closed, for k ∈ N. On the other hand, as ργk −→ 0, we have
c̄γk −→ x̄(0), Corollary 3.12 yields that the sequence x̄γk converges in C uniformly to x̄ ,
and hence, x̄γk (1) −→ x̄(1). Add to this that in C0(k), ρk −→ 0, then, for the ρ̃ in (∗), we
have that, for k sufficiently large,

Ci (k) ⊂ [ (
Ci ∩ B̄δ(x̄(i))

)+ ρ̃ B̄
] ∩ C

︸ ︷︷ ︸

C̃i (δ)

, for i = 0, 1, (19)

and lim
k→∞C0(k) = C0 ∩ B̄δo(x̄(0)) & lim

k→∞C1(k) = C ∩ C1 ∩ B̄δo(x̄(1)). (20)

Remark 4.5 Notice that we can show that, for k large enough, we have C0(k) ⊂ C(k), and
hence, by Theorem 3.11, any solution of (Dγk ) corresponding to (cγk , uγk ) with cγk ∈ C0(k)
and uγk ∈ U, satisfies the conditions (i)-(i i i) of this theorem. Indeed:

• For x̄(0) ∈ intC , use that δo ≤ r̂x̄(0) and (15) we get

B̄r̂x̄(0)(x̄(0)) ⊂ intC(k) ⊂ C(k), ∀k ≥ k̂x̄(0).

This gives that

C0(k) := C0 ∩ B̄δo(x̄(0)) ⊂ B̄r̂x̄(0)(x̄(0)) ⊂ C(k), ∀k ≥ k̂x̄(0).
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• For x̄(0) ∈ bdryC, use that δo ≤ ro and C0(k) is the nonempty set defined by the second
equation of (18), to get via (14) that

C0(k) ⊂ intC(k) ⊂ C(k), ∀k ≥ k̄.

Remark 4.6 Using the local property of the normal cones, see [11, Proposition 1.1.5(b)], the
cones NL

C0(k)
(c) and NL

C1(k)
(d) can be evaluated in terms of NL

C0
and NL

C1
, respectively, as

follows

NL
C0(k)(c) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

NL
C0

(c), if x̄(0) ∈ intC, and
c ∈ Bδo(x̄(0)),

NL
C0

(
c + ρk

∇ψ(x̄(0))
‖∇ψ(x̄(0))‖

)
, if x̄(0) ∈ bdryC, and

(
c + ρk

∇ψ(x̄(0))
‖∇ψ(x̄(0))‖

)
∈ Bδo(x̄(0)).

(21)

NL
C1(k)(d) = NL

C1
(d + x̄(1) − x̄γk (1)), ∀d ∈ (intC) ∩ Bδo(x̄(1)). (22)

We introduce the following sequence of approximating problems:

(Pγk ) : Minimize

J (x, y, z, u) := g(x(0), x(1)) + 1
2

(‖u(0) − ū(0)‖2 + z(1) + ‖x(0) − x̄(0)‖2)

over (x, y, z, u) ∈ W 1,2([0, 1];Rn) × AC([0, 1];R) × AC([0, 1];R) × W

such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D̃γk )

⎡

⎢
⎢
⎢
⎣

ẋ(t) = fΦ(x(t), u(t)) − γkeγkψ(x(t))∇ψ(x(t)), t ∈ [0, 1] a.e.,
ẏ(t) = ‖ẋ(t) − ˙̄x(t)‖2, t ∈ [0, 1] a.e.,
ż(t) = ‖u̇(t) − ˙̄u(t)‖2, t ∈ [0, 1] a.e.,
(x(0), y(0), z(0)) ∈ C0(k) × {0} × {0},

x(t) ∈ B̄δ(x̄(t)) and u(t) ∈ U (t) ∩ B̄δ(ū(t)), ∀t ∈ [0, 1],
(x(1), y(1), z(1)) ∈ C1(k) × [−δ, δ] × [−δ, δ].

Note that Lemma 3.6 and the constraints on u(·) confirm that (Pγk )k is actually equivalent
to having therein (x, u) ∈ AC([0, 1];Rn) × AC([0, 1];Rm).

Now we are ready to state our continuous approximation result, which is parallel to the
corresponding result in [6–8, 14], where discrete approximations are used. The proof of this
approximation result is presented in Section 5.

Theorem 4.7 ((Pγk ) approximates (P)) Let (x̄, ū) be a W 1,2-local minimizer (P) with asso-
ciated ξ̄ ∈ L∞ via Lemma 3.5. Assume that (A2)-(A4.3) hold, and for some ρ̃ > 0, f is
Lipschitz on [C ∩ B̄δ(x̄)]× [(U+ ρ̃ B̄)∩ B̄δ(ū)] and g is continuous on C̃0(δ)× C̃1(δ). Then
for k sufficiently large, the problem (Pγk ) has an optimal solution (xγk , yγk , zγk , uγk ) such
that, for ξγk defined in (16), we have, along a subsequence, we do not relabel, that

(xγk , uγk )
strongly−−−−−→
W 1,2×W

(x̄, ū), (yγk , zγk )
strongly−−−−−−−−−−−−→

W 1,1([0,1];R+×R+)
(0, 0), ξγk

strongly−−−−−−−→
L2([0,1];R+)

ξ̄ ,

all the conclusions of Theorem 3.11 hold, including that xγk (t) ∈ intC for all t ∈ [0, 1],
and for all k sufficiently large,

xγk (i) ∈ [ (Ci ∩ B̄δo(x̄(i))
)+ ρ̃B

] ∩ (intC) ⊂ int C̃i (δ), for i = 0, 1.
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Moreover, ˙̄x ∈ BV ([0, 1];Rn), ξ̄ ∈ BV ([0, 1];R+), and (7)-(8) are valid at (x̄, ū, ξ̄ ) for all
t ∈ [0, 1].

We proceed to rewrite the problems (Pγk ) as an optimal control problem with state con-
straints. Given (x̄, ū) ∈ W 1,2([0, 1];Rn) × W a W 1,2-local minimizer for (P), for v̄ := ˙̄u,
(Pγk ) is reformulated in the following way:

(Pγk ) : Minimize

g(x(0), x(1)) + 1
2

(‖u(0) − ū(0)‖2 + z(1) + ‖x(0) − x̄(0)‖2) over
(x, y, z, u) ∈ AC([0, 1];Rn)×AC([0, 1];R)×AC([0, 1];R)×AC([0, 1];Rm)

and measurable functions v : [0, 1] −→ R
m such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢
⎢
⎢
⎢
⎣

ẋ(t) = fΦ(x(t), u(t)) − γkeγkψ(x(t))∇ψ(x(t)), t ∈ [0, 1] a.e.,
u̇(t) = v(t), t ∈ [0, 1] a.e.,
ẏ(t) = ‖ fΦ(x(t), u(t)) − γkeγkψ(x(t))∇ψ(x(t)) − ˙̄x(t)‖2, t ∈ [0, 1] a.e.,
ż(t) = ‖v(t) − v̄(t)‖2, t ∈ [0, 1] a.e.,

x(t) ∈ B̄δ(x̄(t)) and u(t) ∈ U (t) ∩ B̄δ(ū(t)), ∀t ∈ [0, 1],
(x(0), u(0), y(0), z(0)) ∈ C0(k) × R

m × {0} × {0},
(x(1), u(1), y(1), z(1)) ∈ C1(k) × R

m × [−δ, δ] × [−δ, δ].
In the following proposition we apply to the above sequence of reformulated problems

(Pγk ), the nonsmooth Pontryagin maximum principle for optimal control problems withmul-
tiple state constraints (see e.g., [38, page 331] and [38, p.332]). For this purpose, (x, y, z, u)

is the state function in (Pγk ) and v is the control. Thus, (xγk , yγk , zγk , uγk ) is the optimal
state, where (xγk , uγk ) is obtained from Theorem 4.7, yγk (t) := ∫ t

0 ‖ẋγk (s) − ˙̄x(s)‖2 ds,
zγk (t) := ∫ t

0 ‖u̇γk (s) − ˙̄u(s)‖2 ds, and vγk = u̇γk is the optimal control. Hence, the function
f (·, ·) is required to be Lipschitz near (xγk , uγk ), which follows from (∗), since xγk (t) ∈ intC
and (xγk , uγk ) converges uniformly to (x̄, ū) (see Theorem 4.7). Furthermore, as the objec-
tive function g must be Lipschitz near (xγk (0), xγk (1)), we introduce the following local
assumption on g in which C̃0(δ) and C̃1(δ) are defined in (19):

∃ ρ̃ > 0 such that g is Lipschitz on C̃0(δ) × C̃1(δ).

On theother hand, the following constraint qualificationproperty (CQ) is required. For a given
multifunction F : [0, 1] ⇒ R

m , with nonempty and closed values, and for h ∈ C([0, 1]; F),
that is, h ∈ C([0, 1];Rm) and satisfies h(t) ∈ F(t) for all t ∈ [0, 1], we say that F(·) satisfies
the constraint qualification at h if

(CQ) conv (N̄ L
F(t)(h(t))) is pointed for all t ∈ [0, 1].

Here, N̄ L
F(t)(y) stands for the graphical closure at (t, y) of the multifunction (t, y) �→

NL
F(t)(y), that is, the graph of N̄ L

F(·)(·) is the closure of the graph of NL
F(·)(·).

It is worth noting that in [6–8], where also W 1,2-controls are employed, the control sets
U (t) are assumed to be Rm , for all t ∈ [0, 1], and hence, in this case, F(·) := U (·) ≡ R

m

trivially satisfies (CQ) at any h. For the general case where F(·) �≡ R
m , the following remark

provides important information about (CQ).
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Remark 4.8

(i) Let F : [0, 1] ⇒ R
m be a lower semicontinuous multifunction with closed and

nonempty values. For dF (t, x) := d(x, F(t)), we have from [26, Proposition 2.3] that
for t ∈ [0, 1] and x ∈ F(t), conv (N̄ L

F(t)(x)) is pointed if and only if 0 /∈ ∂>
x dF (t, x).

The notion of ∂>
x g(t, x) is introduced for a general function g(t, x) by Clarke in [9,

p.121]. For g(t, x) := dF (t, x), it is shown in [26, Corollary 2.2] that

∂>
x dF (t, x) =

conv

{

ζ : ζ = lim
i−→∞ ζi , ‖ζi‖ = 1, ζi ∈ N P

F(ti )(xi ) and (ti , xi )
Gr F−−→ (t, x)

}

,

where (ti , xi )
Gr F−−→ (t, x) signifies that (ti , xi ) −→ (t, x) with xi ∈ F(ti ) for all i .

Therefore, for h ∈ C([0, 1]; F), we have that F satisfies the constraint qualification
(CQ) at h if and only if 0 /∈ ∂>

x dF (t, h(t)) for all t ∈ [0, 1]. Note that the multifunction
(t, x) �→ ∂>

x dF (t, x) is uniformly bounded with compact and convex values, and has
a closed graph.

(i i) Using the proximal normal inequality, see [11, Proposition 1.1.5(a)], one can easily
extend the arguments in the proof of [26, Proposition 2.3(d)], to show that if the lower
semicontinuousmultifunction F has closed and r -prox-regular values, for some r > 0,
(as opposed to convex), then conv (N̄ L

F(t)(·)) = N P
F(t)(·) = NL

F(t)(·) = NF(t)(·), and
this cone is pointed at x ∈ F(t) if and only if F(t) is epi-lipschitz at x , see [9,
Theorem 7.3.1] and [37, Exercise 9.42]. Hence, a lower semicontinuous multifunction
F : [0, 1] ⇒ R

m with values that are closed and r -prox-regular, satisfies the constraint
qualification (CQ) at h ∈ C([0, 1]; F) if and only if F(t) is epi-Lipschitz at h(t), for
all t ∈ [0, 1].

(i i i) If F(t) = F for all t ∈ [0, 1], where F is closed, then conv (N̄ L
F(t)(·)) = NF (·), and

this cone is pointed at x ∈ F if and only if F is epi-Lipschitz at x . Hence, a constant
multifunction F satisfies the constraint qualification (CQ) at h ∈ C([0, 1]; F) if and
only if F is epi-Lipschitz at h(t) for all t ∈ [0, 1].

Proposition 4.9 (Maximum Principle for approximating problems (Pγk )) Let (x̄, ū) be a
W 1,2-local minimizer for (P). Assume that (A2)-(A4) hold, and for some ρ̃ > 0, f is
Lipschitz on [C ∩ B̄δ(x̄)] × [(U + ρ̃ B̄) ∩ B̄δ(ū)] and g is Lipschitz on C̃0(δ) × C̃1(δ).
Consider the optimal sequence (xγk , yγk , zγk , uγk , vγk ) for (Pγk ) obtained via Theorem 4.7.
If for k sufficiently large, U (·) satisfies the constraint qualification (CQ) at uγk , then for
k large enough, there exist λγk ≥ 0, pγk ∈ AC([0, 1];Rn), qγk ∈ AC([0, 1];Rm), �γk ∈
NBV ([0, 1];Rm),μo

γk
∈ C⊕([0, 1];Rm), and aμo

γk
-integrable functionβγk : [0, 1] −→ R

m

such that �γk (t) = ∫

[0,t] βγk (s)μ
o
γk

(ds), for all t ∈ (0, 1], and:

(i) (The nontriviality condition) For all k ∈ N, we have

‖pγk (1)‖ + ‖qγk‖∞ + ‖μo
γk

‖T.V. + λγk = 1;
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(i i) (The adjoint equation) For a.e. t ∈ [0, 1],
(
ṗγk (t)

q̇γk (t)

)

∈ −
(
∂ (x,u) fΦ(t, xγk (t), uγk (t))

)T
pγk (t)

+
(

γke
γkψ(xγk (t))∂2ψ(xγk (t))pγk (t)

0

)

(23)

+
(

γ 2
k e

γkψ(xγk (t))∇ψ(xγk (t))〈∇ψ(xγk (t)), pγk (t)〉
0

)

;

(i i i) (The transversality equation)

(pγk (0),−pγk (1)) ∈
λγk ∂

Lg(xγk (0), xγk (1))+
[(

λγk (xγk (0)− x̄(0))+NL
C0(k)(xγk (0))

)×NL
C1(k)(xγk (1))

]
,

and qγk (0) = λγk (uγk (0) − ū(0)), −qγk (1) = �γk (1);
(iv) (The maximization condition) For a.e. t ∈ [0, 1],

max
v∈Rm

{

〈qγk (t) + �γk (t), v〉 − λγk

2
‖v − ˙̄u(t)‖2

}

is attained at u̇γk (t);

(v) (The measure properties)

supp {μo
γk

} ⊂ {
t ∈ [0, 1] : (t, uγk (t)) ∈ bdryGr

[
U (t) ∩ B̄δ(ū(t))

]}
, and

βγk (t) ∈ ∂>
u d(uγk (t),U (t) ∩ B̄δ(ū(t))) μo

γk
a.e., with

∂>
u d(uγk (t),U (t) ∩ B̄δ(ū(t))) ⊂

[
conv N̄ L

U (t)∩B̄δ(ū(t))
(uγk (t)) ∩ (B̄ \ {0})

]
.

4.4 Necessary Optimality Conditions for (P)

The main result of this subsection is the following theorem which provides necessary opti-
mality conditions for the W 1,2-local minimizer, (x̄, ū), of (P).

The following notations are used in the statement of the theorem:

• ∂�ϕ and ∂2� ϕ are the extended Clarke generalized gradient and the extended Clarke
generalized Hessian of ϕ defined on C , respectively. Note that if ∂�ϕ(x) is a singleton,
then we use the notation ∇� instead of ∂�.

• ∂
(x,u)
� f (·, ·) is the extended Clarke generalized Jacobian of f (·, ·) defined on
[
C ∩ B̄δ(x̄(t))

]× [
(U (t) + ρ̃ B̄) ∩ B̄δ(ū(t))

]
.

• ∂2� ψ is the Clarke generalized Hessian relative to intC of ψ .
• ∂L

� g is the limiting subdifferential of g relative to int
(
C̃0(δ) × C̃1(δ)

)
.

Theorem 4.10 (Necessary optimality conditions for (P)) Let (x̄, ū) be a W 1,2-local mini-
mizer for (P). Let ξ̄ ∈ L∞([0, 1];R+) be the function supported on I 0(x̄) and associated to
(x̄, ū) via Lemma 3.5. Assume that (A2)-(A4) hold, U (·) satisfies the constraint qualification
(CQ) at ū, and for some ρ̃ > 0, f is Lipschitz on [C ∩ B̄δ(x̄)] × [(U + ρ̃ B̄) ∩ B̄δ(ū)] and g
is Lipschitz on C̃0(δ)× C̃1(δ). Then ˙̄x ∈ BV ([0, 1];Rn) and ξ̄ ∈ BV ([0, 1];R+), and there
exist λ ≥ 0, an adjoint vector p̄ ∈ BV ([0, 1];Rn), a finite signed Radon measure ν̄ on [0, 1]
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supported on I 0(x̄), L∞-functions ζ̄ (·), θ̄ (·) and ϑ̄(·) inMn×n([0, 1]), an L∞-function ω̄(·)
in Mn×m([0, 1]), such that for t ∈ [0, 1] a.e.,

(
(ζ̄ (t), ω̄(t)), θ̄ (t), ϑ̄(t)

)∈ ∂
(x,u)
� f (x̄(t), ū(t)) × ∂2� ϕ(x̄(t)) × ∂2� ψ(x̄(t)),

and the following hold:
(i) (The admissible equation)

(a) ˙̄x(t) = f (x̄(t), ū(t)) − ∇� ϕ(x̄(t)) − ξ̄ (t)∇ψ(x̄(t)), ∀t ∈ [0, 1],
(b) ψ(x̄(t)) ≤ 0, ∀t ∈ [0, 1];

(i i) (The nontriviality condition)

‖ p̄(1)‖ + λ = 1;
(i i i) (The adjoint equation) For any h ∈ C([0, 1];Rn), we have

∫

[0,1]
〈h(t), d p̄(t)〉 =

∫ 1

0

〈
h(t),

(
θ̄ (t) − ζ̄ (t)T

)
p̄(t)

〉
dt

+
∫ 1

0
ξ̄ (t)

〈
h(t), ϑ̄(t)p(t)

〉
dt +

∫

[0,1]
〈h(t),∇ψ(x̄(t))〉d ν̄;

(iv) (The complementary slackness conditions)

(a) ξ̄ (t) = 0, ∀t ∈ I (x̄),
(b) ξ̄ (t)〈∇ψ(x̄(t), p̄(t)〉 = 0, ∀t ∈ [0, 1] a.e.;

(v) (The transversality equation)

( p̄(0),− p̄(1)) ∈ λ∂L
� g(x̄(0), x̄(1)) + [

NL
C0

(x̄(0)) × NL
C1

(x̄(1))
];

(vi) (The weak maximization condition)

ω̄(t)T p̄(t) ∈ conv N̄ L
U (t)∩B̄δ(ū(t))

(ū(t)), t ∈ [0, 1] a.e.

If in addition there exist εo > 0 and r > 0 such that U (t)∩ B̄εo(ū(t)) is r-prox-regular
for all t ∈ [0, 1], then we have

max
{〈

ω̄(t)T p̄(t), u
〉− ‖ω̄(t)T p̄(t)‖

min{εo,2r} ‖u − ū(t)‖2 : u ∈ U (t)
}

is attained at ū(t) for t ∈ [0, 1] a.e.
Furthermore, if C1 = R

n, then λ �= 0 and is taken to be 1, and the nontriviality condition
(i) is eliminated.

Remark 4.11 Condition (vi) of Theorem 4.10 admits simplified forms when U (·) possesses
extra properties:

• If U (t) is r -prox-regular for all t ∈ [0, 1], then taking εo −→ ∞, the maximization
condition (v) reduces to

max
{〈

ω̄(t)T p̄(t), u
〉− ‖ω̄(t)T p̄(t)‖

2r ‖u − ū(t)‖2 : u ∈ U (t)
}

is attained at ū(t) for t ∈ [0, 1] a.e.

123



A Control Space Ensuring the Strong... Page 19 of 33    23 

• If U (t) ∩ B̄εo(ū(t)) is convex for all t ∈ [0, 1], then taking r −→ ∞, the maximization
condition (v) reduces to

max
{〈

ω̄(t)T p̄(t), u
〉− ‖ω̄(t)T p̄(t)‖

εo
‖u − ū(t)‖2 : u ∈ U (t)

}

is attained at ū(t) for t ∈ [0, 1] a.e.
• If U (t) is convex for all t ∈ [0, 1], then taking both εo −→ ∞ and r −→ ∞, the

maximization condition (v) reduces to

max
{〈

ω̄(t)T p̄(t), u
〉
: u ∈ U (t)

}
is attained at ū(t) for t ∈ [0, 1] a.e. (24)

Proof of Theorem 4.10. Theorem 4.7 produces a subsequence of (γk)k , we do not relabel, and
a corresponding sequence (xγk , yγk , zγk , uγk )k , with associated (ξγk )k defined via (16), such
that

• For each k, the quadruplet (xγk , yγk , zγk , uγk ) is optimal for (Pγk ).

• (xγk , uγk )
strongly−−−−−→
W 1,2×W

(x̄, ū), (yγk , zγk )
strongly−−−−−−−−−−−−→

W 1,1([0,1];R+×R+)
(0, 0), ξγk

strongly−−−−−−−→
L2([0,1];R+)

ξ̄ .

• ˙̄x ∈ BV ([0, 1];Rn), ξ̄ ∈ BV ([0, 1];R+), and (7)-(8) are valid at (x̄, ū, ξ̄ ) for all t ∈
[0, 1].

• All the conclusions of Theorem 3.11 hold, including (xγk )k is uniformly Lipschitz and
xγk (t) ∈ intC for all t ∈ [0, 1].

• For all k, we have

xγk (i) ∈ [ (Ci ∩ B̄δo(x̄(i))
)+ ρ̃B

] ∩ (intC) ⊂ int C̃i (δ), for i = 0, 1.

In order to apply Proposition 4.9, we shall show that the constraint qualification (CQ) that
holds for U (·) at ū, also holds true at uγk , for k large enough. Indeed, if this is false, then,
by Remark 4.8(i), there exist an increasing sequence (kn)n in N and a sequence tn ∈ [0, 1]
such that tn −→ to ∈ [0, 1] and

0 ∈ ∂>
u dU (tn, uγkn

(tn)), ∀n ∈ N. (25)

The continuity of ū and the uniform convergence of uγkn
to ū yield that the sequence

(uγkn
(tn))n converges to ū(to). Hence, using that the multifunction (t, x) �→ ∂>

u dU (t, x)
has closed values and a closed graph, we conclude from (25) that 0 ∈ ∂>

u dU (to, ū(to)). This
contradicts that the constraint qualification is satisfied by U (·) at ū. Thus, for k sufficiently
large, U (·) satisfies the constraint qualification (CQ) at uγk .

Hence, by Proposition 4.9, there exist a subsequence of (γk)k , we do not relabel, and
corresponding sequences pγk , qγk μγk and λγk satisfying conditions (i)-(v) therein.

Using (23), (5), and that for all t ∈ [0, 1] we have
(xγk (t), uγk (t)) ∈ int

[(
C ∩ B̄δ(x̄(t))

)×((U (t)+ ρ̃ B̄) ∩ B̄δ(ū(t))
)]

,

we obtain sequences ζγk , θγk and ϑγk in Mn×n([0, 1]) and ωγk in Mn×m([0, 1]) such that,
for a.e. t ∈ [0, 1],

(ζγk (t), ωγk (t)) ∈ ∂
(x,u)
� f (xγk (t), uγk (t)),

(θγk (t), ϑγk (t)) ∈ ∂2� ϕ(xγk (t)) × ∂2� ψ(xγk (t)),

ṗγk (t) = (θγk (t) − ζγk (t))
T pγk (t) + γke

γkψ(xγk (t))ϑγk (t) pγk (t) (26)

+ γ 2
k e

γkψ(xγk (t))∇ψ(xγk (t))
〈∇ψ(xγk (t)), pγk (t)

〉
, and
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q̇γk (t) = −(ωγk (t))
T pγk (t). (27)

Note that for each k, the functions pγk , ṗγk , qγk , q̇γk , xγk , uγk and ū are measurable on [0, 1],
and the multifunctions ∂

(x,u)
� f (·, ·), ∂2� ϕ(·), and ∂2� ψ(·) are measurable and have closed

graphs with nonempty, compact, and convex values. Using (A1), (A2.1), and (A3), the Filip-
pov measurable selection theorem (see [38, Theorem 2.3.13]) yields that we can assume the
measurability of the functions ζγk (·), θγk (·), ϑγk (·) and ωγk (·). Moreover, these sequences
are uniformly bounded in L∞, as ‖(ζγk , ωγk )‖∞ ≤ M , ‖θγk‖∞ ≤ K and ‖ϑγk‖∞ ≤ 2Mψ .

Step 1. Construction of ξ̄ , the admissible equation.

From Theorem 4.7, we have that the triplet (x̄, ȳ, ξ̄ ) satisfies (7) for all t ∈ [0, 1]. Hence, for
all t ∈ [0, 1] we have

˙̄x(t) = fΦ(x̄(t), ū(t)) − ξ̄ (t)∇ψ(x̄(t)) = f (x̄(t), ū(t)) − ∇Φ(x̄(t)) − ξ̄ (t)∇ψ(x̄(t)).

Since ∇Φ(x) = ∂�ϕ(x) = ∇� ϕ(x) for all x ∈ C , we obtain that

˙̄x(t) = f (x̄(t), ū(t)) − ∇� ϕ(x̄(t)) − ξ̄ (t)∇ψ(x̄(t)), ∀t ∈ [0, 1].
On the other hand, since x̄ takes values in C , we have ψ(x̄(t)) ≤ 0, ∀t ∈ [0, 1].
Step 2. Construction of p̄, ζ̄ , θ̄ , ϑ̄ , ω̄, ν̄, and the adjoint equation.

For the construction of p̄, θ̄ , ϑ̄ and ν̄, see Steps 2-4 in the proof of [39, Theorem 5.1]. Note that
the uniformboundedness of pγk (1) established and used in Step 2 of the proof of [39, Theorem
5.1], is easily deduced here from the nontriviality condition of Proposition 4.9. We also note
that, similarly to Step 2 of the proof of [39, Theorem 5.1], pγk has a uniformly bounded
variation, and hence, Helly first theorem implies that pγk admits a pointwise convergent
subsequence whose limit p̄ is also of bounded variation and satisfies, for some M1 > 0, the
following

‖ p̄‖∞ ≤ M1‖ p̄(1)‖. (28)

Using Helly second theorem we obtain that for all h ∈ C([0, 1];Rn),

lim
k→∞

∫

[0,1]
〈
h(t), ṗγk (t)

〉
dt =

∫

[0,1]
〈h(t), d p̄(t)〉 . (29)

Identically to Steps 2-4 in the proof of [39, Theorem 5.1], we also have
∫ 1

0

〈
h(t), θγk (t) pγk (t)

〉
dt −→

∫ 1

0

〈
h(t), θ̄ (t) p̄(t)

〉
dt, (30)

∫ 1

0
ξγk (t)

〈
h(t), ϑγk (t) pγk (t)

〉
dt −→

∫ 1

0
ξ̄ (t)

〈
h(t), ϑ̄(t) p̄(t)

〉
dt, (31)

lim
k−→∞

∫ 1

0

〈
h(t),∇ψ(xγk (t))

〉
γkξγk (t)

〈∇ψ(xγk (t)), pγk (t)
〉
dt

=
∫

[0,1]
〈h(t),∇ψ(x̄(t))〉 d ν̄(t). (32)

We proceed to construct the two functions ζ̄ and ω̄. Note that the construction of ζ done
in Step 2 of the proof of [39, Theorem 5.1] cannot be used here, since the closed graph
hypothesis on the multifunction (x, u) �→ ∂ x f (x, u) is required there, but it is not assumed
here. As the sequence (ζγk , ωγk )k is uniformly bounded in L∞, it has a subsequence, we
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do not relabel, that converges weakly in L1 to some (ζ̄ , ω̄). Using that the multifunction
(x, u) �→ ∂

(x,u)
� f (x, u) has closed graph with nonempty, compact and convex values, [10,

Theorem 6.39] implies that, for t ∈ [0, 1] a.e.,
(ζ̄ (t), ω̄(t)) ∈ ∂

(x,u)
� f (x̄(t), ū(t)).

Since (pγk )k is uniformly bounded in L∞ and converges pointwise to p̄, we conclude that

ζTγk pγk

weakly−−−−→
L1

ζ̄T p̄ and ωT
γk
pγk

weakly−−−−→
L1

ω̄T p̄. (33)

Hence, for all h ∈ C([0, 1];Rn),
∫ 1

0

〈
h(t), ζγk (t)pγk (t)

〉
dt −→

∫ 1

0

〈
h(t), ζ̄ (t) p̄(t)

〉
dt . (34)

Thus, from (26) and (29)-(34), we conclude that the adjoint equation of Theorem 4.10 holds,
and it coincides with the adjoint equation of [39, Theorem 5.1].

Step 3. The complementary slackness conditions.

The part (a) follows from the equation (8). The part (b) follows from the uniformboundedness
of
∥
∥γkξγk (·)

〈∇ψ(xγk (·)), pγk (·)
〉∥
∥
1 established in [39, Equation (97)]. More details can be

found in Step 6 of [34, Proof of Theorem 6.1].

Step 4. Construction of λ and the transversality equation.

Form the transversality condition of Proposition 4.9, there exist υγk ∈ NL
C0(k)

(xγk (0)), χγk ∈
NL
C1(k)

(xγk (1)) and (aγk , bγk ) ∈ ∂Lg(xγk (0), xγk (1)) such that

pγk (0) = λγk aγk + λγk (xγk (0)− x̄(0)) + υγk , −pγk (1) = λγk bγk + χγk , (35)

and the following properties hold:

• ‖(aγk , bγk )‖ ≤ Lg , where Lg is the Lipschitz constant of g over C̃0(δ) × C̃1(δ), and
‖λγk‖ ≤ 1 for all k. The latter inequality gives a subsequence, we do not relabel, such
that λγk −→ λ ∈ [0, 1].

• Due to Theorem 4.7, we have, for k large enough,

(xγk (0), xγk (1)) ∈ int (C̃0(δ) × C̃1(δ)), and (xγk (0), xγk (1)) −→ (x̄(0), x̄(1)).

• We have pγk (0) −→ p̄(0) and pγk (1) −→ p̄(1).
• Owing to (22), in which d := xγk (1) ∈ [C1(k) ∩ (intC) ∩ Bδo(x̄(1))

]
for k sufficiently

large,we haveχγk ∈ NL
C1(k)

(xγk (1)) = NL
C1

(
xγk (1) + x̄(1) − x̄γk (1)

)
, for k large,where,

we recall that x̄γk (1) −→ x̄(1).
• Owing to (21), in which c := xγk (0) ∈ C0(k) ∩ Bδo(x̄(0)) for k large enough, it follows
that:

(i) If x̄(0) ∈ intC , then for k sufficiently large

vγk ∈ NL
C0(k)(xγk (0)) = NL

C0
(xγk (0)).

(i i) If x̄(0) ∈ bdryC , using that xγk (0) −→ x̄(0) and ρk −→ 0, then for k sufficiently

large,
(
xγk (0) + ρk

∇ψ(x̄(0))
‖∇ψ(x̄(0))‖

)
∈ Bδo(x̄(0)), and hence,

vγk ∈ NL
C0(k)

(xγk (0)) = NL
C0

(
xγk (0) + ρk

∇ψ(x̄(0))
‖∇ψ(x̄(0))‖

)
for k large.
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Therefore, along a subsequence of (γk)k , we do not relabel, we have

λγk (aγk , bγk ) −→ λ(a, b) ∈ λ∂L
� g(x̄(0), x̄(1)) and λγk (xγk (0)− x̄(0)) −→ 0.

Thus, taking the limit as k → ∞ in (35), and using (pγk (0), pγk (1)) −→ ( p̄(0), p̄(1)), we
obtain that (vγk , χγk )must converge to some (v, χ), as all the other terms in (35) converge. The
last two bullets, stated above, yield that v ∈ NL

C0
(x̄(0)) and χ ∈ NL

C1
(x̄(1)). Consequently,

the limit of (35) is equivalent to

( p̄(0),− p̄(1)) ∈ λ∂L
� g(x̄(0), x̄(1)) + [

NL
C0

(x̄(0)) × NL
C1

(x̄(1))
];

This terminates the proof of the transversality equation.

Step 5. The weak maximization condition.

By (27), (33)(b), and the transversality equations of Proposition 4.9, we have that

q̇γk = −(ωγk )
T pγk

weakly−−−−→
L1

−(ω̄)T p̄ and qγk (0) = λγk (uγk (0) − ū(0)). (36)

The uniform boundedness in L∞ of the sequences (pγk )k and (ωγk )k give that (q̇γk )k is
uniformly bounded in L∞, asserting the equicontinuity of (qγk )k . Moreover, the nontriviality
condition of Proposition 4.9 gives the uniform boundedness of the sequence (qγk )k . Hence,
by Arzelà-Ascoli theorem, the sequence (qγk )k admits a subsequence, we do not relabel, that
converges uniformly to an absolutely continuous function q satisfying q(0) = 0 (by (36)(b),
where λγk −→ λ and uγk (0) −→ ū(0) as k −→ ∞). Moreover, up to a subsequence, we
also obtain that

q̇γk

weakly−−−−→
L1

q̇. (37)

Hence, (36)(a) and the uniqueness of the L1-weak limit yield that

q̇(t) = −(ω̄(t))T p̄(t), t ∈ [0, 1] a.e. (38)

We proceed to study the convergence of the sequence of NBV -functions, (�γk )k , obtained
in Proposition 4.9. The maximization condition (iv), therein, implies that, for t ∈ [0, 1] a.e.,

�γk (t) = −qγk (t) + λγk (u̇γk (t) − ˙̄u(t))
︸ ︷︷ ︸

�γk (t)

. (39)

Without loss of generality, we can assume that (39) is satisfied for all t ∈ [0, 1]. In fact, if
λγk = 0, using the transversality conditions of Proposition 4.9 and that �γk ∈ NBV [0, 1],
we get that�γk (0) = −qγk (0) = 0 and�γk (1) = −qγk (1), and hence, by the right continuity
of �γk and the continuity of qγk , (39) is equivalent to �γk ≡ −qγk . If, however, λγk > 0,
then by modifying the values of (u̇γk − ˙̄u) on the set of Lebesgue measure zero, we have
(39) satisfied for all t ∈ [0, 1], and hence, �γk ∈ BV [0, 1] is right continuous on (0, 1), and
satisfies �γk (0) = qγk (0) and �γk (1) = 0. Furthermore, since λγk −→ λ and u̇γk strongly
converges in L2 to ˙̄u, the sequence (�γk )k strongly converges in L2 to � = 0.

We claim that (�γk )k , considered as a sequence of continuous linear functionals on
C([0, 1];Rm), admits a subsequence, we do not relabel, that converges weakly* to −q .
Since �γk satisfies (39), where the sequence of absolutely continuous functions (qγk )k con-
verges uniformly to q ∈ AC([0, 1];Rm) and, by (37), (q̇γk )k converges weakly in L1 to q̇,
then it is equivalent to show that the BV -sequence (�γk )k converges in C∗([0, 1];Rm) to
0. The uniform boundedness of the sequence (�γk )k shall follow once we show the uniform
boundedness of (�γk )k . For this latter, the nontriviality condition of Proposition 4.9, implies
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that the sequence (μo
γk

)k is uniformly bounded, and hence, it has a subsequence, we do not
relabel, that converges weakly* to a μo ∈ C⊕([0, 1];Rm). Moreover, by condition (v) of
Proposition 4.9 and Remark 4.8(i), ‖βγk (t)‖ ≤ 1, except on a set ofμo

γk
-measure zero. Thus,

using that

�γk (t) =
∫

[0,t]
βγk (s)μ

o
γk

(ds), ∀t ∈ (0, 1], and �γk (0) = 0, (40)

we obtain that the sequence (�γk )k is uniformly bounded, and so is the sequence (�γk )k .
Hence, to get that the bounded BV -sequence (�γk )k converges weakly* to 0, by the Banach-
Steinhaus theorem in [25, p.482], it is sufficient to show that

lim
k−→∞

∫ 1

0

〈
h(t), d�γk (t)

〉 = 0, ∀h ∈ C1([0, 1];Rm).

Fix h ∈ C1([0, 1];Rm). Using an integration by parts and that �γk ∈ NBV , we get
∫ 1

0
〈h(t), d�γk (t)〉 = 〈h(1), �γk (1)〉 − 〈h(0), �γk (0)〉 −

∫ 1

0

〈
ḣ(t), �γk (t)

〉
dt

=
[

−〈h(0), qγk (0)〉 −
∫ 1

0

〈
ḣ(t), �γk (t)

〉
dt

]

−−−−→
k−→∞ 0,

since (�γk )k strongly converges in L2 to 0, and qγk (0) −→ q(0) = 0. This terminates the
proof of the claim, that is,

�γk

weakly*−−−−−−−→
C∗([0,1];Rm )

−q. (41)

By [25, p. 484, #8], we also have that �γk (t) −→ −q(t), ∀t ∈ [0, 1].
Now define the signed measure μγk (dt) := βγk (t)μ

o
γk

(dt). From (40) we have

�γk (t) = μγk [0, t], ∀t ∈ (0, 1]. (42)

Using that μo
γk

weakly*−−−−→
k−→∞ μo, and that Proposition 4.9(v) holds true, then, by applying [38,

Proposition 9.2.1] to the following data:

• Aγk (t) := ∂>
u d(uγk (t),U (t) ∩ B̄δ(ū(t))) for all t ∈ [0, 1],

• A(t) := ∂>
u d(ū(t),U (t) ∩ B̄δ(ū(t))) for all t ∈ [0, 1],

• γγk := βγk , μγk := μo
γk

and μ0 := μo,

we obtain a Borel measurable function β : [0, 1] −→ R
m and μ ∈ C∗([0, 1];Rm) such that

μγk

weakly*−−−−→
k−→∞ μ, μ(dt) = β(t)μo(dt) and β(t) ∈ ∂>

u d(ū(t),U (t) ∩ B̄δ(ū(t))) μo a.e.

Since uγk converges uniformly to ū, and supp {μo
γk

} satisfies Proposition 4.9(v), we deduce
that

supp {μo} ⊂ A := {
t ∈ [0, 1] : (t, ū(t)) ∈ bdryGr

[
U (t) ∩ B̄δ(ū(t))

]}
. (43)

Adjust β(·) on the set of μo-measure zero to arrange

t ∈ A �⇒ β(t) ∈ ∂>
u d(ū(t),U (t) ∩ B̄δ(ū(t))),

and hence, using [38, Formula (9.17)], we have

β(t) ∈
[
conv N̄ L

U (t)∩B̄δ(ū(t))
(ū(t)) ∩ (B̄ \ {0})

]
, ∀t ∈ A. (44)
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Thus, by (41) and (42), we obtain that−dq(t) = μ(dt) = β(t)μo(dt). Using (38), we arrive
to

− dq(t) = (ω̄(t))T p̄(t)dt = β(t)μo(dt). (45)

Next, we decompose μo(dt) = m(t)dt + μs(dt) for some nonnegative L1-function m(·)
and some nonnegative Borel measure μs totally singular with respect to Lebesgue measure.
Clearly m(t) = 0, for all t ∈ Ac, and hence, (44) implies that

β(t)m(t) ∈ conv N̄ L
U (t)∩B̄δ(ū(t))

(ū(t)), ∀t ∈ [0, 1].
Using (45) we get that (ω̄(t))T p̄(t)dt = β(t)m(t)dt + β(t)μs(dt). This gives that
(ω̄(t))T p̄(t) = β(t)m(t), for t ∈ [0, 1] a.e. Therefore,

ω̄(t)T p̄(t) ∈ conv N̄ L
U (t)∩B̄δ(ū(t))

(ū(t)), ∀t ∈ [0, 1] a.e. (46)

In order to show the validity of the “In addition" part of the weak maximization condition,
we shall employ the following technical lemma whose proof follows from the local property
of the normal cones, the proximal normal inequality ([11, Proposition 1.1.5(a)]), and the fact
that the proximal, Mordukhovich, and Clarke normal cones coincide in our setting.

Lemma 4.12 Let F : [0, 1] ⇒ R
m be a lower semicontinuous multifunction with closed

and nonempty values and let h ∈ C([0, 1]; F). If there exist εo > 0 and r > 0 such that
F(t) ∩ B̄εo(h(t)) is r-prox-regular for all t ∈ [0, 1], then for any δ > 0 we have

conv (N̄ L
F(t)∩B̄δ(h(t))

(h(t))) = N P
F(t)∩B̄εo (h(t))

(h(t)), ∀t ∈ [0, 1].

Moreover, for all t ∈ [0, 1] and for all ζ ∈ conv (N̄ L
F(t)∩B̄δ(h(t))

(h(t))), we have

〈ζ, v − h(t)〉 ≤ ‖ζ‖
min{εo,2r} ‖v − h(t)‖2, ∀v ∈ F(t).

Now, for the proof of the “In addition" part, consider εo > 0 and r > 0 therein such that
U (t) ∩ B̄εo(ū(t)) is r -prox-regular for all t ∈ [0, 1]. From (46) and Lemma 4.12, we obtain
that for all t ∈ [0, 1] a.e.

〈
ω̄(t)T p̄(t), u − ū(t)

〉 ≤ ‖ω̄(t)T p̄(t)‖
min{εo,2r} ‖u − ū(t)‖2, for all u ∈ U (t).

Therefore, for a.e. t ∈ [0, 1],
〈
ω(t)T p(t), u

〉− ‖ω̄(t)T p̄(t)‖
min{εo,2r} ‖u − ū(t)‖2 ≤ 〈

ω̄(t)T p̄(t), ū(t)
〉
, for all u ∈ U (t).

This terminates the proof of the weak maximization condition.

Step 6. The nontriviality condition.

It is sufficient to prove its equivalent condition: ‖ p̄(1)‖+λ �= 0. Taking the limit as k −→ ∞
in the nontriviality condition of Proposition 4.9, and using the convergence of p̄γk (1) to p̄(1),
the uniform convergence of qγk to q , theweak* convergence ofμ

o
γk
toμo, and the convergence

of λγk to λ, we get that
1 = ‖ p̄(1)‖ + ‖q‖∞ + ‖μo‖T.V. + λ. (47)

We argue by contradiction. If p̄(1) = 0 and λ = 0, by (28) we obtain that p̄ = 0. Hence (38)
yields that q̇(t) = 0 for a.e. t ∈ [0, 1]. This gives that

β(t)μo(dt) = −dq(t) = 0 and q(t) = q(0) +
∫ t

0
q̇(τ )dτ = 0, ∀t ∈ [0, 1]. (48)
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Since, by (43) and (45), supp {μo} ⊂ A and β(t) �= 0 for all t ∈ A, the first equation of (48)
yields that μo = 0. Therefore, ‖ p̄(1)‖ + ‖q‖∞ + ‖μo‖T.V. + λ = 0 which contradicts (47).
This terminates the proof of the nontriviality condition, and then, the proof of the conditions
(i)-(vi) of Theorem 4.10 is completed.

For the “Furthermore” part of the theorem, assume that C1 = R
n . We need to prove that

λ �= 0. If not, then from the transversality condition (v), we get that p̄(1) ∈ NL
C1

(x̄(1)) = {0}.
This contradicts the nontriviality condition (i). ��

The following is an example of a problem (P) onwhich we apply the necessary optimality
conditions of Theorem 4.10 to find its optimal solution.

Example 4.13 We consider the following data for (P):

• The perturbation mapping f : R2 × R −→ R
2 is defined by

f ((x1, x2), u) = (−x1 − x2 − u, x1 − x2 + u).

• The function ψ : R2 −→ R is defined by ψ(x1, x2) := (x21 + x22 − 1)(x21 + x22 − 4), and
hence, the set C is the nonconvex and compact set

C := {(x1, x2) : (x21 + x22 − 1)(x21 + x22 − 4) ≤ 0}.
• The objective function g : R4 −→ R ∪ {∞} is defined by

g(x1, x2, x3, x4) :=
{

1
2 (x

2
3 + x24 − 1) (x3, x4) ∈ C,

∞ Otherwise.

• The function ϕ is the indicator function of C .
• The control multifunction is U (t) := [0, 1] for all t ∈ [0, π

2 ], C0 := {(1, 0)}, and
C1 := {(0, x2) : x2 ≥ 0}.

One can easily prove that the assumptions (A2)-(A4) are satisfied. Furthermore, as f is
globally Lipschitz on R

2 × R, g is globally Lipschitz on R
2 × C , and U is convex with

nonempty interior, we conclude that all the assumptions of Theorem 4.10 are satisfied. Since
that g vanishes on the unit circle and is strictly positive elsewhere in C , we may seek for (P)

an optimal solution (x̄, ū), if it exists, such that x̄ := (x̄1, x̄2) belongs to the unit circle, and
hence we have

{
x̄21 (t) + x̄22 (t) = 1∀t ∈ [0, π

2 ]; and x̄1(t) ˙̄x1(t) + x̄2(t) ˙̄x2(t) = 0 a.e.,

x̄(0)T = (1, 0) and x̄( π
2 )T = (0, 1).

(49)

Applying Theorem 4.10 to this optimal solution (x̄, ū) and using (24), we get the existence
of an adjoint vector p̄ := ( p̄1, p̄2) ∈ BV ([0, π

2 ];R2), a finite signed Radon measure ν̄ on
[
0, π

2

]
, ξ̄ ∈ L∞([0, π

2 ];R+), and λ ≥ 0 such that, when incorporating equations (49) into
(i)- (vi), these latter simplify to the following

(a) ‖ p̄( π
2 )‖ + λ = 1.

(b) The admissibility equation holds, that is, for t ∈ [0, π
2 ] a.e.,

{ ˙̄x1(t) = −x̄1(t) − x̄2(t) − ū + 6x̄1(t)ξ̄ (t),
˙̄x2(t) = x̄1(t) − x̄2(t) + ū + 6x̄2(t)ξ̄ (t).
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(c) The adjoint equation is satisfied, that is, for t ∈ [0, π
2 ],

d p̄(t) =
(
1 −1
1 1

)

p̄(t)dt + ξ̄ (t)

(
8x̄21 (t) − 6 8x̄1(t)x̄2(t)
8x̄1(t)x̄2(t) 8x̄22 (t) − 6

)

p̄(t)dt

− 6

(
x̄1(t)
x̄2(t)

)

d ν̄.

(d) The complementary slackness condition is valid, that is,

ξ̄ (t)( p̄1(t)x̄1(t) + p̄2(t)x̄2(t)) = 0, t ∈ [0, π
2

]
a.e.

(e) The transversality condition holds: − p̄( π
2 ) ∈ λ{(0, 1)} + {(α, 0) ∈ R

2 : α ∈ R}.4
(f) max{u( p̄2(t) − p̄1(t)) : u ∈ [0, 1]} is attained at ū(t) for t ∈ [0, π

2 ] a.e.
Combining (49) and (b), we deduce that

ξ̄ (t) = 1 + ū(t)(x̄1(t) − x̄2(t))

6
, ∀t ∈ [0, π

2 ]. (50)

On the other hand, employing (d) and (49)(a) in (c), yields that, for t ∈ [0, π
2 ],

{
d p̄1 = ( p̄1(t) − p̄2(t) − 6ξ̄ (t) p̄1(t))dt − 6x̄1(t)d ν̄,

d p̄2 = ( p̄1(t) + p̄2(t) − 6ξ̄ (t) p̄2(t))dt − 6x̄2(t)d ν̄.
(51)

To benefit from (f), we temporarily assume that

p̄2(t) < p̄1(t) for t ∈ [0, π
2 ] a.e. (52)

Then ū = 0, which gives using (50) that ξ̄ (t) = 1
6 for all t ∈ [

0, π
2

]
. Solving the two

differential equations of (b) and using (49), we conclude that

x̄(t)T = (cos t, sin t), ∀t ∈ [0, π
2 ].

Using (a), (d), (e), and (51), a simple calculation gives that
⎧
⎨

⎩

λ = 3
8 and p̄( π

2 ) = ( 12 ,− 3
8 ),

p̄(t)T = 1
2 (sin t,− cos t) on [0, π

2 ) and d ν̄ = 1
16 δ{π

2

} on [0, π
2 ],

where δ{a} denotes the unit measure concentrated on the point a. Note that for all t ∈ [0, π
2 ],

we have p̄2(t) < p̄1(t), and hence, the temporary assumption (52) is satisfied.
Therefore, the above analysis, realized via Theorem 4.10, produces an admissible pair

(x̄, ū), where
x̄(t)T = (cos t, sin t) and ū(t) = 0, ∀t ∈ [0, π

2 ],
which is optimal for (P).

5 Proofs of Theorems 4.1 and 4.7

Proof of Theorem 4.1. (i): Having a uniform bounded derivative in L2([0, 1];Rm), theW 1,2-
sequence uγk is equicontinuous. Since, by (A4.2), the compact sets U (t) are uniformly

4 The use of ∂L
�
g, instead of the usual ∂L g, in our transversality condition yields better information. Indeed,

if we use ∂L g, then we obtain in the transversality condition the set λ{(0, 1 − β) : β ≥ 0} instead of the
strictly smaller set λ{(0, 1)}.
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bounded, then uγk is uniformly bounded inC([0, 1];Rm), and hence, Arzelà-Ascoli theorem
asserts that uγk admits a subsequence, we do not relabel, that converges uniformly to an
absolutely continuous function u with u(t) ∈ U (t) for all t ∈ [0, 1]. As u̇γk is uniformly
bounded in L2([0, 1];Rm), then, up to a subsequence, it is weakly convergent in L2. The
boundedness of (uγk (0))k then yields that the L

2-weak limit of u̇γk is u̇, and whence, u ∈ W.
The fact that x is the unique solution to (D) corresponding to (x0, u), and the proceeding
statements of this part, follow immediately from Theorem 3.9(i i).

(i i): Now, assume that cγk ∈ C(k) for k ≥ ko, where ko is the rank in Theorem 3.11.
Let us first show that (ξγk )k has uniform bounded variations. Since ψ and ∇ψ are Lip-

schitz on C and xγk is Lipschitz for k ≥ ko, we deduce that, for k ≥ ko, the function
ξγk (·)∇ψ(xγk (·)), where ξγk is defined in (16), is Lipschitz continuous on [0, 1]. Similarly,
the Lipschitz property on C × (U + ρ̃ B̄) of f (·, ·) (and then of fΦ(·, ·)) and the fact that
(xγk , uγk ) is in W 1,∞ × W 1,2, yield that fΦ(xγk (·), uγk (·)) is in W 1,2([0, 1];Rn). Hence,

ζγk (t) := d

dt
fΦ(xγk (t), uγk (t)),

exists for almost all t ∈ [0, 1]. Bywriting fΦ = ( f 1Φ, · · · , f nΦ)
T
, and using that xγk (t) ∈ intC

(for all t ∈ [0, 1]), and uγk (t) ∈ U (t) ⊂ U (for t ∈ [0, 1] a.e.), it follows from the proof of
[40, Theorem 2.1], that

ζ iγk (t) ∈ 〈∂ f iΦ(xγk (t), uγk (t)), (ẋγk (t), u̇γk (t))〉, t ∈ [0, 1] a.e., ∀i = 1, · · · , n.

Since (‖u̇γk‖2)k is assumed to be bounded, and, by Theorem 3.11, (‖ẋγk‖∞)k is bounded,
then the sequence (‖ζγk‖2)k is bounded by some Mζ > 0 that depends on M̄ , M̄ψ , η, and
the bound of (‖u̇γk‖2)k .

As fΦ(xγk (·), uγk (·)) ∈ W 1,2([0, 1];Rn), the right hand side of (Dγk ) yields that ẋγk

is in W 1,2([0, 1];Rn), and so is the function |〈∇ψ(xγk (·)), ẋγk (·)〉|. This also implies that
ξγk ∈ W 2,2([0, 1];R+), due to

ξ̇γk (t) = γ 2
k e

γkψ(xγk (t))〈∇ψ(xγk (t)), ẋγk (t)〉.
Next, calculating ẍγk through (Dγk ) in terms of ζγk and ẋγk , and using the fact that for
h ∈ AC([0, 1];R) we have

d

dt
|h(t)| =

(
d

dt
h(t)

)

sign(h(t)) a.e. t ∈ (0, 1), 5

it follows that there exist measurable functions ϑ1
γk

and ϑ2
γk

whose values at t are in

∂2ψ(xγk (t)), for almost all t ∈ [0, 1], such that, for t ∈ [0, 1] a.e., we have
d

dt
|〈∇ψ(xγk (t)), ẋγk (t)〉|

=
[〈

ϑ1
γk

(t)ẋγk (t), ẋγk (t)
〉
+ 〈∇ψ(xγk (t)), ẍγk (t)

〉]
α(t)

︷ ︸︸ ︷
sign(〈∇ψ(xγk (t)), ẋγk (t)〉)

=
[〈

ϑ1
γk

(t)ẋγk (t), ẋγk (t)
〉
+ 〈∇ψ(xγk (t)), ζγk (t) − ξγk (t)ϑ

2
γk

(t)ẋγk (t)〉
]
α(t)

−〈γkξγk (t)〈∇ψ(xγk (t)), ẋγk (t)〉︸ ︷︷ ︸

ξ̇γk (t)

∇ψ(xγk (t)),∇ψ(xγk (t))〉α(t)

5 The function sign : R −→ R is defined by: sign(x) = x
|x | for x �= 0, and 0 for x = 0.
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[3pt] =
[〈

ϑ1
γk

(t)ẋγk (t), ẋγk (t)
〉
+
〈
∇ψ(xγk (t)), ζγk (t) − ξγk (t)ϑ

2
γk

(t)ẋγk (t)
〉]

α(t)

−γkξγk (t) |〈∇ψ(xγk (t)), ẋγk (t)〉| ‖∇ψ(xγk (t))‖2.
Integrating both sides on [0, 1] and using the boundedness of (‖ẋγk‖∞)k and (‖ξγk‖∞)k (by
Theorem 3.11), and assumption (A2.1), we get the existence of a constant M̃1 depending on
M̄ , Mψ , M̄ψ , η, and Mζ such that

∫ 1

0
|ξ̇γk (t)|‖∇ψ(xγk (t))‖2dt ≤ M̃1.

Using (3) and assumption (A2.2), it follows that
∫ 1

0
|ξ̇γk (t)|dt =

∫ 1

0
γ 2
k e

γkψ(xγk (t))|〈∇ψ(xγk (t)), ẋγk (t)〉|dt

=
∫

{t :‖∇ψ(xγk (t))‖≤η}
γ 2
k e

γkψ(xγk (t))|〈∇ψ(xγk (t)), ẋγk (t)〉|dt

+
∫

{t :‖∇ψ(xγk (t))‖>η}
γ 2
k e

γkψ(xγk (t))|〈∇ψ(xγk (t)), ẋγk (t)〉|
‖∇ψ(xγk (t))‖2
‖∇ψ(xγk (t))‖2

dt

≤ η

(

M̄ + 2M̄ M̄ψ

η

)

γ 2
k e

−γkε + M̃1

η2
≤ η

(

M̄ + 2M̄ M̄ψ

η

)

+ M̃1

η2
=: M̃2,

for k sufficiently large, where M̃2 depends on the given constants, M̄ , M̄ψ , Mψ , η, and
on the bound of (‖u̇γk‖2)k . Therefore, the sequence ξγk satisfies, for k sufficiently large,
V 1
0 (ξγk ) ≤ M̃2.

On the other hand, by Theorem 3.11, ‖ξγk‖∞ ≤ 2M̄
η

for all k ≥ ko. Hence, by Helly first
theorem, ξγk admits a pointwise convergent subsequence, we do not relabel, whose limit is

some function ξ̃ ∈ BV ([0, 1];R+) with ‖ξ̃‖∞ ≤ 2M̄
η

and V 1
0 (ξ̃ ) ≤ M̃2. Being pointwise

convergent to ξ̃ and uniformly bounded in L∞, ξγk strongly converges in L2 to ξ̃ . However,
by part(i) of this theorem, ξγk converges weakly in L

2 to ξ , hence, ξ̃ = ξ . Thus, ξγk converges
pointwise and strongly in L2 to ξ , and ξ ∈ BV ([0, 1];R+) with

V 1
0 (ξ) ≤ M̃2. (53)

As f is M-Lipschitz on C × (U+ ρ̃ B̄), u ∈ W, ∇ψ is Lipschitz, and ξ ∈ BV , then equation
(7), which is satisfied by (x, u, ξ), now holds for all t ∈ [0, 1]. This yields that (8) is also
valid for all t ∈ [0, 1], and that ẋ ∈ BV ([0, 1];Rn).

It remains to show that ẋγk has uniform bounded variations and converges pointwise and
strongly in L2 to ẋ ∈ BV ([0, 1];Rn). Since ξγk (·)∇ψ(xγk (·)) is Lipschitz, uγk ∈ W, and f
is M-Lipschitz on C × (U + ρ̃ B̄), then (Dγk ) holds for all t ∈ [0, 1], that is,

ẋγk (t) = fΦ(xγk (t), uγk (t)) − ξγk (t)∇ψ(xγk (t)), ∀ t ∈ [0, 1].
Hence, using part(i) of this theorem, the continuity of fΦ(·, ·), that the sequence
(xγk , uγk , ξγk )k has uniform bounded variations and converges pointwise to (x, u, ξ), and
that (x, u, ξ) satisfies (7) for all t ∈ [0, 1], we obtain that the sequence ẋγk is of bounded
variations and converges pointwise to ẋ ∈ BV ([0, 1];Rn). Since (‖ẋγk‖∞)k is bounded, we
conclude that the sequence ẋγk also converges strongly in L2 to ẋ . Therefore, xγk converges
strongly in the norm topology of W 1,2 to x . ��
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Proof of Theorem 4.7.We consider k large enough so thatC0(k) ⊂ C̃0(δ) andC1(k) ⊂ C̃1(δ),
see (19). By Corollary 4.2, x̄γk −→ x̄ strongly in W 1,2, and hence, for k sufficiently large,
x̄γk (t) ∈ B̄δ(x̄(t)) for all t ∈ [0, 1], and ȳγk (1) ∈ [−δ, δ], where

ȳγk (t) :=
∫ t

0
‖ ˙̄xγk (s) − ˙̄x(s)‖2ds.

Thus, the triplet state (x̄γk , ȳγk , z̄γk := 0) solves (Dγk ) for ((c̄k, 0, 0), ū), with x̄γk (t) ∈
B̄δ(x̄(t)) and ū(t) ∈ U (t) ∩ B̄δ(ū(t)), for all t ∈ [0, 1], and (x̄γk (1), ȳγk (1), z̄γk (1) = 0) ∈
C1(k)×[−δ, δ]×[−δ, δ]. Therefore, for k sufficiently large, (x̄γk , ȳγk , 0, ū) is an admissible
quadruplet for (Pγk ). Using the continuity of g on C̃0(δ) × C̃1(δ) and the definition of
J (x, u, z, u), we obtain that J (x, u, z, u) is bounded from below. Hence, for k large enough,
inf(Pγk ) is finite.

Fix k sufficiently large so that inf(Pγk ) is finite. Let (xnγk , y
n
γk

, znγk , u
n
γk

)n ∈
W 1,2([0, 1];Rn)× AC([0, 1];R)× AC([0, 1];R)×W be a minimizing sequence for (Pγk ),
that is, the sequence is admissible for (Pγk ) and

lim
n−→∞ J (xnγk , y

n
γk

, znγk , u
n
γk

) = inf(Pγk ). (54)

Since for each n, xnγk solves (Dγk ) for (xnγk (0), u
n
γk

), and (xnγk (0))n ∈ C0(k) ⊂ C , then,
by (13), we have that the sequence (xnγk )n is uniformly bounded in C([0, 1];Rn) and the

sequence (ẋnγk )n is uniformly bounded in L2. On the other hand, from (A4.2), we have that
sets U (t) are compact and uniformly bounded, then, the sequence (unγk )n , which is in W,
is uniformly bounded in C([0, 1];Rm). Moreover, its derivative sequence, (u̇nγk )n , must be

uniformly bounded in L2. Indeed, if this is not true, then there exists a subsequence of u̇nγk ,

we do not relabel, such that lim
n−→∞ ‖u̇nγk‖2 = ∞. Using that g is bounded on C̃0(δ) × C̃1(δ),

it follows that

J (xnγk , y
n
γk

, znγk , u
n
γk

) ≥ min
(c1,c2)∈C̃0(δ)×C̃1(δ)

g(c1, c2) + 1

2
znγk (1)

= min
(c1,c2)∈C̃0(δ)×C̃1(δ)

g(c1, c2) + 1

2
‖u̇nγk − ˙̄u‖22

and hence, lim
n−→∞ J (xnγk , y

n
γk

, znγk , u
n
γk

) = ∞, contradicting (54). Thus, also (u̇nγk )n is uni-

formly bounded in L2. Therefore, by Arzelà-Ascoli theorem, along a subsequence (we
do not relabel), the sequence (xnγk , u

n
γk

)n converges uniformly to a pair (xγk , uγk ) and the

sequence (ẋnγk , u̇
n
γk

)n converges weakly in L2 to the pair (ẋγk , u̇γk ). Hence, (xγk , uγk ) ∈
W 1,2([0, 1];Rn) × W. Moreover, the following two inequalities hold

‖ẋγk − ˙̄x‖22 ≤ lim inf
n−→∞ ‖ẋnγk − ˙̄x‖22 and ‖u̇γk − ˙̄u‖22 ≤ lim inf

n−→∞ ‖u̇nγk − ˙̄u‖22. (55)

Since C0(k), C1(k), B̄δ(x̄(t)) and U (t) ∩ B̄δ(ū(t)) are closed for all t ∈ [0, 1], and from
the uniform convergence, as n −→ ∞, of the sequence (xnγk , u

n
γk

) to (xγk , uγk ), we get that

the inclusions xγk (0) ∈ C0(k) and xγk (1) ∈ C1(k), and xγk (t) ∈ B̄δ(x̄(t)), and uγk (t) ∈
U (t) ∩ B̄δ(ū(t)), for all t ∈ [0, 1]. To prove that xγk is the solution of (Dγk ) corresponding
to (xγk (0), uγk ), we first use that xnγk is the solution of (Dγk ) for (xnγk (0), u

n
γk

), that is, for
t ∈ [0, 1],

xnγk (t) = xnγk (0) +
∫ t

0

[
fΦ(xnγk (s), u

n
γk

(s)) − γke
γkψ(xnγk (s))∇ψ(xnγk (s))

]
ds.
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Using that (xnγk (t), u
n
γk

(t)) ∈ [C ∩ B̄δ(x̄(t))] × [U (t) ∩ B̄δ(ū(t))], fΦ is Lipschitz on [C ∩
B̄δ(x̄)] × [(U + ρ̃ B̄) ∩ B̄δ(ū)], and (xnγk , u

n
γk

) converges uniformly to (xγk , uγk ), then, upon
taking the limit, as n −→ ∞, in the last equation we conclude that (xγk , uγk ) satisfies the
same equation, that is,

ẋγk (t) = fΦ(xγk (t), uγk (t)) − γke
γkψ(xγk (t))∇ψ(xγk (t)), t ∈ [0, 1] a.e.

We define for all t ∈ [0, 1],

yγk (t) :=
∫ t

0
‖ẋγk (τ ) − ˙̄x(τ )‖2dτ and zγk (t) :=

∫ t

0
‖u̇γk (τ ) − ˙̄u(τ )‖2dτ.

Clearly we have:

• yγk ∈ AC([0, 1];R), ẏγk (t) = ‖ẋγk (t) − ˙̄x(t)‖2, t ∈ [0, 1] a.e., and yγk (0) = 0.
• zγk ∈ AC([0, 1];R), żγk (t) = ‖u̇γk (t) − ˙̄u(t)‖2, t ∈ [0, 1] a.e., and zγk (0) = 0.

Moreover, since ‖ẋnγk − ˙̄x‖22 = ynγk (1) ∈ [−δ, δ] and ‖u̇nγk − ˙̄u‖22 = znγk (1) ∈ [−δ, δ], the two
inequalities of (55) yield that

yγk (1) ∈ [−δ, δ] and zγk (1) ∈ [−δ, δ]. (56)

Hence, (xγk , yγk , zγk , uγk ) is admissible for (Pγk ). Now using (54) and the second inequality
of (55), it follows that

inf(Pγk ) = lim
n−→∞ J (xnγk , y

n
γk

, znγk , u
n
γk

)

= lim
n−→∞

(

g(xnγk (0), x
n
γk

(1)) + 1

2

(
‖unγk (0) − ū(0)‖2 + znγk (1) + ‖xnγk (0) − x̄(0)‖2

))

=g(xγk (0), xγk (1))+
1

2
‖uγk (0) − ū(0)‖2+ 1

2
lim inf
n−→∞ ‖u̇nγk − ˙̄u‖22 + 1

2
‖xγk (0) − x̄(0)‖2

≥g(xγk (0), xγk (1)) + 1

2
‖uγk (0) − ū(0)‖2 + 1

2
‖u̇γk − ˙̄u‖22 + 1

2
‖xγk (0) − x̄(0)‖2

= J (xγk , yγk , zγk , uγk ).

Therefore, for each k, large enough, (xγk , yγk , zγk , uγk ) is optimal for (Pγk ).
AsRemark 4.5 asserts that, for k large,C0(k) ⊂ C(k) ⊂ C , then, Lemma 3.6 andTheorem

3.9(i) yield that the sequence (xγk , ξγk )k , where ξγk is given via (16), admits a subsequence,
not relabeled, having (xγk )k converging uniformly to some x ∈ W 1,2([0, 1];Rn)with images
in C , (ẋγk , ξγk )k converging weakly in L2 to (ẋ, ξ) and ξ supported on I 0(x).

Now, consider the sequence (uγk )k , which is inW. It has a uniformly bounded derivative
in L2. In fact, the admissibility of (x̄γk , ȳγk , 0, ū), and the optimality of (xγk , yγk , zγk , uγk )

for (Pγk ), imply that

J (xγk , yγk , zγk , uγk ) ≤ g(x̄γk (0), x̄γk (1)) + 1

2
‖x̄γk (0) − x̄(0)‖2. (57)

This, together with the continuity of g on C̃0(δ) × C̃1(δ), the uniform boundedness of the
sequences (xγk )k and (x̄γk )k , and the boundedness of U (0), imply that for some M̂ > 0 we
have that

‖u̇γk − ˙̄u‖22 ≤ 2
(
g(x̄γk (0), x̄γk (1)) − g(xγk (0), xγk (1)

)+ ‖x̄γk (0) − x̄(0)‖2
− ‖uγk (0) − ū(0)‖2 − ‖xγk (0) − x̄(0)‖2 ≤ M̂ .
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Therefore, (uγk )k has uniformly bounded derivative in L2. Now since in additionwe have that
xγk (0) ∈ C0(k) ⊂ C(k), we are in a position to apply Theorem 4.1. We obtain a subsequence
(not relabeled) of uγk , and u ∈ W such that (xγk , uγk ) converges uniformly to (x, u), u̇γk

converges weakly in L2 to u̇, all the conclusions of Theorem 3.11 hold including that xγk (t) ∈
intC for all t ∈ [0, 1], (ẋγk , ξγk ) converges strongly in L2 to (ẋ, ξ), ẋ ∈ BV ([0, 1];Rn),
ξ ∈ BV ([0, 1];R+), and, for all t ∈ [0, 1], (x, u, ξ) satisfies (7)-(8) and x uniquely solves
(D) for u, that is,
{
ẋ(t) = fΦ(x(t), u(t)) − ξ(t)∇ψ(x(t)) ∈ f (x(t), u(t)) − ∂ϕ(x(t)), ∀ t ∈ [0, 1],
x(0) ∈ C0 ∩ B̄δo(x̄(0)).

Moreover, we have
‖u̇ − ˙̄u‖22 ≤ lim inf

k−→∞ ‖u̇γk − ˙̄u‖22. (58)

We shall show that (x, u) is admissible for (P). Since ẋγk converges strongly in L2 to ẋ , and
using (56) and (58), we have:

• ‖ẋ − ˙̄x‖22 = lim
k−→∞ ‖ẋγk − ˙̄x‖22 = lim

k−→∞ yγk (1)
(56)∈ [−δ, δ].

• ‖u̇ − ˙̄u‖22
(58)≤ lim inf

k−→∞ ‖u̇γk − ˙̄u‖22 = lim inf
k−→∞ zγk (1)

(56)∈ [−δ, δ].

Hence, ‖ẋ − ˙̄x‖22 ≤ δ and ‖u̇ − ˙̄u‖22 ≤ δ. Since xγk (1) ∈ C1(k), (20)(b) implies that
x(1) ∈ C1 ∩ B̄δo(x̄(0)). Furthermore, the two inclusions xγk (t) ∈ B̄δ(x̄(t)) and uγk (t) ∈
U (t) ∩ B̄δ(ū(t)), for all t ∈ [0, 1], together with the uniform convergence of (xγk , uγk ) to
(x, u), give that x(t) ∈ B̄δ(x̄(t)) and u(t) ∈ U (t) ∩ B̄δ(ū(t)), for all t ∈ [0, 1]. Therefore,
(x, u) is admissible for (P). Hence, the optimality of (x̄, ū) for (P) yields that

g(x̄(0), x̄(1)) ≤ g(x(0), x(1)). (59)

Now, the uniform convergence of x̄γk to x̄ , (57), (59), the continuity of g, and the convergence
of xγk (0) to x(0), imply that

u(0) = ū(0) and lim inf
k−→∞

( ‖u̇γk − ˙̄u‖22
) = 0, and (60)

x(0) = x̄(0) and g(x̄(0), x̄(1)) = g(x(0), x(1)). (61)

The equality (60) gives the existence of a subsequence of uγk , we do not relabel, such that
u̇γk converges strongly in L2 to ˙̄u. It results that uγk converges uniformly to ū, and hence,
u = ū. Consequently, uγk converges strongly inW to ū. Moreover, as u = ū, the functions x
and x̄ solve the dynamic (D) with the same control ū and initial condition, see (61), hence,
by the uniqueness of the solution of (D) we have x = x̄ . Using Lemma 3.5, we obtain that
also ξ = ξ̄ . Therefore,

xγk

uniformly−−−−−−−→
C([0,1];Rn)

x̄ and (ẋγk , ξγk )
strongly−−−−−−−−−−→

L2([0,1];Rn×R+)
( ˙̄x, ξ̄ ).

This yields that (yγk , zγk ) −→ (0, 0) in the strong topology of W 1,1([0, 1];R+ × R
+).

Since xγk (1) ∈ [(
C1 ∩ B̄δo(x̄(1))

)− x̄(1) + x̄γk (1)
] ∩ (intC) and x̄γk (1) converges to

x̄(1), it follows that xγk (1) ∈ [ (
C1 ∩ B̄δo(x̄(1))

) + ρ̃B
] ∩ (intC), for k sufficiently large.

On the other hand, the definition of C0(k) and the convergence of ρk to 0 yield that, for k
large enough, xγk (0) ∈ [ (

C0 ∩ B̄δo(x̄(0))
) + ρ̃B

] ∩ (intC). This terminates the proof of
Theorem 4.7. ��
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