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Abstract
This paper conducts sensitivity analysis of random constraint and variational systems related
to stochastic optimization and variational inequalities. We establish efficient conditions
for well-posedness, in the sense of robust Lipschitzian stability and/or metric regularity,
of such systems by employing and developing coderivative characterizations of well-
posedness properties for random multifunctions and efficiently evaluating coderivatives of
special classes of random integral set-valued mappings that naturally emerge in stochastic
programming and stochastic variational inequalities.
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1 Introduction

Sensitivity analysis has attracted the attention of many researchers and users in the areas of
optimization, variational analysis, and related disciplines who are interested in understand-
ing the behavior of feasible and optimal solutions under perturbations of the initial data.
Such perturbations should be taken into account due to “always present” errors in the given
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data. The literature on sensitivity analysis for various classes of optimization-related prob-
lems in deterministic frameworks is enormous; see, e.g., [1, 13] and the references therein.
To the best of our knowledge, much less has been done in these directions for stochastic
problems; we refer the reader to [22] for a very recent account.

Variational analysis offers natural approaches to the study of sensitivity of parametric
sets of feasible and optimal solutions to optimization-related and equilibrium problems with
respect to parameter perturbations. Among such approaches, we emphasize those based
on generalized differentiation of usually set-valued parameter-dependent solution maps.
Efficient results of this type for robust Lipschitzian stability of solution maps associated
with deterministic constraint and variational systems were developed in [13, 15] based on
the coderivative concept for set-valued mappings (multifunctions) introduced in [10]. This
approach is based on the complete characterization of robust Lipschitzian stability of gen-
eral closed-graph multifunctions (and equivalent properties of metric regularity and linear
openness of inverse mappings) obtained in [12] and known as the Mordukhovich criterion
[21]. Due to the well-developed calculus rules and computations of coderivatives, this crite-
rion has been broadly applied to the sensitivity analysis of various deterministic constraint
and variational systems; see [13, 15] and the references therein.

The situation is much more involved for random multifunctions in all the aspects:
coderivative calculus, a variety of Lipschitzian properties, and their coderivative characteri-
zations. Various results in these directions for general classes of expected-integral mappings
have been recently obtained in our papers [17, 18]. For the reader’s convenience, the major
results obtained therein, which are needed in what follows, will be briefly reviewed in the
next section.

The main goal of this paper is to elaborate and further develop the aforementioned results
for general random multifunctions in order to apply them to the sensitivity analysis of struc-
tured random constraint and variational systems that appear in various models of stochastic
optimization and stochastic variational inequalities with applications to the well-posedness
of such systems in the sense of their robust Lipschitzian stability and/or metric regularity.

The rest of the paper is organized as follows. In Section 2 we overview the major con-
structions and results of variational analysis, generalized differentiation, random measurable
multifunctions and their integration, which are largely used in the formulation and derivation
of the main results of the paper.

Section 3 is devoted to various Lipschitzian properties of random normal integrands
and the corresponding expected integral multifunctions. Using coderivatives, we establish
efficient conditions ensuring these properties, which are significant for the subsequent
material.

In Section 4 we conduct a coderivative-based sensitivity analysis for a general class of
stochastic constraint systems as well as for their various specifications. Our approach is
based on coderivative evaluations (upper estimates) for such parametric systems in terms
of the initial data with further applications of coderivative conditions ensuring their well-
posedness properties such as Lipschitzian stability and metric regularity.

Section 5 concerns stochastic variational systems, which are described by stochastic
generalized equations involving expected integral multifunctions and encompass, in partic-
ular, stochastic variational inequalities. We first evaluate coderivatives of solution maps for
such systems in terms of their initial data and then use these calculations to derive efficient
conditions for their well-posedness properties based on coderivative characterizations.

Section 6 provides a coderivative-based sensitivity analysis of solution maps to stochas-
tic constraint and variational systems in the case where the random integrand enjoys the
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integrable Lipschitz-like property being also single-valued at the reference point. Finally,
in Section 7 we apply the obtained results to explicit coderivative evaluations for station-
ary point maps in stochastic programming and to the derivation of necessary optimality
conditions in stochastic mathematical programs with equilibrium constraints.

2 Preliminaries from Variational Analysis and Set-Valued Integration

In this section we present some background from variational and set-valued analysis needed
in what follows; see books [2, 13, 21] for more details and references. Throughout the paper
we use standard notation, which can be found in these books. Recall that IN := {1, 2, . . .}
and that the extended real line is denoted by R := [−∞, +∞] with the usual convention of
(+∞)+ (−∞) := +∞ and 0 · (±∞) := 0. For x ∈ R

n and r > 0, the closed ball of radius
r centered at x is denoted by Br (x), while the unit closed ball is written as B. The symbol
� stands for the vector and matrix transposition.

2.1 Variational Analysis and Generalized Differentiation

Here we recall some major notions of generalized differentiation for sets, set-valued map-
pings/multifunctions, and extended-real-valued functions that are broadly employed in the
paper.

Given C ⊆ R
n, the (Fréchet) regular normal cone to x ∈ C is defined by

̂N(x;C) :=
{

x∗ ∈ R
n
∣

∣

∣ lim sup
u

C→x

〈

x∗, u − x

‖u − x‖
〉

≤ 0
}

, (2.1)

where the symbol ‘y
C→ x’ means that y → x with y ∈ C. We put ̂N(x; C) := ∅ if x /∈ C.

The (Mordukhovich) limiting normal cone to C at x ∈ R
n is

N(x;C) := Lim sup
u→x

̂N(u;C), (2.2)

where for any multifunction F : Rn →→ R
m the symbol ‘Lim sup’ stands for the (Painlevé-

Kuratowski) outer limit of F at x defined by

Lim sup
u→x

F (u) := {y ∈ R
m
∣

∣ ∃ uk → x, yk → y, yk ∈ F(uk) as k ∈ IN
}

. (2.3)

The set C is called normally regular at x ∈ C if ̂N(x; C) = N(x;C).
Given a multifunction F : Rn →→ R

m, denote its graph and kernel by

gph F := {(x, y) ∈ R
n × R

m
∣

∣ y ∈ F(x)
}

and kerF := {x ∈ R
n
∣

∣ 0 ∈ F(x)
}

.

The regular coderivative and limiting coderivative of F at (x, y) ∈ gphF are defined
for all y∗ ∈ R

m via the corresponding normal cone (2.1) and (2.2) to the graph of F by,
respectively,

̂D∗F(x, y)(y∗) := {x∗ ∈ R
n
∣

∣ (x∗, −y∗) ∈ ̂N((x, y); gph F
)}

, (2.4)

D∗F(x, y)(y∗) := {x∗ ∈ R
n
∣

∣ (x∗, −y∗) ∈ N
(

(x, y); gph F
)}

, (2.5)
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where y is dropped if F is a singleton at x, i.e., F(x) = {y}. From (2.2) we have the limiting
representation of (2.5) via (2.4) :

D∗F(x, y)(y∗) = Lim sup

(v,w)
gphF−→(x,y)

w∗→y∗

̂D∗F(v,w)(w∗), y∗ ∈ R
m. (2.6)

Given now an extended-real-valued function f : Rn → R, assume in what follows that it
is proper, i.e., f (x) > −∞ for all x ∈ R

n and its domain domf := {x ∈ X
∣

∣ f (x) < +∞}
is nonempty. Considering the epigraph epif := {(x, α) ∈ R

n × R | f (x) ≤ α} of f , we
define its (limiting) subdifferential at x ∈ domf geometrically by

∂f (x) := {x∗ ∈ R
n
∣

∣ (x∗, −1) ∈ N
(

(x, f (x)); epif
)}

, (2.7)

while referring the reader to [13, 15, 21] for various limiting analytic representations of (2.7)
as well as comprehensive calculus rules for this subdifferential and the associated limiting
constructions (2.2) and (2.5). Observe that if a mapping F : Rn → R

m is single-valued and
locally Lipschitzian around x, then we have the coderivative scalarization formula hold for
all y∗ ∈ R

m:

D∗F(x)(y∗) = ∂〈y∗, F 〉(x) with 〈y∗, F 〉(·) := 〈y∗, F (·)〉. (2.8)

Along with the (first-order) subdifferential (2.7), consider the second-order subdifferen-
tial (or generalized Hessian) of f : Rn → R at x ∈ domf relative to x∗ ∈ ∂f (x) introduced
in [11] by

∂2f (x, x∗)(v∗) = (D∗∂f
)

(x, x∗)(v∗), v∗ ∈ R
n. (2.9)

Dealing with extended-real-valued functions of two variables f : Rn ×R
q → R, we use the

partial second-order subdifferential of f with respect to x at (x̄, z̄) relative to ȳ ∈ ∂xf (x̄, z̄)

defined by
∂2
xf (x̄, z̄, ȳ)(u∗) := (D∗∂xf

)

(x̄, z̄, ȳ)(u∗), (2.10)

where ∂xf (x, z) := ∂fz(x) with fz := f (·, z); see [19]. Note that both second-order
constructions (2.9) and (2.10) enjoy well-developed calculus rules and are efficiently com-
putable for broad classes of functions encountered in variational analysis and optimization;
see [13, 15, 19] and the references therein.

Next we recall the two interrelated well-posedness properties of multifunctions, which
play a fundamental role in many aspects of variational analysis, optimization, and appli-
cations. They are both studied and largely used in the paper. We say that F : Rn →→ R

m

is Lipschitz-like around (x, y) ∈ gph F (or satisfies the Aubin pseudo-Lipschitz property
around this point) if there exist a constant � ≥ 0 and neighborhoods U of x and V of y such
that

F(u) ∩ V ⊆ F(v) + �‖u − v‖B for all u, v ∈ U . (2.11)

A complete characterization of the Lipschitz-like property of closed-graph multifunctions F

around (x, y) and the precise calculations of the exact bound lipF(x, y), i.e., the infimum of
moduli � over neighborhood U and V in (2.11), are given by the Mordukhovich coderivative
criterion

D∗F(x, y)(0) = {0} with lipF(x, y) = ‖D∗F(x, y)‖ (2.12)

in terms of the limiting coderivative (2.5) and its norm as a positive homogeneous multi-
function. Another well-posedness property used in this paper is the metric regularity of F

around (x, y) ∈ gph F defined as

dist
(

u; F−1(v)
) ≤ κ dist

(

v; F(u)
)

for all u ∈ U and v ∈ V (2.13)
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for some constant κ ≥ 0 and neighborhoods U of x and V of y with regF(x, y) stand-
ing for the exact bound (supremum) of κ over U and V in (2.13). As is well known in
variational analysis, the Lipschitz-like property of F around (x, y) is equivalent to the met-
ric regularity of the inverse mapping F−1 around (y, x) with the exact bound relationship
lipF(x, y) · regF−1(y, x) = 1. Thus the coderivative criterion (2.12) yields the metric
regularity characterization:

kerD∗F(x, y) = {0} with regF(x, y) = ‖D∗F(x, y)‖−1. (2.14)

Since the coderivatives in (2.12) and (2.14) are robust and possess full calculus, both char-
acterizations are broadly used in variational analysis, optimization, and their applications;
see [13, 15, 21] for more details and references.

2.2 Measurable Multifunctions and Expected-Integral Mappings

In the second part of this section, we review some required classical notions and results on
measurable multifunctions and their selections, as well as more recent ones dealing with
expected-integral functionals and set-valued mappings. Throughout the paper, (T ,A, μ) is
a complete finite measure space. To avoid confusion, we use special font (e.g., v,w , x , y, z,
etc.) to designate functions defined on T . For any p ∈ [1, +∞], denote by Lp(T ,Rn)

the sets of all (equivalence classes by the relation ‘equal almost everywhere’) measurable
functions x such that ‖x (·)‖p is integrable for p ∈ [1, +∞) and measurable essentially
bounded functions for p = ∞. The norm in Lp(T ,Rn) is denoted by ‖ · ‖p . We identify
points in R

n with constant functions in Lp(T ,Rn) and we so have

‖x − x ‖p : =
(∫

T

‖x − x (t)‖pμ(dt)

)1/p

as p ∈ [1, +∞),

‖x − x ‖∞ : = ess sup
t∈T

‖x − x (t)‖ for x ∈ R
n and x ∈ Lp(T ,Rn).

Recall that a set-valued mapping M : T →→ R
n is measurable if for every open set

U ⊆ R
n the set M−1(U) := {t ∈ T | M(t) ∩ U �= ∅} is measurable, i.e., M−1(U) ∈ A.

The mapping M is graph measurable if gph M ∈ A ⊗ B(Rn), where B(Rn) is the Borel
σ -algebra, i.e., the σ -algebra generated by all open sets of Rn. Since the space (T ,A, μ)

is complete, any multifunction M with closed values is measurable if and only if gph M ∈
A ⊗ B(Rn).

For a multifunction M : T →→ R
n (not necessarily measurable) and a measurable set

A ∈ A, define the the Aumann integral of M over A by
∫

A

M(t)μ(dt) :=
{∫

A

x ∗(t)μ(dt)

∣

∣

∣

∣

x ∗ ∈ L1(T ,Rn) and x ∗(t) ∈ M(t) a.e.

}

.

An extended-real-valued function f : T × R
n → R is called a normal integrand if the

multifunction t �→ epift is measurable with closed values. By [21, Corollary 14.34], this
amounts to saying that f is A ⊗ B(Rn)-measurable and that for every t ∈ T the function
ft := f (t, ·) is lower semicontinuous (l.s.c.). In addition, we say that f is proper if ft is
proper for all t ∈ T . If ft is convex for all t ∈ T , then f is known as a convex normal
integrand; see [2, 21].

We say [17] that Φ : T × R
n →→ R

m is a set-valued normal integrand, or a random
multifunction, if for all t ∈ T the mapping Φt := Φ(t, ·) is of closed graph, and the graph of
Φ belongs to A⊗B(Rn×R

m). When Φ is single-valued, it is called a vector-valued normal
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integrand. Since the measure space is complete, we have that the definition of a set-valued
normal integrand is equivalent to requiring that t �→ gph Φt is a measurable multifunction
with closed values. It is natural to say that Φ : T × R

n →→ R
m is single-valued around

x̄ ∈ R
n if there exist η > 0 and ̂T ∈ A with μ(T \̂T ) = 0 such that

Φt(x)is single-valued for all x ∈ Bη(x̄)and allt ∈ ̂T .

The term that Φ is continuously differentiable around x̄ is defined similarly.
The next result is taken from [18, Proposition 3.2].

Lemma 2.1 Let f : T × R
n → R be a normal integrand, and let Φ : T × R

n →→ R
m be a

set-valued normal integrand. Then the following multifunctions are graph measurable:

(a) t �→ gph ∂ft = {(x, x∗) ∈ R
2n
∣

∣ x∗ ∈ ∂ft (x)
}

,
(b) t �→ gph ̂D∗Φt = {(x, y, x∗, y∗) ∈ R

2(n+m)
∣

∣ x∗ ∈ ̂D∗Φt(x, y)(y∗)
}

,
(c) t �→ gph D∗Φt = {(x, y, x∗, y∗) ∈ R

2(n+m)
∣

∣ x∗ ∈ D∗Φt(x, y)(y∗)
}

.

Finally in this section, we recall the notions of expected-integral functional and expected-
integral multifunctions studied in [17, 18] and in what follows. Given a normal integrand
f : T × R

n → R, define the expected-integral functional associated with f by

Ef (x) :=
∫

T

ft (x)μ(dt) =
∫

T

[

max
{

ft (x), 0
}+ min

{

ft (x), 0
}

]

μ(dt). (2.15)

For a set-valued normal integrand Φ : T × R
n → R

m, the expected-integral multifunction
is defined by

EΦ(x) :=
∫

T

Φt (x)μ(dt). (2.16)

Observe that for Φ(t, x) := {α ∈ R | ft (x) ≤ α} we have epiEf = gph EΦ .
Our standing assumptions in the subsequent study of expected-integral multifunctions of

type (2.16) around a reference point x̄ ∈ domEΦ are formulated as follows: there exist a
number ρ > 0 and κ ∈ L1(T ,R+) such that

Φt(x) is convex for all x ∈ Bρ(x̄) and all t ∈ Tna,

Φt (x) ⊆ κ(t)B for all x ∈ Bρ(x̄) and all t ∈ T ,
(2.17)

where Tna is the nonatomic part of the measure μ. We associate with the integrand Φ the
set-valued mapping SΦ defined by

SΦ(x, y) :=
{

y ∈ L1(T ,Rm)

∣

∣

∣

∫

T

y(t)μ(dt) = y and y(t) ∈ Φt(x) a.e.

}

. (2.18)

3 Lipschitzian Properties for Random Fultifunctions

This section is devoted to the study of various Lipschitzian properties of random set-valued
mappings that are largely used in our sensitivity analysis in what follows. These properties
were introduced in [18] with establishing relationships between them and their applications
to coderivative calculus of random multifunctions. First we recall the formulations.

Definition 3.1 Let Φ : T × R
n →→ R

m be a set-valued normal integrand.
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(i) We say that Φ is integrably locally Lipschitzian at x̄ ∈ domEΦ if there exists η > 0,
� ∈ L1(T ,R), and ̂T ∈ A with μ(T \̂T ) = 0 such that

Φt(x) ⊆ Φt(x
′) + �(t)‖x − x′‖B for all t ∈ ̂T and x, x′ ∈ Bη(x̄). (3.1)

(ii) Pick (x̄, ȳ) ∈ gph EΦ with gph EΦ defined in (2.16) and take ȳ ∈ SΦ(x̄, ȳ) for SΦ

from (2.18). We say that Φ is integrably quasi-Lipschitzian around (x̄, ȳ) if there exist
η > 0 and � ∈ L1(T ,R+) such that

sup
{‖x∗‖ ∣∣ x∗ ∈ D∗Φt

(

x (t), y(t)
)(

y∗(t)
)} ≤ �(t)‖y∗(t)‖ (3.2)

for a.e. t ∈ T and all x ∈ B
∞
η (x̄), y ∈ B

1
η(ȳ) ∩ Φ(x ), y∗ ∈ L∞(T ,Rm) with

B
∞
η (x̄) := {x ∈ L∞(T ,Rn)

∣

∣ ‖x (t) − x̄‖ ≤ η a.e.
}

(3.3)

B
1
η(ȳ) := {y ∈ L1(T ,Rm)

∣

∣ ‖y − ȳ‖1 ≤ η
}

(3.4)

B
1
η(ȳ) ∩ Φ(x ) := {y ∈ L1(T ,Rm)

∣

∣ y ∈ B
1
η(ȳ) and y(t) ∈ Φt

(

x (t)
)

a.e.
}

.

(iii) Let (x̄, ȳ) ∈ gph EΦ , and let ȳ ∈ SΦ(x̄, ȳ) for SΦ taken from (2.18). We say that Φ

is integrably Lipschitz-like around (x̄, ȳ) if there exist positive constants �, η, γ and a
measurable set ̂T ∈ A with μ(T \̂T ) = 0 such that

Φt(x) ∩ Bγ

(

ȳ(t)
) ⊂ Φt(x

′) + �‖x − x′‖B (3.5)

for all t ∈ ̂T and x, x′ ∈ Bη(x̄).

Note that (3.1) holds when Φ is single-valued and locally Lipschitzian around x̄, i.e.,
there exist η > 0, � ∈ L1(T ,R), and ̂T ∈ A with μ(T \̂T ) = 0 such that Φt is single-valued
on Bη(x̄) for almost all t ∈ ̂T and

‖Φt(x) − Φt(x
′)‖ ≤ �(t)‖x − x′‖ for all t ∈ ̂T and all x, x′ ∈ Bη(x̄). (3.6)

Our first result here derives coderivative conditions from the above Lipschitzian proper-
ties of random multifunctions.

Theorem 3.2 Let Φ : T × R
n →→ R

m be a set-valued normal integrand, let x̄ ∈ domEΦ ,
and let ȳ ∈ EΦ(x̄). Then we have the following assertions:

(i) Let ȳ ∈ SΦ(x̄, ȳ) and assume that Φ satisfies the integrable quasi-Lipschitz condi-
tion (3.2) around (x̄, ȳ). Then there exists � ∈ L1(T ,R) such that for every y∗ ∈
L∞(T ,Rm) we have

sup
{‖x∗‖ | x∗ ∈ D∗Φt

(

x̄, ȳ(t)
)

(y∗(t))
} ≤ �(t)‖y∗(t)‖ a.e. (3.7)

(ii) If Φ satisfies the integrable locally Lipschitz condition (3.1) at x̄, then there exist
η > 0, � ∈ L1(T ,R) and ̂T ∈ A with μ(T \̂T ) = 0 such that for x ∈ Bη(x̄) and all
y∗ ∈ R

m

sup
{‖x∗‖ | x∗ ∈ D∗Φt(x, y)(y∗)

} ≤ �(t)‖y∗‖, ∀y ∈ Φt(x), ∀t ∈ ̂T . (3.8)

Proof The first assertion follows directly from integrable quasi-Lipschitz condition (3.2).
The second assertion follows from [18, Theorem 4.4] by shrinking the appropriate neigh-
borhoods if necessary.
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Before presenting the main result of this section, we formulate the next lemma, which
summarizes some results taken from [18, Section 5] while providing coderivative Leib-
niz rules for expected-integral multifunctions. Recall that the mapping SΦ from (2.18) is
inner semicompact at (x̄, ȳ) ∈ domSΦ with respect to its domain if for every sequence
(xk, yk) → (x̄, ȳ) with (xk, yk) ∈ domSΦ there exists a sequence yk ∈ SΦ(xk, yk)

containing an L1(T ,Rm)-norm convergent subsequence.

Lemma 3.3 Let Φ : T × R
n →→ R

m be a set-valued normal integrand, let x̄ ∈ domEΦ

satisfy the conditions in (2.17), and let ȳ ∈ EΦ(x̄). Then we have:

(i) For any x̄∗ ∈ ̂D∗EΦ(x̄, ȳ)(ȳ∗) and ȳ ∈ SΦ(x̄, ȳ) there exist sequences {xk} ⊂ R
n,

{xk} ⊂ L∞(T ,Rn), {x ∗
k } ⊂ L1(T ,Rn), {yk} ⊂ L1(T ,Rm), and {y∗

k } ⊂ L∞(T ,Rm)

such that the following assertions hold:

(a) x ∗
k (t) ∈ ̂DΦt

(

xk(t), yk(t)
)(

y∗
k (t)
)

for a.e. t ∈ T and all k ∈ IN.
(b) ‖x̄−xk‖ → 0, ‖x̄−xk‖∞ → 0, ‖ȳ−yk‖1 → 0, and ‖y∗

k −ȳ∗‖∞ → 0 as k → ∞.

(c)
∫

T

‖x ∗
k (t)‖ · ‖xk(t) − xk‖μ(dt) → 0 and

∫

T

x ∗
k (t)μ(dt) → x̄∗.

(ii) Pick ȳ ∈ SΦ(x̄, ȳ) and assume that Φ is integrably quasi-Lipschitzian around (x̄, ȳ).
Then we have the inclusion

̂D∗EΦ(x̄, ȳ)(y∗) ⊆
∫

T

D∗Φt

(

x̄, ȳ(t)
)

(y∗)μ(dt) for all y∗ ∈ R
m.

(iii) If SΦ is inner semicompact at (x̄, ȳ) with respect to the domain and if Φ is integrably
quasi-Lipschitzian around (x̄, ȳ) for all ȳ ∈ SΦ(x̄, ȳ), then

D∗EΦ(x̄, ȳ)(y∗) ⊆
⋃

ȳ∈SΦ(x̄,ȳ)

∫

T

D∗Φt

(

x̄, ȳ(t)
)

(y∗)μ(dt) for all y∗ ∈ R
m.

(iv) Suppose that Φ satisfies the integrable locally Lipschitzian condition (3.1) at x̄ and
that EΦ(x̄) is single-valued. Then SΦ is inner semicompact at (x̄, EΦ(x̄))with respect
to the domain, and we have the inclusion

D∗EΦ(x̄)(y∗) ⊆
∫

T

D∗Φt(x̄)(y∗)μ(dt).

Remark 3.4 The inner semicompactness assumption on SΦ corresponds to a natural exten-
sion of this notion well known for deterministic mappings and is used here to simplify the
coderivative computation. It is important to notice that without this property the coderiva-
tive upper estimate was provided in [18, Theorem 5.5], and we intend to elaborate and apply
the obtained estimate in our future research. Up to now, this property has not been suffi-
ciently investigated. Observe nevertheless that the semicompactness of SΦ at x̄ holds under
the assumption (2.17) when the measure μ is purely atomic. Indeed, let us consider a count-
able family of disjoint atoms of T , let us say (Tj )j∈IN ⊆ T such that μ(T \⋃j∈IN Tj ) = 0.
Take any sequence (xk, yk) → (x̄, ȳ) with xk ∈ Bρ(x̄) and yk ∈ EΦ(xk), where ρ is taken
from assumption (2.17). Consider yk ∈ SΦ(xk, yk) and the functions wk : IN → [−a, a],
where a := ∫

T
κ(t)μ(dt), given by wk(j) := ∫

Tj
yk(t)μ(dt). It follows that (wk)k∈IN is

a sequence on the space [−a, a]IN, which is compact and metrizable with respect to the
pointwise convergence. Therefore, there exists a subsequence (wki

)i∈IN that converges to
some w pointwise. Finally, since the measure is purely atomic, the functions yk must be
constant a.e. over each Tj , which implies that yki

(t) → μ(Tj )
−1w(j) on Tj . This yields
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the pointwise convergence of {yki
(t)} to some measurable function on T . If follows from

(2.17) that ‖yki
(t)‖ ≤ κ(t) for all t ∈ T , and thus we verify the claim by applying the clas-

sical dominated convergence theorem. To conclude this remark, it is worth mentioning that
purely atomic probability measures naturally appear in important applications. Most com-
mon settings of such distributions come from empirical data that provide discrete probability
measures. Observe also that any continuous distribution can be constructively approximated
by a discrete one.

Here is the main result of this section giving us sufficient conditions for the Lipschitz-like
property of expected-integral multifunctions (2.16).

Theorem 3.5 Let Φ : T × R
n →→ R

m be a set-valued normal integrand, let x̄ ∈ domEΦ

under condition (2.17), and let ȳ ∈ EΦ(x̄). Assume that:

(a) either Φ satisfies the integrable quasi-Lipschitzian condition (3.2) around (x̄, ȳ) for
all ȳ ∈ SΦ(x̄, ȳ) and SΦ is inner semicompact at (x̄, ȳ),

(b) or Φ satisfies the integrable locally Lipschitzian condition (3.1) at x̄.

Then the expected-integral multifunction EΦ is Lipschitz-like around (x̄, ȳ).

Proof Let us check that in both cases of the theorem the expected-integral multifunction
(2.16) satisfies the coderivative criterion (2.12) for the Lipschitz-like property around (x̄, ȳ).
Pick any x∗ ∈ D∗EΦ(x̄, ȳ)(0). Then in Case (a) we use Lemma 3.3–(iii) and find ȳ ∈
SΦ(x̄, ȳ) together with an integrable selection x ∗(t) ∈ D∗Φt(x̄, ȳ(t))(0) for a.e. t ∈ T such
that

x∗ =
∫

T

x ∗(t)μ(dt). (3.9)

It follows from the coderivative estimate (3.7) of Theorem 3.2 that x ∗(t) = 0 for a.e. t ∈ T ,
and hence x∗ = 0 by (3.9).

In Case (b), consider again x∗ ∈ D∗EΦ(x̄, ȳ)(0) and employ the coderivative lim-
iting representation (2.6) to find xk → x̄, x∗

k → x∗, yk → ȳ, y∗
k → 0 with

x∗
k ∈ ̂D∗EΦ(xk, yk)(y

∗
k ). Applying now Lemma 3.3–(i) to each each x∗

k with any yk ∈
SΦ(xk, yk) and using the diagonal process, it is possible to choose selections x ∗

k (t) ∈
̂D∗Φt(xk(t), yk(t))(y∗

k (t)) with the following properties:

‖xk − x̄‖∞, ‖yk − ȳ‖1, ‖y∗
k (t)‖ → 0 a.e., and

∫

T

x ∗
k (t)μ(dt) → x∗ as k → ∞.

Employing further estimate (3.8) from Theorem 3.2, we get

‖x ∗
k (t)‖ ≤ �(t)‖y∗

k (t)‖ for a.e. t ∈ T and large k ∈ IN.

Passing to the limit yields x∗ = 0 and thus completes the proof.

4 Sensitivity Analysis for Stochastic Constraint Systems

In this section we conduct a local sensitivity analysis for the class of parametric stochas-
tic systems that naturally arise as sets of feasible solutions to parameterised problems of
stochastic optimization and related topics. The section is split into two subsections. The first
subsection concerns a general class of stochastic constraint systems, while the second one
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deals with constraint systems coming from stochastic programming. Our sensitivity analy-
sis addresses deriving efficient conditions for the fulfillment of well-posedness properties
of stochastic constraint systems in the sense of establishing their Lipschitzian stability and
metric regularity by using coderivative evaluations and coderivative characterizations of
these well-posedness properties.

4.1 General Stochastic Constraint Systems

Given a set-valued normal integrand Φ : T × R
n × R

q →→ R
m together with nonempty

closed sets K ⊆ R
q and O ⊆ R

n × R
m, consider the class of general parametric stochastic

constraint systems F : Rn →→ R
q described by

F(x) := {z ∈ R
q
∣

∣ EΦ(x, z) ∩ K �= ∅, (x, z) ∈ O
}

, (4.1)

where EΦ(x, z) is a parameterized expected-integral multifunction defined as in (2.16). In
the framework of (4.1), the set O can be given, e.g., in the form

O := {(x, z) ∈ R
n × R

q
∣

∣ (x, z) ∈ C(t) for a.e. t ∈ T
}

via some measurable multifunction C : T →→ R
n × R

q . Integral representations for normal
vectors to such sets and their investigation by using new stochastic extremal principles are
presented in [16].

Here is a more specific example of the stochastic constraint systems arising in stochastic
programming studied in the next subsection.

Example 4.1 Consider the following parameterized optimization problem:

min
z∈Rq

Ef (x, z) subject to Egi
(x, z) ≤ 0, i = 1, . . . , m, z ∈ G(x), (Px)

where f and gi , i = 1, . . . , m, are normal integrands, and where G is a set-valued map-
ping. Then for a given parameter x, the set of feasible solutions to problem (Px) can be
represented in form (4.1) with K := R

m− , O := gph G, and the integrand Φ(t, x, z) :=
(g1(t, x, z), . . . , gm(t, x, z))�, i.e.,

F(x) = {z ∈ R
q
∣

∣ Egi
(x, z) ≤ 0, i = 1, . . . , m, z ∈ G(x)

}

.

In general, local sensitivity analysis of parametric systems consists of evaluating a (gen-
eralized) derivative of the underlying solution map at the point in question and then using
this calculation for making conclusions on well-posedness of the system in question with
respect to small perturbations of the solution point and the nominal parameter. In the case
of (4.1), our generalized derivative is the (robust) limiting coderivative (2.5), which gives us
the coderivative criteria (2.12) and (2.14) for the (robust) Lipschitz-like (2.11) and metric
regularity (2.13) properties, respectively.

To proceed, observe that the parametric version of the standing assumptions in (2.17)
for systems (4.1) at the reference point (x̄, z̄) ∈ gph F is formulated as follows: there exist
ρ > 0 and κ ∈ L1(T ,R+) such that

Φt(x, z) is convex for all(x, z) ∈ Bρ(x̄, z̄)and allt ∈ Tna,

Φt (x, z) ⊆ κ(t)Bρ for all (x, z) ∈ Bρ(x̄, z̄) and all t ∈ T . (4.2)

The next theorem provides an efficient evaluation (upper estimate) of the limiting
coderivative in terms of the given data of (4.1), which is a bridge to the subsequent
Lipschitzian stability and metric regularity results.
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Theorem 4.2 Let F : R
n →→ R

q be given in (4.1), and let (x̄, z̄) ∈ gph F . In addition
to (4.2), impose the following assumptions valid for all y ∈ EΦ(x̄, z̄) ∩ K and all y ∈
SΦ(x̄, z̄, y), where SΦ is defined in (2.18) with Φt = Φt(x, z):

(a) The mapping SΦ is inner semicompact at (x̄, z̄, y).
(b) The set-valued normal integrand Φ enjoys the integrable quasi-Lipschitzian property

(3.2) around (x̄, z̄, y).
(c) We have the constraint qualification conditions

[

0 ∈
∫

T

D∗Φt(x̄, z̄, y(t))(y∗)μ(dt) and y∗ ∈ N(ȳ;K)
]

=⇒ y∗ = 0,

⋃

y∗∈N(y;K)

[∫

T

D∗Φt(x̄, z̄, y(t))(y∗)μ(dt)

]

⋂
(− N((x̄, z̄);O)

) = {0}. (4.3)

Then for all z∗ ∈ R
q and x∗ ∈ D∗F(x̄, z̄)(z∗) there exist ȳ ∈ EΦ(x̄, z̄)∩K, ȳ∗ ∈ N(ȳ;K),

and ȳ ∈ SΦ(x̄, z̄, ȳ) such that
(

x∗
−z∗
)

∈
∫

T

D∗Φt(x̄, z̄, ȳ(t))(ȳ∗)μ(dt) + N
(

(x̄, z̄);O). (4.4)

Proof By (4.2), it follows from Lemma 3.3–(iii) that for all y ∈ Eφ(x̄, z̄) ∩ K we have the
coderivative upper estimate

D∗EΦ(x̄, z̄, y)(y∗) ⊆
⋃

y∈SΦ(x̄,z̄,y)

∫

T

D∗Φt(x̄, z̄, y(t))(y∗)μ(dt). (4.5)

Observe further that for gph F := E−1
Φ (K) ∩ O the coderivative inclusion x∗ ∈

D∗F(x̄, z̄)(z∗) reduces to (x∗,−z∗) ∈ N((x̄, z̄); E−1
Φ (K) ∩ O). To verify the assertion of

the theorem, we concentrate in what follows on deriving an upper estimate for the normal
cone to the latter set. It follows from the basic normal cone intersection rule for closed sets
in [15, Theorem 2.16] that

N
(

(x̄, z̄); E−1
Φ (K) ∩ O

) ⊆ N
(

(x̄, z̄); E−1
Φ (K)
)+ N
(

(x̄, z̄);O) (4.6)

provided the fulfillment of the qualification condition

N
(

(x̄, z̄); E−1
Φ (K)

) ∩ (− N((x̄, z̄);O)
) = {0}. (4.7)

On the other hand, observe that the mapping EΦ is locally bounded at (x̄, z̄) due to (4.2), so
we get from [15, Corollary 3.13] that

N
(

(x̄, z̄); E−1
Φ (K)

) ⊆
⋃

[

D∗EΦ(x̄, z̄, y)(y∗)
∣

∣

∣

∣

y ∈ EΦ(x̄, z̄) ∩ K,
y∗∈N(y;K)

]

(4.8)

under the fulfillment of the qualification condition

N(y;K) ∩ kerD∗EΦ(x̄, z̄, y) = {0} for all y ∈ EΦ(x̄, z̄) ∩ K,

which readily follows from (4.5) and the first qualification condition in (4.3). Furthermore,
we deduce from (4.5) and (4.8) that

N
(

(x̄, z̄); E−1
Φ (K)

) ⊆
⋃

[∫

T

D∗Φt(x, z, y(t))(y∗)μ(dt)

∣

∣

∣

∣

y ∈ EΦ(x̄, z̄) ∩ K
y∗∈N(y;K),
y∈SΦ(x̄,z̄,y)

]

. (4.9)

Using the latter together with the second qualification condition in (4.3) gives us (4.7).
Combining finally (4.6) and (4.9) verifies (4.4).
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As direct consequences of Theorem 4.2 and the coderivative characterizations (2.12)
and (2.14), we get sufficient conditions for the Lipschitz-like and metric regularity prop-
erties of the stochastic constraint system (4.1) expressed via the limiting normal cone and
coderivative of the system data.

Corollary 4.3 In the setting of Theorem 4.2, the following assertions hold:

(i) Assume the fulfillment of the implication: for all y ∈ EΦ(x̄, z̄) ∩ K, y∗ ∈ N(ȳ;K),
and y ∈ SΦ(x̄, z̄, y), we have
[(

x∗
0

)

∈
∫

T

D∗Φt

(

x̄, z̄, y(t)
)

(y∗)μ(dt) + N
(

(x̄, z̄);O)
]

=⇒ x∗ = 0. (4.10)

Then the mapping F from (4.1) is Lipschitz-like around (x̄, z̄).
(ii) If the complemented implication: for all y ∈ EΦ(x̄, z̄) ∩ K, y∗ ∈ N(ȳ;K), and y ∈

SΦ(x̄, z̄, y) we have
[(

0
z∗
)

∈
∫

T

D∗Φt(x̄, z̄, y(t))(y∗)μ(dt) + N
(

(x̄, z̄);O)
]

=⇒ z∗ = 0 (4.11)

is satisfied, then F is metrically regular around (x̄, z̄).

Proof Observe first that the imposed general assumptions ensure that the mapping F from
(4.1) is closed-graph around (x̄, z̄). To verify (i), we need to check, by the coderivative
criterion (2.12), that D∗F(x̄, z̄)(0) = {0} for F in (4.1). Pick any x∗ ∈ D∗F(x̄, z̄)(0) and
then deduce from Theorem 4.2 that there exist ȳ ∈ EΦ(x̄, z̄) ∩ K, ȳ∗ ∈ N(ȳ;K), and
ȳ ∈ SΦ(x̄, z̄, ȳ) such that

(

x∗
0

)

∈
∫

T

D∗Φt(x̄, z̄, ȳ(t))(ȳ∗)μ(dt) + N((x̄, z̄);O).

Employing (4.10) tells us that x∗ = 0, which verifies (i). The proof of (ii) is similar by
using the coderivative evaluation from Theorem 4.2 and the coderivative characterization of
metric regularity given in (2.14).

The next corollary of Theorem 4.2 addresses the case where Φ is single-valued and
locally Lipschitzian around the reference point.

Corollary 4.4 For F in (4.1), assume that Φ is single-valued and locally Lipschitzian
around (x̄, z̄) ∈ gph F in the sense of (3.6) and the following qualification conditions are
satisfied:

⋃

[∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt)

∣

∣

∣

∣

y∗ ∈N
(

EΦ(x̄, z̄);K)
]

⋂
(−N((x̄, z̄);O)

)={0},(4.12)

N
(

EΦ(x̄, z̄);K) ∩ ker

[∫

T

∂〈·, Φt 〉(x̄, z̄)μ(dt)

]

= {0}. (4.13)

Then for all z∗ ∈ R
q we have the coderivative upper estimate

D∗F(x̄, z̄)(z∗) ⊆
{

x∗
∣

∣

∣

∣

there exist y∗ ∈ N(EΦ(x̄, z̄);K) such that
(

x∗
−z∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) + N
(

(x̄, z̄);O)
}

.
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If in addition for any y∗ ∈ N(EΦ(x̄, z̄);K) the implication

[(

x∗
0

)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) + N
(

(x̄, z̄);O)
]

=⇒ x∗ = 0 (4.14)

holds, then the mapping F is Lipschitz-like around (x̄, z̄). The replacement of (4.14) by the
complemented implication

[(

0
z∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) + N
(

(x̄, z̄);O)
]

=⇒ z∗ = 0

ensures the metric regularity of F around (x̄, z̄).

Proof It is easy to see that, due to the assumed local single-valuedness and Lipschitz conti-
nuity of Φ, assumptions (a) and (b) of Theorem 4.2 are satisfied (see Lemma 3.3–(iv)). The
qualification conditions (4.12) and (4.13) clearly yield those imposed in (4.3) by using the
scalarization formula (2.8). The latter formula allows us to deduce the claimed coderiva-
tive inclusion from (4.4) of Theorem 4.2, while the Lipschitz-like and metric regularity
properties of F follows from Corollary 4.3 under the imposed additional assumptions.

Let us present a direct consequence of Corollary 4.4 addressing stochastic problems with
only equality constraints.

Corollary 4.5 In the setting of Corollary 4.4, consider the system

F(x) := {z ∈ R
q
∣

∣ EΦ(x, z) = 0
}

under the qualification condition

ker

[∫

T

D∗Φt(x̄, z̄)(·)μ(dt)

]

= {0}.

Then for all z∗ ∈ R
q we have the coderivative upper estimate

D∗F(x̄, z̄)(z∗) ⊆
{

x∗ ∈ R
n

∣

∣

∣

∣

there exits y∗ ∈ R
msuch that

(

x∗
−z∗
)

∈
∫

T

D∗Φt(x̄, z̄)(y∗)μ(dt)

}

.

The additional fulfillment of the implication

[(

x∗
0

)

∈
∫

T

D∗Φt(x̄, z̄)(y∗)μ(dt)

]

=⇒ x∗ = 0 as y∗ ∈ R
m

ensures that F is Lipschitz-like around (x̄, z̄), while the implication

[(

z∗
0

)

∈
∫

T

D∗Φt(x̄, z̄)(y∗)μ(dt)

]

=⇒ z∗ = 0, y∗ ∈ R
m,

yields the metric regularity of F around this point.

Proof It follows from Corollary 4.4 with O = R
n × R

q and K = {0}.
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4.2 Constraint Systems in Stochastic Programming

In this subsection we provide a coderivative-based local sensitivity analysis for feasible
solution maps in problems of stochastic programming of type (Px) that are described as
follows:

F(x) := {z ∈ R
q
∣

∣ EΦ(x, z) ≤ 0, z ∈ G(x)
}

, (4.15)

where Φ(t, x, z) := (g1(t, x, z), . . . , gm(t, x, z))� with some normal integrands
g1, . . . , gm : Rn × R

q → R ∪ {+∞} and a set-valued mapping G : Rn →→ R
q .

Our main goal in this subsection is to evaluate the basic coderivative (2.5) of (4.15),
which leads us as in Section 4.1 to sufficient conditions for the Lipschitz-like and metric
regularity properties of this mapping due to their coderivative characterizations. For brevity,
we address here only the Lipschitz-like property of the constraint system (4.15) and its
specifications.

First we present the following proposition, which is a consequence of Theorem 4.2 and
Corollary 4.3 for the case of feasible solution maps (4.15).

Proposition 4.6 Let F be given in (4.15), where gi , i = 1, . . . , m, are locally Lips-
chitzian around (x̄, z̄) ∈ gph F in the sense of (3.6), and where the graph of G is locally
closed around this point. Suppose that for all (z∗, −x∗) ∈ gph D∗G(x̄, z̄) we have the two
constraint qualification conditions:

[(

x∗
z∗
)

∈
⋃

(∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt)

∣

∣

∣

∣

y∗ ∈ N(EΦ

(

x̄, z̄);Rm−
)

) ]

(4.16)

=⇒
(

x∗
z∗
)

=
(

0
0

)

,

N
(

EΦ(x̄, z̄);Rm−
) ∩ ker

[∫

T

∂〈·, Φt 〉(x̄, z̄)μ(dt)

]

= {0}. (4.17)

Then for all z∗ ∈ R
q the coderivative upper estimate

D∗F(x̄, z̄)(z∗) ⊆

⎧

⎪

⎪

⎨

⎪

⎪

⎩

x∗ ∈ R
n

∣

∣

∣

∣

∣

∣

∣

∣

there exist y∗ ∈ N
(

EΦ(x̄, z̄);Rm−
)

and − u∗ ∈ D∗G(x̄, z̄)(−v∗) with
(

x∗ + u∗
−z∗ − v∗

)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(4.18)

holds. If in addition the following implication
[(

x∗ + u∗
−v∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt)

]

=⇒ x∗ = 0 (4.19)

is satisfied for all −u∗ ∈ D∗G(x̄, z̄)(−v∗) and all y∗ ∈ N(EΦ(x̄, z̄);Rm−), then the feasible
solution map F is Lipschitz-like around the reference point (x̄, z̄).

Proof This follows from Corollary 4.4 with the sets K := R
m−, O := gph G, and the normal

integrand Φ(t, x, z) := (g1(t, x, z), . . . , gm(t, x, z))�.

Specifying further assumptions on the initial data of the stochastic program (Px) from
Example 4.1, we present now efficient conditions ensuring the fulfillment of the major
qualification condition (4.17) in Proposition 4.6.
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Example 4.7 Under the notation of Example 4.1, consider the feasible solution map F

associated with (Px) and suppose that the integrands gi are integrably locally Lipschitzian
around (x̄, z̄) with ∂gi,t (x̄, z̄) ⊆ R

n+ ×R
q
+\{0} for a.e. t ∈ T , where gi,t (x, z) := gi(t, x, z).

Then we claim that the qualification condition (4.17) holds. To check this, pick any
y∗ ∈ N(EΦ(x̄, z̄);Rm−) satisfying the condition

0 ∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) (4.20)

with Φ(t, x, z) = (g1(t, x, z), . . . , gm(t, x, z))�. It is easy to see that all components
of y∗ = (y∗

1 , y∗
2 , . . . , y∗

m) are nonnegative. Using the subdifferential sum rule from
[15, Theorem 2.19], we get that

∂〈y∗, Φt 〉(x̄, z̄) ⊆
m
∑

i=1

y∗
i ∂gi,t (x̄, z̄) for a.e. t ∈ T ,

which yields by (4.20) the inclusion

0 ∈
m
∑

i=1

y∗
i

∫

T

∂gi,t (x̄, z̄)μ(dt).

Since ∂gi,t (x̄, z̄) ⊆ R
n+ × R

q
+\{0}, we verify the claim that y∗ = 0.

For the next result we need to recall another subdifferential construction for extended-
real-valued functions f : Rn → R finite at x which is known as the regular subdifferential
of f at x and is defined by

̂∂f (x) :=
{

x∗ ∈ R
n
∣

∣

∣ lim inf
u→x

f (u) − f (x) − 〈x∗, u − x〉
‖u − x‖ ≥ 0

}

. (4.21)

If f is l.s.c. around x, then the subdifferential (2.7) admits the limiting representation via

(2.3), where ‘u
f→ x’ indicates that u → x with f (u) → f (x):

∂f (x) = Lim sup

u
f→x

̂∂f (u), (4.22)

The following lemma establishes relationships between full and partial subdifferentials
for functions of two variables. This new result is certainly of its own interest, while it
is needed in our subsequent coderivative analysis of the feasible solution map (4.15) in
stochastic programming.

Lemma 4.8 Let g : Rn × R
q → R ∪ {+∞} be an l.s.c. function and (x̄, z̄) ∈ R

n × R
q

such that g(x̄, ·) is convex. Then we have z∗ ∈̂∂zg(x̄, z̄) whenever (x∗, z∗) ∈̂∂g(x̄, z̄). If in
addition g(x′, ·) is convex and g(·, z′) is continuous at x̄ for all (x′, z′) sufficiently close to
(x̄, z̄), then z∗ ∈ ∂zg(x̄, z̄) whenever (x∗, z∗) ∈ ∂g(x̄, z̄).

Proof Pick any (x∗, z∗) ∈ ̂∂g(x̄, z̄) and fix an arbitrary number ε > 0. Using definition
(4.21), find η > 0 such that for all (x, z) ∈ Bη(x̄, z̄) we have

〈x∗, x − x̄〉 + 〈z∗, z − z̄〉 ≤ g(x, z) − g(x̄, z̄) + ε(‖x − x̄‖ + ‖z − z̄‖).
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Fix z′ ∈ R
q and employ the above inequality with x := x̄ and z := z̄ + α(z′ − z̄) for

α > 0 sufficiently small. Then we get

α〈z∗, z′ − z̄〉 ≤ g(x̄, z̄ + α(z′ − z̄)) − g(x̄, z̄) + εα(‖z′ − z̄‖)
≤ α
(

g(x̄, z′) − g(x̄, z̄) + ε‖z′ − z‖) ,
where the latter inequality is due to the convexity of g with respect to z. Therefore, for all
ε > 0 and z′ ∈ R

q we obtain that

〈z∗, z′ − z̄〉 ≤ g(x̄, z′) − g(x̄, z̄) + ε‖z′ − z‖.

Since this holds for each ε > 0, it tells us that z∗ ∈̂∂zg(x̄, z̄), and hence

(x∗, z∗) ∈̂∂g(x̄, z̄) =⇒ z∗ ∈̂∂zg(x̄, z̄),

where ̂∂zg(x̄, z̄) reduces to the classical subdifferential of convex analysis due to the
convexity assumption over g(x̄, ·).

To prove the last statement of the lemma, take any (x∗, z∗) ∈ ∂g(x̄, z̄) and then find by

(4.22) sequences (x∗
k , z∗

k) ∈ ̂∂g(xk, zk) with (xk, zk)
g→ (x̄, z̄) and (x∗

k , z∗
k) → (x∗, z∗) as

k → ∞. Using, the previous part, we have that for z∗
k ∈̂∂zg(x̄, z̄) large enough k ∈ IN, that

is to say,

〈z∗
k , z

′ − zk〉 ≤ g(xk, z
′) − g(xk, zk) whenever z′ ∈ R

q . (4.23)

Choose γ > 0 such that for all z′ ∈ Bγ (z̄) the function g(·, z′) is continuous at x̄. Passing
to the limit as k → ∞ in (4.23), we conclude that

〈z∗, z′ − z̄〉 ≤ g(x̄, z′) − g(x̄, z̄) for all z′ ∈ Bγ (z̄),

which ensures by the assumed convexity of g(x̄, ·) that z∗ ∈ ∂(g(x̄, ·) + δBγ (z̄))(z̄), which
by the sum rule implies that z∗ ∈ ∂zg(x̄, z̄). This therefore completes the proof of the
lemma.

Now we are ready to obtain explicit conditions on the initial data of (4.15) support-
ing the coderivative evaluation and the Lipschitz-like property of the feasible solution map
associated with the stochastic program (Px).

Theorem 4.9 Let F be given in (4.15), where the functions gi are locally Lipschitzian
around (x̄, z̄) ∈ gph F (in the sense of (3.6)) being convex with respect to t z ∈ R

q , and
where G is of closed graph. Assume also that:

(a) The set G(x̄) is convex, while the set gph G is normally regular at (x̄, z̄).
(b) There exists a vector z0 ∈ G(x̄)\{z̄} such that we have Egi

(x̄, z0) < 0 for all i ∈,
where I (x̄, z̄) := {i ∈ {1, . . . , m} | Egi

(x̄, z̄) = 0} is the set of active inequality
constraint indices.

Then the coderivative upper estimate (4.18) holds. If in addition G is Lipschitz-like around
(x̄, z̄), then F enjoys this property around (x̄, z̄).

Proof Take −x∗ ∈ D∗G(x̄, z̄)(z∗) and y∗ = (y∗
1 , . . . , y∗

m)� ∈ N(EΦ(x̄, z̄);Rm−) such that

(

x∗
z∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) ⊆
∫

T

m
∑

i=1

y∗
i ∂gi,t (x̄, z̄)μ(dt) (4.24)
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where gi,t (x, z) := gi(t, x, z). Due to Lemma 2.1 and the classical measurable selection
theorem (see, e.g., [21, Corollary 14.6]), as well as by the uniform boundedness subdif-
ferential mappings generated by locally Lipschitzian functions, there exists an integrable
selection (v∗

i (t),w∗
i (t))� ∈ ∂gi,t (x̄, z̄) for a.e. t ∈ T and all i = 1, . . . , m satisfying the

equality

(x ∗(t), z∗(t)) =
m
∑

i=1

y∗
i (v∗

i (t),w∗
i (t)) for a.e. t ∈ T .

Lemma 4.8 tells us that w∗
i (t) ∈ ∂zgi,t (x̄, z̄) whenever i = 1, . . . , m. Furthermore, we have

that y∗
i = 0 for all i /∈ I (x̄, z̄). Picking now any i ∈ I (x̄, z̄) and taking into account the

assumptions in (b) of the theorem ensure that
∫

T

〈w∗
i (t), z0 − z̄〉μ(dt) ≤ Egi

(z0, x̄) < 0, i ∈ I (x̄, z̄). (4.25)

On the other hand, we apply Lemma 4.8 to the indicator function of the set gph G by using
the assumptions in (a) of the theorem. This gives us −z∗ ∈ N(z̄; G(x̄)) and therefore
ensures that

0 ≤ 〈z∗, z0 − z̄〉 =
m
∑

i=1

y∗
i

∫

T

〈w∗
i (t), z0 − z̄〉μ(dt) ≤

∑

i∈I (x̄,z̄)

y∗
i Egi

(z0, x̄).

It follows from (4.25) that y∗
i = 0 for all i ∈ I (x̄, z̄), and consequently y∗ = 0 for the whole

vector y∗, which implies by (4.24) that (x∗, z∗) = (0, 0). This allows us to conclude that the
qualification conditions (4.16) and (4.17) are satisfied, and thus we deduce the coderivative
estimate (4.18) from Proposition 4.6.

To verify next the fulfillment of implication (4.19), pick any vectors y∗ ∈
N(EΦ(x̄, z̄);Rm−) and −u∗ ∈ D∗G(x̄, z̄)(v∗) satisfying

(

x∗ + u∗
−v∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt).

The above arguments readily show that y∗ = 0, and therefore x∗ + u∗ = 0 and v∗ = 0.
Thus the imposed assumption that G is Lipschitz-like around (x̄, z̄) yields by the coderiva-
tive criterion (2.12) that u∗ = 0 and consequently x∗ = 0. The claimed assertion on the
Lipschitz-like property of F around (x̄, z̄) is due to Proposition 4.6. This completes the
proof of the theorem.

To conclude this section, we consider stochastic constraint systems (4.15), which are
generated by polyhedral set-valued mappings G, where the coderivative evaluation and
Lipschitzian stability can be deduced from Theorem 4.9.

Example 4.10 Given vectors functions vi ∈ R
q and normal integrands bi : T × R

n → R

for i = 1, . . . , m, define the constraint mapping

F(x) :=
{

z ∈ R
q

∣

∣

∣

∣

〈vi, z〉 ≤ Ebi
(x) and z ∈ G(x)

}

, (4.26)

where the mapping G : R
n →→ R

q is a polyhedral convex multifunction. Constraint
mappings of type (4.26) are known as semilinear stochastic parametric systems. Assume
that x̄ belongs to the interior of the domain of G, that the functions bi are integrably
locally Lipschitz around x̄ in the sense of (3.6), and that they are lower regular at x̄ (i.e.,
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∂bi,t (x̄) =̂∂bi,t (x̄) for almost all t ∈ T , bi,t (·) := bi(t, ·)), and where there exists a vector
z0 ∈ G(x̄)\{z̄} such that

〈vi, z0〉 < Ebi
(x̄) for all i = 1, . . . , m.

Recalling the classical result from [23] (see also [7, Theorem 3C.3]) establishing the Lip-
schitz continuity of polyhedral convex multifunctions at points of their respective domain,
we conclude from Theorem 4.9 that the semilinear constraint mapping (4.26) is Lipschitz-
like around (x̄, z̄) with x̄ in the interior of domG. Furthermore, it follows from the above
theorem on the coderivative calculation for F that whenever x∗ ∈ D∗F(x̄, z̄)(z∗), there
exist multipliers λi ≥ 0 for i = 1, . . . , m as well as −u∗ ∈ D∗G(x̄, z̄)(−v∗) and integrable
selections x ∗

i (t) ∈ ∂bi,t (x̄) (recall that ∂(−bi,t )(x̄) ⊆ −∂bi,t (x̄) due to lower regularity and
Lipschitz continuity of bi,t ) such that

0 = λi

(〈vi, z〉 − Ebi
(x)
)

for all i = 1, . . . , m,

z∗ + v∗ =
m
∑

i=1

λivi, and x∗ + u∗ =
m
∑

i=1

λi

∫

T

x ∗
i (t)μ(dt).

5 Sensitivity Analysis for Stochastic Variational Systems

This section is devoted to a local sensitivity analysis of the class of parametric stochastic
systems given by

S(x) := {z ∈ R
q
∣

∣ 0 ∈ EΦ(x, z) + G(x, z)
}

, (5.1)

where Φ : T × R
n × R

q →→ R
m is a set-valued normal integrand, and where G :

R
n × R

q →→ R
m is a closed-graph multifunction. Similarly to the deterministic case [13],

we label systems of type (5.1) as stochastic variational systems. This name comes from the
fact that in many situations the framework of (5.1) describes optimality conditions in prob-
lems of stochastic optimization, variational inequality, complementarity systems, etc. Let us
illustrate this by the following rather general example.

Example 5.1 Consider a probability space (Ω,A,P), a set-valued normal integrand Φ :
Ω ×R

n ×R
q →→ R

q , and closed convex set ∅ �= K ⊆ R
q . Given (ω, x) ∈ Ω ×R

n, define
the parameterized stochastic variational inequality by

find z ∈ K such that 〈Φω(x, z), y − z〉 ≥ 0 for all y ∈ K . (5.2)

The set of solutions in the expected value formulation of (5.2) can be represented in the
form of (5.1) as

S(x) := {z ∈ R
q
∣

∣ 0 ∈ EΦ(x, z) + N(z;K)
}

, (5.3)

i.e., with G(x, z) := N(z;K). Formulation (5.2) means that if we know the random inflow
ω for a given parameter x ∈ R

n, then the concrete variational inequality that the user should
solve is exactly (5.2). However, ω is not known a priori before finding the solution z, and
so we have to solve a reformulation of the problem (e.g., by taking expectation in (5.2)) to
arrive at the variational system 0 ∈ EΦ(x, z) + N(z;K), which yields the set of solutions
(5.3). The reader can find more details about such stochastic systems in [3, 8] with the
discussions and references therein.
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Our goal here is to provide a coderivative-based sensitivity analysis of stochastic vari-
ational systems of type (5.1) with establishing efficient upper estimates of the limiting
coderivative of S(x) and applying these estimates to derive sufficient conditions for Lip-
schitzian stability and metric regularity of such systems. Both of these well-posedness
properties can be simultaneously derived from coderivative calculations for general stochas-
tic systems (5.1) similarly to the device in Section 4. However, there exists a significant
difference between constraint and variational systems: in the major cases of (5.1) where
G(x, z) is given via subdifferential and/or normal cone mappings (like, e.g., in the case
of variational inequalities (5.3)) the metric regularity fails, i.e., the coderivative-based
sufficient conditions for the metric regularity of such systems are not satisfied. The
reader can find more details for deterministic variational systems of this type in [14] and
[15, Section 3.3]. Having this in mind, we establish below the corresponding results for both
the Lipschitz-like and metric regularity property of general systems (5.1), while addressing
only Lipschitzian stability of stochastic variational inequalities of type (5.3).

To proceed, let us introduce the adjoint generalized equation to (5.1) at a reference point
(x̄, z̄, ȳ) defined as

0 ∈
⋃

y∈SΦ(x̄,z̄,ȳ)

∫

T

D∗Φt

(

x̄, z̄, y(t)
)

(y∗)μ(dt) + D∗G(x̄, z̄,−ȳ)(y∗). (5.4)

Theorem 5.2 Let S : R
n →→ R

q be given in (5.1) with Φ : T × R
n × R

q →→ R
m and

G : Rn ×R
q →→ R

m, and let SΦ be taken from (2.18). Pick (x̄, z̄) ∈ gph S and suppose that
Φ satisfies (4.2), and that for all y ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄) and all y ∈ SΦ(x̄, z̄, y) we have
the conditions:

(a) The mapping SΦ is inner semicompact at (x̄, z̄, y).
(b) Φ possesses the integrable quasi-Lipschitz condition (3.2) around (x̄, z̄, y).

Then for every z∗ ∈ R
q and x∗ ∈ D∗S(x̄, z̄)(z∗) there exist ȳ∗ ∈ R

m, ȳ ∈ −G(x̄, z̄) ∩
EΦ(x̄, z̄) and ȳ ∈ SΦ(x̄, z̄, ȳ) such that

(

x∗
−z∗
)

∈ D∗G(x̄, z̄,−ȳ)(ȳ∗) + ∫
T

D∗Φt(x̄, z̄, ȳ(t))(ȳ∗)μ(dt)

provided that for all y ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄) the adjoint generalized (5.4) admits only the
trivial solution y∗ = 0.

Proof Observe that gph S = H−1(gph EΦ), where H(x, z) := (x, z, −G(x, z)). For w :=
(x̄, z̄, y) ∈ H(x̄, z̄) and w∗ := (x∗, z∗,−y∗), we easily get that

D∗H((x̄, z̄), w)(w∗) = (x∗, 0) + (0, z∗) + D∗(−G)(x̄, z̄, y)(−y∗) (5.5)

=
(

x∗
z∗
)

+ D∗G(x̄, z̄,−y)(y∗).

Using (5.5) and calculating the normal cone to H−1(gph EΦ) by [15, Corollary 3.13] tell us
that N((x̄, z̄); gph S) is contained in the set

⋃

⎡

⎣

(

x∗
z∗
)

+ D∗G(x̄, z̄,−y)(y∗)
∣

∣

∣

∣

(

x∗
z∗
)

∈ D∗EΦ(x̄, z̄, y)(y∗),

y ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄)

⎤

⎦ (5.6)
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provided that for all y ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄) we have the qualification condition

N
(

w; gph EΦ

) ∩ kerD∗H((x̄, z̄), w) = {0} with w = (x̄, z̄, y).

Let us check that the latter condition holds if the adjoint generalized (5.4) admits only the
trivial solution y∗ = 0 for all y ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄). Indeed, choosing (x∗, z∗, −y∗) ∈
N(w; gph EΦ) ∩ kerD∗H((x̄, z̄), w) and using the limiting coderivative definition lead us
to 0 ∈ D∗H((x̄, z̄), w)(x∗, z∗, −y∗). This yields by (5.5) and the coderivative Leibniz rule
from Lemma 3.3–(iii) the fulfillment of the adjoint generalized (5.4), and thus y∗ = 0
by our assumption. It follows from Theorem 3.5(a) under the integrable quasi-Lipschitzian
assumption on Φ that (x∗, z∗) = 0. To complete the proof of this theorem, it remains to
apply again the coderivative Leibniz rule from Lemma 3.3–(iii) but now to the coderivative
on the right-hand side of (5.6).

The next theorem addresses a special setting of the stochastic variational system (5.1),
where the set-valued mapping G does not depend on x, and where the integrand Φ is
single-valued and locally Lipschitzian around the reference point. Besides the coderivative
evaluation for the solution map S in this case, we derive now sufficient conditions expressed
via the given system data for each of the well-posedness properties under consideration: the
Lipschitz-like and metric regularity ones.

Theorem 5.3 Let S : Rn →→ R
q be given in (5.1), and let (x̄, z̄) ∈ gph S. Suppose that

Φ is single-valued and integrably locally Lipschitzian around (x̄, z̄), and that G does not
depend on x. Denoting ȳ := EΦ(x̄, z̄) and picking any x∗ ∈ D∗S(x̄, z̄)(z∗), we claim that
there exists ȳ∗ ∈ R

m such that
(

x∗
−z∗
)

∈
∫

T

∂〈ȳ∗, Φt 〉(x̄, z̄)μ(dt) +
(

0
D∗G(z̄, −ȳ)(ȳ∗)

)

(5.7)

provided the fulfillment of the qualification condition

ker

[

projRn

(∫

T

∂〈·, Φt 〉(x̄, z̄)μ(dt)

)]

= {0}. (5.8)

Furthermore, we have the following well-posedness properties under the imposed additional
assumptions, respectively:

(i) The solution map (5.1) is Lipschitz-like around (x̄, z̄) if the partial adjoint generalized
equation defined by

0 ∈ projRq

(∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt)

)

+ D∗G(z̄,−ȳ)(y∗) (5.9)

admits only the trivial solution y∗ = 0.
(ii) The solution map (5.1) is metrically regular around (x̄, z̄) if the mapping G therein is

Lipschitz-like around (z̄,−ȳ).

Proof Observe that the adjoint generalized (5.4) admits in our case only the trivial solution.
Indeed, the inclusion in (5.4) reduces now to

(

0
0

)

∈
∫

T

∂〈y∗, Φt 〉(x̄)μ(dt) +
(

0
D∗G(z̄,−ȳ)(y∗)

)

for some y∗ ∈ R
m. Then it follows from (5.8) that y∗ = 0, and thus we deduce from

Theorem 5.2 under the general assumptions made that (5.7) holds.
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Let us further verify the well-posedness properties under the corresponding additional
assumptions in (i) and (ii). It is easy to see that the solution map (5.1) is closed-graph
around (x̄, z̄) under the general assumptions made. Starting with assertion (i), we apply
the coderivative criterion (2.12) for the Lipschitz-like property to the mapping S around
(x̄, z̄), which reads as D∗S(x̄, z̄)(0) = {0}. This means by the coderivative evaluation of
Theorem 5.2 that x∗ = 0 is the only vector satisfying the inclusion in (5.7) with z∗ = 0. By
the structure of (5.7) this is the case when the partial adjoint generalized (5.9) has only the
trivial solution y∗ = 0.

To prove assertion (ii), we pick any z∗ ∈ R
q such that 0 ∈ D∗S(x̄, z̄)(z∗) and get by the

coderivative evaluation in (5.7) that
(

0
−z∗
)

∈
∫

T

∂〈y∗, Φt 〉(x̄)μ(dt) +
(

0
D∗G(z̄,−ȳ)(y∗)

)

, (5.10)

which implies by (5.8) that y∗ = 0. Since G is assumed to be Lipschitz-like around (z̄,−ȳ)

we have D∗G(z̄,−ȳ)(0) = {0} by the coderivative criterion (2.12), and therefore deduce
from (5.10) that z∗ = 0. This verifies that kerD∗S(x̄, z̄) = {0} and thus confirms that S

is metrically regular around (x̄, z̄) by the coderivative characterization of this property in
(2.14).

Now we illustrate the application of Theorem 5.3 to the class of stochastic variational
inequalities defined in Example 5.1.

Example 5.4 Consider the stochastic variational inequality in form (5.3) with (x̄, z̄) ∈
gph S, where Φω(x, z) = f (x) + Hω(z) with a continuously differentiable function f

around x̄ and a single-valued and integrable locally Lipschitz function H around z̄. Sup-
pose that the Jacobian matrix ∇f (x̄) is of full rank. Then the qualification condition (5.8)
holds automatically. Therefore, Theorem 5.3 tells us that for every x∗ ∈ D∗S(x̄, z̄)(z∗)
there exists a (unique) vector y∗ ∈ R

m such that x∗ = ∇f (x̄)�y∗ (here ∇f (x̄)� represents
the transpose of the derivative ∇f (x̄)) and the inclusion

−z∗ ∈
∫

Ω

∂〈y∗, Hω〉(z̄)P(dω) + D∗G(z̄,−ȳ)(y∗)

is satisfied. To verify the Lipschitz-like property of (5.3) from assertion (i) of Theorem 5.3,
observe that the mapping G(·) = N(·;K) does not depend on x and thus the coderivative of
G in Theorem 5.3 for system (5.3 reduces to (0,D∗N(·;K))� at the corresponding point,
where D∗N(·;K) is actually the second-order subdifferential (2.9) of the indicator function
δ(·;K). Thus the mapping S in this case is Lipschitz-like around (x̄, z̄) if we have the
implication

[

projRq

(∫

Ω

∂〈y∗, Hω〉(z̄)P(dω)

)

+ D∗N(·;K)(z̄,−ȳ)(y∗)
]

=⇒ y∗ = 0.

The condition in Theorem 5.3(ii) for the metric regularity of S reduces in the case of (5.3)
to the Lipschitz-like property of the normal cone mapping z �→ N(z;K). However, it does
not hold due to the intrinsic discontinuity of normal cone mappings; see the discussion right
after Example 5.1.

Next we consider a more general class of composite stochastic variational inequalities
defined by

S(x) := {z ∈ R
q
∣

∣ 0 ∈ EΦ(x, z) + N
(

ψ(x, z); Ω
)}

, (5.11)
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where Φ : T × R
n × R

q → R
m is a vector-valued normal integrand, ψ : Rn × R

q → R
m

is a vector-valued function, and Ω ⊆ R
m is a closed set. As a consequence of Theorem 5.3

and coderivative calculus rules, we arrive at the following coderivative evaluation for system
(5.11) in terms of its initial data.

Corollary 5.5 Let S : Rn →→ R
q be given in (5.11), and let (x̄, z̄) ∈ gph S be such that Φ is

single-valued and locally Lipschitzian around (x̄, z̄) as in (3.6), and that ψ is continuously
differentiable around this point. Denoting ȳ = EΦ(x̄, z̄), we have that whenever z∗ ∈ R

q

and x∗ ∈ D∗S(x̄, z̄)(z∗) there exists ȳ∗ ∈ R
m for which the coderivative upper estimate

(

x∗
−z∗
)

∈
∫

T

∂〈ȳ∗, Φt 〉(x̄, z̄)μ(dt) + ∇ψ(x̄, z̄)∗ ◦ D∗N(·;Ω)
(

ψ(x̄, z̄), ȳ
)

(ȳ∗)

holds, provided that the adjoint generalized equation

0 ∈
∫

T

∂〈y∗, Φt 〉(x̄, z̄)μ(dt) + ∇ψ(x̄, z̄)∗ ◦ D∗N(·;Ω) · (ψ(x̄, z̄), ȳ
)

(y∗)

admits only the trivial solution y∗ = 0.

Proof This follows from Theorem 5.3 with G(x, z) := N(ψ(x, z);Ω) by applying the
coderivative chain rule obtained in [15, Theorem 3.11].

We conclude this section by the following consequence of Theorem 5.3 that addresses
stochastic variational systems (5.1) with smooth mappings Φt .

Corollary 5.6 In addition to the general assumptions of Theorem 5.3, suppose that Φt is
continuously differentiable around (x̄, z̄) and that

ker

[∫

T

∇xΦt (x̄, z̄)∗(·)μ(dt)

]

= {0}.

Then for every x∗ ∈ D∗S(x̄, z̄)(z∗) there exists ȳ∗ ∈ R
m such that

x∗ =
∫

T

∇xΦt (x̄, z̄)∗(ȳ∗)μ(dt) and

−z∗ ∈
∫

T

∇zΦt (x̄, z̄)∗(ȳ∗)μ(dt) + D∗G(z̄,−ȳ)(ȳ∗),

where ȳ := EΦ(x̄, z̄). Furthermore, the solution map S from (5.1) is Lipschitz-like around
(x̄, z̄) if we have the implication

[

0 ∈
∫

T

∇zΦt (x̄, z̄)∗(y∗)μ(dt) + D∗G(z̄, −ȳ)(y∗)
]

=⇒ y∗ = 0.

The metric regularity of the solution map S around (x̄, z̄) is ensured by the Lipschitz-like
property of the mapping G around (z̄,−ȳ).

Proof The claimed results follow from Theorem 5.3 due to the representation

∫

T

∂〈y∗, Φt 〉(x̄)μ(dt) =

⎛

⎜

⎜

⎜

⎝

∫

T

∇xΦt (x̄, z̄)∗(y∗)μ(dt)

∫

T

∇zΦt (x̄, z̄)∗(y∗)μ(dt)

⎞

⎟

⎟

⎟

⎠

when Φt is continuously differentiable around (x̄, z̄).
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6 Sensitivity Analysis Under Integrable Lipschitz-Like Property

In this section we examine the possibility of replacing the coderivative-based integrable
quasi-Lipschitzian assumption (3.2) on the set-valued normal integrand Φ in the sensitivity
analysis of stochastic constrained and variational systems in Sections 4 and 5, respectively,
by the explicit integrable Lipschitz-like property (3.5) of this mapping. The reader is referred
to [18, Section 4] for a detailed study of these properties and the relationships between
them.

For brevity, we present here only results concerning upper estimates of the limiting
coderivative (2.5) for the general stochastic constraint mapping F defined in (4.1) and the
stochastic variational system S defined in (5.1). The corresponding conditions ensuring the
Lipschitz-like and metric regularity properties of these systems can be derived, similarly to
Sections 4 and 5, from these evaluations due to the coderivative criteria.

To proceed, we replace the assumptions in (2.17) with localized conditions at the point of
interest. Given a random multifunction Φ : T ×R

n×R
q →→ R

m and a point (x̄, z̄) ∈ domEΦ ,
assume that there exits ρ > 0 such that

Φt(x, z) is convex for all (x, z) ∈ Bρ(x̄, z̄) and all t ∈ T ,

Φt (x̄, z̄) is single-valued for all t ∈ T . (6.1)

The first result establishes a coderivative upper bound for the stochastic constraint system
F from (4.1). Recall that when Φt(x̄, z̄) = {ȳ(t)}, we identify Φt(x̄, z̄) with ȳ(t) and omit
ȳ(t) in the coderivative notation.

Theorem 6.1 Let F : Rn →→ R
q be taken from (4.1) with a set-valued normal integrand

Φ : T ×R
n ×R

q →→ R
m and closed sets K ⊆ R

q andO ⊆ R
n ×R

m. Pick (x̄, z̄) ∈ gph F

and suppose that gph F is normally regular at (x̄, z̄) and that Φ satisfies (6.1). Having
ȳ ∈ EΦ(x̄, z̄) ∩K and Φt(x̄, z̄) = {ȳ(t)}, assume that Φ is integrably Lipschitz-like around
(x̄, z̄, ȳ). Then for all z∗ ∈ R

q and x∗ ∈ D∗F(x̄, z̄)(z∗) there exists ȳ∗ ∈ N(ȳ;K) such that
(

x∗
−z∗
)

∈
∫

T

D∗Φt(x̄, z̄)(ȳ∗)μ(dt) + N
(

(x̄, z̄);O) (6.2)

provided the fulfillment of the two following qualification conditions:
[

0 ∈
∫

T

D∗Φt(x, z)(y∗)μ(dt), y∗ ∈ N(ȳ;K)

]

=⇒ y∗ = 0, (6.3)

⋃

y∗∈N(ȳ;K)

[ ∫

T

D∗Φt(x̄, z̄)(y∗)μ(dt)

]

⋂
(− N((x̄, z̄);O)

]

= {0}. (6.4)

Proof Proceeding similarly to the proof of the truncation result from [7, Theorem 3E.3], we
find positive constants γ, η, and � such that the truncated integrand ̂Φt(x, z) := Φt(x, z) ∩
Bγ (ȳ(t)) satisfies the integrable Lipschitzian property (3.1) around (x̄, z̄) with constants η

and �. Define now the mapping

̂F(x) := {z ∈ R
q
∣

∣ E
̂Φ(x, z) ∩ K �= ∅, (x, z) ∈ O

}

.

Since (x̄, z̄) ∈ gph ̂F ⊆ gph F and gph F is normally regular at (x̄, z̄), we get

D∗F(x̄, z̄)(z∗) = ̂D∗F(x̄, z̄)(z∗) ⊆ ̂D∗
̂F(x̄, z̄)(z∗) ⊆ D∗

̂F(x̄, z̄)(z∗)
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for all z∗ ∈ R
q . Let us further check that the mapping ̂Φ satisfies all the assumptions of

Theorem 4.2. Indeed, it is easy to see that (4.2) holds for ̂Φ. The inner semicompactness of
S
̂Φ follows from [18, Corollary 5.6]. The quasi-Lipschitzian property of ̂Φ is implied by its

integrable Lipschitzian property by [18, Theorem 4.4]. Finally, the qualification conditions
in (4.3) follows from the assumptions (6.3) and (6.4), respectively, by using the fact that

D∗Φt(x̄, z̄)(y∗) = D∗
̂Φt(x̄, z̄)(y∗) for all t ∈ T . (6.5)

Therefore, applying Theorem 4.2 to the mapping ̂F with taking (6.5) into account, we arrive
at (6.2) and hence complete the proof of the theorem.

The second theorem of this section addresses the stochastic variational system (5.1) and
provides an upper estimate of its coderivative under the integrable Lipschitz-like property
of the normal integrand Φ therein.

Theorem 6.2 Let S : R
n →→ R

q be defined in (5.1) via a set-valued normal integrand
Φ : T × R

n × R
q →→ R

m and a closed-graph multifunction G : Rn × R
q →→ R

m. Pick
(x̄, z̄) ∈ gph S and assume that the set gph S is normally regular at (x̄, z̄) and that the
mapping Φ satisfies the conditions in (6.1) and the integrable Lipschitz-like property (3.5)
around (x̄, z̄, ȳ) with {ȳ(t)} = Φt(x̄, z̄). Fix ȳ ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄) and then claim that
for every z∗ ∈ R

q and x∗ ∈ D∗S(x̄, z̄)(z∗) there exists ȳ∗ ∈ R
m such that

(

x∗
−z∗
)

∈
∫

T

D∗Φt(x̄, z̄)(ȳ∗)μ(dt) + D∗G(x̄, z̄,−ȳ)(ȳ∗)

provided that the adjoint generalized equation

0 ∈
∫

T

D∗Φt(x̄, z̄)(y∗)μ(dt) + D∗G(x̄, z̄,−ȳ)(y∗)

admits only the trivial solution y∗ = 0.

Proof Following the proof of Theorem 6.1, we find a constant γ > 0 such that the mapping
̂Φt(x, z) := Φt(x, z) ∩Bγ (ȳ(t)) is integrably Lipschitzian around (x̄, z̄). Define further the
truncated stochastic variational system

̂S(x) := {z ∈ R
q
∣

∣ 0 ∈ E
Φ̂

(x, z) + G(x, z)
}

. (6.6)

Then proceeding as in the proof of Theorem 6.1, we reduce the situation to the usage of
Theorem 5.2 in the case of the truncated system (6.6).

7 Applications to Problems of Stochastic Optimization

The concluding section of this paper addresses applications of the coderivative-based sensi-
tivity analysis of general stochastic variational systems developed above to some important
aspects of stochastic optimization. We split this section into two subsections. The first
one deals with stationary solution maps for general problems of constrained stochastic
programming, while in the second subsection we derive new coderivative-type necessary
optimality conditions for problems of stochastic programming with equilibrium constraints.
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7.1 Coderivatives of SolutionMaps in Stochastic Programming

Given a normal integrand f : T ×R
n ×R

q → R and an extended-real-valued l.s.c. function
ψ : Rn ×R

q → R, consider the following class of parametric stochastic programs defined
in the unconstrained format

min
z∈Rq

Ef (x, z) + ψ(x, z) (7.1)

with the parameter x ∈ R
n. Since ψ is an extended-real-valued function, the model in

(7.1) implicitly encompasses problems of constrained stochastic programming defined in
the form

min Ef (x, z) subject to g(x, z) ∈ C, (7.2)

where C ⊆ R
m is a closed set, and where g : Rn × R

q → R
m is a continuous function.

Indeed, the latter problem reduces to (7.1) with ψ := δC ◦ g. In particular, programs of type
(7.2) include problems of stochastic conic programming, where C is a closed convex cone;
see, e.g., [1, 22] and the references therein.

Applying the subdifferential Fermat and sum rules from [15] to local minimizers of (7.1)
under appropriate qualification conditions and then using the basic subdifferential Leibniz
rule from [18] for the expected-integral functional Ef , we get a collection of stationary
points of the stochastic programming problem (7.1) formalized as the parametric stationary
point map

S(x) :=
{

z ∈ R
q

∣

∣

∣

∣

0 ∈
∫

T

∂zft (x, z)μ(dt) + ∂zψ(x, z)

}

. (7.3)

Note that for convex stochastic programs (7.1), the stationary point map (7.3) equivalently
describes the parametric set of optimal solutions to (7.1), which is not the case for general
stochastic problems of our interest here. Observe furthermore that [18, Proposition 7.1] (see
also [4–6] for related results) ensures under some additional assumptions that there exists
η > 0 such that

∂zEf (x, z) =
∫

T

∂zft (x, z)μ(dt), for all (x, z) ∈ Bη(x̄, z̄).

This tells us that (7.3) describes the set of M-stationary points for (7.1) that are important
for various applications; see, e.g., [9] with other references.

To proceed with the study of the stationary point map (7.3) by reducing it to the stochastic
variational system (5.1) investigated in Section 5, we first formulate the following assump-
tions on the initial data of (7.1) ensuring the fulfillment of those in (4.2): there exist η > 0
and κ ∈ L1(T ,R+) such that

∂zft (x, z) is convex for all (x, z) ∈ Bη(x̄, z̄) and t ∈ Tna,

∂zft (x, z) ⊆ κ(t)B for all (x, z) ∈ Bη(x̄, z̄) and all t ∈ T .
(7.4)

Define the set-valued mapping

Sf (x, z, y) :=
{

y ∈ L1(T ,Rm)

∣

∣

∣

∣

∫

T

y(t)μ(dt) = y and y(t) ∈ ∂zft (x, z) a.e.

}

.

Our goal here is to present an efficient evaluation of the limiting coderivative of the sta-
tionary point map (7.3) in terms of its initial data. The obtained results allow us to make
a conclusion on the Lipschitz-like property of (7.3), which we skip for brevity. Recall that
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the subdifferential structure of the mapping G(x, z) := ∂zψ(x, z) in (7.3) prevents the ful-
fillment of the metric regularity property of this variational systems unless ψ is sufficiently
smooth; see the discussions in Section 5 and Corollary 7.2 given below.

According to Theorem 5.2, we are going to apply the integrable quasi-Lipschitzian prop-
erty (3.2) of the partial subdifferential mapping (x, z) �→ ∂zft (x, z), while indicating the
possibility of using also the integrable Lipschitz-like property (3.5) as in Theorem 6.2,
which is not done in this paper. The version of (3.2) corresponding to the structure of (7.3)
is formulated via the partial second-order subdifferential (2.10) of f as follows: there exist
� ∈ L1(T ,Rn) and η > 0 such that we have the second-order subdifferential estimate

sup
{‖x∗‖ ∣∣ x∗ ∈ ∂2

z ft

(

x (t), z(t), y(t)
)(

y∗(t)
)} ≤ �(t)‖y∗(t)‖ a.e. (7.5)

for all (x , z) ∈ B
∞
η (x̄, z̄), y ∈ B

1
η(ȳ) ∩ ∂f (x , z), and y∗ ∈ L∞(T ,Rm), where

B
1
η(ȳ) ∩ ∂f (x , z) := {y ∈ L1(T ,Rm)

∣

∣ y ∈ B
1
η(ȳ) and y(t) ∈ ∂ft

(

x (t), z(t)
)

a.e.
}

,

and the balls B
∞
η (x̄, z̄) and B

1
η(ȳ) are understood in the sense of (3.3) and (3.4), respec-

tively. Note that (7.5) involves the partial second-order subdifferential of f with respect to
z. Therefore, for the case of functions represented, e.g., as f (x, z) = f1(x) + f2(z), the
fulfillment of (7.5) is guaranteed if only f2 is of class C1,1 around the points in question.

Theorem 7.1 Let S : Rn →→ R
q be given in (7.3) with (x̄, z̄) ∈ gph S, where f satisfies

(7.4). Assume furthermore that for all y ∈ −∂zψ(x̄, z̄) ∩ E∂zf (x̄, z̄) and y ∈ Sf (x̄, z̄, y) we
have the following conditions:

(a) The mapping Sf is inner semicompact at (x̄, z̄, y).
(b) The second-order subdifferential estimate (7.5) is satisfied at (x̄, z̄, y).

Then whenever z∗ ∈ R
q and x∗ ∈ D∗S(x̄, z̄)(z∗), there exist ȳ∗ ∈ R

m, ȳ ∈ −∂zψ(x̄, z̄) ∩
E∂zf (x̄, z̄) and ȳ ∈ Sf (x̄, z̄, ȳ) such that

(

x∗
−z∗
)

∈
∫

T

∂2
z ft (x̄, z̄, y(t))(ȳ∗)μ(dt) + ∂2

z ψ(x̄, z̄,−ȳ)(ȳ∗)

provided that for all y ∈ −∂zψ(x̄, z̄) ∩ E∂zf (x̄, z̄) the second-order adjoint generalized
equation defined by

0 ∈
⋃

y∈Sf (x̄,z̄,y)

∫

T

∂2
z ft (x̄, z̄, y(t))(y∗)μ(dt) + ∂2

z ψ(x̄, z̄, −y)(y∗)

admits only the trivial solution y∗ = 0.

Proof It suffices to check that all the assumptions of Theorem 5.2 hold for the mapping Φ

and G therein defined by

Φt(x, z) : =
{

∂zft (x, z) if (x, z) ∈ Bη(x̄, z̄)

∅ if (x, z) /∈ Bη(x̄, z̄)
,

G(x, z) : =
{

∂zψ(x, z) if (x, z) ∈ Bη(x̄, z̄)

∅ if (x, z) /∈ Bη(x̄, z̄)
.

This readily follows from the definitions and constructions above.

Finally, we present a simple consequence of Theorem 7.1 ensuring the metric regularity
of the stationary point map (7.3) in the case of C1,1 functions ψ therein. Recall that this class
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consists of continuously differentiable functions with locally Lipschitzian gradients around
the reference point.

Corollary 7.2 In addition to the assumption of Theorem 7.1, suppose that ψ does not
depend on x being of class C1,1 around z̄, and that

ker

⎡

⎣projRn

⎛

⎝

⋃

y∈Sf (x̄,z̄,ȳ)

∫

T

∂2
z ft

(

x̄, z̄, y(t)
)

(·)μ(dt)

⎞

⎠

⎤

⎦ = {0},

where ȳ := −∇ψ(z̄). Then S in (7.3) is metrically regular around (x̄, z̄).

Proof Using Theorem 7.1 and the proof of Theorem 5.3, we readily check that
kerD∗S(x̄, z̄) = {0}, which yields the metric regularity of S around (x̄, z̄) by the
coderivative characterization in (2.14).

7.2 Stochastic Programming with Equilibrium Constraints

Various versions of stochastic mathematical programs with equilibrium constraints
(stochastic MPECs) have been formulated and investigated in the literature with numerous
applications to practical models; see, e.g., [9, 20, 22] and the references therein. The under-
lying feature of stochastic MPECs is the presence among constraints stochastic generalized
equations of type (5.1) and their specifications, which can be interpreted as certain equi-
librium conditions. In this subsection we consider a general class of such problems given
by

min ϕ(x, z) subject to z ∈ S(x), x ∈ C, (7.6)

where S(x) is a stochastic parametric variational system taken from (5.1) in the setting
described therein, where ϕ : Rn ×R

q → R is an l.s.c. cost function, and where C is a closed
set. Our goal here is to derive necessary optimality conditions for such stochastic MPECs
by using the basic machinery of variational analysis and the coderivative evaluation for the
stochastic system (5.1) obtained in Section 5.

To formulate the desired necessary optimality conditions for the stochastic MPEC (7.6)
in full generality, we need to recall yet another subdifferential construction for extended-
real-valued functions. Given f : Rn → R finite at x, its singular subdifferential at this point
is defined geometrically via the limiting normal cone (2.2) to the epigraph of f by

∂∞f (x) := {x∗ ∈ R
n
∣

∣ (x∗, 0) ∈ N
(

(x, f (x); epif
)}

. (7.7)

We refer the reader to the books [13, 15, 21] and the bibliographies therein for various
properties, analytic representations, and calculus rules for the singular subdifferential (7.7).
Note that if f is l.s.c. around x, then ∂∞f (x) = {0} if and only if f is locally Lipschitzian
around this point.

Now we are ready to establish the aforementioned necessary optimality conditions for
the stochastic MPEC (7.6).

Theorem 7.3 Let (x̄, z̄) ∈ R
n × R

m be a local optimal solution to (7.6). In addition to
the assumption of Theorem 5.2 with D∗S(x̄, z̄) evaluated therein, suppose that (x∗∞, z∗∞) =
(0, 0) is the only pair satisfying the inclusions

(x∗∞, z∗∞) ∈ ∂∞ϕ(x̄, z̄) and 0 ∈ x∗∞ + D∗S(x̄, z̄)(z∗∞) + N(x̄; C), (7.8)
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which are automatically fulfilled if ϕ is locally Lipschitzian around (x̄, z̄). Then there exist
elements (x̄∗, z̄∗) ∈ ∂ϕ(x̄, z̄), ȳ∗ ∈ R

m, ȳ ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄), and ȳ ∈ SΦ(x̄, z̄, ȳ)

such that we have

0 ∈
(

x̄∗
z̄∗
)

+ D∗G(x̄, z̄,−ȳ)(ȳ∗) + ∫
T

D∗Φt

(

x̄, z̄, ȳ(t)
)

(ȳ∗)μ(dt) +
(

N(x̄; C)

0

)

.

Proof It follows from [13, Theorem 5.34] that there exist dual vectors (x̄∗, z̄∗) ∈ ∂ϕ(x̄, z̄)

and w∗ ∈ D∗S(x̄, z̄)(z̄∗) for which

0 ∈ x̄∗ + w∗ + N(x̄; C) (7.9)

provided that the qualification condition (7.8) is satisfied. Now using the coderivative eval-
uation from Theorem 5.2, we find ȳ∗ ∈ R

m, ȳ ∈ −G(x̄, z̄) ∩ EΦ(x̄, z̄), and ȳ ∈ SΦ(x̄, z̄, ȳ)

such that
(

w∗
−z̄∗
)

∈ D∗G(x̄, z̄, −ȳ)(ȳ∗) +
∫

T

D∗Φt

(

x̄, z̄, ȳ(t)
)

(ȳ∗)μ(dt). (7.10)

Combining finally the relationships in (7.9) and (7.10) verifies the claimed necessary
optimality conditions for the stochastic MPEC (7.6).

The last result is a direct consequence of Theorem 7.3.

Corollary 7.4 Considering a local optimal solution (x̄, z̄) to (7.6) with G in (5.1) indepen-
dent on x, assume that ϕ is locally Lipschitzian around (x̄, z̄) while Φ is integrably locally
Lipschitzian around this point. Denoting ȳ := EΦ(x̄, z̄), we claim that there exists ȳ∗ ∈ R

m

such that

0 ∈ ∂ϕ(x̄, z̄) + ∫
T

∂〈ȳ∗, Φt 〉(x̄, z̄)μ(dt) +
(

N(x̄; C)

D∗G(z̄,−ȳ)(ȳ∗)

)

.

Proof Since ϕ is locally Lipschitzian around (x̄, z̄), the qualification condition (7.8) holds
automatically. Furthermore, the coderivative representation for the integrably Lipschitzian
mapping Φ in (7.10) follows from the scalarization formula (2.8). Combining these facts,
we justify our claim.

Acknowledgements The authors are very grateful to two anonymous referees whose constructive sugges-
tions and remarks allowed us to essentially improve the original presentation.
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