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Abstract
In this paper we provide a splitting algorithm for solving coupled monotone inclusions in a real 
Hilbert space involving the sum of a normal cone to a vector subspace, a maximally monotone, a 
monotone-Lipschitzian, and a cocoercive operator. The proposed method takes advantage of the 
intrinsic properties of each operator and generalizes the method of partial inverses and the forward-
backward-half forward splitting, among other methods. At each iteration, our algorithm needs two 
computations of the Lipschitzian operator while the cocoercive operator is activated only once. By 
using product space techniques, we derive a method for solving a composite monotone primal-
dual inclusions including linear operators and we apply it to solve constrained composite convex 
optimization problems. Finally, we apply our algorithm to a constrained total variation least-squares 
problem and we compare its performance with efficient methods in the literature.

Keywords Splitting algorithms · Monotone operator theory · Partial inverse · Convex 
optimization

Mathematics Subject Classification (2010) 47H05 · 47J25 · 49M29 · 65K05 · 90C25

1 Introduction

In this paper we study the numerical resolution of the following inclusion problem. The 
normal cone to V is denoted by NV.
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Problem 1.1 Let H be a real Hilbert space and let V be a closed vector subspace of H . 
Let A ∶ H → 2H be a maximally monotone operator, let B ∶ H → H be a monotone and 
L-Lipschitzian operator for some L ∈]0,+∞[ , and let C ∶ H → H be a �-cocoercive opera-
tor for some � ∈]0,+∞[ . The problem is to

under the assumption that its solutions set Z is nonempty.

Problem  1.1 models a wide class of problems in engineering including mechanical 
problems [33, 35, 36], differential inclusions [2, 46], game theory [1, 13], restoration and 
denoising in image processing [18, 19, 26], traffic theory [9, 32, 34], among others.

In the case when V = H and the resolvent of B is available, Problem 1.1 can be solved 
by the algorithms in [27, 28] and, if B is linear, by the algorithm in [39]. Moreover, if the 
resolvent of B is difficult to compute, Problem 1.1 can be solved by the forward-backward-
half forward algorithm (FBHF) proposed in [14]. FBHF implement explicit activations of 
B and C and generalizes the classical forward-backward splitting [40] and Tseng’s splitting 
[50] when B = 0 and C = 0 , respectively.

In the case when V ≠ H , a splitting algorithm for solving the case B = C = 0 is proposed 
in [47] using the partial inverse of A with respect to V and extensions for the cases B = 0 
and C = 0 are proposed in [10] and [11], respectively. On the other hand, the algorithms 
proposed in [4–8, 12, 17, 21–23, 25, 27, 29, 30, 37, 38, 41, 43–45, 51] can solve Prob-
lem 1.1 under additional assumptions or without exploiting the vector subspace structure 
and the intrinsic properties of the operators involved. Indeed, the algorithms in [6–8, 12, 21, 
30] need to compute the resolvents of B and C, which are not explicit in general or they can 
be numerically expensive. In addition, previous methods do not take advantage of the vector 
subspace structure of Problem 1.1. The schemes proposed in [4, 22, 29, 37] take advantage 
of the properties of B, but the cocoercivity of C and the vector subspace structure are not 
leveraged. In fact, the algorithms in [4, 22, 29, 37] may consider B + C as a monotone and 
Lipschitzian operator and activate it twice by iteration. In contrast, the algorithms in [17, 
25, 41, 44, 45] activates B + C only once by iteration, but they need to store in the memory 
the two past iterations and the step-size is reduced significantly. In addition, the methods 
proposed in [5, 23, 27, 38, 43, 51] take advantage of the cocoercivity of C, but they do not 
exploit neither the properties of B nor the vector subspace structure of the problem.

Furthermore, note that Problem  1.1 can be solved by the algorithms proposed in [14, 16] 
by considering NV as any maximally monotone operator via product space techniques. These 
approaches do not exploit the vector subspace structure of the problem and need to update addi-
tional auxiliary dual variables at each iteration, which affects their efficiency in large scale prob-
lems. Moreover, since B + C is monotone and (�−1 + L)-Lipschitzian, Problem 1.1 can be solved 
by [11]. However, this implementation needs two computations of C by iteration which affects its 
efficiency when C is computationally expensive and also may increment drastically the number of 
iterations to achieve the convergence criterion, as perceived in [14, Section 7.1] in the case V = H.

In this paper we propose a splitting algorithm which fully exploits the vector subspace 
structure, the cocoercivity of C, and the Lipschitzian property of B. In the particular case 
when V = H , we recover [14], which generalizes the forward-backward splitting and 
Tseng’s splitting [50]. For general vector subspaces, our algorithm also recovers the meth-
ods proposed in [10, 11, 47]. By using standard product space techniques, we apply our 
algorithm to solve composite primal-dual monotone inclusions including a normal cone to 
a vector subspace, cocoercive, and Lipschitzian-monotone operators and composite convex 

(1.1)find x ∈ H such that 0 ∈ Ax + Bx + Cx + NVx,
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optimization problems under vector subspace constraints. We implement our method in 
the context of TV-regularized least-squares problems with constraints and we compare its 
performance with previous methods in the literature including [24]. We observe that, in the 
case when the matrix in the data fidelity term has large norm values, our implementation is 
more efficient.

The paper is organized as follows. In Section 2 we set our notation. In Section 3 we 
provide our main algorithm for solving Problem 1.1 and its proof of convergence. In Sec-
tion 4 we derive a method for solving a composite monotone primal-dual inclusion, includ-
ing monotone, Lipschitzian, cocoercive, and bounded linear operators. In this section we 
also derive an algorithm for solve constrained composite convex optimization problems. 
Finally, in Section 5 we provide numerical experiments illustrating the efficiency of our 
proposed method.

2  Notations and Preliminaries

Throughout this paper H and G are real Hilbert spaces. We denote their scalar products 
by ⟨⋅ ∣ ⋅⟩ , the associated norms by ‖ ⋅ ‖ , and by ⇀ the weak convergence. Given a linear 
bounded operator L ∶ H → G , we denote its adjoint by L∗ ∶ G → H . Id denotes the identity 
operator on H . Let D ⊂ H be non-empty and let T ∶ D → H . Let � ∈]0,+∞[ . The opera-
tor T is �−cocoercive if

and it is L−Lipschitzian if

Let A ∶ H → 2H be a set-valued operator. The domain of A is dom A =
{
x ∈ H || Ax ≠ ∅

}
,  

the range of A  is  ran A =
{
u ∈ H || (∃x ∈ H) u ∈ Ax

}
 , and  the graph of 

A is graA =
{
(x, u) ∈ H ×H || u ∈ Ax

}
 . The set of zeros of A is zerA =

{
x ∈ H || 0 ∈ Ax

}
 , 

the inverse of A is A−1 ∶ H → 2H ∶ u ↦
{
x ∈ H || u ∈ Ax

}
 , and the resolvent of A is 

JA = (Id + A)−1 . The operator A is monotone if

and it is maximally monotone if it is monotone and there exists no monotone operator 
B ∶ H → 2H such that graB properly contains graA , i.e., for every (x, u) ∈ H ×H,

We denote by Γ0(H) the class of proper lower semicontinuous convex functions 
f ∶ H →] − ∞,+∞] . Let f ∈ Γ0(H) . The Fenchel conjugate of f is defined by 
f ∗ ∶ u ↦ supx∈H(⟨x ∣ u⟩ − f (x)) , which is a function in Γ0(H) , the subdifferential of f is the 
maximally monotone operator

we have that (�f )−1 = �f ∗ , and that zer �f  is the set of minimizers of f, which is denoted by 
argminx∈H f  . We denote by

(2.1)(∀x ∈ D)(∀y ∈ D) ⟨x − y ∣ Tx − Ty⟩ ≥ �‖Tx − Ty‖2

(2.2)(∀x ∈ D)(∀y ∈ D) ‖Tx − Ty‖ ≤ L‖x − y‖.

(2.3)(∀(x, u) ∈ graA)(∀(y, v) ∈ graA) ⟨x − y ∣ u − v⟩ ≥ 0

(2.4)(x, u) ∈ graA ⇔ (∀(y, v) ∈ graA) ⟨x − y ∣ u − v⟩ ≥ 0.

�f ∶ x ↦
�
u ∈ H �� (∀y ∈ H) f (x) + ⟨y − x ∣ u⟩ ≤ f (y)

�
,
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We have proxf = J�f  . Moreover, it follows from [3, Theorem 14.3] that

Given a non-empty closed convex set C ⊂ H , we denote by PC the projection onto C, by 
�C ∈ Γ0(H) the indicator function of C, which takes the value 0 in C and +∞ otherwise, 
and by NC = �(�C) the normal cone to C. The partial inverse of A with respect to a closed 
vector subspace V of H , denoted by AV , is defined by

Note that AH = A and A{0} = A−1 . For further properties of monotone operators, non-
expansive mappings, and convex analysis, the reader is referred to [3].

The following is a simplified version of the algorithm proposed in [14, Theorem 2.3].

Proposition 2.1 [14, Theorem 2.3] Let L̂ ∈]0,+∞[ , let 𝛽 ∈]0,+∞[ , let A ∶ H → 2H be a 
maximally monotone operator, let B ∶ H → H be monotone and L̂-Lipschitzian, and let 
C ∶ H → H be a 𝛽-cocoercive operator. Suppose that zer(A + B + C) ≠ ∅ and set

let (�n)n∈ℕ be a sequence in [𝜀, �̂� − 𝜀] , for some 𝜀 ∈]0, �̂�∕2[ . Moreover, let z0 ∈ H and 
consider the following recurrence

Then, (zn)n∈ℕ converges weakly to some z ∈ zer(A + B + C).

Observe that (2.9) reduces to forward-backward splitting when B = 0 (and L = 0 ), and to a 
version of Tseng’s splitting when C = 0 (and � → +∞ ) [12, 50].

3  Main Result

The following is our main algorithm, whose convergence is proved in Theorem 3.2 below.

Algorithm 3.1 In the context of Problem 1.1, let (x0, y0) ∈ V × V⊥ , let � ∈ ]0,+∞[ , and let 
(�n)n∈ℕ be a sequence in ]0,+∞[ . Consider the recurrence

(2.5)proxf ∶ x ↦ argmin
y∈H

�
f (y) +

1

2
‖x − y‖2

�
.

(2.6)(∀𝛾 > 0) prox𝛾f + 𝛾 proxf ∗∕𝛾◦(Id∕𝛾) = Id.

(2.7)(∀(x, y) ∈ H
2) y ∈ AVx ⇔ (PVy + PV⊥x) ∈ A(PVx + PV⊥y).

(2.8)�̂� =
4𝛽

1 +

√
1 + 16𝛽2L̂2

∈]0,min

{
2𝛽,

1

L̂

}
[,

(2.9)

⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

sn = J�nA
�
zn − �n(B + C)zn

�

zn+1 = sn + �n(Bzn − Bsn).
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Note that (3.1) involves only one activation of C, two of B, and three projections onto 
V at each iteration.

Theorem 3.2 In the context of Problem 1.1, set

let � ∈]0,+∞[ , and let (�n)n∈ℕ be a sequence in [�,�∕� − �] for some � ∈]0,�∕(2�)[ . 
Moreover, let (x0, y0) ∈ V × V⊥ and let (xn)n∈ℕ and (yn)n∈ℕ be the sequences generated by 
Algorithm 3.1. Then (xn)n∈ℕ and (yn)n∈ℕ are sequences in V and V⊥ , respectively, and there 
exist x ∈ Z and y ∈ V⊥ ∩ (Ax + PV (B + C)x) such that xn ⇀ x and yn ⇀ y.

Proof Define

It follows from [11, Proposition 3.1(i)&(ii)] that A� is maximally monotone and that B� is 
monotone and �L-Lipschitzian. Moreover, C� is �∕�-cocoercive in view of [10, Proposi-
tion 5.1(ii)]. Since C is �−1-Lipschitzian, B + C is (�−1 + L)-Lipschitzian, and (3.3) and the 
linearity of PV yield

Therefore, [11, Proposition 3.1(iii)] implies that  x̂ ∈ H is a solution to Problem 1.1 if and 
only if

Now, since x0 ∈ V  and y0 ∈ V⊥ , it follows from Algorithm 3.1 that (xn)n∈ℕ and (yn)n∈ℕ are 
sequences in V and V⊥ , respectively. In addition, from Algorithm  3.1 and [11, Proposi-
tion 3.1(i)] we deduce that 

For every n ∈ ℕ , set zn = xn + �yn and set sn = PVpn + 𝛾PV⊥qn . Hence, for every n ∈ ℕ , 
PVsn = PVpn , PV⊥sn = 𝛾PV⊥qn , and (3.6) and (3.4) yield

(3.1)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

find (pn, qn) ∈ H2 such that xn + 𝛾yn − 𝜆n𝛾PV (B + C)xn = pn + 𝛾qn

and
PVqn

𝜆n
+ PV⊥qn ∈ A

�
PVpn +

PV⊥pn

𝜆n

�
,

xn+1 = PVpn + 𝜆n𝛾PV (Bxn − BPVpn),

yn+1 = PV⊥qn.

(3.2)� =
4�

1 +
√
1 + 16�2L2

∈
�
0,min

�
2�,

1

L

��
,

(3.3)

⎧⎪⎨⎪⎩

A� = (�A)V ∶ H → 2H

B� = �PV◦B◦PV ∶ H → H

C� = �PV◦C◦PV ∶ H → H.

(3.4)B� + C� = �PV◦(B + C)◦PV .

(3.5)
x̂ ∈ V and

(
∃ŷ ∈ V⊥∩(Ax̂ + Bx̂ + Cx̂)

)

x̂ + 𝛾
(
ŷ − PV⊥ (B + C)x̂

)
∈ zer(A𝛾 + B𝛾 + C𝛾 ).

(3.6)(∀n ∈ ℕ) J𝜆nA𝛾

(
xn + 𝛾yn − 𝜆n𝛾PV (B + C)xn

)
= PVpn + 𝛾PV⊥qn.
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Thus, from Algorithm 3.1 we deduce that, for every n ∈ ℕ,

Therefore, we obtain from (3.7) and (3.8) that

Altogether, by setting 𝛽 = 𝛽∕𝛾 and L̂ = 𝛾L , we have �̂� = 𝜒∕𝛾 and Proposi-
tion  2.1 asserts that there exists z ∈ zer(A� + B� + C� ) such that zn ⇀ z . Further-
more, by setting x = PVz and y = PV⊥z∕𝛾 , we have −(B� + C� )(x + �y) ∈ A� (x + �y) , 
which, in view of (3.3), is equivalent to −PV (B + C)x + y ∈ Ax . There-
fore, by defining ŷ = y + PV⊥ (B + C)x ∈ V⊥ ∩ (Ax + Bx + Cx) , we have 
x + 𝛾(ŷ − PV⊥ (B + C)x) ∈ zer(A𝛾 + B𝛾 + C𝛾 ) and (3.5) implies that x ∈ Z and that 
y ∈ V⊥ ∩ (Ax + PV (B + C)x) . Moreover, from the weakly continuity of PV and PV⊥ , we 
obtain xn = PVzn ⇀ PVz = x and yn = PV⊥zn∕𝛾 ⇀ PV⊥z∕𝛾 = y , which completes the proof.

The sequence (�n)n∈ℕ in Algorithm 3.1 can be manipulated in order to accelerate the 
convergence. However, as in [10, 11, 48], the inclusion in (3.1) is not always easy to solve. 
The following result provides a particular case of our method, in which this inclusion can 
be explicitly computed in terms of the resolvent of A.

Corollary 3.3 In the context of Problem 1.1, let (x0, y0) ∈ V × V⊥ , let � ∈]0,+∞[ be the 
constant defined in (3.2), let � ∈]0,�[ , and let (xn)n∈ℕ and (yn)n∈ℕ be the sequences gener-
ated by the recurrence

Then, there exist x ∈ Z and y ∈ V⊥ ∩ (Ax + PV (B + C)x) such that xn ⇀ x and yn ⇀ y.

Proof Note that (3.10) implies that (xn)n∈ℕ and (yn)n∈ℕ are sequences in V and 
V⊥ , respectively. Fix n ∈ ℕ and set qn = (xn + �yn − �PV (B + C)xn − pn)∕� . 
Hence, we obtain from (3.10) that pn + �qn = xn + �yn − �PV (B + C)xn , 

(3.7)

sn =J�nA�
(xn + �yn − �n�PV (B + C)xn)

=J�nA�
(zn − �n�PV (B + C)PVzn)

=J�nA�

(
zn − �n(B� + C� )zn

)
.

(3.8)

zn+1 =xn+1 + 𝛾yn+1

=PVpn + 𝜆n𝛾PV (Bxn − BPVpn) + 𝛾PV⊥qn

=PVsn + 𝜆n(𝛾PVBPVzn − 𝛾PVBPVsn) + PV⊥sn

=sn + 𝜆n(B𝛾zn − B𝛾sn).

(3.9)

⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

sn = J�nA�

�
zn − �n(B� + C� )zn

�

zn+1 = sn + �n(B�zn − B�sn).

(3.10)

⎢⎢⎢⎢⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

pn = J�A
�
xn + �yn − �PV (B + C)xn

�

rn = PVpn

xn+1 = rn + �PV (Bxn − Brn)

yn+1 = yn −
pn − rn

�
.
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that qn ∈ Apn , that xn+1 = PVpn + �PV (Bxn − BPVpn) , and that 
yn+1 = yn − (pn − PVpn)∕𝛾 = yn − PV⊥pn∕𝛾 = PV⊥qn . Therefore, (3.10) is a particular case 
of Algorithm 3.1 when �n ≡ 1 ∈ ]0,�∕�[ and the result hence follows from Theorem 3.2.

Remark 3.4 

1. Note that, in the case when C = 0 , (3.10) reduces to the method proposed in [11]. 
Observe that in this case we can take � → +∞ which yields � → 1∕L.

2. Note that, in the case when B = 0 , (3.10) reduces to the method proposed in [10]. In this 
case, we can take L → 0 , which yields � → 2�.

3. In the case when V = H , (3.10) reduces to the algorithm proposed in [14] (see also 
Proposition 2.1).

4  Applications

In this section we tackle the following composite primal-dual monotone inclusion.

Problem  4.1 Let � be a real Hilbert space, let � be a closed vector subspace of � , let 
𝖠 ∶ 𝖧 → 2𝖧 be maximally monotone, let 𝖬 ∶ 𝖧 → 𝖧 be monotone and �-Lipschitzian, 
for some � ∈ ]0,+∞[ , let 𝖢 ∶ 𝖧 → 𝖧 be �-cocoercive, for some � ∈ ]0,+∞[ , and let m 
be a strictly positive integer. For every i ∈ {1,… ,m} , let �i be a real Hilbert space, let 
𝖡i ∶ 𝖦i → 2𝖦i be maximally monotone, let 𝖭i ∶ 𝖦i → 2𝖦i be monotone and such that �−1

i
 

is �i-Lipschitzian, for some �i ∈ ]0,+∞[ , let 𝖣i ∶ 𝖦i → 2𝖦i be maximally monotone and �i
-strongly monotone, for some �i ∈ ]0,+∞[ , and let 𝖫i ∶ 𝖧 → 𝖦i be a nonzero bounded lin-
ear operator. The problem is to

under the assumption that the solution set Z to (4.1) is nonempty.

Note that, if (�, �1,… , �m) ∈ Z then � solves the primal inclusion

and (�1,… , �m) solves the dual inclusion

In the case when � = � , � = 0 , and, for every i ∈ {1,… ,m} , �−1
i

= 0 , this problem can be 
solved by algorithms in [20, 22] by using Tseng’s splitting [50] in a suitable product space. 

(4.1)

find � ∈ �, �1 ∈ �1,… , �m ∈�m such that

⎧⎪⎨⎪⎩

0 ∈ �� +�� + �� +
∑m

i=1
�∗
i
�i + N��

0 ∈
�
�−1
1

+ �−1
1

+ �−1
1

�
�1 − �1�

⋮

0 ∈
�
�−1
m

+ �−1
m

+ �−1
m

�
�m − �m�,

(4.2)

find � ∈ � such that 0 ∈ �� +�� + �� +

m∑
i=1

�∗
i

((
�i◻�i◻�i

)
�i�

)
+ N��

(4.3)
find �1 ∈�1,… , �m ∈ �m such that

(∃� ∈ �)

�
−
∑m

i=1
�∗
i
�i ∈ �� +�� + �� + N��

(∀i ∈ {1,… ,m}) �i ∈
�
�i◻�i◻�i

�
�i�.
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In the case when � = � , � = 0 , and, for every i ∈ {1,… ,m} , �−1
i

= 0 , this problem can be 
solved by algorithms in [23, 51] by using forward-backward splitting in a suitable product 
space. Since � + � and (�−1

i
+ �−1

i
)1≤i≤m are monotone and Lipschitzian and N� is maxi-

mally monotone, Problem 4.1 can be solved by the algorithms in [20, 22]. However, these 
methods do not exploit the cocoercivity or the vector subspace structure of Problem 4.1. 
Other algorithms as those in [16, 21, 38] provide alternatives for solving Problem 4.1, but 
any of them exploit its vector subspace and cocoercive structure. In the case when � = 0 , 
and, for every i ∈ {1,… ,m} , �−1

i
= 0 , the algorithm in [15] exploits the vector subspace 

structure of Problem 4.1 by using the partial inverse of � with respect to � . The follow-
ing result provides a fully split algorithm to solve Problem 4.1 in its full generality. It is 
obtained by using (3.10) in a suitable product space, which exploits the vector subspace 
structure and which activates each cocoercive operator only once by iteration.

Proposition 4.2 Consider the framework of Problem 4.1 and set

Let �0 ∈ � , let �0 ∈ �⊤ , for every i ∈ {1,… ,m} , let �i,0 ∈ �i , set � ∈]0,�[ , where � is 
defined in (3.2), and consider the routine

Then, (�n)n∈ℕ is a sequence in � and there exists (�, �1,… , �m) ∈ Z such that 𝗑n ⇀𝗑 and, 
for every i ∈ {1,… ,m} , 𝗎i,n ⇀𝗎i.

Proof Set H = �⊕ �1 ⊕⋯⊕ �m and define

(4.4)L = max{�, �1,… , �m} +

���� m�
i=1

‖�i‖2 and � = min{� , �1,… , �m}.

(4.5)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

�n = J��

�
�n + ��n − �P�

�
(� + �)�n +

m�
i=1

�∗
i
�i,n

��

�n = P��n

⎢⎢⎢⎢⎢⎣

for i = 1,… ,m

�i,n = J��−1
i

�
�i,n − �

�
(�−1

i
+ �−1

i
)�i,n − �i�n

��

�i,n+1 = �i,n − �
�
�−1
i
�i,n − �−1

i
�i,n − �i(�n − �n)

�

�n+1 = �n − �P�

�
��n −��n +

m�
i=1

�∗
i
(�i,n − �i,n)

�

�n+1 = �n −
�n − �n

�
.
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Then, A is maximally monotone and B is monotone and L-Lipschitzian [22, eq.(3.11)], C 
is �-cocoercive [51, eq.(3.12)], and V is a closed vector subspace of H . Therefore, Prob-
lem  4.1 is a particular instance of Problem  1.1. Moreover, we have from [3, Proposi-
tion 23.18] that

Altogether, by defining

(4.5) is a particular case of (3.1) and the convergence follows from Corollary 3.3.

Remark 4.3 In the particular case when � = � and � = �−1
1

= ⋯ = �−1
m

= 0 , Proposi-
tion 4.2 recovers the main result in [22, Theorem 3.1] in the error-free case. By includ-
ing non-standard metrics in the space  H as in [14], we can also recover [15] when 
� = �−1

1
= ⋯ = �−1

m
= 0 and [51] if we additionally assume that � = � , but we preferred 

to avoid this generalization for simplicity.

We now provide two important examples of Problem 4.1 and Proposition 4.2 in the con-
text of convex optimization.

Example 4.4 Suppose that � = �� , � = �−1
1

= ⋯ = �−1
m

= 0 , � = ∇� , for every 
i ∈ {1,… ,m} , �i = ��i and �i = ��i , where � ∈ Γ0(�) , 𝗁 ∶ 𝖧 → ℝ is convex differentiable 
with �−1-Lipschitzian gradient, for every i ∈ {1,… ,m} , �i ∈ Γ0(�i) is �i-strongly convex 
and �i ∈ Γ0(�i) . Then under the qualification condition [22, Proposition 4.3(i)]

Problem 4.1 is equivalent to

which, in view of Proposition 4.2, can be solved by the algorithm

(4.6)

⎧
⎪⎨⎪⎩

A ∶ H → 2H ∶ (𝗑, 𝗎1,… , 𝗎m) ↦ 𝖠𝗑 × 𝖡−1
1
𝗎1 ×⋯ × 𝖡−1

m
𝗎m

B ∶ H → H ∶ (𝗑, 𝗎1,… , 𝗎m) ↦
�
𝖬𝗑 +

∑m

i=1
𝖫∗
i
𝗎i,𝖭

−1
1
𝗎1 − 𝖫1𝗑,… ,𝖭−1

m
𝗎m − 𝖫m𝗑

�
C ∶ H → H ∶ (𝗑, 𝗎1,… , 𝗎m) ↦ (𝖢𝗑,𝖣−1

1
𝗎1,… ,𝖣−1

m
𝗎m)

V =
�
(𝗑, 𝗎1,… , 𝗎m) ∈ H �� 𝗑 ∈ 𝖵

�
.

(4.7)
{

(∀𝛾 > 0) J𝛾A ∶ (𝗑, 𝗎1,… , 𝗎m) ↦ (J𝛾𝖠𝗑, J𝛾𝖡−1
1
𝗎1,… , J𝛾𝖡−1

m
𝗎m)

PV ∶ (𝗑, 𝗎1,… , 𝗎m) ↦ (P𝖵𝗑, 𝗎1,… , 𝗎m).

(4.8)(∀n ∈ ℕ)

⎧
⎪⎨⎪⎩

xn = (�n, �1,n,… , �m,n)

yn = (�n, 0,… , 0)

pn = (�n, �1,n,… , �m,n)

qn = (�n, �1,n,… , �m,n),

(4.9)(0,… , 0) ∈ sri
(
×m
i=1

(
�i(� ∩ dom� ) − (dom �i + dom �i)

))
,

(4.10)min
�∈�

(
� (�) + �(�) +

m∑
i=1

(�i◻�i)(�i�)

)
,
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where �0 ∈ V  , �0 ∈ V⊥ , for every i ∈ {1,… ,m} , �i,0 ∈ �i , L =
�∑m

i=1
‖�i‖2 , 

� = min{� , �i,… , �m} , � is defined in (3.2), and � ∈]0,�[ . Observe that the algorithm 
(4.11) exploits the cocoercivity of ∇� and (∇�∗

i
)1≤i≤m by implementing them only once by 

iteration a difference of [22, Theorem  4.2], which needs to implement them twice by 
iteration.

Example 4.5 Consider the convex minimization problem

where , and  are real Hilbert spaces, ,  
 is convex, differentiable with �−1-Lipschitzian gradient, and suppose that

Note that  is convex, differentiable, and  is  Lipschitz-
ian. Then, (4.12) can be solved by the primal-dual algorithm proposed in [24, 51], whose 
convergence is guaranteed under the assumption

where 𝜏 > 0 and 𝜎 > 0 are primal and dual step-sizes, respectively. Observe that, when  
is large, this method is forced to choose small primal and dual step-sizes in order to ensure 
convergence. To overcome this inconvenient, we propose the following formulation

where

(4.11)

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

for n = 0, 1, 2,…

�n = prox��

�
�n + ��n − �P�

�
∇�(�n) +

m�
i=1

�∗
i
�i,n

��

�n = P��n

⎢⎢⎢⎢⎣

for i = 1,… ,m

�i,n = prox��∗
i

�
�i,n − �(∇�∗

i
(�i,n) − �i�n)

�

�i,n+1 = �i,n + ��i(�n − �n)

�n+1 = �n − �P�

� m�
i=1

�∗
i
(�i,n − �i,n)

�

�n+1 = �n −
�n − �n

�
,

(4.12)

(4.13)

(4.14)

(4.15)min
�∈�

(
� (�) + �(�) + �(��)

)
,
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Since in this case (4.9) reduces to (4.13), (4.12) is a particular instance of (4.10) when 
m = 1 and �1 = 0 . Therefore, in view of [3, Example 29.19], (4.12) can be solved by the 
routine in (4.11) which, on this setting, reduces to:

where  can be computed only once before the loop, , 
 is defined in (3.2), and .

5  Numerical Experiments

In this section we consider the following optimization problem

where  are vectors in ℝN , �1 and �2 are in ]0,+∞[ , 
, and ∇ ∶ ℝ

N → ℝ
N−1 ∶ (�i)1≤i≤N ↦ (�i+1 − �i)1≤i≤N−1 is the discrete 

(4.16)

(4.17)

(5.1)
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gradient. This problem appears when computing the fusion estimator in fused LASSO 
problems [31, 42, 49].

Note that (5.1) can be written equivalently as (4.12), where

Since  is convex, differentiable,   is 
�1−Lipschitzian, , and (4.13) is trivially satisfied, (5.1) is a particular instance of 
Example 4.5. Hence, (5.1) can be solved by the algorithm in [24, 51] (called Condat-Vũ), 

(5.2)

Algorithm 1  Condat-Vũ [24, 51]

Algorithm 2  Forward-partial inverse-half-forward splitting (FPIHF)
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by (4.17) (called FPIHF), and by [11] (called FPIF), which are compared in this section. In 
this context, the Algorithm Condat-Vũ [24, 51] reduces to Algorithm 1.

Observe that . The convergence of 
Algorithm 1 is guaranteed if

Note that, the larger is , the smaller should be � and � in order to achieve conver-
gence. On the other hand, by considering � defined in (4.16) and Example 4.5, the algo-
rithm in (4.17) reduces to Algorithm 2, whose convergence is guaranteed if the step-size � 
satisfies

Observe that the condition for the step-size � in (5.4) does not depend on .
The FPIF algorithm proposed in [11] for solving (5.1) differs from Algorithm  2 

in the fact that the cocoercive gradient  is implemented twice 
by iteration. Indeed, the algorithm consider the monotone Lipschitzian operator 

, whose Lipschitz constant follows from

Therefore, the convergence of FPIF is guaranteed if � ∈]0, 1∕max{‖∇‖, �1}[ , and, as 
in Algorithm 2, this condition does not depend on . In order to compare Condat-Vũ, 
FPIHF, and FPIF, we set �1 = 5 and �2 = 0.5 and we consider  

, and , where � ∈ {1∕5, 1∕10, 1∕20, 1∕30} , 
N ∈ {600, 1200, 2400} , K ∈ {N∕3,N∕2, 2N∕3} , and rand(⋅, ⋅) and randn(⋅, ⋅) are functions 
in MATLAB generating matrices/vectors with uniformly and normal distributed entries, 
respectively. For each value of � , N, and K, we generate 20 random realizations for , 
and . Note that the average value of  increases as � increase (see Fig. 1 for K = N∕2 ), 
which affects Algorithm 1 in view of (5.3). We also set � = 0.99 ⋅ � , where � is defined in 
(5.3). In this setting, from (5.4) we deduce that the convergence of FPIHF is guaranteed 
for 𝛾 < 𝜒 ≈ 0.2771 . On the other hand, since max{‖∇‖, �1} = �1 = 5 , the convergence of 
FPIF is guaranteed for 𝛾 < 0.2.

In Tables 1, 2, 3, 4 we provide the average time and number of iterations to achieve 
a tolerance � = 10−6 for each algorithm under study. In the case when an algorithm 
exceeds 50000 iterations in all cases, we write “ ⊠ ” in both columns. From these tables 
we can observe that when � increases (and therefore,  increases), Condat-Vũ reduces 
its performance and does not converge within 50000 iterations for big dimensions and 
large values of � . Moreover, the number of iterations of FPIHP is considerably lower 
than its competitors but with expensive computational time by iteration. This can be 
explained by the fact that FPIHP needs to compute three projections onto the kernel 
of  at each iteration. We can also perceive that, at exception of some 

(5.3)

(5.4)
0 < 𝛾 < 𝜒 =

4

𝛼1 +
√

𝛼2
1
+ 64

.
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cases, the partial inverse-based algorithms increase their computational time to achieve 
convergence when K is larger. This can be explained by the fact that the dimension of 
matrix  is larger as K is larger, and it has to be implemented three times by iteration.

When � = 1∕30 , we observe from Table  1, that FPIHP and Condat-Vũ are competi-
tive and both are more efficient than FPIF. When � = 1∕20 , we observe from Table  2 
that FPIHP outperforms Condat-Vũ and FPIF for large dimensions. When � = 1∕10 , 
we observe from Table  3 that FPIHP is the best algorithm at exception of the smallest 

1/5 1/10 1/20 1/30

10

15

20

25

30

35

40

1/5 1/10 1/20 1/30

20

30

40

50

60

70

80

1/5 1/10 1/20 1/30

40

60

80

100

120

140

160

Fig. 1  Box plot for the norm of the 20 random realizations of  , N ∈ {600, 1200, 2400} , K = N∕2

Table 1  Comparison of Condat-Vũ, FPIF, and FPIHF for the case � = 1∕30

K = N∕3 K = N∕2  K = 2N∕3

N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600 Condat-Vũ 0.89 11059 0.80 10047 0.76 9666
FPIF 3.46 17454 3.91 14353 7.20 17430
FPIHF 0.99 4851 1.24 4442 1.73 3996

1200 Condat-Vũ 11.32 17321 10.55 16129 10.54 16082
FPIF 25.52 19930 32.37 13788 51.54 16443
FPIHF 7.07 5425 13.76 5838 23.83 7570

2400 Condat-Vũ 74.17 34059 70.14 32216 69.48 31963
FPIF 95.55 17747 138.67 16074 190.06 17216
FPIHF 43.08 7961 64.68 7464 70.64 6369
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Table 2  Comparison of Condat-Vũ, FPIF, and FPIHF for the case � = 1∕20

K = N∕3 K = N∕2 K = 2N∕3

N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600 Condat-Vũ 0.86 10752 0.81 10263 0.87 10992
FPIF 2.67 13381 3.91 14204 5.88 14258
FPIHF 0.97 4725 0.82 2900 1.63 3747

1200 Condat-Vũ 13.91 21209 13.35 20359 12.51 19118
FPIF 23.30 18142 45.16 19222 52.60 16773
FPIHF 9.07 6943 20.53 8689 10.91 3458

2400 Condat-Vũ 103.92 47673 98.92 45543 91.33 41996
FPIF 89.77 16659 132.60 15374 145.58 13181
FPIHF 32.27 5957 45.35 5234 83.48 7539

Table 3  Comparison of Condat-Vũ, FPIF, and FPIHF for the case � = 1∕10

K = N∕3 K = N∕2 K = 2N∕3

N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600 Condat-Vũ 1.43 18233 1.30 16747 1.25 15577
FPIF 3.56 18040 3.01 11057 5.17 12389
FPIHF 1.11 5414 1.30 4696 1.49 3436

1200 Condat-Vũ 30.19 46078 26.98 41243 24.05 36849
FPIF 25.61 19916 30.70 13095 40.57 12960
FPIHF 6.96 5343 10.16 4294 17.79 5657

2400 Condat-Vũ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

FPIF 98.90 18363 129.27 14975 172.05 15609
FPIHF 28.90 5349 46.74 5391 60.61 5484

Table 4  Comparison of Condat-Vũ, FPIF, and FPIHF for the case � = 1∕5

K = N∕3 K = N∕2 K = 2N∕3

N Algorithm Av. time (s) Av. iter Av. time (s) Av. iter Av. time (s) Av. iter

600 Condat-Vũ 3.76 48078 3.27 40998 2.58 33226
FPIF 2.68 13527 3.31 11945 4.14 9840
FPIHF 0.50 2428 0.64 2263 0.79 1780

1200 Condat-Vũ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

FPIF 21.26 16535 27.29 11627 35.55 11399
FPIHF 7.23 5529 5.72 2424 10.25 3257

2400 Condat-Vũ ⊠ ⊠ ⊠ ⊠ ⊠ ⊠

FPIF 88.51 16392 124.71 14444 139.69 12653
FPIHF 23.95 4414 35.51 4102 41.38 3773
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dimensional case in which it is competitive with Condat-Vũ. The latter does not converge 
within 50000 for dimension N = 2400 . When � = 1∕5 , FPIHP is the more efficient algo-
rithm in all the cases under study, as it is illustrated in Table 4. Moreover, Condat-Vũ con-
verge before 50000 iterations only in the lower dimensional case when N = 600 . We con-
clude that, for higher values of  and larger dimensions, is more convenient to implement 
FPIHP.
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