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Abstract
This paper studies the asymptotic behavior of the constant step Stochastic Gradient Descent
for the minimization of an unknown function, defined as the expectation of a non convex,
non smooth, locally Lipschitz random function. As the gradient may not exist, it is replaced
by a certain operator: a reasonable choice is to use an element of the Clarke subdifferen-
tial of the random function; another choice is the output of the celebrated backpropagation
algorithm, which is popular amongst practioners, and whose properties have recently been
studied by Bolte and Pauwels. Since the expectation of the chosen operator is not in gen-
eral an element of the Clarke subdifferential of the mean function, it has been assumed
in the literature that an oracle of the Clarke subdifferential of the mean function is avail-
able. As a first result, it is shown in this paper that such an oracle is not needed for almost
all initialization points of the algorithm. Next, in the small step size regime, it is shown
that the interpolated trajectory of the algorithm converges in probability (in the compact
convergence sense) towards the set of solutions of a particular differential inclusion: the
subgradient flow. Finally, viewing the iterates as a Markov chain whose transition kernel
is indexed by the step size, it is shown that the invariant distribution of the kernel con-
verge weakly to the set of invariant distribution of this differential inclusion as the step size
tends to zero. These results show that when the step size is small, with large probability, the
iterates eventually lie in a neighborhood of the critical points of the mean function.
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1 Introduction

In this work, we study the asymptotic behavior of the constant step Stochastic Gradient
Descent (SGD) when the objective function is neither differentiable nor convex. Given an
integer d � 1 and a probability space (Ξ,T , μ), let f : Rd × Ξ → R, (x, s) �→ f (x, s)

be a function which is assumed to be locally Lipschitz, generally non-differentiable and
non-convex in the variable x, and μ-integrable in the variable s. The goal is to find a local
minimum, or at least a critical point of the function F(x) = ∫

f (x, s) μ(ds) = Ef (x, ·),
i.e., a point x� such that 0 ∈ ∂F (x�), where ∂F is the so-called Clarke subdifferential of
F . It is assumed that the function f is available to the observer along with a sequence of
independent Ξ -valued random variables (ξk)k∈N on some probability space with the same
probability law μ. The function F itself is assumed unknown due to, e.g., the difficulty of
computing the integral Ef (x, ·). Such non-smooth and non-convex problems are frequently
encountered in the field of statistical learning. For instance this type of problem arises in
the study of neural networks when the activation function is non-smooth, which is the case
of the commonly used ReLU function.

We establish the weak convergence of SGD to the set of (Clarke) critical points of F .
Our main contributions are:

– We investigate the constant step size regime, whereas most works address the vanishing
step size regime.

– We study an oracle-free version of SGD, which does not require to have access to the
Clarke subgradient of the unknown function F .

To that end, our main hypotheses is that the function F is Whitney stratifiable. We also need
to posit that the sequence of iterates is bounded in probability. Boundedness assumptions are
quite standard in stochastic approximation, we nevertheless provide sufficient conditions:
first, it holds when F is assumed coercive and smooth outside an arbitrary compact set;
second, it naturally holds in the case of projected SGD i.e., when the iterates are projected
onto some compact set. The convergence of the projected SGD is as well addressed in the
paper.

We say that a sequence of random variables (xn)n∈N on R
d is a SGD sequence with step

size γ > 0 if, with probability one,

xn+1 = xn − γ∇f (xn, ξn+1) (1)

for every n such that the function f (·, ξn+1) is differentiable at point xn, where
∇f (xn, ξn+1) represents the gradient w.r.t. the variable xn. When f (·, ξn+1) is non-
differentiable at xn, the update equation xn → xn+1 is left undefined. The practioner is free
to choose the value of xn+1 according to a predetermined selection policy. Typically, a rea-
sonable choice is to select xn+1 in the set xn −γ ∂f (xn, ξn+1), where ∂f (x, s) represents the
Clarke subdifferential of the function f (·, s) at the point x. When such a policy is used, the
resulting sequence will be referred to as a Clarke-SGD sequence. In fact, our study extends
to the case where xn+1 is chosen in the set xn − γGf (·,ξn+1), where Gf (·,ξn+1) is a gen-
eralized subdifferential of f (·, ξn+1) in Norkin’s sense [24] (we refer to such a sequence
as a Norkin-SGD sequence). The Clarke subdifferential is a special case of generalized
subdifferential.

An alternative used by practioners is to compute the derivative using the automatic
differentiation provided in popular API’s such as Tensorflow, PyTorch, etc. i.e., for all n,

xn+1 = xn − γ af (·,ξn+1)(xn) (2)
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where ah stands for the output of the automatic differentiation applied to a function h. We
refer to such a sequence as an autograd sequence. This approach is useful when f (·, s) is a
composition of matrix multiplications and non-linear activation functions, of the form

f (x, s) = �(σL(WLσL−1(WL−1 · · · σ1(W1Xs))), Ys) , (3)

where x = (W1, · · · , WL) are the weights of the network represented by a finite sequence
of L matrices, σ1, · · · , σL are vector-valued functions, Xs is a feature vector, Ys is a label
and �(·, ·) is some loss function. In such a case, the automatic differentiation is computed
using the chain rule of function differentiation, by means of the celebrated backpropagation
algorithm. When the mappings σ1, · · · , σL, �(·, Ys) are differentiable, the chain rule indeed
applies and the output coincides with the gradient. However, the chain rule fails in case of
non-differentiable functions. The properties of the map ah are studied in the recent work
[8]. In general, ah(x) may not be an element of the Clarke-subdifferential ∂h(x). It can
even happen that ah(x) �= ∇h(x) at some points x where h is differentiable. However, the
set of such peculiar points is proved to be Lebesgue negligible. As a consequence, if the
initial point x0 is chosen random according to some density w.r.t. the Lebesgue measure,
an autograd sequence can be shown to be a SGD sequence in the sense of Equation (1)
under some conditions. The aim of this paper is to analyze the asymptotic behavior of SGD
sequences in the case where the step γ is constant.

About the Literature In the nonsmooth and non convex case, the convergence of SGD has
been studied in [13] and [12] using the concept of generalized differentiability [24], and
assuming a Sard-like condition on the critical set. More recently, using a differential inclu-
sion (DI) approach, the papers [10] provide a similar result under the additional assumption
that the objective function is Whitney-stratifiable (see also [21], in the particular case of sub-
differentially regular functions). These papers make two major hypotheses on the algorithm
under study, which we avoid in this paper.

The first major hypothesis in the above papers if the fact that the step size is vanishing,
i.e., γ is replaced with a sequence (γn) that tends to zero as n → ∞. From a theoretical
point of view, the vanishing step size is convenient because, under various assumptions, it
allows to demonstrate the almost sure convergence of the iterates xn to the set

Z := {x ∈ R
d : 0 ∈ ∂F (x)} (4)

of critical points of F . However, in practical applications such as neural nets, a vanishing
step size is rarely used because of slow convergence issues. In most computational frame-
works, a possibly small but nevertheless constant step size is used by default. The price to
pay is that the iterates are no longer expected to converge almost surely to the set Z but to
fluctuate in the vicinity of Z as n is large. In this paper, we aim at establishing a result of
the type

∀ε > 0, lim sup
n→∞

P(d(xn,Z) > ε) −−→
γ↓0

0, (5)

where d is the Euclidean distance between xn and the set Z . Although this result is weaker
than in the vanishing step case, constant step stochastic algorithms can reach a neighborhood
of Z faster than their decreasing step analogues, which is an important advantage in the
applications where the accuracy of the estimates is not essential. Moreover, in practice they
are able to cope with non stationary or slowly changing environments which are frequently
encountered in signal processing, and possibly track a changing set of solutions [5, 19].
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The second important difference between the present paper and the papers [10, 21] lies in
the algorithm under study. In these papers, the iterates are supposed to satisfy the inclusion

xn+1 − xn

γn+1
∈ −∂F (xn) + ηn+1 (6)

for all n, where (ηn) is a martingale increment noise w.r.t. the filtration
(σ (x0, ξ1, . . . , ξn))n�1. Under the assumption that γn → 0 as n → ∞, the authors of [10,
21] prove that almost surely, the continuous time linearly interpolated process constructed
from a sequence (xn) satisfying (6) is a so-called asymptotic pseudotrajectory [4] of the
Differential Inclusion (DI)

ẋ(t) ∈ −∂F (x(t)) , (7)

that will be defined on R+ = [0, ∞). Heuristically, this means that a sequence (xn) sat-
isfying (6) shadows a solution to (7) as n tends to infinity. This result is one of the key
ingredients to establish the almost sure convergence of xn to the set Z . Unfortunately, a
SGD sequence does not satisfy the condition (6) in general (setting apart the fact that γ is
constant). To be more precise, consider a Clarke-SGD sequence as defined above. For all n,
xn+1 = xn − γ ∂f (xn, ξn+1), which in turn implies

xn+1 − xn

γ
∈ −E∂f (xn, . ) + ηn+1 ,

where (ηn) is a martingale increment noise sequence, and where E∂f (x, . ) represents the
set-valued expectation

∫
∂f (x, s)dμ(s). The above inclusion is analogous to (6) in the

case where ∂F (x) = E∂f (x, ·) for all x i.e., if one can interchange the expectation E

and the Clarke subdifferential operator ∂ . Although the interchange holds if e.g., the func-
tions f (·, s) are convex (in which case ∂f (x, s) would coincide with the classical convex
subdifferential), one has in general ∂Ef (x, ·) ⊂ E∂f (x, ·) and the inclusion can be strict
[9, Proposition 2.2.2]. As a consequence, a Clarke-SGD sequence does not admit the oracle
form (6) in general. For such a sequence, the corresponding DI reads

ẋ(t) ∈ −E∂f (x(t), . ) , (8)

but unfortunately, the flow of this DI may contain spurious equilibria (an example is pro-
vided in the paper). In [21] the authors restrict their analysis to regular functions [9, §2.4],
for which the interchange of the expectation and the subdifferentiation applies. However,
this assumption can be restrictive, since a function as simple as −|x| is not regular at the
critical point zero. The issue of the absence of interchange between the expectation and the
Clarke subdifferential was addressed in [12] using the notion of generalized differentiabil-
ity. In this work, the convergence is established towards the set of zeroes of the generalized
subdifferential of F . However, this set can be substantially larger than the set Z of critical
points.

A second example where the oracle form of Equation (6) does not hold is given by auto-
grad sequences. Such an example is studied in [8], assuming that the step size is vanishing
and that ξ takes its values over a finite set. It is proved that the autograd sequence is an
almost sure asymptotic pseudotrajectory of the DI ẋ(t) ∈ −D(x(t)), for some set-valued
map D which is shown to be a conservative field with F as a potential. Properties of con-
servative fields are studied in [8]. In particular, it is proved that D = {∇f } Lebesgue almost
everywhere. Despite this property, the DI ẋ(t) ∈ −D(x(t)) substantially differs from (7).
Again, the set of equilibria may be strictly larger than the set Z of critical points of F .

We finally mention the paper [27], which studies an inertial version of SGD in the van-
ishing step size regime. Similarly to [10, 21] and contrary to the present paper, the author
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assumes the oracle form of Equation (6). The almost sure convergence is established, under
the rather weak assumption that F is differentiable in Norkin’s generalized sense.

1.1 Contributions

• We analyze the SGD algorithm (1) in the non-smooth, non-convex setting, under real-
istic assumptions: the step size is assumed to be constant along the iterations, and we
neither assume the regularity of the functions involved, nor the knowledge of an ora-
cle of ∂F as in (6). Our assumptions encompass Clarke SGD sequences, autograd and
Norkin SGD sequences as special cases.

• Under mild conditions, we prove that when the initialization x0 is randomly chosen
with a density, all SGD sequences coincide almost surely, irrespective to the particular
selection policy used at the points of non-differentiability. In this case, xn almost never
hits a non-differentiable point of f (·, ξn+1) and Equation (1) actually holds for all n.
Moreover, we prove that

xn+1 − xn

γ
= −∇F(xn) + ηn+1 ,

where (ηn) is a martingale difference sequence, and ∇F(xn) is the true gradient of F

at xn. This argument allows to bypass the oracle assumption of [10, 21].
• We establish that the continuous process obtained by piecewise affine interpolation of

(xn) is a weak asymptotic pseudotrajectory of the DI (7). In other words, the interpo-
lated process converges in probability to the set of solutions to the DI, as γ → 0, for
the metric of uniform convergence on compact intervals.

• We establish the long run convergence of the iterates xn to the set Z of Clarke critical
points of F , in the sense of Equation (5). This result holds under two main assumptions.
First, it assumed that F admits a chain rule, which is satisfied for instance if F is a
so-called tame function. Second, we assume a standard drift condition on the Markov
chain (1). Finally, we provide verifiable conditions of the functions f (·, s) under which
the drift condition holds.

• In many practical situations, the drift conditions alluded to above are not satisfied. To
circumvent this issue, we analyze a projected version of the SGD algorithm, which is
similar in its principle to the well-known projected gradient algorithm in the classical
stochastic approximation theory.

1.2 Paper Organization

Section 2 recalls some known facts about Clarke subdifferentials, conservative fields
and differential inclusions. In Section 3, we study the elementary properties of almost-
everywhere gradient functions, defined as the functions ϕ(x, s) which coincide with
∇f (x, s) almost everywhere. Practical examples are provided. In Section 4, we study
the elementary properties of SGD sequences. Section 5 establishes the convergence in
probability of the interpolated process to the set of solutions to the DI. In Section 6,
we establish the long run convergence of the iterates to the set of Clarke critical points.
Section 7 is devoted to the projected subgradient algorithm. The proofs are found
in Section 8.
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2 Preliminaries

2.1 Notations

If ν, ν′ are two measures on some measurable space (Ω,F), ν � ν′ means that ν is abso-
lutely continuous w.r.t. ν. The ν-completion of F is defined as the sigma-algebra consisting
of the sets S ⊂ Ω such that there exist A,B ∈ F with A ⊂ S ⊂ B and ν(B \ A) = 0. For
these sets, ν(S) = ν(A).

If E is a metric space, we denote by B(E) the Borel sigma field on E. Let d be an integer.
We denote by M(Rd) the set of probability measures on B(Rd) and by M1(R

d) := {ν ∈
M(Rd) : ∫ ‖x‖ν(dx) < ∞}. We denote as λd the Lebesgue measure on R

d . When the
dimension is clear from the context, we denote as λ this Lebesgue measure. For a subset
K ⊂ R

d , we denote by

Mabs(K) := {ν ∈ M(Rd) : ν � λ and supp(ν) ⊂ K} ,

where supp(ν) represents the support of ν.
If P is a Markov kernel on R

d and g : Rd → R is a measurable function, Pg represents
the function on R

d → R given by Pg(x) = ∫
P(x, dy)g(y), whenever the integral is well-

defined (the integral is understood in the weak sense). For every measure π ∈ M(Rd), we
denote by πP the measure given by πP = ∫

π(dx)P (x, ·). We use the notation π(g) =∫
gdπ whenever the integral is well-defined.
For every x ∈ R

d , r > 0, B(x, r) is the open Euclidean ball with center x and radius r .
The notation 1A stands for the indicator function of a set A, equal to one on that set and to
zero otherwise. The notation Ac represents the complementary set of a set A and cl(A) its
closure.

2.2 Subdifferentials and Conservative Fields

A set valued map H : Rd ⇒ R
d is a map such that for each x ∈ R

d , H(x) is a subset of
R

d . We say that H is upper semi continuous, if its graph {(x, y) : y ∈ H(x)} is closed in
R

d×d . For any function F : Rd → R, we denote by DF the set of points x ∈ R
d such that

F is differentiable at x. If F is locally Lipschitz continuous, it is by Rademacher’s theorem
almost everywhere differentiable. In this case, the Clarke’s subdifferential of F coincides
with the set-valued map ∂F : Rd ⇒ R

d given for all x ∈ R
d by

∂F (x) = co
{
y ∈ R

d : ∃(xn)n∈N ∈ DN

F s.t. (xn, ∇F(xn)) → (x, y)
}

,

where co stands for the convex hull [9].
We now briefly review some recent results of [8]. A set-valued map D : Rd ⇒ R

d is
called a conservative field, if for each x ∈ R

d , D(x) is a nonempty and compact subset
of R

d , D has a closed graph, and for each absolutely continuous a : [0, 1] → R
d , with

a(0) = a(1), it holds that:
∫ 1

0
min

v∈D(a(t))
〈ȧ(t), v〉dt =

∫ 1

0
max

v∈D(a(t))
〈ȧ(t), v〉dt = 0 .

We say that a function F : Rd → R is a potential for the conservative field D if for every
x ∈ R

d and every absolutely continuous a : [0, 1] → R
d , with a(0) = 0 and a(1) = x,

F(x) = F(0) +
∫ 1

0
min

v∈D(a(t))
〈ȧ(t), v〉dt . (9)
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In this case, such a function F is locally Lipschitz continuous, and for every absolutely
continuous curve a : [0, 1] → R

d , the function t �→ F(a(t)) satisfies for almost every
t ∈ [0, 1],

d

dt
F (a(t)) = 〈v, ȧ(t)〉 (∀v ∈ D(a(t))) ,

that is to say, F admits a “chain rule” [8, Lemma 2]. Moreover, by [8, Theorem 1], it holds
that D = {∇F } Lebesgue almost everywhere.

We say that a function F is path differentiable if there exists a conservative field D such
that F is a potential for D. If F is path differentiable, then the Clarke subdifferential ∂F

is a conservative field for the potential F [8, Corollary 2]. Another useful example of a
conservative field for composite functions is the automatic differentiation field [8, Section
5]. A broad class of functions used in optimization are path differentiable, e.g. any convex,
concave, regular or tame. A tame function is a function defined in some o-minimal structure
([11]), they enjoy some nice stability properties such as any elementary operation on them
remain tame (e.g. composition, sum, inverse). The domain f of a tame function admits a so-
called Whitney stratification, that is to say a collection of manifolds (Si) on each of which
f is smooth with the additional property that the various gradients fit well together (see [7]
for more details). The exponential and the logarithm are tame, as well as any semialgebraic
function, an interested reader can find more on tameness and its usefulness in optimization
in [17], and more details in [7, 11] and [10].

A similar point of view on differentiation of non-smooth functions is given by the gen-
eralized subdifferential introduced by Norkin [24]. A function F : Rd → R is said to be
differentiable in a generalized sense if there is a set-valued map GF : Rd ⇒ R

d such that
for every x, GF (x) is nonempty, convex, compact valued, the graph of GF is closed, and

F(y) = F(x)+〈g(y), y−x〉+o(x, y, g) , with g(y) ∈ GF (y) and lim
y→x

sup
g∈GF (y)

o(x, y, g)

‖x − y‖ = 0 .

As in the path-differentiable case, the class of such functions contains tame, regular and
Whitney stratifiable functions. A nice feature of this class is that, under mild conditions,
it is closed with respect to the expectation. That is to say, if f : R

d × Ξ → R is such
that for every s ∈ Ξ , f (·, s) differentiable in a generalized sense, then the same is true for
F(x) := ∫

f (x, s)μ(ds) [23]. Stochastic algorithms with decreasing steps involving the
generalized subdifferential were studied in [12, 27].

2.3 Differential Inclusions

We endow the set of continuous function from R+ to R
d with the metric of uniform

convergence on compact intervals of R+:

dC(x, y) =
∑

n∈N
2−n

(

1 ∧ sup
t∈[0,n]

‖x(t) − y(t)‖
)

(10)

Given a set valued map H : R
d ⇒ R

d , we say that x : R+ ⇒ R
d is a solution of the

differential inclusion
ẋ(t) ∈ H(x(t)) (11)

with initial condition x0 ∈ R
d , if x is absolutely continuous, x(0) = x0 and (11) holds

for almost every t ∈ R+. We denote by SH : Rd ⇒ C(R+,Rd) the set-valued mapping
such that for every a ∈ R

d , SH(a) is set of solutions of (11) with x0 = a. For every subset
A ⊂ E, we define SH(A) = ⋃

a∈A SH(a).
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If a map H has nonempty values we will say that it is upper semicontinuous if the graph
of H, {(x, y) : y ∈ H(x)}, is closed. In the case where H is upper semicontinuous with
compact and convex values and satisfies the condition

∃K � 0, ∀x ∈ R
d , sup{‖v‖ : v ∈ H(x)} � K(1 + ‖x‖) (12)

then SH(a) is non empty for each a ∈ R
d , and moreover, SH(Rd) is closed in the metric

space (C(R+,Rd), dC) [2]. The Clarke subdifferential of a locally Lipschitz function is
upper semicontinuous set valued map with nonempty compact convex values [9, Chap. 3].

3 Almost-Everywhere Gradient Functions

3.1 Definition

Let (Ξ,T , μ) be a probability space, where the σ -field T is μ-complete. Let d > 0 be an
integer. Consider a function f : Rd × Ξ → R. We denote by �f := {(x, s) ∈ R

d × Ξ :
x ∈ Df (·,s)} the set of points (x, s) s.t. f (·, s) is differentiable at x. We denote by ∇f (x, s)

the gradient of f (·, s) at x, whenever it exists.
The following technical lemma, the proof of which is provided in Section 8.1, is essential.

Lemma 1 Assume that f is B(Rd) ⊗ T -measurable and that f (·, s) is continuous for
every s ∈ Ξ . Then �f ∈ B(Rd) ⊗ T , and the function ϕ0 : Rd × Ξ → R

d defined as

ϕ0(x, s) =
{ ∇f (x, s) if (x, s) ∈ �f

0 otherwise,
(13)

is B(Rd) ⊗ T -measurable. Moreover, if f (·, s) is locally Lipschitz continuous for every
s ∈ Ξ , then (λ ⊗ μ)(�c

f ) = 0.

Thanks to this lemma, the following definition makes sense.

Definition 1 Assume that f (·, s) is locally Lipschitz continuous for every s ∈ Ξ . A func-
tion ϕ : Rd × Ξ → R

d is called an almost everywhere (a.e.)-gradient of f if ϕ = ∇f

λ ⊗ μ-almost everywhere.

By Lemma 1, we observe that a.e.-gradients exist, since (λ ⊗ μ)(�c
f ) = 0. Note that in

Definition 1, we do not assume that ϕ is B(Rd)⊗T /B(Rd)-measurable. The reason is that
this property is not always easy to check on practical examples. However, if one denotes by
B(Rd) ⊗ T the λ ⊗ μ completion of the σ -field B(Rd) ⊗ T , an immediate consequence
of Lemma 1 is that any a.e.-gradient of f is a B(Rd) ⊗ T /B(Rd)-measurable function.

3.2 Examples

Lazy Gradient Function The function ϕ0 given by Equation (13) is an a.e. gradient
function.

P. Bianchi et al.1124



Clarke gradient function We shall refer to as a Clarke gradient function as any function
ϕ(x, s) such that {

ϕ(x, s) = ∇f (x, s) if (x, s) ∈ �f ,

ϕ(x, s) ∈ ∂f (x, s) otherwise.
(14)

Note that the inclusion ϕ(x, s) ∈ ∂f (x, s) obviously holds for all (x, s) ∈ R
d ×Ξ , because

∇f (x, s) is an element of ∂f (x, s) when the former exists. However, conversely, a function
ψ(x, s) ∈ ∂f (x, s) does not necessarily satisfy ψ(x, s) = ∇f (x, s) if (x, s) ∈ �f (see the
footnote1). By construction, a Clarke gradient function is an a.e. gradient function.

Selections of Conservative Fields

Proposition 1 Assume that for every s ∈ Ξ , f (·, s) is locally Lipschitz, path differentiable,
and is a potential of some conservative field Ds : R

d ⇒ R
d . Consider a function ϕ :

R
d × Ξ → R

d which is B(Rd) ⊗ T /B(Rd) measurable and satisfies ϕ(x, s) ∈ Ds(x)

for all (x, s) ∈ R
d × Ξ . Then, ϕ is an a.e. gradient function for f .

Proof Define A := {(x, s) s.t. ϕ(x, s) �= ∇f (x, s)}. Applying Fubini’s theorem we have:
∫

1A(z)λ ⊗ μ(dz) =
∫ ∫

1A((x, s))λ(dx)μ(ds) = 0 ,

where the last equality comes from the fact that for every s, Ds = {∇f (·, s)} λ-a.e. [8,
Theorem 1].

We provide below an application of Proposition 1.

Autograd Function Consider Equation (3), which represents a loss of a neural network.
Although f is just a composition of some simple functions, a direct calculation of the
gradient (if it exists) may be tedious. Automatic differentiation deals with such functions
by recursively applying the chain rule to the components of f . More formally consider a
function f : Rd → R that can be written as a closed formula of simple functions, mathe-
matically speaking this means that we can represent f by a directed graph. This graph (with
q > d vertices) is defined through a set-valued function parents(i) ⊂ {1, . . . , i − 1}, a
directed edge in this setting will be j → i with j ∈ parents(i). Associate to each vertex
a simple function gi : R|parents(i)| → R, given an input x = (x1, . . . , xd) ∈ R

d we recur-
sively define xi = gi((xj )j∈parents(i)) for i > d and finally f (x) = xq . For instance, if
f is a cross entropy loss of a neural network, with activation functions being ReLu or sig-
moid functions, then gi are some compositions of simple functions log, exp, 1

1+x2 , norms
and piecewise polynomial functions, all being path differentiable [8, section 6], [10, Section
5.2]. Automatic differentiation libraries calculate the gradient of f by successively applying
the chain rule (in the sense (g1 ◦ g2)

′ = (g′
1 ◦ g2)g

′
2) to the simple functions gi . While the

chain rule is no longer valid in a nonsmooth setting (see e.g. [18]), it is shown in [8, Section
5] that when the simple functions are path-differentiable, the output of automatic differen-
tiation (e.g. autograd in PyTorch ([25])) is a selection of some conservative field D for

1If a locally Lipschitz function g is differentiable at a point x, we have {∇g(x)} ⊂ ∂g(x) but the inclusion
could be strict (the two sets are equal if g is regular at x): for example, g(x) = x2 sin(1/x) is s.t. ∇g(0) = 0
and ∂g(0) = [−1, 1]. There even exist functions for which the set of x s.t. {∇g(x)} � ∂g(x) is a set of full
measure (see [20, Proposition 1.9]).
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f . We refer to [8] for a more detailed account. We denote by af (x) the output of automatic
differentiation of a function f at some point x.

Assume that Ξ = N and for each s ∈ Ξ , f (·, s) is defined through a recursive graph
of path differentiable functions (in the machine learning paradigm f (·, s) will represent the
loss related to one data point, while F(·) is the average loss). By Proposition 1, the map
(x, s) �→ af (·,s)(x) is an a.e. gradient function for f .

Selections of Generalized Subdifferentials of Norkin Noticing that a generalized subdif-
ferential of a function is equal to its gradient a.e. ([23, Theorem 1.12]), the proof of the next
proposition is identical to the one of Proposition 1.

Proposition 2 Assume that for every s ∈ Ξ , f (·, s) is differentiable in a generalized sense,
with Gf (·,s) : R

d ⇒ R
d being its generalized subdifferential. Consider a function ϕ :

R
d ×Ξ → R

d which is B(Rd)⊗T /B(Rd) measurable and satisfies ϕ(x, s) ∈ Gf (·,s)(x)

for all (x, s) ∈ R
d × Ξ . Then, ϕ is an a.e. gradient function for f .

4 SGD Sequences

4.1 Definition

Given a probability measure ν on B(Rd), define the probability space (Ω,F ,Pν) as Ω =
R

d × ΞN, F = B(Rd) ⊗ T ⊗N, and P
ν = ν ⊗ μ⊗N. We denote by (x0, (ξn)n∈N∗) the

canonical process on Ω → R
d i.e., writing an elementary event in the space Ω as ω =

(ωn)n∈N, we set x0(ω) = ω0 and ξn(ω) = ωn for each n � 1. Under P
ν , x0 is a R

d -
valued random variable with the probability distribution ν, and the process (ξn)n∈N∗ is an
independent and identically distributed (i.i.d.) process such that the distribution of ξ1 is μ,
and x0 and (ξn) are independent. We denote by F the λ ⊗ μ⊗N-completion of F .

Let f : Rd × Ξ → R be a B(Rd) ⊗ T /B(R)-measurable function.

Definition 2 Assume that f (·, s) is locally Lipschitz continuous for every s ∈ Ξ . A
sequence (xn)n∈N∗ of functions on Ω → R

d is called an SGD sequence for f with the step
γ > 0 if there exists an a.e.-gradient ϕ of f such that

xn+1 = xn − γ ϕ(xn, ξn+1) (∀n � 0) .

4.2 All SGD Sequences Are Almost Surely Equal

Consider the SGD sequence

xn+1 = xn − γ ϕ0(xn, ξn+1), (15)

generated by the lazy a.e. gradient ϕ0. Denote by Pγ : Rd × B(Rd) → [0, 1] the kernel
of the homogeneous Markov process defined by this equation, which exists thanks to the
B(Rd) ⊗ T -measurability of ϕ0. This kernel is defined by the fact that its action on a
measurable function g : Rd → R+, denoted as Pγ g(·), is

Pγ g(x) =
∫

g(x − γ ϕ0(x, s)) μ(ds). (16)
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Define � as the set of all steps γ > 0 such that Pγ maps Mabs(R
d) into itself:

� := {γ ∈ (0, +∞) : ∀ρ ∈ Mabs(R
d), ρPγ � λ} .

Proposition 3 Consider γ ∈ � and ν ∈ Mabs(R
d). Then, each SGD sequence (xn) with

the step γ is F /B(Rd)⊗N-measurable. Moreover, for any two SGD sequences (xn) and
(x′

n) with the step γ , it holds that Pν
[
(xn) �= (x′

n)
] = 0. Finally, the probability distribution

of xn under Pν is Lebesgue-absolutely continuous for each n ∈ N.

Note that Pν � λ ⊗ μ⊗N since ν � λ. Thus, the probability P
ν
[
(xn) �= (x′

n)
]

is well-
defined as an integral w.r.t. λ ⊗ μ⊗N.

Proof Let (xn) be the lazy SGD sequence given by (15). Given an a.e. gradient ϕ, define
the SGD sequence (zn) as z0 = x0, zn+1 = zn − γ ϕ(zn, ξn+1) for n � 0. The sequence
(xn) is F /B(Rd)⊗N-measurable thanks to Lemma 1. Moreover, applying recursively the
property that ρPγ � λ when ρ � λ, we obtain that the distribution of xn is absolutely
continuous for each n ∈ N.

To establish the proposition, it suffices to show that zn is F /B(Rd)-measurable for
each n ∈ N, and that Pν[zn �= xn] = 0, which results in particular in the absolute continuity
of the distribution of zn. We shall prove these two properties by induction on n. They are
trivial for n = 0. Assume they are true for n. Recall that zn+1 = zn − γ∇f (zn, ξn+1) if
(zn, ξn+1) ∈ A, where A ∈ B(Rd) ⊗ T is such that (λ ⊗ μ)(Ac) = 0, and xn+1 = xn −
γ∇f (xn, ξn+1)1(xn,ξn+1)∈�f

. The set B = {ω ∈ Ω : zn+1 �= xn+1} satisfies B ⊂ B1 ∪ B2,
where

B1 = {ω ∈ Ω : zn �= xn} and B2 = {ω ∈ Ω : (zn, ξn+1) �∈ A}.
By induction, B1 ∈ F and P

ν(B1) = 0. By the aforementioned properties of A, the F -
measurability of zn, and the absolute continuity of its distribution, we also obtain that B2 ∈
F and P

ν(B2) = 0. Thus, B ∈ F and P
ν(B) = 0, and since xn+1 is F -measurable, zn+1

is F -measurable.

Proposition 3 means that the SGD sequence does not depend on the specific a.e. gradient
used by the practioner, provided that the law of x0 has a density and γ ∈ �. Let us make
this last assumption clearer. Consider for instance d = 1 and suppose that f (x, s) = 0.5x2

for all s. If γ = 1, the SGD sequence xn+1 = xn − γ xn satisfies x1 = 0 for any initial point
and thus, does not admit a density, whereas for any other value of γ , xn has a density for all
n, provided that x0 has a density. Otherwise stated, � = R+ \ {1} in this example.

It is desirable to ensure that � contains almost all the points of R+. The next proposition
shows that this will be the case under mild conditions. The proof is given in Section 8.2.

Proposition 4 Assume that for μ–almost every s ∈ Ξ , the function f (·, s) satisfies the
property that at λ–almost every point of Rd , there is a neighborhood of this point on which
it is C2. Then, �c is Lebesgue negligible.

This assumption holds true as soon as for μ-almost all s, f (·, s) is tame, since in this case
R

d can be partitioned in manifolds on each of which f (·, s) is C2 ([7]), and therefore f (·, s)
is C2 (in the classical sense) on the union of manifolds of full dimension, and therefore
almost everywhere.
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4.3 SGD as a Robbins-Monro Algorithm

We make the following assumption on the function f : Rd × Ξ → R.

Assumption 1 1. There exists a measurable function κ : R
d × Ξ → R+ s.t. for each

x ∈ R
d ,

∫
κ(x, s) μ(ds) < ∞ and there exists ε > 0 for which

∀y, z ∈ B(x, ε), ∀s ∈ Ξ, |f (y, s) − f (z, s)| � κ(x, s)‖y − z‖.

2. There exists x ∈ R
d such that f (x, ·) is μ-integrable.

By this assumption, f (x, ·) is μ-integrable for each x ∈ R
d , and the function

F : Rd → R, x �→
∫

f (x, s) μ(ds) (17)

is locally Lipschitz on R
d . We denote by Z the set of (Clarke) critical points of F , as defined

in Equation (4).
Let (Fn)n�0 be the filtration Fn = σ(x0, ξ1, . . . , ξn). We denote by En = E[·|F n] the

conditional expectation w.r.t. F n, where F n, stands for the λ ⊗ μN-completion of Fn.

Theorem 1 Let Assumption 1 holds true. Consider γ ∈ � and ν ∈ Mabs(R
d) ∩ M1(R

d).
Let (xn)n∈N∗ be a SGD sequence for f with the step γ . Then, for every n ∈ N, it holds
P

ν-a.e. that

1. F , f (·, ξn+1) and f (·, s) (for μ-almost every s) are differentiable at xn.
2. xn+1 = xn − γ∇f (xn, ξn+1).
3. En[xn+1] = xn − γ∇F(xn).

Theorem 1 is important because it shows that Pν-a.e., the SGD sequence (xn) verifies

xn+1 = xn − γ∇F(xn) + γ ηn+1

for some random sequence (ηn) which is a martingale difference sequence adapted to (F n).

5 Dynamical Behavior

5.1 Assumptions and Result

In this section we prove that the SGD sequence (xn)n∈N∗ (which is by Theorem 1, under
the stated assumptions, unique) closely follows a trajectory of a solution to the DI (7) as
the step size γ tends to zero. To state the main result of this section, we need to strengthen
Assumption 1.

Assumption 2 The function κ of Assumption 1 satisfies:

1. There exists a constant K � 0 s.t.
∫

κ(x, s) μ(ds) � K(1 + ‖x‖) for all x.
2. For each compact set K ⊂ R

d , supx∈K
∫

κ(x, s)2μ(ds) < ∞.

The first point guarantees the existence of global solutions to (7) starting from any initial
point (see Section 2.3).
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Assumption 3 The closure of � contains 0.

By Proposition 4, Assumption 3 is mild. It holds for instance if every f (·, s) is a tame
function.

We recall that S−∂F (A) is the set of solutions to (7) that start from any point in the set
A ⊂ R

d .

Theorem 2 Let Assumptions 1–3 hold true. Let {(xγ
n )n∈N∗ : γ ∈ (0, γ0]} be a collection of

SGD sequences of steps γ ∈ (0, γ0]. Denote by xγ the piecewise affine interpolated process

xγ (t) = x
γ
n + (t/γ − n)(x

γ

n+1 − x
γ
n ) (∀t ∈ [nγ, (n + 1)γ )) .

Then, for every compact set K ⊂ R
d ,

∀ε > 0, lim
γ→0
γ∈�

(

sup
ν∈Mabs (K)

P
ν
(
dC(xγ ,S−∂F (K)) > ε

)
)

= 0 ,

where the distance dC is defined in (10). Moreover, the family of distributions {Pν(xγ )−1 :
ν ∈ Mabs(K), 0 < γ < γ0, γ ∈ �} is tight.

The proof is given in Section 8.4.
Theorem 2 implies that the interpolated process xγ converges in probability as γ → 0

to the set of solutions to (7). Moreover, the convergence is uniform w.r.t. to the choice of
the initial distribution ν in the set of absolutely continuous measures supported by a given
compact set.

5.2 Importance of the Randomization of x0

In this paragraph, we discuss the case where x0 is no longer random, but set to an arbitrary
point in R

d . In this case, there is no longer any guarantee that the iterates xn only hit the
points where a gradient exist. We focus on the case where (xn) is a Clarke-SGD sequence
of the form (14), where the function ϕ is assumed B(Rd) ⊗ T /B(Rd) measurable for
simplicity. By Assumption 1, it is not difficult to see that ϕ(x, ·) is μ-integrable for all
x ∈ R

d and, denoting by E(ϕ(x, ·)) the corresponding integral w.r.t. μ, we can rewrite the
iterates under the form:

xn+1 = xn − γEϕ(xn, ·) + γ ηn+1,

where ηn+1 = E[ϕ(xn, ·)] − ϕ(xn, ξn+1) is a martingale difference sequence for the filtra-
tion (Fn). Obviously, Eϕ(x, ·) ∈ E∂f (x, ·). As said in the introduction, we need Eϕ(x, ·)
to belong to ∂F (x) in order to make sure that the algorithm trajectory shadows the DI
ẋ(t) ∈ −∂F (x(t)). Unfortunately, the inclusion ∂F (x) ⊂ E∂f (x, ·) can be strict, which can
result in the fact that the DI ẋ(t) ∈ −E∂f (x(t), ·) generates spurious trajectories that con-
verge to spurious zeroes. The following example, which can be easily adapted to an arbitrary
dimension, shows a case where this phenomenon happens.

Example 1 Take a finite probability space Ξ = {1, 2} and μ({1}) = μ({2}) = 1/2. Let
f (x, 1) = 2x1x�0 and f (x, 2) = 2x1x�0. We have F(x) = x, and therefore ∂F (0) = {1},
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whereas ∂f (0, 1) = ∂f (0, 2) = [0, 2] and therefore
∫

∂f (0, s)μ(ds) = [0, 1]. We see that
0 ∈ E∂f (0, ·) while 0 �∈ ∂F (0). Furthermore, the trajectory defined on R+ as

x(t) =
{

1 − t for t ∈ [0, 1]
0 for t > 1

, x(0) = 1,

is a solution to the DI ẋ(t) ∈ −E∂f (x(t), ·), but not to the DI ẋ(t) ∈ −∂F (x(t)).

Example 2 Consider the same setting as in the previous example. Consider a stochastic
gradient algorithm of the form (1), initialized at x0 = 0 with ϕ such that ϕ(0, 1) = ϕ(0, 2) =
0. Then, the iterates x

γ
n are identically zero. This shows that the stochastic gradient descent

may converge to a non critical point of F . Theorem 2 may fail unless a random initial point
is chosen.

6 Long Run Convergence

6.1 Assumptions and Result

As discussed in the introduction, the SGD sequence (xn) is not expected to converge in
probability to Z when the step is constant. Instead, we shall establish the convergence (5).
The “long run” convergence referred to here is understood in this sense.

In all this section, we shall focus on the lazy SGD sequences described by Equation (15).
This incurs no loss of generality, since any two SGD sequences are equal Pν-a.e. by Propo-
sition 3 as long as ν � λ. Our starting point is to see the process (xn) as a Markov process
which kernel Pγ is defined by Equation (16). Our first task is to establish the ergodicity
of this Markov process under the convenient assumptions. Namely, we show that Pγ has a
unique invariant probability measure πγ , i.e., πγ Pγ = πγ , and that ‖P n

γ (x, ·)−πγ ‖TV → 0

as n → ∞ for each x ∈ R
d , where ‖ · ‖TV is the total variation norm. Further, we need

to show that the family of invariant distributions {πγ }γ∈(0,γ0] for a certain γ0 > 0 is tight.
The long run behavior referred to above is then intimately connected with the properties of
the accumulation points of this family as γ → 0. To study these properties, we get back to
the DI ẋ ∈ −∂F (x) (we recall that a concise account of the notions relative to this dynam-
ical system and needed in this paper is provided in Section 2.3). The crucial point here is
to show, with the help of Theorem 2, that the accumulation points of {πγ } as γ → 0 are
invariant measures for the set-valued flow induced by the DI. In its original form, this idea
dates back to the work of Has’minskiı̆ [16]. We observe here that while the notion of invari-
ant measure for a single-valued semiflow induced by, say, an ordinary differential equation,
is classical, it is probably less known in the case of a set-valued differential inclusion. We
borrow it from the work of Roth and Sandholm [26].

Having shown that the accumulation points of {πγ } are invariant for the DI ẋ ∈ −∂F (x),
the final step of the proof is to make use of Poincaré’s recurrence theorem, that asserts that
the invariant measures of a semiflow are supported by the so-called Birkhoff center of this
semiflow (again, a set-valued version of Poincaré’s recurrence theorem is provided in [3,
14]). To establish the convergence (5), it remains to show that the Birkhoff center of the
DI ẋ ∈ −∂F (x) coincides with zer ∂F . The natural assumption that ensures the identity of
these two sets will be that F admits a chain rule [7, 9, 10].

Our assumption regarding the behavior of the Markov kernel Pγ reads as follows.
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Assumption 4 There exist measurable functions V : Rd → [0, +∞), p : Rd → [0, +∞),
α : (0, +∞) → (0, +∞) and a constant C � 0 s.t. the following holds for every γ ∈
� ∩ (0, γ0].
1. There exists R > 0 and a positive Borel measure ρ on Rd (R, ρ possibly depending on

γ ) such that

∀x ∈ cl(B(0, R)), ∀A ∈ B(Rd), Pγ (x,A) � ρ(A).

2. supcl(B(0,R)) V < ∞ and infB(0,R)c p > 0. Moreover, for every x ∈ R
d ,

Pγ V (x) � V (x) − α(γ )p(x) + Cα(γ )1‖x‖�R . (18)

3. The function p(x) diverges to infinity as ‖x‖ → ∞.

Assumptions of this type are frequently encountered in the field of Markov chains.
Assumption 4–(i) states that cl(B(0, R)) is a so-called small set for the kernel Pγ , and
Assumption 4–(ii) is a standard drift assumption. Taken together, they ensure that the kernel
Pγ is a so-called Harris-recurrent kernel, that it admits a unique invariant probability distri-
bution πγ , and finally, that this kernel is ergodic in the sense that ‖Pγ (x, ·) − πγ ‖TV → 0
as n → ∞ (see [22]). The introduction of the factors α(γ ) and Cα(γ ) in Equation (18)
guarantees moreover the tightness of the family {πγ }γ∈(0,γ0].

In Section 6.2, we provide sufficient and verifiable conditions ensuring the validity of
Assumption 4 for Pγ .

As announced above, we also need:

Assumption 5 The function F defined by (17) admits a chain rule, namely, for any abso-
lutely continuous curve z : R+ → R

d , for almost all t > 0, ∀v ∈ ∂F (z(t)), 〈v, ż(t)〉 =
(F ◦ z)′(t) .

Assumption 5 is satisfied as soon as F is path-differentiable, for instance when F is
either convex, regular, Whitney stratifiable or tame (see [8, Proposition 1] and [7, 10]).

Since Assumption 3 is satisfied as soon as f (·, s) is tame for every s ∈ Ξ , one can
wonder if it can be somehow coordinated with Assumption 5. Unfortunately, F is not nec-
essarily tame even if f (·, s) is tame for every s ∈ Ξ . Nonetheless, one can hope that the
practical situations where f (·, s) is tame and F is not are rare. In particular, F will be tame
as soon as Ξ is finite (hence the expectation is just a finite sum), which is the case in many
machine learning models.

Theorem 3 Let Assumptions 1-3 and 4-5 hold true. Let {(xγ
n )n∈N∗ : γ ∈ (0, γ0]} be a

collection of SGD sequences of step-size γ . Then, the set Z = {x : 0 ∈ ∂F (x)} is nonempty
and for all ν ∈ Mabs(R

d) and all ε > 0,

lim sup
n→∞

P
ν
(
d(x

γ
n ,Z) > ε

) −−−→
γ→0
γ∈�

0. (19)

6.2 On Assumption 4

In this paragraph, we provide sufficient conditions under which Assumption 4 hold true. A
simple way to ensure the truth of Assumption 4-(i) is to add a small random perturbation to
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the function ϕ0(x, s). Formally, we modify algorithms described by Equation Equation (15)
and (21), and write

xn+1 = xn − γ ϕ0(xn, ξn+1) + γ εn+1

where (εn) is a sequence of centered i.i.d. random variables of law μd , independent from
{x0, (ξn)}, and such that the distribution of ε1 ∼ μd has a continuous and positive density
on R

d . The Gaussian case ε1 ∼ N (0, aId) where a > 0 is some small variance is of course
a typical example of such a perturbation.

Consider now a fixed γ and denote by P̃ the Markov kernel induced by the modified
equation.

Proposition 5 Let Assumption 2 hold true. Then, for each R > 0, there exists ε > 0 such
that

∀x ∈ cl(B(0, R)), ∀A ∈ B(Rd), P̃ (x, A) � ε λ(A ∩ cl(B(0, 1))),

Thus, Assumption 4-(i) is satisfied for P̃ .

We now turn to the assumptions 4-(ii) and 4-(iii).

Proposition 6 Assume that there exists R � 0, C > 0, and a measurable function β : Ξ →
R+ such that the following conditions hold:

1. For every s ∈ Ξ , the function f (·, s) is differentiable outside the ball cl(B(0, R)).
Moreover, for each x, x′ �∈ cl(B(0, R)), ‖∇f (x, s) − ∇f (x′, s)‖ � β(s)‖x − x′‖ and∫

β2dμ < ∞.
2. For all x �∈ cl(B(0, R)),

∫ ‖∇f (x, s)‖2μ(ds) � C(1 + ‖∇F(x)‖2).
3. lim‖x‖→∞ ‖∇F(x)‖ = +∞.
4. Function F is lower bounded i.e., inf F > −∞.

Then, it holds that

Pγ F(x) � F(x) − γ (1 − γK)1‖x‖>2R‖∇F(x)‖2 + γ 2K1‖x‖>2R + γK1‖x‖�2R (20)

for some constant K > 0. In particular, Assumptions 4-(ii) and 4-(iii) hold true.

We finally observe that this proposition can be easily adapted to the case where the kernel
Pγ is replaced with the kernel P̃ of Proposition 5.

7 The Projected Subgradient Algorithm

In many practical settings, the conditions of Proposition 6 that ensure the truth of Assump-
tions 4–(ii) and 4–(iii) are not satisfied. This is for instance the case when the function f is
described by Equation (3) with the mappings σ� at the right hand side of this equation being
all equal to the ReLU function. In such situations, it is often pertinent to replace the SGD
sequence with a projected version of the algorithm. Given an a.e.-gradient ϕ of the function
f and a non empty compact and convex set K ⊂ R

d , a projected SGD sequence (x
γ,K
n ) is

given by the recursion

x
γ,K
0 = x0, x

γ,K
n+1 = �K(x

γ,K
n − γ ϕ(x

γ,K
n , ξn+1)) , (21)

where �K stands for a Euclidean projection onto K. Our purpose is to generalize Theo-
rem 2 to this situation. This generalization is not immediate for several reasons. First, the
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projection step is likely to introduce spurious local minima. As far as the iterates (21) are
concerned, the role of differential inclusion (7) is now played by the differential inclusion:

ẋ(t) ∈ −∂F (x(t)) − NK(x(t)) , (22)

where NK(x) stands the normal cone of K at point x. The set of equilibria of the above
differential inclusion coincides with the set

ZK := {x ∈ R
d : 0 ∈ −∂F (x) − NK(x)} ,

which we shall refer to as the set of Karush-Kuhn-Tucker points. A second theoretical dif-
ficulty is related to the fact that Proposition 3 does no longer hold. Indeed, it can happen
x0 has a density, but the next iterates x

γ,K
n don’t. The reason is that x

γ,K
n generally has a

non zero probability to be in the (Lebesgue negligible) border of K, that is, cl(K) \ int(K),
where cl(K) and int(K) respectively stand for the closure and the interior of K.

We shall focus here on the case where K = cl(B(0, r)) with r > 0. We shall use �r ,
x

γ,r
n , Nr as shorthand notations for �cl(B(0,r)), x

γ,cl(B(0,r))
n , and Ncl(B(0,r)) respectively. In

this case Nr (x) = {0} if ‖x‖ < r , Nr (x) = {λx : λ � 0} if ‖x‖ = r and Nr (x) = ∅
otherwise.

We make the following assumption.

Assumption 6 For every x ∈ R
d , the law of ϕ0(x, ξ), where ξ ∼ μ, is absolutely

continuous relatively to Lebesgue.

Assumption 6 is much stronger than Assumption 3. Indeed, it implies that the distribution
of x

γ,r
n − γ ϕ(x

γ,r
n , ξn+1) is always Lebesgue-absolutely continuous. It is useful to note

though that Assumption 6 holds upon adding at each step a small random perturbation to ϕ0
as in Section 6.2 above.

In order to state our first result in this framework, we need to introduce some new nota-
tions. We let S(r) := {x : ‖x‖ = r, x ∈ R

d} be the sphere of radius r . By [15, Theorem
2.49], there is a unique measure2 �1 on S(1) such that for any positive function f : Rd → R,
we have: ∫

f (x)λd(dx) =
∫ ∞

0

∫

S(1)

f (rθ)rd−1�1(dθ)λ1(dr) . (23)

We define the measure �r on S(r) as �r(A) = �1(A/r) for each Borel set A ⊂ S(r). We
denote as Mr the set of measures ν = ν1 + ν2, where ν1 ∈ Mabs and ν2 � �r . For a
set C ⊂ R

d we define Mr (C) as the measures in Mr that are supported on C. Notice that
Mabs(C) ⊂ Mr (C).

The next proposition, which is proven in the same way as Proposition 3, shows that for
almost every r > 0, all projected SGD sequences are almost surely equal.

Proposition 7 Let Assumption 6 hold true. Then, for almost every r > 0, ∀ν ∈ Mr ,
each projected SGD sequence (x

γ,r
n ) is F /B(Rd)⊗N-measurable. Moreover, for any two

projected SGD sequences (x
γ,r
n ) and (y

γ,r
n ), it holds that Pν

[
(x

γ,r
n ) �= (y

γ,r
n )

] = 0. Finally,
under Pν , for every n ∈ N, the probability distribution of xγ,r

n is inMr .

2As it is clear from Equation (23) we can see (λ1, �1) as a polar coordinates representation of the Lebesgue
measure λd .
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By Proposition 7 we can focus on the lazy projected SGD sequence:

x
γ,r

n+1 = �r(x
γ,r
n − γ ϕ0(x

γ,r
n , ξn+1)) . (24)

We define its associated kernel

P r
γ g(x) =

∫
g(�r(x − γ ϕ0(x, s)))μ(ds) . (25)

The next two theorems are analogous to Theorems 1 and 2.

Theorem 4 Let Assumptions 1 and 6 hold. Then for almost every r > 0 , ∀ν ∈ Mr , for
every n ∈ N it holds Pν-a.e.

1. F , f (·, ξn+1) and f (·, s) (for μ-a.e. s) are differentiable at xγ,r
n .

2. x
γ,r

n+1 ∈ x
γ,r
n − γ∇f (x

γ,r
n , ξn+1) − γNr (�r(x

γ,r
n − γ∇f (x

γ,r
n , ξn+1))).

Theorem 5 Let Assumptions 1–2 and 6 hold true. Denote xγ,r the piecewise affine
interpolated process:

xγ,r (t) = x
γ,r
n + (t/γ − n)(x

γ,r

n+1 − x
γ,r
n ) (∀t ∈ [nγ, (n + 1)γ )) .

Then, for almost every r > 0, for every compact set K ⊂ cl(B(0, r)),

∀ε > 0, lim
γ→0

(

sup
ν∈Mr (K)

P
ν
(
dC(xγ,r ,S−∂F−Nr (K)) > ε

)
)

= 0 .

Moreover, for any γ0 > 0, the family of distributions {Pν(xγ,r )−1 : ν ∈ Mr (K), 0 < γ <

γ0} is tight.

We compare Theorems 1 and 2. First, because of the projection step (and with the help
of Assumption 6), the law of the n-th iterate is no longer in Mabs , but in Mr . Second,
the continuous counterpart of Equation (21) is now the differential inclusion (22) Note that,
if the solutions of the DI (7) that start from K all lie in cl(B(0, r)), then the set of these
solutions coincides with the set of solutions of the DI (22) that start from K.

The analysis of the convergence of the iterates in the ”long run” is greatly simplified by
the introduction of the projection step. Compared to Assumption 4, we only assume the exis-
tence of a small set for P r

γ , the drift condition of the form 4-(ii)–(iii) is then automatically
satisfied, thanks to the projection step (see Section 8.5).

Assumption 7 There is R > 0 and γ0 > 0 such that for every γ ∈ (0, γ0] there is ργ such
that Assumption 4-(i) hold for (R, ργ ) (note that R is independent of γ here).

As shown in Section 6.2, Assumption 7 holds upon adding to ϕ0 a small random
perturbation.

Theorem 6 Let Assumptions 1-2 and 5–7 hold. Let {(xγ,r
n )n∈N∗ : γ ∈ (0, γ0]} be a collec-

tion of projected SGD sequences of step-size γ . Then, for almost every 0 < r � R, the set
Zr = {x : 0 ∈ ∂F (x) + Nr (x)} is nonempty and for all ν ∈ Mr and all ε > 0,

lim sup
n→∞

P
ν
(
d(x

γ,r
n ,Zr ) > ε

) −−−→
γ→0

0. (26)

Theorem 6 is analogous to Theorem 3. Notice that, since Mabs ⊂ Mr , x0 can still be ini-
tialized under a Lebesgue-absolutely continuous measure. On the other hand, as explained
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in the beginning of this section, due to the projection step, the iterates, instead of converging
to Z , are now converging to the set of Karush-Kuhn-Tucker points related to the DI (22).

8 Proofs

8.1 Proof of Lemma 1

By definition, (x, s) ∈ �f means that there exists dx ∈ R
d (the gradient) s.t. f (x +h, s) =

f (x, s) + 〈dx, h〉 + o(‖h‖). That is to say (x, s) belongs to the set:

⋂

ε∈Q

⋃

δ∈Q

⋂

0<‖h‖�δ

{

(y, s) :
∣
∣
∣
∣
f (y + h, s) − f (y, s) − 〈dx, h〉

‖h‖
∣
∣
∣
∣ < ε

}

. (27)

In addition, using that f (·, s) is continuous, the above set is unchanged if the inner intersec-
tion over 0 < ‖h‖ � δ is replaced by an intersection over the h s.t. 0 < ‖h‖ � δ and having
rational coordinates i.e., h ∈ Q

d . Define:

�′
f :=

⋂

ε′∈Q

⋃

d∈Qd

⋂

ε∈Q

⋃

δ∈Q

⋂

0<‖h‖�δ

h∈Qd

{

(x, s) :
∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈d, h〉

‖h‖
∣
∣
∣
∣ < ε + ε′

}

(28)
By construction, �′

f is a measurable set. We prove that �′
f = �f . Consider (x, s) ∈ �f

and let dx be the gradient of f (·, s) at x. By (27) for all ε ∈ Q, there is a δ ∈ Q such that:

(x, s) ∈
⋂

h�δ,h∈Qd

{∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈dx, h〉

h

∣
∣
∣
∣ < ε

}

For any ε′ > 0, choose d ′ ∈ Q
d such that

∥
∥d ′ − dx

∥
∥ � ε′. Using the previous inclusion, for

all ε, there exists therefore δ ∈ Q s.t.

(x, s) ∈
⋂

h�δ,h∈Qd

{∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈dq, h〉

h

∣
∣
∣
∣ < ε + ε′

}

which means �f ⊂ �′
f . To show the converse, consider (x, s) ∈ �′

f . Let (ε′
k) be a positive

sequence of rationals converging to zero. By definition, for every k, there exists dk ∈ Q
d

s.t. for all ε, there exists δk(ε), s.t. for all (rational) h � δk(ε),
∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈dk, h〉

h

∣
∣
∣
∣ < ε + ε′

k . (29)

Moreover, one may choose δk(ε) � δ0(ε). Inspecting first the inequality (29) for k = 0,
we easily obtain that the quantity f (x+h,s)−f (x,s)

h
is bounded uniformly in h s.t. 0 < ‖h‖ �

δ0(ε). Using this observation and again Equation (29), this in turn implies that (dk) is a
bounded sequence. There exists d ∈ R

d and s.t. dk → d along some extracted subsequence.
Now consider ε > 0 and choose k such that ‖dk − d‖ < ε

2 and ε′
k < ε

2 . For all h � δk(ε/2),
∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈d, h〉

h

∣
∣
∣
∣ �

∣
∣
∣
∣
f (x + h, s) − f (x, s) − 〈dk, h〉

h

∣
∣
∣
∣ + ‖d − dk‖ < ε

This means that d is the gradient of f (·, s) at x, hence �′
f ⊂ �f . Hence, the first point of

the Lemma 1 is proved.
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Denoting as ei the ith canonical vector of R
d , the ith-component [ϕ0]i in R

d of the
function ϕ0 is given as

[ϕ0(x, s)]i = lim
t→0

f (x + tei , s) − f (x, s)

t
1�f

(x, s),

and the measurability of ϕ0 follows from the measurability of f and the measurability of
1�f

.
Finally, assume that f (·, s) is locally Lipschitz continuous for every s ∈ Ξ . From

Rademacher’s theorem [9, Ch. 3], f (·, s) is almost everywhere differentiable, which reads∫
(1 − 1�f

(x, s))λ(dx) = 0. Using Fubini’s theorem,
∫
Rd×Ξ

(1 − 1�f
(x, s)) λ(dx) ⊗

μ(ds) = 0, and the last point is proved.

8.2 Proof of Proposition 4

The idea of the proof is to show that for almost every γ and s we have that gs,γ (x) :=
(x − γ∇f (x, s))1�f

(x, s) is almost everywhere a local diffeomorphism.
In order to prove that we define for each (x, s) ∈ R

d × Ξ the pseudo-hessian H(x, s) ∈
R

d×d as

H(x, s)i,j = lim sup
t→0

〈∇f (x + tej , s)1�f
(x + tej , s) − ∇f (x, s), ei〉

t
1�f

(x, s) .

Since it is a limit of measurable functions, H is B(Rd) ⊗ T measurable, and if f (·, s)
is two times differentiable at x then H(x, s) is just the ordinary hessian. Now we define
l(x, s, γ ) = det(γH(x, s) − Id) if every entry in H(x, s) is finite, and l(x, s, γ ) = 1
otherwise, it is a B(Rd) ⊗ T ⊗ B(R+) measurable function (as a sum of two measur-
able functions). By the inverse function theorem we have that if f (·, s) is C2 at x and if
det(γH(x, s)−Id) �= 0, then gs,γ (·) is a local diffeomorphism at x. Therefore l(x, s, γ ) �= 0
implies either the latter or f (·, s) is not C2 at x (or both).
Let λd, λ1 denote Lebesgue measures respectively on R

d and R+, we have by Fubini’s
theorem:

∫
1l(x,s,γ )=0λ

d(dx) ⊗ μ(ds) ⊗ λ1(dγ ) =
∫

λd ⊗ μ({(x, s) : l(x, s, γ ) = 0})λ1(dγ )

=
∫ ∫ ∫

1l(x,s,γ )=0λ
1(dγ )λd(dx)μ(ds)

= 0 ,

where the last equality comes from the fact that for (x, s) fixed l(x, s, γ ) = 0 only if
1/γ is in the spectrum of H(x, s) which is finite. Therefore we have a � a set of full
measure in R+ such that for γ ∈ � we have λd ⊗ μ({(x, s) : l(x, s, γ ) = 0}) = 0.
Once again applying Fubini’s theorem we get that for almost every s ∈ Ξ we have {x :
gs,γ (·) is a local diffeomorphism at x}) is of λd -full measure (since for each s, f (·, x) is
almost everywhere C2). Finally, for A ⊂ R

d , γ ∈ � and ν ∈ Mabs(R
d), we have

νPγ (A) = ν ⊗ μ({(x, s) : gs,γ (x) ∈ A}) � λd ⊗ μ({(x, s) : gs,γ (x) ∈ A}) ,
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and by Fubini’s theorem,

λd ⊗ μ({(x, s) : gs,γ (x) ∈ A})
=

∫
λd({x : gs,γ (x) ∈ A})μ(ds)

=
∫

λd({x : gs,γ (x) ∈ A and f (·, s) is C2 at x})μ(ds)

=
∫

λd({x : gs,γ (x) ∈ A and gs,γ (·) is a local diffeomorphism at x})μ(ds) .

Now by separability of Rd there is a countable family of open neighborhoods (Vi)i∈N such
that for any open set O we have O = ⋃

j∈J Vj . The set of x where g(·, s, γ ) is a local
diffeomorphism is an open set, hence

{x : gs,γ (x) ∈ A and gs,γ (·) is a local diffeomorphism at x} =
⋃

i∈I

Vi ∩ {x : gs,γ (x) ∈ A} .

Since an image of a null set by a diffeomorphism is a null set we have

λd({x : gs,γ (x) ∈ A} ∩ Vi) = 0 .

Hence, νPγ (A) = 0, which proves our claim.

8.3 Proof of Theorem 1

Take ν � λ and a SGD sequence (xn)n∈N, let S1 ⊂ R
d be the set of x for which ∇f (x, s)

exists for μ- almost every s, i.e.,

S1 :=
{

x ∈ R
d :

∫

Ξ

(1 − 1�f
(x, s)) μ(ds) = 0

}

.

When Assumption 1 holds, Rademacher’s theorem, lemma 1 and Fubini’s theorem imply
that S1 ∈ B(Rd) and λ(Rd \ S1) = 0. Hence, for μ-a.e. s we have f (·, s) differentiable
at x0, and since ξ1 ∼ μ, f (·, ξ1) is differentiable at x0. Now by Rademacher’s theorem
again, the set S2 ⊂ R

d where F is differentiable satisfies λ(Rd \ S2) = 0, therefore F

is differentiable at x0. Moreover, with probability one x0 is in S1 ∩ S2. Define A(x) :=
{s ∈ Ξ : (x, s) /∈ �f }. By Assumption 1, ‖∇f (x, ·)‖ is μ-integrable. Moreover, for all
x ∈ S1 ∩ S2 and all v ∈ R

d

〈
∫

∇f (x, s)1�f
(x, s) μ(ds), v〉 =

∫

Ξ\A(x)

〈∇f (x, s), v〉μ(ds)

=
∫

Ξ\A(x)

lim
t∈R∗→0

f (x + tv, s) − f (x, s)

t
μ(ds)

= lim
t∈R∗→0

∫

Ξ

f (x + tv, s) − f (x, s)

t
μ(ds)

= lim
t∈R∗→0

F(x + tv) − F(x)

t
= 〈∇F(x), v〉

where the interchange between the limit and the integral follows from Assumption 1 and
the dominated convergence theorem. Hence, ∇F(x) = ∫ ∇f (x, s)1�f

(x, s) μ(ds) for all
x ∈ S1 ∩ S2. Now denote by νn the law of xn. Since we assumed that ν0 � λ, it holds that
P

ν(x0 ∈ S1 ∩ S2) = 1. Therefore, with probability one,

x1 = x11S1∩S2(x0) = (x0 − γ∇f (x0, ξ1))1S1∩S2(x0) = x0 − γ∇f (x0, ξ1) .

Convergence of Constant Step Stochastic... 1137



Thus, x1 is integrable whenever x0 is integrable, and E0(x1) = x0 − γ∇F(x0). Since
by Assumption ν1 � λ we can iterate our argument for x2 and then for all xn and the
conclusions of Theorem 1 follow.

8.4 Proof of Theorem 2

We want to apply [6, Theorem 5.1.], and therefore verify its assumptions [6, Assump-
tion RM]. In order to fall in its setting we first need to rewrite our kernel in a more
appropriate way. As ∂F takes nonempty compact values, it admits a measurable selection
ϕ(x) ∈ ∂F (x) [1, Lemma 18.2 and Corollary 18.15]. Take γ ∈ �, a SGD sequence (x

γ
n )

and notice that by Theorem 1 it is Pν almost surely always in DF ∩ S1, where S1 is the set
of x where ∇f (x, s) exists for μ-a.e. s. Therefore its Markov kernel can be equivalently
defined as:

P ′
γ (x, g) := 1DF ∩S1(x)Pγ (x, g) + 1(DF ∩S1)

c (x)g(x − γ ϕ(x)) .

Now we can apply [6, Theorem 5.1.] with hγ (s, x) = −(1DF ∩S1(x)∇F(x) +
1(DF ∩S1)

c (x)ϕ(x)) (note that it is independent of s) and we have h(x, s) ∈ H(x, s) =
H(x) := −∂F (x). As we show next, [6, Assumption RM] now easily follows.
First, it is immediate from the general properties of the Clarke subdifferential that the set-
valued map −∂F is proper and uppersemicontinuous with convex and compact values,
hence the assumption (iii) of [6, Assumption RM]. Assumption (ii) is immediate by the
uppersemicontinuity of −∂F . Moreover, we obtain from Assumption 2 that there exists a
constant K � 0 such that

‖∂F (x)‖ � K(1 + ‖x‖).
Thus, S−∂F is defined on the whole R

d , and S−∂F is closed in (C(R+,Rd), d) (see [2]),
hence assumption (v). Finally, assumption (vi) comes from Assumption 2.

We remark that although, [6, Theorem 5.1] deals with a family of measures (Pa)a∈K, the
proofs remain unchanged when we consider (Pν)ν∈Mabs (K).

8.5 Proof of Theorems 3 and 6

Both theorems are proved in the same way. In the following Qγ will denote either Pγ and
in this case H will denote −∂F , or Qγ = P r

γ and H = −∂F − Nr . The proof will be done
in three steps:

– Lemma 2: Qγ has a unique invariant probability distribution πγ , with πγ ∈ Mabs if
Qγ = Pγ and πγ ∈ Mr otherwise, moreover Qγ is ergodic in the sense of the Total
Variation norm.

– Lemma 3: The family {πγ }γ∈(0,γ0] is tight.
– Proposition 9: The accumulation points of {πγ }γ∈(0,γ0] as γ → 0 are invariant for the

DI ẋ ∈ H(x).

Before stating Lemma 2, we recall a general result on Markov processes. Let Q : R
d ×

B(Rd) → [0, 1] be a Markov kernel on R
d . A set B ⊂ R

d is said to be a small-set for
the kernel Q if there exists a positive measure ρ on R

d such that Q(x,A) � ρ(A) for each
A ∈ B(Rd), x ∈ B.

Proposition 8 Assume that B is a small set for Q. Furthermore, assume that there exists a
measurable function W : Rd → [0, ∞) that is defined on Rd and bounded on B, and a real
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number b � 0, such that

QW � W − 1 + b1B . (30)

Then, Q admits a unique invariant probability distribution π , and moreover, the ergodicity
result

∀x ∈ R
d , ‖Qn(x, ·) − π‖TV −−−→

n→∞ 0 (31)

holds true.

Indeed, by [22, Theorem 11.3.4], the kernel Q is a so-called positive Harris recurrent,
meaning among others that it has a unique invariant probability distribution. Moreover, Q

is aperiodic, hence the convergence (31), as shown by, e.g., [22, Theorem 13.0.1].

Lemma 2 Assume that either Assumptions 4-(i) 4-(ii) hold if Qγ = Pγ or Assumption 7
holds and r � R if Qγ = P r

γ , then for every γ ∈ (0, γ0], the kernel Qγ admits a unique
invariant measure πγ . Moreover,

∀x ∈ R
d ,

∥
∥
∥Qn

γ (x, ·) − πγ

∥
∥
∥
TV

−−−→
n→∞ 0. (32)

Finally, if Qγ = Pγ , assumptions of Theorem 1 hold true and γ ∈ � then πγ is absolutely
continuous w.r.t. the Lebesgue measure. If Qγ = P r

γ and assumptions of Theorem 4 hold
true, then πγ ∈ Mr .

Proof By the inequality (18), the kernel Pγ satisfies an inequality of the type (30), namely,
Pγ V � V − α(γ )θ + Cα(γ )1‖x‖�R , for some θ, C > 0. Similarly, under Assumption 7
and r � R, we have that for every x ∈ cl(B(0, r)):

P r
γ (x,A) = Pγ (x,�−1

r (A)) � ργ (�−1
r (A)) ,

that is to say cl(B(0, r)) is a small set for P r
γ . Inequality of the type Assumption 4-(ii)–(iii)

then hold for e.g. C = r , α(γ ) = 1, V = ‖x‖ + r1‖x‖>r and p = ‖x‖.
Consider the case where Qγ = Pγ , to prove that πγ is absolutely continuous w.r.t. the

Lebesgue measure, consider a λ-null set A. By the convergence (32), we obtain that for any
x ∈ R

d , P n
γ (x,A) → πγ (A). Now take ν � λ. By Proposition 3, we have that νP n

γ � λ.
Hence, by the dominated convergence theorem,

0 = νP n
γ (A) =

∫
P n

γ (x, A)ν(dx) →
∫

πγ (A)ν(dx) = πγ (A) .

If Qγ = P r
γ we obtain the same result with the help of Proposition 7.

Lemma 3 Let either Assumptions 4-(i) – 4-(iii) hold if Qγ = Pγ or Assumption 7 hold
and r � R if Qγ = P r

γ . Let πγ be the invariant distribution of Qγ . Then, the family
{πγ : γ ∈ (0, γ0]} is tight.

Proof If Qγ = P r
γ then the family πγ is supported by cl(B(0, r)) and is, therefore, tight.

Otherwise we iterate (18), to obtain:
n∑

k=0

Qk+1
γ V �

n∑

k=0

Qk
γ V − α(γ )

n∑

k=0

Qk
γ p + C(n + 1)α(γ ) .
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Therefore, since 0 � Qk
γ V < +∞ we have:

α(γ )

n∑

k=0

Qk
γ p � V + C(n + 1)α(γ ) .

For a fixed M > 0 we will bound now πγ (p ∧ M). Since πγ is an invariant distribution for
Qγ , we have πγ P k

γ = πγ . Hence, we have:

πγ (p ∧ M) = 1

n + 1

n∑

k=0

πγ Qk
γ (p ∧ M) � 1

n + 1

n∑

k=0

πγ (Qk
γ p ∧ M)

� πγ

([
V

(n + 1)α(γ )
+ C

]

∧ M

)

.

Letting n → +∞, by the dominated convergence theorem we obtain πγ (p∧M) � πγ (C ∧
M). And therefore by monotone convergence theorem πγ (p) � C.
Fix now ε > 0, there is a K > 0 such that C

K
� ε, and by coercivity of p there is r > 0

such that:

πγ (‖x‖ > r) � πγ (p > K) � C

K
where the last bound comes from Markov’s inequality. This concludes the proof.

The next proposition will show that any accumulation point of πγ is an invariant measure
for the set-valued flow induced by the DI ẋ(t) ∈ H(x(t)), first we introduce some definitions.
Define the shift operator �t : C(R+,Rd) → C(R+,Rd) by �t(x) = x(t + ·), and the
projection operator p0 : C(R+,Rd) → R

d by p0(x) = x(0). Then, we have the following
definition (see [26] for details):

Definition 3 We say that π ∈ M(Rd) is an invariant distribution for the flow induced by
the DI ẋ(t) ∈ H(x(t)), if there is ν ∈ M(C(R+,Rd)), such that:

1. supp ν ∈ SH(Rd),
2. ν�−1

t = ν,
3. νp−1

0 = π .

Proposition 9 Let Assumptions 1–3 and 4 hold true. Denote by πγ the unique invariant
distribution of Pγ . Let (γn) be a sequence on (0, γ0] ∩ � s.t. γn → 0 and πγn converges
narrowly to some probability measure π . Then, π is an invariant distribution for the flow
induced by ẋ(t) ∈ −∂F (x(t)).

Similarly, under Assumptions 1–2 and 6–7, for r � R, denoting πγ the unique invariant
distribution of P r

γ , if πγn → π , then π is an invariant distribution for the flow induced by
ẋ(t) ∈ −∂F (x(t)) − Nr (x(t)).

Proof Consider the case where Qγ = Pγ . The proof essentially follows [6, section 7.]. Fix
an ε > 0 and write πn instead of πγn for simplicity. By Lemma 3 we have a compact K

such that πn(K) > 1 − ε, we thus can define the conditional measures πK
n (A) := πn(A∩K)

πn(K)
.

Moreover, we have πK
n ∈ Mabs(K), therefore we can apply Theorem 2 and get that there

is a compact set C of C(R+,Rd) such that PπK
γn

,γnX−1
γn

(C) � 1 − ε. Now we have

P
πn,γn(·) =

∫

Rd

P
a,γn(·)πn(da) �

∫

K

P
a,γn(·)πn(da) � πn(K)PπK

n ,γn(·) ,
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hence
P

πγn ,γnX−1
γn

(C) � πn(K)PπK
γn

,γnX−1
γn

(C) � (1 − ε)2 .

Since ε is arbitrary this proves the tightness of vn := P
πγn ,γnX−1

γn
. Take πn → π and

vn → v ∈ M(C(R+,Rd)). We now prove that v is an invariant distribution for the flow
induced by the DI associated to −∂F (see Definition 3.)
We have πn = vnp

−1
0 , by continuity of p0. Thus, π = vp−1

0 . Therefore, we have (iii) of
Definition 3. Let η > 0. By weak convergence of vn,

v({x ∈ C(R+,Rd ) : d(x,S−∂F (Rd )) � η}) � lim supn vn({x ∈ C(R+,Rd ) : d(x,S−∂F (Rd )) � η})

and

vn({x ∈ C(R+,Rd) : d(x,S−∂F (Rd)) � η}) � vn({x ∈ C(R+,Rd) : d(x,S−∂F (K)) < η})
� πn(K)PπK

γn
,γn (d(Xγn ,S−∂F (K)) < η)

� (1 − ε)PπK
γn

,γn (d(Xγn ,S−∂F (K)) < η) .

The last term converges to 1 − ε, by Theorem 2, and by weak convergence we have
v({x ∈ C(R+,Rd) : d(x,S−∂F (Rd)) � η}) � (1 − ε), now letting η → 0, by monotone
convergence we have v(S−∂F (Rd))) � 1 − ε which proves (i) of Definition 3. Finally, the
second point of Definition 3 is shown just like in [6, section 7.].

The proof of the case Qγ = P r
γ is substantially the same under straightforward

adaptations.

After some definitions we recall an important result about the support of a flow-invariant
measure. The limit set Lf of a function f ∈ C(R+,Rd) is

Lf =
⋂

t�0

f ([t, ∞)),

and the limit set LSH(a) of a point a ∈ R
d for SH is

LSH(a) =
⋃

x∈SH(a)

Lx.

A point a ∈ R
d is said SH-recurrent if a ∈ LSH(a). The Birkhoff center BCSH of SH is the

closure of the set of its recurrent points:

BCSH =
{
a ∈ Rd : a ∈ LSH(a)

}
.

In [14] (see also [3]), a version of Poincaré’s recurrence theorem, well-suited for our set-
valued evolution systems, was provided:

Proposition 10 Each invariant measure for SH is supported by BCSH .

With the help of Proposition 10 we can finally prove Theorem 3.

Proof Take γ ∈ �, ε > 0 and (x
γ
n ) an associated SGD sequence. We have by (31):

lim sup
n→∞

P
ν
[
dist(xγ

n ,Z) > ε
] = πγ ({x ∈ R

d : d(x,Z) > ε}) .
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Now take any sequence γi → 0 with γi ∈ �, and πγi
the associated invariant distribution,

we know from Lemmas 3-9 that we can extract a subsequence such that πγi
→ π , with π an

invariant measure for the evolution system S−∂F . Therefore by weak convergence we have:

lim
i→+∞ πγi

({x ∈ R
d : d(x,Z) > 2ε}) � lim

i→+∞ πγi
({x ∈ R

d : d(x,Z) � ε})
� π({x ∈ R

d : d(x,Z) � ε}),
where the last line comes from the Portmanteau theorem. We show that supp π ⊂ S, and
therefore the last term is equal to zero, which concludes the proof. To that end, we make
use of Proposition 10, that shows that each invariant measure of S−∂F is supported by
BCS−∂F

. Thus, it remains to show that BCS−∂F
= Z (which at the same time will ensure us

that Z is nonempty). It is obvious that Z ⊂ BCS−∂F
. To show the reverse inclusion, take

a ∈ LS−∂F (a). Then, there exists a solution x to the differential inclusion such that x(0) = a

and a ∈ Lx. But under Assumption 5 it holds ([10, lemma 5.2]) that ‖ẋ(t)‖ = ‖∂0F(x(t))‖
almost everywhere, and, moreover,

∀t � 0, F (x(t)) − F(x(0)) = −
∫ t

0
‖∂0F(x(u))‖2du.

Therefore x(t) = a for each t � 0, thus, a ∈ S. Observing that Z is a closed set (since ∂F

is graph-closed, see [9, Proposition 2.1.5]), we obtain that BCS−∂F
= Z .

Similarly, take γi → 0 and and (x
γi ,r
n ) the associated projected SGD sequences. After an

extraction we get that πγi
→ π , with π an invariant measure for the flow S−∂F−Nr and:

lim
γi→0

lim sup
n→∞

P
ν
[
dist(xγi ,r

n ,Zr ) > 2ε
]
� π({x ∈ R

d : d(x,Zr ) > ε}) .

Taking a ∈ LS−∂F−Nr (a), and x a solution to the associated differential inclusion with
x(0) = a, we get under Assumption 5 [10, Lemma 6.3.] that ‖ẋ(t)‖ = min{‖v‖ : v ∈
∂F (x(t)) + Nr (x(t))}, and moreover,

∀t � 0, F (x(t)) − F(x(0)) = −
∫ t

0
‖ẋ(u)‖2 du .

That is to say x(t) = a and a ∈ Zr , which finishes the proof.

8.6 Proof of Proposition 5

Denote as ρ the probability distribution of the random variable γ ε1. By assumption, ρ has
a continuous density that is positive at each point of Rd . We denote as f this density. Let
θx be the probability distribution of the random variable Z = x − γ ϕ0(x, ξ1), which is the
image of μ by the function x − γ ϕ0(x, ·). Our purpose is to show that

∃ε > 0, ∀x ∈ cl(B(0, R)), ∀A ∈ B(Rd), (θx ⊗ρ) [Z + γ η1 ∈ A] � ε λ(A∩cl(B(0, 1))).

Given L > 0, we have by Assumption 2 and Markov’s inequality that there exists a constant
K > 0 such that

θx [Z �∈ cl(B(0, L))] � K

L
(1 + ‖x‖).
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Thus, taking L large enough, we obtain that ∀x ∈ cl(B(0, R)), θx [Z �∈ cl(B(0, L))] < 1/2.
Moreover, we can always choose ε > 0 is such a way that f (u) � 2ε for u ∈ cl(B(0, L +
1)), by the continuity and the positivity of f on the compact cl(B(0, L + 1)). Thus,

(θx ⊗ ρ) [Z + γ η1 ∈ A] =
∫

A

du

∫

Rd

θx(dv) f (u − v)

�
∫

A∩cl(B(0,1))

du

∫

cl(B(0,L))

θx(dv) f (u − v)

� 2ε

∫

A∩cl(B(0,1))

du

∫

cl(B(0,L))

θx(dv)

� ε λ(A ∩ cl(B(0, 1))).

8.7 Proof of Proposition 6

By Lebourg’s mean value theorem [9, Theorem 2.4], for each n ∈ N, there exists αn ∈ [0, 1]
and ζn ∈ ∂F (un) with un = xn − αnγ∇f (xn, ξn+1)1�f

(xn, ξn+1), such that

F(xn+1) = F(xn) − γ 〈ζn,∇f (xn, ξn+1)〉1�f
(xn, ξn+1),

and the proof of this theorem (see [9, Theorem 2.4] again) shows that un can be chosen
measurably as a function of (xn, ξn+1).

In the following, for the ease of readability, we make use of shorthand (and abusive)
notations of the type 1‖x‖>2R〈∇F(x), · · ·〉 to refer to 〈∇F(x), · · ·〉 if ‖x‖ > 2R and to zero
if not. We also denote ∇f (xn, ξn+1) as ∇fn+1 to shorten the equations. We write

F(xn+1) = F(xn) − γ1‖xn‖�2R〈ζn,∇fn+1〉1�f
(xn, ξn+1)

− γ1‖xn‖>2R〈ζn − ∇F(xn), ∇fn+1〉 − γ1‖xn‖>2R〈∇F(xn), ∇fn+1〉.
We shall prove that

En F (xn+1) � F(xn) − γ1‖xn‖>2R‖∇F(xn)‖2 + γK1‖xn‖�2R

+γ 2K1‖xn‖>2R

(

(1 + ‖∇F(xn)‖)
(∫

‖∇f (xn, s)‖2 μ(ds)
)1/2 +

∫
‖∇f (xn, s)‖2 μ(ds)

)

(33)

where the constant K > 0 is an absolute finite constant that can change from line to line in
the derivations below. To that end, we write

F(xn+1) = F(xn) − γ1‖xn‖�2R1‖un‖�R〈ζn,∇fn+1〉1�f
(xn, ξn+1)

− γ1‖xn‖�2R1‖un‖>R〈ζn,∇fn+1〉1�f
(xn, ξn+1)

− γ1‖xn‖>2R1‖un‖�R〈ζn − ∇F(xn), ∇fn+1〉
− γ1‖xn‖>2R1‖un‖>R〈∇F(un) − ∇F(xn), ∇fn+1〉
− γ1‖xn‖>2R〈∇F(xn), ∇fn+1〉 (34)

We start with the second term at the right hand side of this inequality. Noting from
Assumption 2 that

1‖un‖�R‖ζn‖� sup
‖x‖�R

‖∂F (x)‖� sup
‖x‖�R

∫
‖∂f (x, s)‖μ(ds)� sup

‖x‖�R

∫
κ(x, s) μ(ds)�K,

we have

γ1‖xn‖�2R1‖un‖�R|〈ζn,∇f (xn, ξn+1)〉| � γK1‖xn‖�2R‖∇fn+1‖,
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and by integrating with respect to ξn+1 and using Assumption 2 again, we get that

γ1‖xn‖�2REn[1‖un‖�R|〈ζn,∇fn+1〉1�f
(xn, ξn+1)|] � γK1‖xn‖�2R . (35)

Using Assumption 2, the next term at the right hand side of (34) can be bounded as

γ1‖xn‖�2R1‖un‖>R|〈ζn,∇fn+1〉1�f
(xn, ξn+1)|

� γ1‖xn‖�2R1‖un‖>R‖∇F(un)‖ ‖∇fn+1‖
� γ1‖xn‖�2RK (1 + ‖xn‖ + γ ‖∇fn+1‖) ‖∇fn+1‖
� γK1‖xn‖�2R

(
1 + ‖∇fn+1‖ + γ ‖∇fn+1‖2

)
,

which leads to

γ1‖xn‖�2REn[1‖un‖>R|〈ζn,∇fn+1〉1�f
(xn, ξn+1)|] � γK1‖xn‖�2R (36)

by using Assumption 2.
We tackle the next term at the right hand side of (34). Fix a x� �∈ cl(B(0, R)). By our

assumptions it holds that each x �∈ cl(B(0, R)),

‖∇f (x, s)‖ � ‖∇f (x�, s)‖ + β(s)‖x − x�‖ � β ′(s)(1 + ‖x‖),
where β ′(·) is square integrable thanks to Assumption 2. Since

∫
β ′(s)2μ(ds) =

∫ ∞

0
μ[β ′(·) � √

t] dt < ∞,

it holds that μ[β ′(·) � 1/t] = ot→0(t
2). Using triangle inequality, we get that

1‖xn‖>2R1‖un‖�R = 1‖xn‖>2R1‖xn−αnγ∇fn+1‖�R � 1‖xn‖>2R1‖∇fn+1‖�(‖xn‖−R)/γ

� 1‖xn‖>2R1β ′(ξn+1)� ‖xn‖−R
γ (1+‖xn‖)

� 1‖xn‖>2R1β ′(ξn+1)� R
γ (1+2R)

.

Using this result, we write

γ1‖xn‖>2R1‖un‖�R|〈ζn,∇fn+1〉| � Kγ1‖xn‖>2R1‖un‖�R‖∇fn+1‖
� Kγ1‖xn‖>2R‖∇fn+1‖1β ′(ξn+1)� R

γ (1+2R)

Consequently,

γ1‖xn‖>2REn[1‖un‖�R |〈ζn,∇fn+1〉|] � γK1‖xn‖>2R

(∫
‖∇f (xn, s)‖2 μ(ds)

)1/2
μ[β ′(·) � K/γ ]1/2

� γ 2K1‖xn‖>2R

(∫
‖∇f (xn, s)‖2 μ(ds)

)1/2
. (37)

Similarly,

γ1‖xn‖>2R1‖un‖�R |〈∇F(xn), ∇fn+1〉| � γK1‖xn‖>2R‖∇F(xn)‖ ‖∇fn+1‖1β ′(ξn+1)� R
γ (1+2R)

,

thus,

γ1‖xn‖>2REn

[
1‖un‖�R |〈∇F(xn),∇fn+1〉|

]
� γ 2K1‖xn‖>2R‖∇F(xn)‖

(∫
‖∇f (xn, s)‖2 μ(ds)

)1/2
.

(38)

We have that ∇F is Lipschitz outside cl(B(0, R)). Thus, the next to last term at the right
hand side of Eq. 34 satisfies

γ1‖xn‖>2R1‖un‖>R|〈∇F(un) − ∇F(xn), ∇fn+1〉| � γ 2K1‖xn‖>2R‖∇fn+1‖2,
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and we get that

γ1‖xn‖>2R1‖un‖>REn

[|〈∇F(un) − ∇F(xn), ∇fn+1〉|
]
� γ 2K1‖xn‖>2R

∫
‖∇f (xn, s)‖2μ(ds).

(39)

Finally, we have

− γ1‖xn‖>2REn

[〈∇F(xn), ∇fn+1〉
] = −γ1‖xn‖>2R‖∇F(xn)‖2. (40)

Inequalities (35)–(40) lead to (33).
Using Assumption (iii) of Proposition 6, Inequality (33) leads to Inequality (20). The

validity of Assumptions 4-(ii) and 4-(iii) can then be checked easily.

8.8 Proof of Proposition 7

The next Lemma is the key ingredient in the proofs of Section 7.

Lemma 4 Assume that f (·, s) is locally Lipschitz continuous for every s ∈ Ξ . Then for
λ1⊗λd⊗μ-almost all (r, x, s)with r > 0, it holds that (�r(x), s) ∈ �f . For λ1⊗λd -almost
all (r, x) with r > 0, it holds that �r(x) ∈ DF .

Proof Our first aim is to show that
∫

1�c
f
(�r(x), s) λ1(dr) ⊗ λd(dx) ⊗ μ(ds) = 0 . (41)

First, note by Fubini’s theorem that

0 =
∫

1�c
f
(x, s) λd(dx)⊗μ(ds) =

∫

Ξ×R+

∫

S(1)

1�c
f
(rθ, s)rd−1�1(dθ) μ⊗λ1(ds ×dr) ,

(42)
that is to say, �({θ : (rθ, s) ∈ �f }) = 0 for μ ⊗ λ1 almost every (s, r) with r > 0.
Decompose Equation (41) as

∫
1�c

f
(�r(x), s) λ1(dr) ⊗ λd(dx) ⊗ μ(ds)

=
∫

1‖x‖�r1�c
f
(�r(x), s) λ1(dr)⊗λd(dx)⊗μ(ds)+

∫
1‖x‖<r1�c

f
(x, s) λ1(dr)⊗λd(dx)⊗μ(ds).

Since for each s, f (·, s) is differentiable almost everywhere, we have by Fubini’s theorem:
∫

1‖x‖<r1�c
f
(x, s) λ1(dr) ⊗ λd(dx) ⊗ μ(ds) = 0.

Similarly,
∫

1‖x‖�r1�c
f
(�r(x), s) λ1(dr) ⊗ λd(dx) ⊗ μ(ds)

=
∫

1‖x‖�r1�c
f

( rx

‖x‖ , s
)

λ1(dr) ⊗ λd(dx) ⊗ μ(ds)

=
∫

R+

∫

Ξ×R+

∫

S(1)

1r ′�r1�c
f
(r ′θ, s)(r ′)d−1�(dθ) μ ⊗ λ1(ds × dr) λ1(dr ′)

= 0 ,
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with the last equality coming from Equation (42). Hence (41). The second statement can be
proven along similar lines.

Consider r > 0 such that the conclusion of Lemma 4 hold. Then the almost sure equality
of all projected SGD sequence is proven in the same way as in Proposition 3. We can
therefore consider the lazy projected SGD sequence x

γ,r

n+1 = �r(x
γ,r
n − γ ϕ0(x

γ,r
n , ξn+1)).

By Assumption 6 the law of x
γ,r

n+1/2 := x
γ,r
n − γ ϕ0(x

γ,r
n , ξn+1) is Lebesgue-absolutely

continuous. Take A a borel set of Rd such that λ(A) = �r(A) = 0. Then

P(x
γ,r

n+1 ∈ A) � P(x
γ,r

n+1/2 ∈ A) + P

⎛

⎝r
x

γ,r

n+1/2∥
∥
∥x

γ,r

n+1/2

∥
∥
∥

∈ A

⎞

⎠ .

The first term is equal to zero by Lebesgue-absolutely continuity of the law of x
γ,r

n+1/2. For
the second term we write:

P

⎛

⎝r
x

γ,r

n+1/2∥
∥
∥x

γ,r

n+1/2

∥
∥
∥

∈ A

⎞

⎠ =
∫

(r ′)d−11A(rθ)�(dθ)λ1(dr ′) =
∫

(r ′)d−1�r(A)λ1(dr ′) = 0 ,

which finishes the proof.

8.9 Proof of Theorems 4 and 5

Noting that the law of x
γ,r
n − γ ϕ0(x

γ,r
n , ξn+1) is Lebesgue-absolutely continuous by

Assumption 6, the first point of Theorem 4 comes from Lemma 4. The second point comes
upon noticing that �r(x) − x ∈ −Nr (�r(x)).

Theorem 5 is proved in the same way as Theorem 2, by applying [6, Theorem 5.1.] with
h(s, x) = −∇F(x) − 1/γ (x − γ∇f (x, s) − �r(x − γ∇f (x, s))) ∈ −∇F(x) − Nr (x −
γ∇f (x, s)) and H(x) = H(s, x) = −∂F (x) − Nr (x).
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