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Abstract
The main purpose of this paper is to find conditions for Hölder calmness of the solution
mapping, viewed as a function of the boundary data, of a hemivariational inequality gov-
erned by the Navier-Stokes operator. To this end, a more abstract model is studied first:
a class of parametric equilibrium problems defined by trifunctions. The presence of tri-
functions allows the extension of the monotonicity notions in the theory of equilibrium
problems.
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with trifunctions · Hemi-variational inequalities

Mathematics Subject Classification (2010) 47J20 · 35Q30

1 Introduction

In the papers [30] and [31] a class of hemivariational inequalities with the Navier-Stokes
operator has been studied, where the nonslip boundary condition together with a Clarke sub-
differential relation between the total pressure and the normal components of the velocity
was assumed. The main feature of such a hemivariational inequality is that it is governed by
a nonmonotone and nonlinear operator, and possibly by a multivalued boundary condition
defined by the Clarke derivative of a locally Lipschitz superpotential. The problem under
consideration comes from fluid flow control problems and flow problems for semiperme-
able walls and membranes. It describes a model in which the boundary orifices in a channel
are regulated to reduce the pressure of the fluid on the boundary when the normal velocity
reaches a prescribed value. For the particular case when the superpotential is a lower semi-
continuous convex functional the problem reduces to a variational inequality governed by a
maximal monotone operator (see [10, 11, 23]).
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Existence results for nonconvex locally Lipschitz superpotentials were given in the above
mentioned papers [30] (stationary case), [31] (evolution case) and [3, 8, 9] (periodic or
antiperiodic case), for instance.

The main purpose of this paper is to study the calmness (in the sense of [13] and [16]) of
the set of solutions of a hemivariatonal inequality governed by the Navier-Stokes operator,
when the Clarke derivative is substituted by a more general control function, depending also
on the state and time variables.

Calmness is an important stability property since it gives a bound on the distance
between perturbed solutions and unperturbed solutions. For real functions this property is
weaker than the usual local Lipschitz continuity since one of the two points considered for
comparison is required to be fixed, but it is stronger than the continuity at that point.

In the case of set-valued mappings, calmness is defined using the excess function defined
by the Romanian mathematician D. Pompeiu (see [16]). In this case calmness is a gener-
alization of the Aubin property, which in its turn is a generalization of the local Lipschitz
property for set-valued mappings (see [16]). Calmness properties of solutions to parame-
terized equilibrium problems formulated with bifunctions have been studied widely. Most
of this study has focused on particular models such as optimization problems (see [7, 24,
25] and [22]) and variational or hemivariational inequalities (see [27, 34]). Hölder calmness
and Hölder continuity of solution mappings of general parametric equilibrium problems for
bifunctions have been studied, for instance, in the papers [1, 2, 5, 26, 28]. The calmness
property is strongly connected to the Hölder metric subregularity of the inverse mapping
(see [16, 36] and the references therein).

In the last years many papers about hemivariational inequalites similar to that of [30]
and [31], with important applications, were published. As an example we mention only the
recently appeared article [29]. Since the study of calmness of the solution sets for similar
problems is undoubtely important, we will embed our problem in an abstract model of
parametric equilibrium problem defined by trifunction and we will apply the abstract results
obtained for the hemivariational inequalites governed by the Navier-Stokes operator, where
the parameters are functions with some properties similar to those of Clarke generalized
derivatives.

Our main motivation to study equilibrium problems defined by trifunctions is the impor-
tant role that the monotonicity has in existence and stability results for equilibrium problems
defined by bifunctions on one hand, and the existence of bifunctions that are not mono-
tone, on the other hand. In [19] we have shown that for trifunctions it is possible to define
a monotonicity notion such that the monotone bifunctions that have value zero on the diag-
onal, generate monotone trifunctions and every bifunction is monotone as a trifunction.
Therefore, for instance, the so-called mixed equilibrium problems can be formulated by
monotone trifunctions. This makes possible to extend the duality principle to a large class
of equilibrium problems, and to use it, for instance, by proving existence and stability of the
solutions.

This paper is structured in five sections, as follows:
Section 2 contains several notions and results needed in the sequel.
In Section 3 we prove our main calmness result (Theorem 1), in a general setting, for

parametric equilibrium problems with trifunctions. It gives sufficient conditions for Hölder
calmness based on an apriori estimation for the dual problem, which is, in fact, a gradual
uniform partial calmness property (see [16]). To our best knowledge, calmness for such gen-
eral problems is studied here for the first time. Existence theorems for equilibrium problems
with trifunctions were given in [19].
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In Section 4, we apply the previous abstract theorem to mixed equilibrium problems.
Finally, in Section 5, returning to the main purpose of the paper, we focus on the Navier-
Stokes problems modeled by hemivariational type inequalities with boundary control,
obtaining sufficient conditions for Hölder calmness of the solution mapping. Since calmness
is stronger than continuity, our results can be seen as sharpening of other results obtained
before on the continuity of the solution set as a function of parameters (see, for example,
Theorem 21 in [30] and the convergence results in [33]).

2 Preliminaries

For a, b ∈ R we denote by ]a, b[ the open interval with the endpoints a and b. Let R+ =
[0, +∞[ and R− =] − ∞, 0]. We denote a− := d(a,R+) = max{−a, 0} and a+ :=
d(a,R−) = max{a, 0}. The following properties hold:

(a) (−a)+ = a−, (−a)− = a+;
(b) If b ≥ 0 then a+ ≤ (a + b)+;
(c) (a + b)+ ≤ a+ + b+. The equality holds if and only if ab ≥ 0;
(d) (a + b)+ ≤ a+ + |b|;
(e) If α > 0, then a+ ≤ α if and only if a ≤ α.

In this paper, unless otherwise mentioned, M and X will be metric spaces, and - for
convenience - both distances will be denoted by d. For u ∈ X and r > 0, by B(u, r) will be
denoted the open ball centered at u, of radius r . The Euclidean norm on R

d (d = 1, 2, . . . )
will be denoted by | · |, and the scalar product of u, v ∈ R

d by u · v.
A function f : M → X is said to satisfy the Hölder condition of rank k and exponent ε

if k ≥ 0, ε > 0, and

d(f (μ), f (μ′)) ≤ kdε(μ,μ′), (1)

for all μ,μ′ ∈ M . We say that f is a (k, ε)-Hölder function near μ̄ if there exists a neigh-
bourhood U(μ̄) of μ̄ such that (1) is verified for all μ,μ′ ∈ U(μ̄). A property between this
and the continuity at μ̄ is the calmness at μ̄.

A function f : M → X is said to be Hölder calm at μ̄ if there exist k ≥ 0, ε > 0 and a
neighborhood U(μ̄) of μ̄ such that

d(f (μ), f (μ̄)) ≤ kdε(μ, μ̄),

for all μ ∈ U(μ̄).
Calmness can be generalized for set-valued functions too. For some sets A,B in the

metric space (X, d) and a ∈ X, denote by

d(a, B) := inf
b∈B

d(a, b)

the distance between the point a and the set B, and by

e(A,B) := sup
a∈A

d(a, B)

the Pompeiu excess of A with respect to B, where the convention

e(∅, B) =
{
0, when B 	= ∅
+∞, otherwise

is used and e(A, ∅) = +∞, for any set A, including ∅.
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The Pompeiu-Hausdorff distance is defined by

h(A,B) = max(e(A,B), e(B,A)).

As it is known, it does not furnish a metric on the space of all subsets, but it does on the
space of nonempty closed and bounded subsets of X.

A mapping S : M → 2X is said to be (k, ε)-Hölder calm at (μ̄, ū) if (μ̄, ū) ∈ gphS, and
there exist neighbourhoods U(μ̄) of μ̄ and V (ū) of ū such that

e(S(μ) ∩ V (ū), S(μ̄)) ≤ kdε(μ, μ̄) for all μ ∈ U(μ̄).

A mapping S : M → 2X is said to have the isolated Hölder calmness property at (μ̄, ū) ∈
gphS if there exist k ≥ 0, ε > 0, and the neighbourhoods U(μ̄) of μ̄ and V (ū) of ū such that

d(u, ū) ≤ kdε(μ, μ̄) for all μ ∈ U(μ̄) and u ∈ S(μ) ∩ V (ū).

If μ̄ is an isolated element of M then all the continuity properties defined before are
verified.

If the above properties take place for ε = 1, then instead of (k, 1)-Hölder we say k-
Lipschitz. For more information on these notions we propose the book [16].

In the whole paper, we say that a property holds near u if there exists a neighborhood of
u where that property is verified (see for instance [14]).

Suppose Y is a normed space and D is an open subset of Y . If f : D → R is k-Lipschitz
near u ∈ D, then the Clarke generalized directional derivative f 0(u; v) at u in the direction
v ∈ Y is defined as follows:

f 0(u; v) = lim sup
w→u,t↘0

f (w + tv) − f (w)

t
.

Some of the basic properties of the function f 0 are summarised in the following

Proposition 1 (see [14], Proposition 2.1.1 and the proof of Theorem 2.3.10) Let f be k-
Lipschitz near u ∈ D. Then

(a) The function v → f 0(u; v) is finite, sublinear, and k-Lipschitz on Y ;
(b) The function (u, v) → f 0(u; v) is upper semi-continuous;
(c) f 0(u;−v) = (−f )0(u; v);
(d) If Z is a normed space, T : Y → Z is a surjective linear continuous operator and

g : T (D) → R is k-Lipschitz near T u, then the function g ◦T is k‖T ‖-Lipschitz near
u and (g ◦ T )0(u; v) = g0(T u, T v) for u, v ∈ Y .

Usually, a bifunction f : X×X → R is said to bemonotone iff 0 ≤ −f (u, v)−f (v, u),
for all u, v ∈ X. It is called strongly monotone iff there exists m > 0 such that md2(u, v) ≤
−f (u, v) − f (v, u), for all u, v ∈ X. It is called Hölder strongly monotone iff there exist
m, β > 0 such that m dβ(u, v) ≤ −f (u, v) − f (v, u), for all u, v ∈ X. In the following
definition, we extend these notions for trifunctions as follows:

Definition 1 The trifunction F : X × X × X → R is said to be monotone iff F(u, v, u) ≤
F(u, v, v) for every u, v ∈ X.

We say that F is Hölder strongly monotone iff there exist m,β > 0 such that

mdβ(u, v) ≤ F(u, v, v) − F(u, v, u), for every u, v ∈ X.

1092 D. Inoan, J. Kolumbán



Remark 1 (a) If the trifunction F has the particular form F(u, v, w) = f (w, v) −
f (w, u), with f (u, u) = 0 for any u ∈ X, then F is monotone (Hölder strongly
monotone) if and only if the bifunction f is monotone (Hölder strongly monotone).

(b) If F(u, v,w) = g(u, v), with g : X × X → R, obviously F is monotone as a
trifunction. In consequence, if G : X × X × X → R is a monotone trifunction and
g : X × X → R is arbitrary, then the trifunction F(u, v,w) = G(u, v,w) + g(u, v)

is also monotone. This fact simplifies, for instance, the theory of mixed equilibrium
problems, and makes it more transparent (see [19]).

(c) If X is a normed space with the dual X∗, then an operator T : X → X∗ is called
monotone if

〈T (u1) − T (u2), u1 − u2〉 ≥ 0, for every u1, u2 ∈ X.

An operator T : X × X → X∗ is called semimonotone if it is monotone with respect
to the second variable, that is

〈T (u,w1) − T (u,w2), w1 − w2〉 ≥ 0, for every u,w1, w2 ∈ X.

The function F : X × X × X → R defined by F(u, v,w) = 〈T (u,w), v − u〉 is
monotone, while the function f (u, v) = 〈T (u, u), v − u〉 is not necessarily monotone, so,
for the variational inequality governed by the operator u �→ T (u, u), the duality principle
is not applicable.

Variational inequalities governed by such operators were studied, for instance, in [12] for
single-valued functions and in [21] for set-valued mappings.

3 An Abstract Model

In this section we consider a general equilibrium problem where the objective function is
a trifunction that depends on a parameter μ. In the papers [19] and [20] we gave existence
results for such problems, motivated by the fact that the classical theory for equilibrium
problems with bifunctions can not be used for some problems that appear in applications.

For a parameter μ ∈ M , the problem that we study is

(PE)(μ) Find ū ∈ K such that F(ū, z, ū; μ) ≥ 0, for every z ∈ K,

where K and M are metric spaces, F : K × K × K × M → R is a given function.
Denote by S(μ) the set of solutions of the problem that depends on the parameterμ ∈ M .

Throughout the paper we suppose that it is nonempty. For a fixed value of the parameter μ,
an existence result for the solutions of (PE)(μ) was proved in [19].

Theorem 1 Let μ̄ ∈ M be a nonisolated point and ū ∈ S(μ̄) be fixed. Suppose that
there exist the neighborhoods U(μ̄) of μ̄, Ṽ (ū) of ū and the numbers a, c, θ ≥ 0, and
b, m, β, ξ, θ, ω > 0 such that

(i) mdβ(ū, v) ≤ F(ū, v, v; μ̄)+ + F(ū, v, ū; μ̄)−, for every v ∈ S(μ) ∩ Ṽ (ū) and
μ ∈ U(μ̄);

(ii) The estimation F(ū, v, v; μ̄) ≤ cdβ(ū, v) + dθ (ū, v)[adω(ū, v) + bdξ (μ, μ̄)] holds
for every μ ∈ U(μ̄) and v ∈ S(μ) ∩ Ṽ (ū), with v 	= ū;

(iii) θ < β and c < m.
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Suppose that one of the following conditions is verified:

1) a = 0;
2) β = ω + θ , a > 0 and a + c < m;
3) β < ω + θ and a > 0.

Then the mapping S : M → 2K is Hölder calm at (μ̄, ū). Moreover we have the isolated
Hölder calmness property at (μ̄, ū). In the cases 1) or 2) the solution ū is unique in the
neighborhood Ṽ (ū). In the case 3) ū is unique in a neighborhood of ū.

The parameters from the definition of the calmness are, in each of the cases above:

1) V (ū) = Ṽ (ū), δ = ξ

β − θ
, k =

(
b

m − c

) 1
β−θ

, for a = 0,

2) V (ū) = Ṽ (ū), δ = ξ

β − θ
, k =

(
b

m − c − a

) 1
β−θ

, for a > 0 and β = ω + θ .

3) V (ū) = B(ū, r) ∩ Ṽ (ū), δ = ξ

β − θ
, k = r

(
rβ−θ − a

m − c
rω

) 1
θ−β

(
b

m − c

) 1
β−θ

,

where 0 < r <

(
m − c

a

) 1
ω+θ−β

, for a > 0 and β < ω + θ .

For the proof, we will need the following:

Lemma 1 Let p > 0, q > 0, and l > 0 be given real numbers, with p < q. Then, for every

ε ∈]0, l 1
p−q [, for all x ∈]0, ε[ and y > 0 with xp − lxq ≤ y, the inequality x ≤ kyδ holds,

with δ = 1
p

> 0 and k = ε(εp − lεq)
− 1

p > 0.

Proof Let p < q and l > 0. Let ϕ : [0, ∞) → R be the function defined by ϕ(ξ) = ξ−lξ
q
p .

Let ε ∈]0, l 1
p−q [. It is easy to see that on the interval ]0, εp[ the function ϕ has strictly

positive values and is strictly concave. From this, the quotient function ξ �→ ϕ(ξ)
ξ

is strictly

decreasing, so for ξ ∈]0, εp[, we have ϕ(εp)
εp <

ϕ(ξ)
ξ

that is ξ < εp

ϕ(εp)
ϕ(ξ). Now consider

x ∈]0, ε[ with xp − lxq ≤ y and let ξ = xp. Then we get

xp <
εp

ϕ(εp)
ϕ(xp) ≤ εp

εp − lεq
y.

and the conclusion is proved with

k = ε(εp − lεq)
− 1

p and δ = 1

p
.

Proof of Theorem 1 1) In the case a = 0, we can choose V (ū) = Ṽ (ū). Let μ ∈ U(μ̄)

and v ∈ S(μ) ∩ V (ū), with v 	= ū. Since ū ∈ S(μ̄) and v ∈ K , we have

F(ū, v, ū; μ̄) ≥ 0. (2)

From (i), (ii), and (2) follows that

mdβ(v, ū) ≤ F(ū, v, ū; μ̄)− + F(ū, v, v; μ̄)+ = F(ū, v, v; μ̄)+
= F(ū, v, v; μ̄) ≤ cdβ(v, ū) + bdθ (v, ū)dξ (μ, μ̄).

1094 D. Inoan, J. Kolumbán



Therefore,
(m − c)dβ−θ (v, ū) ≤ bdξ (μ, μ̄),

so directly

d(v, ū) ≤
(

b

m − c

) 1
β−θ

d
ξ

β−θ (μ, μ̄).

2) In the case β = ω + θ and a + c < m, we choose V (ū) = Ṽ (ū). For μ ∈ U(μ̄) and
v ∈ S(μ) ∩ Ṽ (ū) we have, similar to case 1),

mdβ(v, ū) ≤ cdβ(v, ū) + dθ (v, ū)[adω(v, ū) + bdξ (μ, μ̄)],
and further,

(m − c − a)dβ−θ (v, ū) ≤ bdξ (μ, μ̄)

which implies

d(v, ū) ≤
(

b

m − c − a

) 1
β−θ

d
ξ

β−θ (μ, μ̄).

3) In the case β < ω + θ and a > 0, let r be such that 0 < r < (m−c
a

)
1

ω+θ−β , let the

neighborhood of ū be V (ū) = B(ū, r) ∩ Ṽ (ū), let μ ∈ U(μ̄) and v ∈ S(μ) ∩ V (ū)

with v 	= ū. In the same way as before, we get

(m − c)dβ−θ (v, ū) ≤ adω(v, ū) + bdξ (μ, μ̄)

and further on, since m − c > 0,

dβ−θ (v, ū) ≤ a

m − c
dω(v, ū) + b

m − c
dξ (μ, μ̄).

We apply Lemma 1 with x := d(v, ū), p := β − θ , q := ω, y := b
m−c

dξ (μ, μ̄),

l := a
m−c

, ε := r . Since v ∈ B(ū, r) ∩ Ṽ (ū) and v 	= ū, the conditions of the lemma are
verified and we get

d(v, ū) ≤ kdδ(μ, μ̄), (3)

where δ = ξ
β−θ

and k = r
(
rβ−θ − a

m−c
rω

) 1
θ−β

(
b

m−c

) 1
β−θ

. If v = ū, (3) is verified.

So, in all cases there exist k and δ such that, for every v ∈ S(μ) ∩ V (ū),

d(v, ū) ≤ kdδ(μ, μ̄).

This implies

e(S(μ) ∩ V (ū), S(μ̄)) = sup
v∈S(μ)∩V (ū)

d(v, S(μ̄)) ≤ sup
v∈S(μ)∩V (ū)

d(v, ū) ≤ kdδ(μ, μ̄).

If u ∈ S(μ̄) ∩ V (ū), then we get u = ū, so ū is the unique solution in the neighborhood
V (ū).

Remark 2 (a) If the function F(·, ·, ·; μ̄) is Hölder strongly monotone, then condition
(i) from Theorem 1 is verified. This follows directly from the fact that F(u, v, v) −
F(u, v, u) ≤ F(u, v, v)+ +F(u, v, u)−. The converse is not true (see [2] for the case
of bifunctions).

(b) In Section 5 we will see how properties (i) and (ii) appear for hemivariational
inequalities governed by the Navier-Stokes operator.

(c) For bifunctions in the cases 1) and 2), Theorem 1 is well-known (see [1, 2]). In this
particular case, the set K was considered to depend also on a parameter λ. Theorem 1
can be extended in this sense, but it is not our aim in this paper.
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4 Parametric Mixed Equilibrium Problems

Mixed equilibrium problems have an important role in applied mathematics. They were first
studied in the paper [6].

Consider the function F having the particular form

F(u, v,w; μ) = f (w, v; μ) − f (w, u; μ) + g(u, v; μ)

where f : K×K×M → R is such that the bifunction f (·, ·; μ) is monotone, f (u, u;μ) =
0, for all u ∈ K , μ ∈ M and g : K × K × M → R is an arbitrary function. In this case we
have

F(u, v, u;μ) = f (u, v; μ) + g(u, v; μ) and F(u, v, v; μ) = −f (v, u;μ) + g(u, v; μ).

The problem (PE)(μ) becomes the mixed parametric equilibrium problem defined by
f and g:

(PME)(μ) Find ū ∈ K such that f (ū, z; μ) + g(ū, z; μ) ≥ 0, for every z ∈ K .

We denote by S(μ) the set of solutions of the problem (PME)(μ) and suppose that it is
nonempty. The next result follows directly from Theorem 1.

Theorem 2 Let μ̄ ∈ M be nonisolated and ū ∈ S(μ̄) be fixed. Suppose that there exist some
neighborhoods U(μ̄) of μ̄, Ṽ (ū) of ū, and the numbers a, b1, b2, c, θ ≥ 0, m, β, ξ, ω > 0
such that

(i) mdβ(ū, v) ≤ [f (ū, v; μ̄) + g(ū, v; μ̄)]− + [f (v, ū; μ̄) − g(ū, v; μ̄)]−, for every
v ∈ S(μ) ∩ Ṽ (ū) and μ ∈ U(μ̄);

(ii) f (v, ū; μ) − f (v, ū; μ̄) ≤ b1d
θ (ū, v)dξ (μ, μ̄), for every μ ∈ U(μ̄), v ∈ S(μ) ∩

Ṽ (ū), with v 	= ū;
(iii) g(ū, v; μ̄) + g(v, ū; μ) ≤ cdβ(ū, v) + dθ (ū, v)[adω(ū, v) + b2d

ξ (μ, μ̄)], for every
μ ∈ U(μ̄) and v ∈ S(μ) ∩ Ṽ (ū), with v 	= ū;

(iv) 0 < β − θ and c < m.

Suppose that one of the conditions 1), 2), 3) from Theorem 1 is verified.
Then the mapping S : M → 2X is Hölder calm at (μ̄, ū). Moreover, we have the iso-

lated Hölder calmness property at (μ̄, ū). In the cases 1), 2) the solution ū is unique in the
neighborhood Ṽ (ū). In the case 3) ū is unique too in a neighborhood of ū.

Proof We only have to check condition (ii) from Theorem 1. Let μ ∈ U(μ̄) and v ∈
S(μ) ∩ Ṽ (ū). Then,

f (v, ū; μ) + g(v, ū; μ) ≥ 0.

We have, for b = b1 + b2,

F(ū, v, v; μ̄) = −f (v, ū; μ̄) + g(ū, v; μ̄)

≤ −f (v, ū; μ̄) + g(ū, v; μ̄) + f (v, ū;μ) + g(v, ū; μ)

≤ cdβ(ū, v) + dθ (ū, v)[adω(ū, v) + bdξ (μ, μ̄)].
Therefore Theorem 1 can be applied.

For stability results in the case of parametric mixed problems we mention also [27].
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5 Navier-Stokes ProblemsModeled by Hemivariational Inequalities

In the papers [30] and [31], Migórski and Ochal studied a class of hemivariational problems
for the Navier-Stokes operators, in the stationary and evolution case, respectively. When
Ω is a bounded simply connected domain of Rd , d ∈ {2, 3, 4}, with boundary Γ of class
C2, the Navier-Stokes equations that describe the flow of a viscous incompressible constant
density fluid in the domain Ω are the following:

u′ − αu + (u · ∇)u + ∇p = φ, (4)

∇ · u = 0 on Q = Ω×]t0, t1[. (5)

Here u : Ω × [t0, t1] → R
d is the velocity, α > 0 is the kinematic viscosity of the fluid,

p : Ω × [t0, t1] → R is the pressure, φ : Q → R
d is a vector field given by the external

forces.
To obtain a variational formulation of the previous equations, it is convenient to rewrite

the problem in the equivalent Leray form (see [32]).
For this let us consider the set

W = {w ∈ C∞(Ω,Rd) : divw = 0 on Ω}.
Denote by V and H the closure of W in the norms of W 1

2 (Ω,Rd) (the usual Sobolev space)
and L2(Ω,Rd), respectively. We have V ⊂ H � H ∗ ⊂ V ∗ with the embeddings being
dense, continuous, and compact.

Consider the spaces

V = L2(t0, t1; V ), H = L2(t0, t1; H) and W = {w ∈ V : w′ ∈ V ∗},
where the time derivative w′ is understood in the sense of vector valued distributions. In this
case W ⊂ V ⊂ H ⊂ V ∗ and the embeddings are continuous.

The pairing between V and V ∗ will be denoted by 〈·, ·〉, and the pairing between V and
V ∗ will be denoted by 〈〈·, ·〉〉. The space W is a separable reflexive Banach space with the
norm ‖w‖W = ‖w‖V +‖w′‖V ∗ and is continuously embedded in C([t0, t1];H) (see [35]).
The norm on V will be denoted by ‖ · ‖, for other norms the space will be mentioned if
necessary.

To write the weak formulation of the problem (4)-(5), consider the operators A : V →
V ∗ and B : V × V → V ∗ defined by

〈Au, v〉 = α

∫
Ω

d∑
i=1

Diu · Div dx, (6)

〈B(u, v), w〉 =
∫

Ω

d∑
i,j=1

ui(Divj )wj dx, B[u] = B(u, u), (7)

where Di is the operator ∂
∂xi

, and denote

〈Φ(t), v〉 :=
∫

Ω

φ(x, t)v(x)dx,

for u, v, w ∈ V . It is well known (see [32], p. 162) that the operator B is well defined only if
d ∈ {2, 3, 4}. For problem (4)-(5) to be well posed it is necessary to assign some boundary
conditions. Let us consider, for instance, in the case d = 3, the Neumann condition u|Γ = h,
where h = pn − α

∂γu
∂n

, n is the outward unit normal vector to ∂Ω , ∂
∂n

is the normal
derivative operator, and γ : W 1

2 (Ω,Rd) → L2(Γ,Rd) is the trace operator. If we multiply
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the equation (4) by a test function v ∈ V , then using the Gauss formulae, we obtain the
weak formulation of the Navier-Stokes equation with the Neumann boundary condition:

〈u′(t) + Au(t) + B[u(t)], v〉 +
∫

Γ

h · γ vdσ = 〈Φ(t), v〉, a.e. t ∈]t0, t1[, v ∈ V,

where σ is the Hausdorff measure on Γ .
Similar to [30] and [31], the Neumann boundary condition can be generalized by the

subdifferential condition

h(x, t) ∈ ∂j (x, t, γ u(x, t)) on Γ × [t0, t1],
where ∂j denotes the Clarke subdifferential of the locally Lipschitz function j : Γ ×
[t0, t1] × R

d → R with respect to the third variable. In this case the problem becomes the
following evolution hemivariational inequality: For a givenK ⊆ W , find ū ∈ K such that

〈ū′(t)+Aū(t)+B[ū(t)]−Φ(t), v−ū(t)〉+
∫

Γ

j0(x, t, γ ū(x, t); γ v(x)−γ ū(x, t))dσ ≥ 0,

(8)
for all v ∈ V , a.e. t ∈ [t0, t1], where j0 is the Clarke directional derivative of j (x, t, ·).

Using the notations (6) and (7), define the Navier-Stokes operator N : V → V ∗ by
Nu = Au + B[u], for u ∈ V . We have the following properties (see for instance [30] (p.
206), [32] (Chapter II)):

I. A : V → V ∗ is linear, continuous, symmetric and 〈Au, u〉 ≥ α‖u‖2V , for all u ∈ V ,
II. B : V × V → V ∗ is bilinear, continuous and 〈B(u, v), v〉 = 0, for all u, v ∈ V ,
III. The mapping B[·] : V → V ∗ is weakly continuous.

From these follows that the function b, defined by b(u, v, z) := 〈B(u, v), z〉 is trilinear
and continuous. From property II, we get

0 = 〈B(u, u + v), u + v〉 = 〈B(u, u), v〉 + 〈B(u, v), u〉,
so 〈B(u, v), u〉 = −〈B(u, u), v〉. On one hand we have

〈B[u] − B[v], u − v〉 = −〈B(u, u), v〉 − 〈B(v, v), u〉
and on the other hand

〈B(u − v, v), u − v〉 = 〈B(u, v), u〉 − 〈B(v, v), u〉.
It follows that

〈B[u] − B[v], u − v〉 = 〈B(u − v, v), u − v〉 ≤ c1 · ‖u − v‖2V · ‖v‖V ,

where c1 is a positive constant and u, v ∈ V . We can take

c1 = sup
‖v‖,‖w‖=1

〈B(w, v),w〉. (9)

For u, v, z ∈ V we denote

〈〈A u, v〉〉 =
∫ t1

t0

〈Au(t), v(t)〉dt, 〈〈B(u, v), z〉〉 =
∫ t1

t0

〈B(u(t), v(t)), z(t)〉dt and

〈〈N u, v〉〉 =
∫ t1

t0

〈Nu(t), v(t)〉dt .
The generalized derivative u′ defines a linear operator L : W → V ∗ given by

〈〈L u, v〉〉 =
∫ t1

t0

〈u′(t), v(t)〉dt, for all v ∈ V .
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It is known that the linear operator L is monotone on W if 〈〈L u, u〉〉 ≥ 0 for all u ∈ W .
According to

〈〈L u, u〉〉 =
∫ t1

t0

(
1

2
‖u(t)‖2H

)′
dt = 1

2

(
‖u(t1)‖2H − ‖u(t0)‖2H

)

the monotonicity of L on K follows when, for any u ∈ K , the inequality
‖u(t0)‖H ≤ ‖u(t1)‖H holds. This happens, for instance, in the periodic case K = {u ∈
W : u(t0) = u(t1)}, in the anti-periodic case K = {u ∈ W : u(t0) = −u(t1)}, and
for K = {u ∈ W : u(t0) = 0}. Existence theorems were given, for instance, in [3], for
periodic solutions, and for antiperiodic solutions in [8] and [9].

Let M be a nonempty set of functions μ : Γ ×[t0, t1]×R
d ×R

d → Rwith the following
properties:

(M1) The iterative integral
∫ t1
t0

∫
Γ

μ(x, t, γ u(x, t); γ v(x, t))dσdt exists for all u, v ∈
H ;

(M2) For every μ, μ̄ ∈ M there exists a function ϕμ,μ̄ ∈ L2(Γ × [t0, t1]) for which
|μ(x, t, r; s) − μ̄(x, t, r; s)| ≤ ϕμ,μ̄(x, t)|s|

for all r, s ∈ R
d , a.e. (x, t) ∈ Γ × [t0, t1];

(M3) The function s �→ μ(x, t, r; s) is positively homogeneous for all r ∈ R
d , a.e.

(x, t) ∈ Γ × [t0, t1].
For μ, μ̄ ∈ M we define the distance

d(μ, μ̄) =
( ∫ t1

t0

∫
Γ

sup
r,s∈Rd ,|s|=1

|μ(x, t, r; s) − μ̄(x, t, r; s)|2dσdt
) 1

2
. (10)

From (M2) it follows that d(μ, μ̄) < +∞ for all μ, μ̄ ∈ M .
For μ ∈ M and u, v ∈ V denote

Gμ(u; v) =
∫ t1

t0

∫
Γ

μ(x, t, γ u(x, t); γ v(x, t))dσdt .

Instead of (8) we consider a more general problem, for a given K ⊆ W :

(NS)(μ) Find u ∈ K such that, for all v ∈ K ,

〈〈L u + N u − Φ, v − u〉〉 + Gμ(u; v − u) ≥ 0.

We call such a problem hemivariational-like inequality with boundary control variable μ.
Denote by S(μ) the set of solutions of this problem and suppose it is nonempty for all
μ ∈ M . For μ̄ ∈ M , ū ∈ S(μ̄) and τ > 0, denote

c(τ ) := lim sup
v→ū,v∈K

‖v − ū‖−τ
(
Gμ̄(ū; v − ū) + Gμ̄(v; ū − v)

)
. (11)

Using Theorem 2 we are able to prove the following:

Theorem 3 Let K ⊆ W and let the operator L be monotone on K . Let μ̄ ∈ M be
nonisolated and ū ∈ S(μ̄). Suppose that the conditions (M1) - (M3) are verified and the
norms ‖ϕμ,μ̄‖L2 are bounded for μ near μ̄. Suppose further that there exists ρ > 0 such
that ‖ū‖ < ρ and ρc1 < α, where α is the kinematic viscosity of the fluid, and c1 is defined
by (9).
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Suppose that one of the following conditions is verified:

1’) Gμ̄(ū, v − ū) + Gμ̄(v, ū − v) ≤ 0 for v near ū;
2’) c(2) < α − ρc1;
3’) There exists τ > 2 such that c(τ ) < ∞.

Then the mapping μ �→ S(μ) is Hölder calm at (μ̄, ū). Moreover, the solution set S has the
isolated calmness property at (μ̄, ū), and the solution ū is unique in a neighborhood of ū.

Proof Let the functions f : K × K → R and g : K × K × M → R be defined by

f (u, v) := 〈〈A u, v − u〉〉 + 〈〈L u, v − u〉〉
and

g(u, v; μ) = 〈〈B[u], v − u〉〉 + Gμ(u; v − u) − 〈〈Φ, v − u〉〉.
With these notations problem (NS)(μ) is of the form (PME)(μ) studied in Section 4.

The function f is strongly monotone, so the condition (i) of Theorem 2 is verified with
β = 2 and m = α. Indeed, for any v ∈ K we have

α‖ū − v‖2 ≤ −f (ū, v) − f (v, ū) = −f (ū, v) − g(ū, v; μ̄) − f (v, ū) + g(ū, v; μ̄)

≤ [f (ū, v) + g(ū, v; μ̄)]− + [f (v, ū) − g(ū, v; μ̄)]−.
Condition (ii) of Theorem 2 is trivially verified.

For μ ∈ M and v ∈ K we have

g(ū, v; μ̄) + g(v, ū; μ) = 〈〈B[ū] − B[v], v − ū〉〉 + Gμ̄(ū; v − ū) + Gμ(v; ū − v).

As it was mentioned before,

〈〈B[ū] − B[v], v − ū〉〉 = 〈〈B(ū − v, v), ū − v〉〉 ≤ c1 · ‖ū − v‖2 · ‖v‖.
Further, by ‖ū‖ < ρ there exists δ > 0 such that, for ‖v − ū‖ < δ, we have ‖v‖ < ρ.

On the other hand, we have

|Gμ(v, ū − v) − Gμ̄(v, ū − v)| ≤
∫ t1

t0

∫
Γ

|μ(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t))

−μ̄(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t))|dσdt .
On the subset of Γ × [t0, t1] where γ ū(x, t) 	= γ v(x, t) holds, by (M3) it follows that

|μ(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t)) − μ̄(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t))|
= |γ ū(x, t) − γ v(x, t)|

∣∣∣∣μ
(

x, t, γ v(x, t); γ ū(x, t) − γ v(x, t)

|γ ū(x, t) − γ v(x, t)|
)

− μ̄

(
x, t, γ v(x, t); γ ū(x, t) − γ v(x, t)

|γ ū(x, t) − γ v(x, t)|
)∣∣∣∣ .

On the other hand, on the subset of Γ × [t0, t1] where γ ū(x, t) = γ v(x, t), property (M2)
implies that

|μ(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t)) − μ̄(x, t, γ v(x, t); γ ū(x, t) − γ v(x, t))| = 0.

Using the above considerations, the Cauchy-Schwarz inequality and (10), it follows that
there exists c0 > 0 such that

|Gμ(v, ū − v) − Gμ̄(v, ū − v)| ≤ c0‖v − ū‖d(μ, μ̄).
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Then, for v ∈ K near ū, we have

Gμ̄(ū; v − ū) + Gμ(v; ū − v)

= Gμ̄(ū; v − ū) + Gμ̄(v, ū − v) − Gμ̄(v, ū − v) + Gμ(v; ū − v)

≤ c0‖v − ū‖ · d(μ, μ̄) + Gμ̄(ū; v − ū) + Gμ̄(v, ū − v).

In case 1’), we get Gμ̄(ū; v − ū) + Gμ(v; ū − v) ≤ c0‖v − ū‖ · d(μ, μ̄).
In case 2’), there exists a0 > 0 such that c(2) < a0 < α − ρc1 and

Gμ̄(ū; v − ū) + Gμ̄(v, ū − v) ≤ a0 ‖v − ū‖2,
for any v near ū.

In case 3’), there exists a1 > 0 such that

Gμ̄(ū; v − ū) + Gμ̄(v, ū − v) ≤ a1 ‖v − ū‖τ ,

for any v near ū.
Taking account of the previous inequalities, for ‖v − ū‖ < δ it follows that

g(ū, v; μ̄) + g(v, ū; μ) ≤ ρc1‖v − ū‖2 + a‖v − ū‖ζ + c0‖v − ū‖ · d(μ, μ̄)

= ρc1‖v − ū‖2 + ‖v − ū‖(a‖v − ū‖ζ−1 + c0d(μ, μ̄)),

where a = 0 in case 1’), a = a0 and ζ = 2 in case 2’), a = a1 and ζ = τ > 2 in case 3’).
In this way, if ‖ū‖ < ρ and ‖v − ū‖ < δ, conditions of Theorem 2 are fulfilled with

m = α, b = c0, c = ρc1, θ = 1, ω = ζ − 1, β = 2, and ξ = 1.

Remark 3 (a) Hypothesis ρc1 < α suggests that, if the viscosity coefficient α is small,
then the neighbourhood B(0, ρ) of 0, where the calmness property holds, is small too.
If α is very small, problems may arise concerning stability and the transition towards
turbulent flows (see [32]). When fluctuations of flow velocity occur at very small
spatial and temporal scales, one goes towards the so called turbulent models (see, for
instance [4, 15, 17]).

(b) Condition c(τ ) < +∞ is verified if the bifunction Gμ̄ is monotone. This is why the
condition c(τ ) < +∞ is sometimes named relaxed monotonicity (see for instance
[30]).

(c) If the function s �→ μ(x, t, r, s) is linear, with μ(x, t, r, s) = μ0(x, t, r)(s) for all
r, s ∈ R

d , a.e. (x, t) ∈ Γ × [t0, t1], then condition (M2) can be substituted with the
following:

(M2’) For every μ, μ̄ ∈ M , there exists a function ϕμ,μ̄ ∈ V such that

|μ0(x, t, r) − μ̄0(x, t, r)| ≤ ϕμ,μ̄(x, t),

for all r ∈ R
d , a.e. (x, t) ∈ Γ × [t0, t1]. In this case we have

d(μ, μ̄) =
( ∫ t1

t0

∫
Γ

sup
r∈Rd

|μ0(x, t, r) − μ̄0(x, t, r)|)2dσdt
) 1

2
,

where μ̄0 is defined similarly to μ0.

To apply the previous theorem in the theory of hemivariational inequalities, let us con-
sider a function j : Γ × [t0, t1] × R

d → R for which j (·, ·, r) ∈ L1(Γ × [t0, t1]) for some
r ∈ R

d . As in [14], Section 2.7, consider two hypotheses on the function j for p ∈ [1, 2],
and q = p

p−1 (q = ∞ if p = 1):
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Hypothesis I: There exists k ∈ Lq(Γ × [t0, t1]) such that for all (x, t) ∈ Γ × [t0, t1]
|j (x, t, r) − j (x, t, r ′)| ≤ k(x, t)|r − r ′|, for all r, r ′ ∈ R

d .

Hypothesis II: The function r �→ j (x, t, r) is locally Lipschitz and for some constant c0 > 0
one has |z| ≤ c0(1+|r|p−1), for all (x, t) ∈ Γ ×[t0, t1], r ∈ R

d , z ∈ ∂rj (x, t, r). Here ∂rj

is the Clarke generalized gradient of j with respect to the third variable r ∈ R
d . These two

hypotheses appear, for instance, in [14] and [18]. Hypothesis II was used to prove existence
results in [3, 30], and [31].

Let J be a set of functions j : Γ ×[t0, t1]×R
d → R such that at least one of the hypothe-

ses I or II is verified. Then, for all Lebesgue integrable functions u, v : Ω × [t0, t1] → R,
the function

(x, t) �→ j0r (x, t, γ u(x, t); γ v(x, t))

is defined and it is Lebesgue integrable. Indeed, by the previous hypotheses, the function
j (·, ·, r) is Lebesgue measurable, for all r ∈ R

d , and j (x, t, ·) is continuous, for all (x, t) ∈
Ω × [t0, t1]. We may express j0r (x, t, γ u(x, t); γ v(x, t)) as the limit of

j (x, t, y + λγ v(x, t)) − j (x, t, y)

λ

where λ ↘ 0, taking rational values and y → γ u(x, t), taking values in a countable dense
subset {yi : i ∈ N} of Rd . Thus the function (x, t) �→ j0r (x, t, γ u(x, t); γ v(x, t)) is
measurable as a countable upper limit of measurable functions (see [18], Theorem 1.2.20
and [14], pag. 78, Lemma).

Corollary 1 Suppose that the operator L is monotone on K , the functions μ ∈ M are
defined by μ = j0r , j ∈ J and c(τ ) is defined by (11). Suppose that the condition (M2) is
verified and the norms ‖ϕμ,μ̄‖L2 are bounded for μ near μ̄. Let ū ∈ S(μ̄). Let ρ > 0 be
such that ‖ū‖ < ρ, and ρc1 < α, where c1 is defined by (9). Suppose further that one of the
conditions 1’) - 3’) from Theorem 3 is verified. Then the mapping μ �→ S(μ) is Hölder calm
at (μ̄, ū). Moreover, the set-valued solution function S has the isolated calmness property
and the solution ū is unique in a neighborhood of ū.

Proof From Proposition 1 it follows that (M1)-(M3) are verified, so Theorem 3 can be
applied.
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