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Abstract
We present an abstract framework for asymptotic analysis of convergence based on the
notions of eventual families of sets that we define. A family of subsets of a given set is
called here an “eventual family” if it is upper hereditary with respect to inclusion. We define
accumulation points of eventual families in a Hausdorff topological space and define the
“image family” of an eventual family. Focusing on eventual families in the set of the inte-
gers enables us to talk about sequences of points. We expand our work to the notion of a
“multiset” which is a modification of the concept of a set that allows for multiple instances
of its elements and enable the development of “multifamilies” which are either “increas-
ing” or “decreasing”. The abstract structure created here is motivated by, and feeds back
to, our look at the convergence analysis of an iterative process for asymptotically finding a
common fixed point of a family of operators.

Keywords Common fixed-points · Hausdorff topological space · Eventual families ·
Multiset · Multifamily · Set convergence · Cutters · Firmly nonexpansive operators
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1 Introduction

In this paper we present an abstract framework for asymptotic analysis of convergence based
on the notions of eventual families of sets that we define. A family F of subsets of a set
X is called here an “eventual family” if S ∈ F and S′ ⊇ S implies S′ ∈ F , i.e., if it is
upper hereditary with respect to inclusion. If S ∈ F and S′ ⊆ S implies S′ ∈ F , i.e., if it is
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lower hereditary with respect to inclusion, then we call it a “co-eventual family”.We define
accumulation points of eventual families in a Hausdorff topological space and define the
“image family” G of an eventual family F under a given mapping f, called “the push of F
by f ” via G =Push(f,F) := {S ⊆ Y | f −1(S) ∈ F}.

Focusing on eventual families in the set N of the integers enables us to talk about
sequences of points, particularly, points that are generated by repeated application of an
operator T : X → X. We then define the notion of an “E-limit of a sequence (An)n∈N of
subsets of a set X” as the set of all x ∈ X such that the set of n with x ∈ An belongs to E,

i.e., E-limn→∞ An := {x ∈ X | {n | x ∈ An} ∈ E} where E is an eventual family in N. The
relationship of this notion with the classical notion of limit of a sequence of sets is studied.

In the sequel we expand our work to the notion of a “multiset” which is a modification
of the concept of a set that allows for multiple instances of its elements. The number of
instances given for each element is called the multiplicity of that element in the multiset.
With multisets in hand we define and develop “multifamilies” which are either “increasing”
or “decreasing”, connecting with the earlier notions via the statement that a family of subsets
of X is an eventual (resp. co-eventual) family if the multifamily that defines it is increasing
(resp. decreasing).

The abstract structure created here is motivated by, and feeds back to, our look at the
convergence analysis of an iterative process for asymptotically finding a common fixed
point of a family of operators. This particular case serves as an example of the possible use
of our theory. The work presented here adds a new angle to the theory of set convergence,
see, e.g., the books by Rockafellar and R.J.-B. Wets [15, Chapter 4] and by Burachik and
Iusem [6].

2 Eventual Families and Their Use in Limiting Processes

2.1 Eventual Families

We introduce the following notion of eventual families of subsets.

Definition 1 Let X be a set and let F be a family of subsets of X. The family F is called
an “eventual family” if it is upper hereditary with respect to inclusion, i.e., if

S ∈ F , S′ ⊇ S ⇒ S′ ∈ F . (1)

The family F is called a “co-eventual family” if it is lower hereditary with respect to
inclusion, i.e., if

S ∈ F , S′ ⊆ S ⇒ S′ ∈ F . (2)

We mention in passing that Borg [4] uses the term “hereditary family”, in his work in the
area of combinatorics, for exactly what we call here “co-eventual family”. Several simple
observations regarding such families can be made.

Proposition 2 (i) A family F of subsets of X is co-eventual iff its complement, i.e., the
family of subsets of X which are not in F , is eventual.

(ii) The empty family and the family of all subsets of X are each both eventual and co-
eventual, and they are the only families with this property.
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Proof (i) This follows from the definitions. (ii) That the empty family and the family of all
subsets of X are each both eventual and co-eventual is trivially true. We show that if F is
eventual and co-eventual and is nonempty then it must contain all subsets of X. Let S ∈ F
and distinguish between two cases. If S = ∅ then F must contain all subsets of X because
F is eventual. If S 
= ∅ let x ∈ S, then, since F is co-eventual it must contain the singleton
{x}. Consequently, the set {x, y}, for any y, is also in F and so {y} ∈ F , thus, all subsets
of X are contained in F . Alternatively, if we look at S ∈ F , then for any subset S′ of X, F
contains S ∪S′ since F is eventual. Then since F is co-eventual, it must contain S′, leading
to the conclusion that it contains all subsets.

Remark 3 An eventual family F need not contain the intersection of two of its members. If
it does so for every two of its members then it is a filter.

Similar to the notion used in [13] and [14] in the finite-dimensional space setting, we
make here the next definition.

Definition 4 Given a family F of subsets of a set X, the “star set associated with F ”,
denoted by Star(F), is the subset of X that consists of all x ∈ X such that the singletons
{x} ∈ F , namely,

Star(F) := {x ∈ X | {x} ∈ F}. (3)

2.2 Accumulation Points as Limits of Eventual Families

Suppose now that X is a Hausdorff topological space.

Definition 5 Let F be an eventual family of subsets of X. A point x ∈ X is called an
“accumulation (or limit) point of F” if every (open) neighborhood1 of x belongs to F .
The set of all accumulation points of F is called the “limit set of F”.

Proposition 6 The limit set of an eventual family F is always closed.

Proof We show that the complement of the limit set, i.e., the set of all non-accumulation
points, is open. The point y is a non-accumulation point iff it has an open neighborhood
which does not belong to F , i.e., when it is a member of some open set not in F . Hence
the complement of the limit set is the union of all open sets not in F , and by definition, in
a topological space, the union of any family of open sets is open.

We turn our attention now to sequences in X, i.e., maps N → X, where N denotes the
positive integers.

Definition 7 Given are a familyF of subsets ofX and a mapping between sets f : X → Y .
The family G of subsets of Y whose inverse image sets f −1(S) belong to F will be denoted
by G =Push(f,F) and called the “push of F by f ”, namely,

G =Push(f,F) := {S ⊆ Y | f −1(S) ∈ F}. (4)

1Since, by definition, a neighborhood always contains an open neighborhood, considering all neighborhoods
or just the open ones does not make a difference here.
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Combining Definitions 5 and 7 the following remark is obtained.

Remark 8 Let E be an eventual family of subsets of N and let f : N → X be defined by
some given sequence (xn)n∈N in X. The accumulation points and the limit set of (xn)n∈N
with respect to E are those defined with respect to the push of E by f .

The next examples emerge by using two different eventual families in N. The same
‘machinery’ yields both ‘cases’ via changing the eventual family E in N.

Examples 9 (1) Let E be the family of complements of finite sets in N. Then accumulation
points (i.e., limits with respect to E) are the usual limits, and if there is a limit point
then it is unique. This is the case, as one clearly sees, in a Hausdorff spaceX whenever
E is a filter, as here E clearly is.

(2) Let E be the family of infinite subsets in N. Then being an accumulation point means
being some accumulation point of the sequence in the usual sense, which in general,
need not be unique. Indeed, here E is not a filter.

2.3 Operators and Seeking Fixed Points

Continuing to consider a Hausdorff topological space X, call any continuous self-mapping
T : X → X “an operator ”.

Definition 10 Let X be a Hausdorff topological space, T : X → X an operator, (xn)n∈N
a sequence in X, and E an eventual family of subsets of N. We say that “the sequence
(xn)n∈N follows T with respect to E” if, for every S ∈ E , there are integers p, q in S so
that xp = T (xq).

Theorem 11 In a Hausdorff topological space X, if a sequence (xn)n∈N follows a contin-
uous operator T with respect to some eventual family E in N, and if y is an accumulation
point of the sequence with respect to E then y is a fixed point of T .

Proof Assume to the contrary that T (y) 
= y. Then, since the space is Hausdorff, T (y) and
y have disjoint open neighborhoods Uy and UT (y). Continuity of T guarantees that there is
an open neighborhood Vy of y so that T (Vy) ⊂ UT (y). Hence,

Uy ∩ T (Vy) = ∅, (5)

meaning that T (z) 
= z for z ∈ Uy ∩ Vy . But Uy ∩ Vy is also an open neighborhood of y,
and y is an accumulation point of the sequence with respect to E , hence, the set

S := {n ∈ N | xn ∈ Uy ∩ Vy} (6)

is in E . Since the sequence follows T with respect to E , there must be p and q in S so that
xp = T (xq). This point must belong to both Uy and T (Vy), which contradicts (5).

2.4 Finitely-Insensitive Eventual Families inN

When considering eventual families inN it is often desirable to assume that they are finitely-
insensitive, as we define next. All our examples have this property.
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Definition 12 A family E of subsets ofN is called a “finitely-insensitive family” if for any
S ∈ E , finitely changing S, which means here adding and/or deleting a finite number of its
members, will result in a set S′ ∈ E .

2.5 Limits of Sequences of Sets

In [13, 14] and [16] the notions of upper limit and lower limit of a sequence of subsets
(An)n∈N of some X are considered, in the framework of a locally compact metric space,
the Euclidean space, or a normed linear space of finite dimension, respectively. When
these upper limit lim supn→∞ An and lower limit lim infn→∞ An coincide one says that the
sequence of sets has their common value as a limit, denoted by limn→∞ An. Thus, a func-
tion defined on sets, or taking values in sets, may be said to be continuous when it respects
limits of sequences.

Here we define the notion of an “E-limit of a sequence (An)n∈N of subsets of a set X”
and state its relationship with the classical notion of limit mentioned above.

Definition 13 Let X be a set, let (An)n∈N be a sequence of subsets of X, let E be an
eventual family in N and assume that E is finitely-insensitive. The “E-limit of the sequence
(An)n∈N”, denoted by E-limn→∞ An, is the set of all x ∈ X such that the set of n with
x ∈ An belongs to E , namely,

E- lim
n→∞ An := {x ∈ X | {n | x ∈ An} ∈ E}. (7)

Strict logic tells us that the E-limit is well-defined also for an empty E or if E contains
all subsets. Indeed, if E = ∅ then E-limn→∞ An = ∅, and if E is the family of all subsets
then E-limn→∞ An = X.

Theorem 14 Let X be a set, let (An)n∈N be a sequence of subsets of X, and let E be an
eventual family in N. If E is a finitely-insensitive family which is not trivial, i.e., is not either
empty or containing all subsets, and if the (classical) limn→∞ An exists then

E- lim
n→∞ An = lim

n→∞ An. (8)

Proof Note that, for a given sequence of sets (An)n∈N, the ‘larger’ the eventual family E is,
the ‘larger’ is its E-limit.

Denote by G the family of all infinite subsets of N and by H the family of all subsets
of N with finite complement.2 Then clearly (cf. Examples 9) The upper limit (resp. lower
limit) of An is obtained as E- limn→∞ An for E := G (resp. E := H.)

Now, The family G is the largest finitely-insensitive family which is not the set of all
subsets. This is so because if G would contain a finite set then it would have to contain the
empty set, hence, all subsets.

And the family H is the smallest finitely-insensitive family which is not empty. This is
so because ifH is not empty, it has a member S, thus, must contain the whole N, hence, all
subsets with finite complement.

Consequently, for a sequence (An)n∈N for which limn→∞ An exists, that limit will be
also the E-limit for any finitely-insensitive eventual family E which is not trivial, i.e., is not
either empty or containing all subsets.

2The families G and H were denoted by N #∞ and N∞, respectively, in [15, page 108].
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2.6 Topological vs. Purely Set-Theoretical

Note that in contrast to Sections 2.2 and 2.3, the notions in Section 2.5 are purely set-
theoretic and do not involve any topology in X. Yet, one can distill the topological aspect
via the next definition.

Definition 15 Let X be a Hausdorff topological space and let F be an eventual family in
X. The “closure of an eventual family F in X”, denoted by clF , consists of all subsets
S ⊆ X such that all the open subsets U ⊆ X which contain S belong toF .

Clearly, F is always a subfamily of clF , and the set of limit points of an eventual family
F , in a Hausdorff topological space X, is just Star(clF), given in Definition 4.

3 Multisets andMultifamilies

A multiset (sometimes termed bag, or mset) is a modification of the concept of a set that
allows for multiple instances for each of its elements. The number of instances given for
each element is called the multiplicity of that element in the multiset. The multiplicities of
elements are any number in {0, 1, . . . , ∞}, see the corner-stone review of Blizard [3].

Definition 16 (i) A multiset M in a set X is represented by a function ϕM : X →
{0, 1, . . . , ∞} such that for any x ∈ X, ϕM(x) is the multiplicity of x in M . We refer
to this function as the “representing function of the multiset”. If ϕM(x) = 0 then
the multiplicity 0 means ‘not belonging to the set’. A subset S ⊆ X is a multiset
represented by ιS , the “indicator function” of S, i.e.,

ιS(x) :=
{
1, if x ∈ S,

0, if x /∈ S.
(9)

(ii) AmultifamilyM on a setX is a multiset in the powerset 2X ofX (i.e., all the subsets
of X). Its representing function, denoted by ϕM : 2X → {0, 1, . . . , ∞}, is such that
for any S ⊆ X, ϕM(S) is the multiplicity of S inM. A family F of subsets of X is a
multifamily on X represented by ιF , the “indicator function” of F , i.e.,

ιF (f ) :=
{
1, if f ∈ F ,

0, if f /∈ F .
(10)

(iii) A multifamilyM on a set X with a representing function ϕM is called increasing if

S, S′ ⊆ X, S ⊆ S′ ⇒ ϕM(S) ≤ ϕM(S′), (11)

and called decreasing if

S, S′ ⊆ X, S ⊆ S′ ⇒ ϕM(S) ≥ ϕM(S′). (12)

Clearly, a family of subsets of X is an eventual (resp. co-eventual) family if the multi-
family that defines it is increasing (resp. decreasing). The next example shows why these
notions may be useful.

Example 17 Considering the set N, for a, finite or infinite, subset S ⊆ N write S as

S = {nS
1 , n

S
2 , . . .}, (13)
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where nS
� ∈ N for all �, and the sequence (nS

� )L�=1 (where L is either finite or ∞) is strictly
increasing, i.e., nS

1 < nS
2 < . . .. We consider the gaps between consecutive elements in S

as the sequence of differences

nS
2 − nS

1 − 1, nS
3 − nS

2 − 1, . . . , (14)

where, if S is finite add ∞ at the end. Defining

Gap(S) := lim sup
k

(nS
k+1 − nS

k − 1), (15)

makes Gap a multifamily on N, thus taking values in {0, 1, . . . , ∞}, in particular, taking the
value ∞ for (among others) any finite S.

Note that if Gap(S) is finite then there must be an infinite number of differences
(nS

k+1 − nS
k − 1) equal to Gap(S), but this is not true for any larger integer - because by the

definition of lim sup and because we are dealing with integer-valued items, a finite lim sup
must actually be attained an infinite number of times.

Observe further that the larger the set S is – the smaller (or equal) is Gap(S). Thus, Gap
is a decreasing multifamily.

Define the complement-multifamily for some multifamily G on the subsets of a set X by

Gc(S) := G(Sc), ∀S ⊆ X, (16)

where Sc is the complement of S in X.
We will focus on coGap := Gapc. For any S ⊆ N, let us denote by cS the maximal

number of integers between consecutive elements of S, namely, between nS
� ∈ S and nS

�+1 ∈
S. If S has arbitrarily big such ‘intervals’ between consecutive elements then we write cS =
∞. With this in mind, coGap = Gapc is an increasing multifamily equal to (cS)∀S⊆N.

3.1 Extensions to Multifamilies

We now extend some of the notions of Section 2.1 to multifamilies.

Definition 18 Given a multifamilyM on the subsets of a setX whose representing function
is ϕM. The “star set associated with M ”, denoted by Star(M), is the multiset M on X

whose representing function ϕM is related to ϕM in the following manner

Star(M) := M, such that ϕM(x) = ϕM({x}). (17)

Definition 19 Given a multifamily M on the subsets of X whose representing function
is ϕM and a mapping between sets f : X → Y . The multifamily G on the subsets of Y,

denoted by G =Push(f,M), with representing function ϕG, will be called the “push of
M by f ” if its representing function is related to the representing function of M in the
following manner

G =Push(f,M) such that ϕG(S) = ϕM(f −1(S)). (18)

Definition 20 A multifamily M of subsets of N whose representing function is ϕM is
called a “finitely-insensitive multifamily” if for any S ∈ M, finitely changing S, i.e.,
adding and/or deleting a finite number of its members, will not change its multiplicity, i.e.,
will result in a set S′ ∈ M such that ϕM(S) = ϕM(S′).
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Definition 21 Let X be a Hausdorff topological space and let M be an increasing mul-
tifamily whose representing function is ϕM. The “closure of an increasing multifamily
M in X”, denoted by clM, is defined to be the (increasing) multifamily such that for any
S ⊆ X it holds that

ϕclM(S) = min{ϕM(U) | all open subsets U ⊆ X such that S ⊆ U}. (19)

Definition 22 Let X be a Hausdorff topological space and let M be an increasing multi-
family whose representing function is ϕM. The multiset M := Star(clM) will be called the
“multiset-limit ofM” and denoted by limM. Its representing function is for any x ∈ X,

ϕM(x) = min{ϕM(U) | all open subsets U ⊆ X such that x ∈ U}. (20)

Given a multifamily M on the subsets of N whose representing function is ϕM, the
‘limiting notions’ with respect to M for a sequence (xn)n∈N, are defined as those with
respect to Push(f,M) of M to X by the function f : N → X which represents the
sequence (xn) . In particular, for an increasing multifamily M on the subsets of N whose
representing function is ϕM, the multiset limit of Push(f,M) will be called the “multiset-
limit of (xn)”, denoted by limM xn.

Denoting the representing function of this multiset G on X by ϕG, we can describe it as
follows. Given a point x ∈ X, consider the following subsets of N

S(U) := {n ∈ N | xn ∈ U}, for open neighborhoods U of x. (21)

Then,

ϕG(x) = min{ϕM(S(U)) | all open subsets U ⊆ X such that x ∈ U}. (22)

Remark 23 Note, that for a set S not to belong to coGap, i.e., to have coGap(S) = 0, just
means that S is finite - as a ‘family, ignoring multiplicities’ and coGap is just the family of
infinite sets of natural numbers.

Thus, when we turn to the limit of a sequence (xn)n∈N in a Hausdorff space X (a notion
which is obviously dependent on the topology. In a Banach or Hilbert space we will have
strong and weak limits etc.); and we take the coGap-limit (it will be a multiset on X, to
which for some x in X to belong (at least) n times, one must have, for every neighborhood
U of x, that the xn stay in U for some n consecutive places as far as we go); then the
coGap-limit of (xn)n∈N, ‘forgetting the multiplicities’ is just the set of accumulation points
of (xn)n∈N (which is, recalling the examples in Section 2, just its G-limit for G the eventual
family of the infinite subsets of N).

Note that, in general, if the sequence has a limit x∗ (in the good old sense) then its coGap-
limit ‘includes x∗ infinitely many times and does not include any other point’. This sort of
indicates to what extent the coGap-limit may be viewed as ‘more relaxed’ than the usual
limit.

The inverse implication does not always hold (it holds however in a compact space) as
the following counterexample shows. In R (the reals), define a sequence by

x2n := n and x2n−1 := −1 (23)

then its coGap-limit contains −1 infinitely often and does not contain others, but −1 is not
a limit.
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4 Convergence of Algorithms for Solving the Common Fixed-Point
Problem

Given a finite family of self-mapping operators {Ti}mi=1 acting on the Hilbert space H with
Fix Ti 
= ∅, i = 1, 2, . . . , m, where Fix Ti := {x ∈ H | Ti(x) = x} is the fixed points set
of Ti, the “common fixed point problem” (CFPP) is to find a point

x∗ ∈ ∩m
i=1 Fix Ti . (24)

This problem serves as a framework for handling many important aspects of solving systems
of nonlinear equations, feasibility-seeking of systems of constraint sets and optimization
problems, see, e.g., the excellent books by Berinde [2] and by Cegielski [7] and references
therein. In particular, iterative algorithms for the CFPP form an ever growing part of the
field. There are many algorithms around for solving CFPPs, see, e.g., Zaslavski’s book [17].
To be specific, we use the “Almost Cyclic Sequential Algorithm (ACSA) for the common
fixed-point problem”, which is Algorithm 5 in Censor and Segal [9], which is, in turn, a
special case of an algorithm in the paper by Combettes [11, Algorithm 6.1]. The abstract
study of limits of eventual families developed here can serve as a unifying convergence
analysis of many iterative processes. It grew out of our look at the almost cyclic sequential
algorithm and, therefore, we describe this algorithm and its relation with the present work
next.

4.1 The Almost Cyclic Sequential Algorithm (ACSA)

Let 〈x, y〉 and ‖x‖ be the Euclidean inner product and norm, respectively, in the J -
dimensional Euclidean space RJ . Given x, y ∈ RJ we denote the half-space

H(x, y) :=
{
u ∈ RJ | 〈u − y, x − y〉 ≤ 0

}
. (25)

Definition 24 An operator T : RJ → RJ is called “a cutter” if

Fix T ⊆ H(x, T (x)), for all x ∈ RJ , (26)

or, equivalently,

if z ∈ Fix T then 〈T (x) − x, T (x) − z〉 ≤ 0, for all x ∈ RJ . (27)

The class of cutters was called �-class by Bauschke and Combettes [1] who first defined
this notion and showed (see [1, Proposition 2.4]) (i) that the set of all fixed points of a cutter
T with nonempty Fix T is closed and convex because

Fix T = ∩x∈RJ H (x, T (x)) , (28)

and (ii) that the following holds

If T ∈ � then Id + λ(T − Id) ∈ �, for all λ ∈ [0, 1], (29)

where Id is the identity operator. This class of operators includes, among others, the
resolvents of a maximal monotone operators, the firmly nonexpansive operators, namely,
operators N : RJ → RJ that fulfil

‖N(x) − N(y)‖2 ≤ 〈N(x) − N(y), x − y〉 , for all x, y ∈ RJ , (30)
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the orthogonal projections and the subgradient projectors. Note that every cutter belongs to
the class of operatorsF0, defined by Crombez [12, p. 161]. The term “cutter” was proposed
in [8], see [7, pp. 53–54] for other terms that are used for these operators.

The following definition of a demiclosed operator that originated in Browder [5] (see,
e.g., [11]) will be required.

Definition 25 An operator T : RJ → RJ is said to be “demiclosed at y ∈ RJ ” if
for every x ∈ RJ and every sequence (xn)n∈N in RJ , such that, limn→∞ xn = x and
limn→∞ T (xn) = y, we have T (x) = y.

For instance, the orthogonal projection onto a closed convex set is everywhere a
demiclosed operator, due to its continuity.

Remark 26 [11] If T : RJ → RJ is nonexpansive, then T − Id is demiclosed on RJ .

In sequential algorithms for solving the common fixed point problem the order by which
the operators are chosen for the iterations is given by a “control sequence” of indices
(i(n))n∈N, see, e.g., [10, Definition 5.1.1].

Definition 27 (i) Cyclic control. A control sequence is “cyclic” if i(n) = nmodm + 1,
where m is the number of operators in the common fixed point problem.

(ii) Almost cyclic control. (i(n))n∈N is “almost cyclic on {1, 2, . . . , m} ” if 1 ≤ i(n) ≤ m

for all n ≥ 0, and there exists an integer c ≥ m (called the “almost cyclicality
constant”), such that, for all n ≥ 0, {1, 2, . . . , m} ⊆ {i(n+1), i(n+2), . . . , i(n+c)}.

Consider a finite family Ti : RJ → RJ , i = 1, 2, . . . , m, of cutters with ∩m
i=1 Fix Ti 
=

∅. The following algorithm for finding a common fixed point of such a family is a special
case of [11, Algorithm 6.1].

Algorithm 28 Almost Cyclic Sequential Algorithm (ACSA) for solving common fixed
point problems [9, Algorithm 5]

Initialization: x0 ∈ RJ is an arbitrary starting point.
Iterative Step: Given xn, compute xn+1 by

xn+1 = xn + λn(Ti(n) (xn) − xn). (31)

Control: (i(n))n∈N is almost cyclic on {1, 2, . . . , m}.
Relaxation parameters: (λn)n∈N are confined to the interval [0, 2].

The convergence theorem of Algorithm 28 is as follows.

Theorem 29 Let {Ti}mi=1 be a finite family of cutters Ti : RJ → RJ , which satisfies

(i) � := ∩m
i=1 Fix Ti is nonempty, and

(ii) Ti − Id are demiclosed at 0, for every i ∈ {1, 2, . . . , m}.
Then any sequence (xn)n∈N, generated by Algorithm 28, converges to a point in �.

Proof This follows as a special case of [11, Theorem 6.6 (i)].
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4.2 An Abstract Approach to The Convergence of the ACSA

Given a sequence (xn)n∈N in a Hausdorff topological space X, push the multiset coGap in
N to a multiset M on the subsets of X, and then consider its limit L (see Definitions 21
and 22 above) with respect to the multiset Star(clM) whose representing function value at
x ∈ X is the minimum of the value of coGap on the sets {n ∈ N | xn ∈ U} for (open)
neighborhoods U of x.

Then, by what was said in Section 2.3, Example 17 and Theorem 11, we reach the
following conclusion.

Conclusion 30 For an operator (i.e., a continuous mapping) T : X → X, if (xn)n∈N follows
T for the eventual family which is the level family, for some c,

coGapc := {S ⊂ N | coGap(S) ≥ c}, (32)

then the level set {x ∈ X | L(x) ≥ c}, where L is the limit of the multisetM on the subsets
of X, mentioned above, will consist of fixed points of T .

This is the case with respect to each of the operators of the CFPP, for any sequence
generated by the ACSA. Thus, any sequence of iterations of the ACSA follows each of the
operators of the CFPP with respect to the eventual family Ec in N consisting of all subsets
of N that, after any number N, contain some ‘interval’ of c consecutive numbers for some
fixed number c.

This means that the eventual family Ec, mentioned in Section 2.3 as relevant to the
sequence of iterations in the ACSA will be just the ‘level family’ {S ⊂ N | coGap(S) ≥ c},
and clearly any such level family of an increasing multiset is automatically an eventual
family.
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