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Abstract
We present higher order necessary conditions for a model of welfare economics, where
the preference mapping has a star-shape property. We assume that the preferences can be
satiable and can be described by an arbitrary preference set, without the use of utility
functions. These conditions are formulated in terms of higher-order directional deriva-
tives of multivalued mappings, and the variable domination structure is not given by
cones.
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1 Introduction

In economic equilibrium theory and in qualitative game theory, the behavior of economic
agents or players is often determined by gereral preference mappings which do not neces-
sarily lead to pre-order relations. As the authors of [8] state (p. 7), “All one needs to assume
is that the deciding agent in state x is able to specify those states P(x) which he prefers
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to x. The only order conditions on preferences which is needed is irreflexivity (meaning
x /∈ P(x)).”

Microeconomic theory often assumes a property of nonsatiation, which means that con-
sumers always choose to have more than less of goods. This leads to the conclusion that
there is no point of satiation. The question is: is this assumption always fulfilled? We can
imagine a situation that if we have two cars, we do not need a third one, or we do not need a
second home if we already have one. Recently, more and more works have appeared in the
literature which assume that preferences can be satiable. Mas-Collel in [17] was one of the
first who considered the compact consumption sets and satiable preferences. Although he
introduced a weaker than Walrasian equlibrium notion, his work started the discussion about
the existence of an equilibrium if we do not assume nonsatiable preferences. Werner in [20]
proved the existence of a competitive equilibrium without assuming either local or global
nonsatiation. Afterwards Allouch and Le Van in [1] and [2] provided a weaker nonsatia-
tion assumption to ensure the existence of competitive equilibria (see also [18]). Eventually
Won and Yannelis in [21] generalized all classical equilibrium results to allow for possibly
satiable preferences.

In this paper we present necessary optimality conditions for a model of welfare eco-
nomics, where the preferences of individual customers (agents) are described by arbitrary
preference sets, without the use of utility functions. We investigate minimization problems
with variable domination structure. The optimality conditions are formulated in terms of
some higher-order directional derivatives of multivalued mappings. In contrast to [5] and
[6], the variable domination structure is not given by cones, therefore, it has more possi-
ble economic applications – see the examples in Section 6 where bounded preference sets
are used. The only assumption that we make about the preference mapping is that it has a
star-shape property, which is quite natural in the context of considered economic models.

Although also the authors of [4] consider the welfare economics model with an arbi-
trary preference mapping, their necessary conditions for localized minimizers in set-valued
optimization are obtained under asymptotic closedness property of preference sets at local
minimizers. The assumption of asymptotic clodedness is rather restrictive as it excludes
bounded sets as possible preference sets. The aim of this paper is to prove the necessary
conditions for strict local minimizers of order m and to apply the obtained conditions to a
model of welfare economics, avoiding the asymptotic closedness condition.

In the literature, there are many papers dealing with second order optimality conditions
in set-valued optimization (among others, [9, 11–15]). However, these authors consider
minimization problems with respect to closed convex cones. In our paper, minimization
is understood with respect to some preference maping P , which is not necessarily cone-
valued. Moreover, the optimality conditions obtained in the papers quoted above are stated
in terms of some second-order derivatives (contingent, tangential or asymptotic), which are
different from the derivatives used here.

We propose the following structure for this paper. Section 2 prepares mathematical pre-
liminaries, Section 3 presents necessary optimality conditions of order m for a general
set-valued optimization problem, where we use the vector approach to define minimality.
In Section 4, we briefly discuss some results for the set approach. In Section 5 we apply the
results of Section 3 to welfare economics. Finally, Section 6 contains two concrete exam-
ples of optimization problems in welfare economics where bounded preference sets appear
in a natural way.
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2 Preliminaries

We start with some definitions from set-valued analysis. Let X and Y be normed spaces.
We will use the notation F : X ⇒ Y for a set-valued mapping, i.e., F : X → 2Y .

For any two subsets A and B of Y , the symbol A + B will detote the algebraic sum of A

and B:

A + B := {a + b : a ∈ A, b ∈ B}.
In a similar way, we define the algebraic difference A − B. For any y ∈ Y , we will simply
write y + A instead of {y} + A; the same for y − A.

Definition 1 The graph of a set-valued mapping F : X ⇒ Y is defined by

graphF := {(x, y) ∈ X × Y : y ∈ F(x)}.

Definition 2 A set-valued mapping P : Y ⇒ Y is called a preference mapping if y /∈ P(y)

for all y ∈ Y .

Definition 3 A preference mapping P : Y ⇒ Y is called star-shaped at y if ]y, z[ ⊂ P(y)

for all z ∈ P(y), where ]y, z[ is the open line segment joining y and z.

Remark 1 The condition that P is star-shaped at y means that, for each λ ∈]0, 1[, we have

λP (y) + (1 − λ)y ⊂ P(y),

which is equivalent to

λ(P (y) − y) ⊂ P(y) − y. (1)

Definition 4 (a) The contingent cone to a set M ⊆ X at x̄ ∈ clS is defined as follows (see
[15, p. 113]):

K(M, x̄) := {v ∈ X : ∃hn → 0+, ∃vn → v s.t. x̄ + hnvn ∈ M,∀n}. (2)

(b) We also define the radial tangent cone (see [15, p. 110]):

K̃(M, x̄) := {v ∈ X : ∃hn → 0+ s.t. x̄ + hnv ∈ M, ∀n}. (3)

We will denote by N (x̄) the set of all neighborhoods of a point x̄ ∈ X, and BY (y, δ) will
be the open ball in Y with center y and radius δ > 0.

Let X and Y be two normed spaces, and let F : X ⇒ Y be a set-valued mapping. We
consider a nonempty set S ⊆ X and the following optimization problem:

Minimize F(x) subject to x ∈ S, (4)

where the minimization is understood with respect to a given preference mapping P .

Definition 5 Let x̄ ∈ S, and let m be a positive integer. We say that a pair (x̄, ȳ) ∈ graphF

is a strict local minimizer of order m for F over S with respect to preference mapping
P : Y ⇒ Y if the following two conditions hold:

(i) F(x̄) ∩ P(ȳ) = ∅;
(ii) there exist α > 0 and U ∈ N (x̄) such that, for each x ∈ S ∩ U\{x̄}, we have

(F (x) + ȳ − P(ȳ)) ∩ BY (ȳ, α‖x − x̄‖m) = ∅. (5)
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Example 1 Let X = Y = R,

F(x) :=
{ {1} for x = 0,

[3, 4] for x > 0,

S = [0, +∞[, P(ȳ) =]ȳ, ȳ+1]. Then (x̄, ȳ) = (0, 1) is a strict local minimizer of arbitrary
order m ≥ 1 for F over S with respect to preference mapping P .

Remark 2 Flores-Bazán and Jiménez in [7, Def. 3.2] have defined a φ-strict local minimizer
for Fover S. In their definition, the minimization is performed with respect to a proper
convex cone D. Let us note that our condition (5) becomes condition (3.2) in [7] if we take
D := ȳ − P(ȳ) (which is not necessarily a cone) and φ(t) := tm. Concerning condition (i),
we have

F(x̄) ∩ P(ȳ) = ∅ ⇔ F(x̄) ∩ (ȳ − D) = ∅ ⇔ (F (x̄) − ȳ) ∩ (−D) = ∅
⇔ (F (x̄) − ȳ) ∩ (−D\{0}) = ∅,

where the last equivalence follows from the condition y /∈ P(y). This means that (i) is
equivalent to ȳ ∈ StrDF(x̄) (see [7, Def. 2.1(b)]).

Definition 6 (a) Let us introduce the following notation (see [16]) for the m-th order lower
generalized directional derivative of F at (x̄, ȳ) ∈ graphF :

dmF(x̄, ȳ)(u) := {v ∈ Y : ∀hn → 0+, ∀un → u, ∃vn → v

such that ȳ + hm
n vn ∈ F(x̄ + hnun) for all n}. (6)

(b) We also define

DmF(x̄, ȳ)(u) := {v ∈ Y : ∀hn → 0+, ∃vn → v

such that ȳ + hm
n vn ∈ F(x̄ + hnu) for all n}. (7)

For m = 1, we will write dF and DF instead of d1F and D1F , respectively.
The rest of this section contains a comparison of our Definition 5 with some notions

introduced in [4].

Definition 7 [4, Def. 3.1] Let (x̄, ȳ) ∈ graphF with x̄ ∈ S be given and let P : Y ⇒ Y be
a given preference mapping. Then we say that:

(a) (x̄, ȳ) is a fully localized weak minimizer for problem (4) if there exist U ∈ N (x̄)

and V ∈ N (ȳ) such that

F(S ∩ U) ∩ P(ȳ) ∩ V = ∅ with F(S ∩ U) :=
⋃

{F(x) : x ∈ S ∩ U}. (8)

(b) (x̄, ȳ) is a fully localized strong minimizer for problem (4) if there exist U ∈ N (x̄)

and V ∈ N (ȳ) such that

graphF ∩ (S × clP(ȳ)) ∩ (U × V ) = {(x̄, ȳ)}. (9)

Example 2 Let X = Y = R,

F(x) =
⎧⎨
⎩

{0} for x < 0,

{0, 1} for x = 0,

{x2 + 1} for x > 0,
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S = [0, +∞[, P(y) =]−∞, y[, U =]−0.5, 0.5[ and V =]0.5, 1.5[. Then (x̄, ȳ) = (0, 1) is
a fully localized strong minimizer for problem (4). Consequently, it is also a fully localized
weak minimizer for this problem (see [15, Remark 2.6.50]).

Example 3 (see [15, Example 2.6.53]) Let X = R, Y = R
2,

F(x) ≡ R
2\intR2− = {(y1, y2) : (y1 ≥ 0) ∨ (y2 ≥ 0)},

S = R, P(y) = y − intR2+, U =] − ε, ε[ and V =] − ε, ε[×] − ε, ε[, where ε > 0 is
arbitrary. Then (x̄, ȳ) = (0, (0, 0)) is a fully localized weak minimizer for problem (4) but
it is not a fully localized strong minimizer for this problem.

Proposition 1 Let (x̄, ȳ) ∈ graphF with x̄ ∈ S and a preference mapping P all be given
as well as m ≥ 1 arbitrary but fixed.

(a) If (x̄, ȳ) is a strict local minimizer of order m for F over S with respect to P , then
(x̄, ȳ) is a fully localized weak minimizer for F over S.

(b) If (x̄, ȳ) is a strict local minimizer of order m for F over S with respect to P , and the
condition

clP(ȳ) = P(ȳ) ∪ {ȳ} (10)

holds, then (x̄, ȳ) ∈ graphF is a fully localized strong minimizer for F over S.

Proof (a) Let U and α be selected according to condition (ii) of Definition 5. Suppose that
(x̄, ȳ) is not a fully localized weak minimizer for F over S. Then there exist sequences
{xn} ⊂ S and {yn} ⊂ Y such that xn → x̄, yn → ȳ and

yn ∈ F(xn) ∩ P(ȳ) for all n. (11)

We now consider the following two cases:
Case 1. There exists an infinite subsequence {xnk

} of {xn} such that xnk
�= x̄ for all k.

Case 2. We have xn = x̄ for sufficiently large n.
In case 1, we have

ȳ = ynk
+ ȳ − ynk

∈ (F (xnk
) + ȳ − P(ȳ)) ∩ BY (ȳ, α‖xnk

− x̄‖m) for all k, (12)

where we have used that ynk
∈ F(xnk

), −ynk
∈ −P(ȳ) as a result of (11) and ȳ ∈

BY (ȳ, α‖xnk
− x̄‖m). Condition (12) contradicts (5) because xnk

∈ S ∩ U\{x̄} for suffi-
ciently large k. In case 2, condition (11) implies yn ∈ F(x̄) ∩ P(ȳ) for sufficiently large
n, which contradicts condition (i) of Definition 5. The contradiction reached in both cases
completes the proof of part (a).

(b) Select U and α as in part (a). Suppose that (x̄, ȳ) is not a fully localized strong
minimizer for F over S. Then, for each n ∈ N, there exist sequences {xn} ⊂ S and {yn} ⊂ Y

such that xn → x̄, yn → ȳ,

(xn, yn) �= (x̄, ȳ) for all n, (13)

and
yn ∈ F(xn) ∩ clP(ȳ) for all n. (14)

We now consider the cases 1 and 2 as in part (a). In case 1, for each k ∈ N, since ynk
∈

clP(ȳ) and xnk
�= x̄, we can find pnk

∈ P(ȳ) such that

‖ynk
− pnk

‖ < α‖xnk
− x̄‖m.

Therefore,

ȳ + ynk
− pnk

∈ (F (xnk
) + ȳ − P(ȳ)) ∩ BY (ȳ, α‖xnk

− x̄‖m),
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which contradicts (5) because xnk
∈ S ∩ U\{x̄} for sufficiently large k. Suppose now that

case 2 holds. Due to (13), we have yn �= ȳ for sufficiently large n. Hence, using (10) and
(14), we deduce yn ∈ clP(ȳ)\{ȳ} = P(ȳ) (note that ȳ /∈ P(ȳ) since P is a preference
mapping). We have thus verified that yn ∈ F(x̄) ∩ P(ȳ) for sufficiently large n, which
contradicts condition (i) of Definition 5. This completes the proof of part (b).

3 Necessary Optimality Conditions Based on the Vector Approach

Let F : X ⇒ Y and G : X ⇒ Z be two set-valued mappings. The following set-valued opti-
mization problem is similar to problem (SOP) formulated in [16, p. 286]. In our formulation,
the ordering cone K ⊂ Y is replaced by a preference mapping P : Y ⇒ Y :{

Minimize F(x) subject to
x ∈ S := {u ∈ X : u ∈ M,G(u) ∩ (−Q) �= ∅}, (15)

where M is a nonempty subset of X, Q is a closed convex cone in Z with nonempty interior,
and the minimization is understood with respect to P . The following theorem is an analogue
of [16, Theorem 3.2] for this situation. A related result was obtained in [19] for a simple
set-valued optimization problem without functional constraints.

Theorem 1 We consider problem (15). Let x̄ ∈ S, (x̄, ȳ) ∈ graphF and z̄ ∈ G(x̄) ∩ (−Q)

be given. Suppose that the preference mapping P : Y ⇒ Y is star-shaped at ȳ. Let (x̄, ȳ)

be a strict local minimizer of order m for F over S with respect to P , and let α > 0 and
U ∈ N (x̄) be such that, for each x ∈ S ∩ U\{x̄}, condition (5) holds. Then the following
condition:

dmF(x̄, ȳ)(u) ∩ (BY (0, β‖u‖m) + P(ȳ) − ȳ) = ∅ (16)
holds for β := α/2m > 0 and for all

u ∈ K(M, x̄) ∩ {v : dG(x̄, z̄)(v) ⊂ −intQ}\{0}, (17)

where K(M, x̄) is defined by formula (2).

Proof Condition (5) is equivalent to

w − y /∈ BY (0, α‖x − x̄‖m), for all x ∈ S ∩ U\{x̄}, w ∈ F(x) and y ∈ P(ȳ). (18)

Suppose that (16) does not hold, then there exists

ū ∈ K(M, x̄) ∩ {v : dG(x̄, z̄)(v) ⊂ −intQ}\{0} (19)

such that
dmF(x̄, ȳ)(ū) ∩ (BY (0, β‖ū‖m) + P(ȳ) − ȳ) �= ∅. (20)

Since ū ∈ K(M, x̄), there exist sequences {hn} ⊂]0, ∞[ and {un} ⊂ X with hn → 0 and
un → ū such that

xn := x̄ + hnun ∈ M . (21)
Moreover, take any z ∈ dG(x̄, z̄)(ū), then, for the preceding sequences {hn} and {un}, there
exists a sequence {zn} ⊂ Z with zn → z such that

z̄ + hnzn ∈ G(xn). (22)

By the conditions dG(x̄, z̄)(ū) ⊂ −intQ and z ∈ dG(x̄, z̄)(ū), we have z ∈ −intQ. Hence,
zn ∈ −Q for sufficiently large n. Then, by the assumption z̄ ∈ −Q and the fact that Q is a
convex cone, we obtain

z̄ + hnzn ∈ −Q. (23)
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Conditions (22) and (23) imply

G(xn) ∩ (−Q) �= ∅. (24)

By (19), we have ū �= 0, therefore, xn �= x̄ for sufficiently large n. This condition, together
with (21) and (24), gives for sufficiently large n,

xn ∈ S ∩ U\{x̄}. (25)

On the other hand, it follows from (20) that there exists v̄ ∈ dmF(x̄, ȳ)(ū) such that

v̄ ∈ BY (0, β‖ū‖m) + P(ȳ) − ȳ. (26)

Since v̄ ∈ dmF(x̄, ȳ)(ū), for the preceding sequences {hn} and {un}, there exists a sequence
{vn} ⊂ Y with vn → v̄ such that

ȳ + hm
n vn ∈ F(xn). (27)

Since the set BY (0, β‖ū‖m) + P(ȳ) − ȳ is open, it follows from (26) that

vn ∈ BY (0, β‖ū‖m) + P(ȳ) − ȳ

for sufficiently large n. There exist wn ∈ BY (0, β‖ū‖m) and dn ∈ P(ȳ) − ȳ such that
vn = wn + dn. We may assume that hm

n ∈]0, 1[, which gives, in view of (1), recalling that
P is star-shaped, hm

n dn ∈ P(ȳ) − ȳ, or equivalently,

ȳ + hm
n dn ∈ P(ȳ). (28)

We also have
hm

n wn ∈ hm
n BY (0, β‖ū‖m) = BY (0, β‖hnū‖m). (29)

From the convergence un → ū �= 0, we obtain that

‖ū‖ − ‖un‖ ≤ ‖ū − un‖ ≤ ‖un‖
for sufficiently large n. Hence, ‖ū‖ ≤ 2‖un‖, which leads to

β‖ū‖m = α

2m
‖ū‖m ≤ α‖un‖m. (30)

By (30), we have the following inclusion:

BY (0, β‖hnū‖m) ⊆ BY (0, α‖hnun‖m) = BY (0, α‖xn − x̄‖m). (31)

Using (27), (28), (29) and (31), we obtain

hm
n wn = (ȳ + hm

n vn) − (ȳ + hm
n dn) ∈ (F (xn) − P(ȳ)) ∩ B(0, α‖xn − x̄‖m), (32)

which contradicts (18) in view of (25). The proof is complete.

Remark 3 The authors of [6] have obtained some necessary optimality conditions for
set-valued optimization problems with variable ordering structure. They are first-order con-
ditions only and are formulated mainly in terms of Bouligand derivatives of multifunctions
Note that the Bouligand derivative DBF(x̄, ȳ) defined in [6, Definition 2.9] is the same
as dF(x̄, ȳ) in our notation. However, the optimality conditions obtained there have a
different structure than the ones in Theorem 1. For example, [6, Theorem. 3.3] involves
both the derivative of F (the multifunction being minimized) and the derivative of K (the
cone-valued multifunction defining the variable ordering).

Remark 4 In [16, Theorem 3.2] it is assumed that Q is a nontrivial pointed cone. However,
the proof of Theorem 1 is valid without this assumption. In particular, we can take Q = Z

to obtain the following corollary.
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Corollary 1 Suppose that the assumptions of Theorem 1 are satisfied where problem (15)
is replaced by the following one:

Minimize F(x) subject to x ∈ M (33)

(i.e., the constraint G(x) ∩ (−Q) �= ∅ does not exist). If (x̄, ȳ) is a strict local minimizer of
order m for F over M with respect to P , then condition (16) holds for β := α/2m > 0 and
for all u ∈ K(M, x̄)\{0}.
Proof This follows from Theorem 1 where G is arbitrary and Q = Z.

The following theorem is an analogue of [16, Thm. 3.4].

Theorem 2 We consider problem (15). Assume that x̄ ∈ S, (x̄, ȳ) ∈ graphF and z̄ ∈
G(x̄) ∩ (−Q). Suppose that the preference mapping P : Y ⇒ Y is star-shaped at ȳ. Let
(x̄, ȳ) be a strict local minimizer of order m for F over S with respect to P , and let α > 0
and U ∈ N (x̄) be such that, for each x ∈ S ∩ U\{x̄}, condition (5) holds. Then

DmF(x̄, ȳ)(u) ∩ (BY (0, β||u||m) + P(ȳ) − ȳ) = ∅, (34)

for β := α > 0 and for any

u ∈ K̃(M, x̄) ∩ {v : DG(x̄, z̄)(v) ⊂ −int Q}\{0}.
Proof Arguing as in the proof of Theorem 1, we obtain (18). Assume that the conclusion of
Theorem 2 is false, then there exists

ū ∈ K̃(M, x̄) ∩ {v : DG(x̄, z̄)(v) ⊂ −int Q}\{0} (35)

such that
DmF(x̄, ȳ)(ū) ∩ (BY (0, β||ū||m) + P(ȳ) − ȳ) �= ∅. (36)

Since ū ∈ K̃(M, x̄), there exists a sequence {hn} ⊂]0, ∞[ with hn → 0 such that

x̃n := x̄ + hnū ∈ M . (37)

Moreover, taking any z ∈ DG(x̄, z̄)(ū), we obtain from the definition of DG(x̄, z̄)(ū) that
for preceding sequence {hn}, there exists a sequence {zn} ⊂ Z with zn → z such that

z̄ + hnzn ∈ G(x̃n). (38)

By the conditions DG(x̄, z̄)(ū) ⊂ −intQ and z ∈ DG(x̄, z̄)(ū), we have z ∈ −intQ. Then
zn ∈ −Q for sufficiently large n. Similarly as in the proof of Theorem 1, we obtain

G(x̃n) ∩ (−Q) �= ∅. (39)

By (35), we have ū �= 0, therefore, x̃n �= x̄ for sufficiently large n. This condition, together
with (37) and (39), gives

x̃n ∈ S ∩ U\{x̄} (40)
for sufficiently large n.

On the other hand, it follows from (36) that there exists v̄ ∈ DmF(x̄, ȳ)(ū) such that (26)
holds. Since v̄ ∈ DmF(x̄, ȳ)(ū), for the preceding sequence {hn}, there exists a sequence
{vn} ⊂ Y with vn → v̄ such that

ȳ + hm
n vn ∈ F(x̃n). (41)

It follows from (26) by the same argument as in the proof of Theorem 1 that there exist
wn ∈ BY (0, β‖ū‖m) and dn ∈ P(ȳ) − ȳ such that vn = wn + dn, condition (28) holds, and

hm
n wn ∈ BY (0, β‖hnū‖m) = BY (0, α‖x̃n − x̄‖m). (42)
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Now, using (41), (28) and (42), we obtain

hm
n wn = (ȳ + hm

n vn) − (ȳ + hm
n dn) ∈ (F (x̃n) − P(ȳ)) ∩ B(0, α‖x̃n − x̄‖m).

This contradicts (18) in view of (40).

Definition 8 Let A be a convex subset of Y , and let ȳ ∈ A be given. We define the (convex)
normal cone to A at ȳ as follows:

N(A, ȳ) := {y∗ ∈ Y ∗ : ∀y ∈ A, 〈y∗, y − ȳ〉 ≤ 0}. (43)

Theorem 3 We consider problem (15). Let x̄ ∈ S, (x̄, ȳ) ∈ graphF and z̄ ∈ G(x̄) ∩ (−Q)

all be given. Suppose that the set P(ȳ) ∪ {ȳ} is convex and intP(ȳ) �= ∅. Define
D := K(M, x̄) ∩ {v : dG(x̄, z̄)(v) ⊂ −intQ}\{0} (44)

and suppose that the set

C :=
⋃
u∈D

dmF(x̄, ȳ)(u) (45)

is convex and satisfies the condition

λC ⊆ C for all λ > 0. (46)

If (x̄, ȳ) is a strict local minimizer of order m for F over S with respect to P , then there
exists y∗ ∈ Y ∗\{0} such that〈

y∗, y
〉 ≥ 0, ∀y ∈ dmF(x̄, ȳ)(u), u ∈ D, (47)〈

y∗, y
〉 ≤ 0, ∀y ∈ (P (ȳ) ∪ {ȳ}) − ȳ, (48)〈

y∗, y
〉

< 0, ∀y ∈ int(P (ȳ) − ȳ) = int(P (ȳ) ∪ {ȳ}) − ȳ. (49)

Condition (48) implies, in particular, that

y∗ ∈ N((P (ȳ) ∪ {ȳ}) − ȳ, 0) = N(P (ȳ) ∪ {ȳ}, ȳ). (50)

Proof The convexity of P(ȳ) ∪ {ȳ} implies that the mapping P is star-shaped at ȳ. Hence,
the assumptions of Theorem 1 are satisfied, and we get that condition (16) holds for all
u ∈ D. Therefore

C ∩ int(P (ȳ) − ȳ) = ∅. (51)

It follows from (51) and the Eidelheit separation theorem (see [10, Thm. 3.16]) that there
exist y∗ ∈ Y ∗\{0} and γ ∈ R such that

〈y∗, y〉 ≤ γ ≤ 〈y∗, c〉, ∀y ∈ (P (ȳ) ∪ {ȳ}) − ȳ, c ∈ C, (52)

〈y∗, y〉 < γ, ∀y ∈ int((P (ȳ) ∪ {ȳ}) − ȳ). (53)

Conditions (46) and (52) imply that we can replace γ by 0 in (52)–(53), which gives the
desired conclusion.

Corollary 2 We consider problem (33). Then Theorem 3 holds with D replaced by
K(M, x̄)\{0}.

4 Necessary Optimality Conditions Based on the Set Approach

In this section, we present necessary optimality conditions for set-valued optimization
problems, using the set approach as described in [15, Section 2.6.2].
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Definition 9 We say that a preference mapping P : Y ⇒ Y is translation invariant if there
exists a subset K of Y such that

P(y) = y − K for all y ∈ Y . (54)

The following definition is a generalization of [15, Def. 2.6.13].

Definition 10 Let a preference mapping P be defined by (54). For arbitrary nonempty sets
A, B ∈ 2Y , the possibly less domination relation �p

K is defined by

A�p
KB :⇔ (∃a ∈ A, ∃b ∈ B, b − a ∈ K) ⇔ (∃a ∈ A, ∃b ∈ B, a ∈ P(b)). (55)

Definition 11 Let X and Y be two normed spaces, and let F : X ⇒ Y be a set-valued
mapping. We consider a nonempty set S ⊂ X. We say that a point x̄ ∈ S is a set-based strict
local minimizer of order m for F over S with respect to preference mapping P : Y ⇒ Y if
there exist α > 0 and U ∈ N (x̄) such that there is no x ∈ S ∩ U\{x̄} satisfying

F(x)�p
KBY (F (x̄), α‖x − x̄‖m), (56)

where
BY (A, r) :=

⋃
a∈A

BY (a, r). (57)

Theorem 4 Let a preference mapping P : Y ⇒ Y be translation invariant. Suppose that
there exists ȳ ∈ F(x̄) such that F(x̄) ∩ P(ȳ) = ∅. Let m be a positive integer. If x̄ ∈ S is
a set-based strict local minimizer of order m for F over S with respect to P , then the pair
(x̄, ȳ) is a strict local minimizer of order m for F over S with respect to P .

Proof Since P is translation invariant, there exists a set K ⊂ Y such that (54) holds. By
assumption, we have

∃U ∈ N (x̄), ∀x ∈ S ∩ U\{x̄}, F (x)�
p
KBY (F (x̄), α‖x − x̄‖m),

which is equivalent to

∃U ∈ N (x̄), ∀x ∈ S ∩U\{x̄}, ∀y ∈ F(x),∀ŷ ∈ F(x̄), y /∈ BY (ŷ, α‖x − x̄‖m)−K . (58)

Taking ŷ := ȳ in (58), we get

∃U ∈ N (x̄), ∀x ∈ S ∩ U\{x̄}, ∀y ∈ F(x), y /∈ BY (ȳ, α‖x − x̄‖m) − K,

or equivalently,

∃U ∈ N (x̄), ∀x ∈ S ∩ U\{x̄}, (F (x) + K) ∩ BY (ȳ, α‖x − x̄‖m) = ∅.

However, it follows form (54) that K = ȳ − P(ȳ). Therefore, condition (ii) of Definition 5
holds. By the choice of ȳ, condition (i) is also satisfied, which completes the proof.

Theorem 5 We consider problem (15). Let x̄ ∈ S and z̄ ∈ G(x̄)∩(−Q). Suppose that there
exists ȳ ∈ F(x̄) such that F(x̄) ∩ P(ȳ) = ∅. Let the preference mapping P : Y ⇒ Y be
translation invariant and star-shaped at ȳ. If x̄ is a set-based strict local minimizer of order
m for F over S with respect to P , then there exists β > 0 such that

dmF(x̄, ȳ)(u) ∩ (BY (0, β‖u‖m) + P(ȳ) − ȳ) = ∅,

for all
u ∈ K(M, x̄) ∩ {v : dG(x̄, z̄)(v) ⊂ −intQ}\{0}.
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Proof This theorem follows immediately from Theorems 1 and 4.

Remark 5 A similar result can be obtained by combining Theorems 2 and 4. We omit its
formulation as it is rather obvious.

5 Applications toWelfare Economics

Consider a normed commodity space E and preference mappings Pi : Z ⇒ E of n cus-
tomers (i = 1, ..., n), where Z := En . Following [4, pp. 115–116], we define a set-valued
mapping F : Em+1 ⇒ Z by

F(y,w) :=
{
z ∈ Z : w =

n∑
i=1

zi −
m∑

j=1

yj

}
(59)

and a constraint set Ω ⊂ Em+1 by

Ω :=
⎛
⎝ m∏

j=1

Sj

⎞
⎠ × W . (60)

We assume that the production sets S1, . . . , Sm and the set W are convex.

Remark 6 In this section, the letter m has a different meaning than in Sections 2–4. It is not
related to the order of differentiation. Instead, it is used to denote the number of firms, as
in [4, p. 114]. We hope this will not lead to a confusion as we use only derivatives of order
one here.

We consider the following multiobjective optimization problem:

Minimize F(y,w) subject to (y,w) ∈ Ω, (61)

where minimization is understood with respect to a preference mapping L : Z ⇒ Z of the
form

L(z) :=
n∏

i=1

Pi(z). (62)

Observe that problem (61) can be reduced to problem (15) in which P = L, M = Ω and
G does not exist. In order to apply the theory of Section 3 for order one, we will compute
dF((ȳ, w̄), z̄)(y,w).

Proposition 2 Let ((ȳ, w̄), z̄) ∈ graphF and (y,w) ∈ En+1. Then

dF((ȳ, w̄), z̄)(y,w) = F(y,w). (63)

Proof By the definition of dF (see formula (6) for m = 1), we have

dF((ȳ, w̄), z̄)(y,w) = {v ∈ En : ∀tk → 0+,∀(yk, wk) → (y, w), ∃vk → v, ∀k,

z̄ + tkvk ∈ F(ȳ + tkyk, w̄ + tkwk)}. (64)

“⊆”: Assume that v ∈ dF((ȳ, w̄), z̄)(y,w). It follows from (59) and (64) that, for all k,

w̄ + tkwk =
n∑

i=1

(z̄ + tkvk)i −
m∑

j=1

(ȳ + tkyk)j . (65)
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Since ((ȳ, w̄), z̄) ∈ graphF , we have

w̄ =
n∑

i=1

z̄i −
m∑

j=1

ȳj , (66)

hence (65) can be simplified to

wk =
n∑

i=1

(vk)i −
m∑

j=1

(yk)j . (67)

Passing to the limit as k → ∞ in (67), we get

w =
n∑

i=1

vi −
m∑

j=1

yj , (68)

which means that v ∈ F(y,w).
“⊇”: Suppose that v ∈ F(y,w), then (68) holds. Take any sequences tk → 0+ and

(yk, wk) → (y,w). Define the sequence {vk} by

(vk)i := vi for i = 1, ..., n − 1, (69)

(vk)n := wk −
n−1∑
i=1

vi +
m∑

j=1

(yk)j . (70)

We can now verify that vk → v. Indeed, this convergence is trivial for the first n − 1
components, and for the last one we get

(vk)n → w −
n−1∑
i=1

vi +
m∑

j=1

yj = vn,

where the last equality follows from (68). Moreover, observe that conditions (69)–(70)
imply (67). Combining (66) and (67), we get (65) (for all k), which gives that v ∈
dF((ȳ, w̄), z̄)(y,w).

We want to apply Corollary 2 to problem (61). Observe that, by (60) and the convexity
of the sets S1, . . . , Sm,W , we have that

K(Ω, (ȳ, w̄)) =
⎛
⎝ m∏

j=1

K(Sj , ȳj )

⎞
⎠ × K(W, w̄) (71)

(see [3], Chapter 4, formula (46)).
Further, we need to ensure that the set C defined by (45) (with D replaced by

K(Ω, (ȳ, w̄))\{(0, 0)}) is convex and satisfies (46). This is verified in the following
proposition using the notations of the present problem (61).

Proposition 3 Suppose that the cones K(S1, ȳ1), ...,K(Sm, ȳm),K(W, w̄) are nontrivial
and pointed. Then the set

C̃ :=
⋃

(y,w)∈K(Ω,(ȳ,w̄))\{(0,0)}
dF((ȳ, w̄), z̄)(y,w) =

⋃
(y,w)∈K(Ω,(ȳ,w̄))\{(0,0)}

F(y,w) (72)

is convex and satisfies the condition

λC̃ ⊆ C̃ for all λ > 0. (73)
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Proof By an argument similar to [10, Lemma 1.11], it is sufficient to prove the following
two conditions: (73) and

C̃ + C̃ ⊆ C̃. (74)

To prove (74), let us take any z1, z2 ∈ C̃. Then, for l = 1, 2, there exist

(yl, wl) ∈ K(Ω, (ȳ, w̄))\{(0, 0)} (75)

satisfying

wl =
n∑

i=1

zl
i −

m∑
j=1

yl
j . (76)

Defining w̃ := w1 + w2, z̃ := z1 + z2, ỹ := y1 + y2 and adding together the two equalities
(76), we get

w̃ =
n∑

i=1

z̃i −
m∑

j=1

ỹj . (77)

Conditions (71) and (75) imply that

yl
j ∈ K(Sj , ȳj ), wl ∈ K(W, w̄), j = 1, ...,m, l = 1, 2, (78)

and,
for each l ∈ {1, 2}, at least one of the elements yl

1, ..., yl
m,wl is nonzero. (79)

Since the cones in (78) are convex, we deduce that

ỹj ∈ K(Sj , ȳj ), w̃ ∈ K(W, w̄), j = 1, ...,m. (80)

This, in view of (71), means that (ỹ, w̃) ∈ K(Ω, (ȳ, w̄)). Moreover, z̃ ∈ F(ỹ, w̃) by (77).
To complete the proof of (74), we need to verify that (ỹ, w̃) �= (0, 0), that is,

at least one of the elements ỹ1, ..., ỹm, w̃ is nonzero. (81)

Taking into account (79), we consider two cases:
(a) There exist nonzero elements in the sequences

{y1
1 , ..., y1

m,w1} and {y2
1 , ..., y2

m,w2} (82)

appearing on the same positions.
(b) Condition (a) does not hold.
Case (a). We have, for example, y1

k �= 0 �= y2
k for some k ∈ {1, ...,m}. Then ỹk =

y1
k +y2

k �= 0 because the cone K(Sk, ȳk) is pointed (otherwise, we would have y1
k = −y2

k ∈
K(Sk, ȳk) ∩ (−K(Sk, ȳk)) = {0}, a contradiction). Therefore, condition (81) is satisfied.

Case (b). There exists a nonzero element in one of the sequences (82) with zero on the
same position in the other sequence. For example, let y1

k �= 0 = y2
k . Then ỹk = y1

k + y2
k =

y1
k �= 0 and condition (81) is also true.

The proof of (73) follows easily from (72) and the fact that K(Sj , ȳj ) (j = 1, . . . , m)
and K(W, w̄) are cones.

We shall now prove necessary optimality conditions for problem (61).

Theorem 6 Let (ȳ, w̄) ∈ Ω and ((ȳ, w̄), z̄) ∈ graphF . Suppose that the sets Pi(z̄) ∪ {z̄i}
are convex and intPi(z̄) �= ∅, i = 1, ..., n, the sets S1, . . . , Sm,W are convex and the cones
K(S1, ȳ1), ...,K(Sm, ȳm),K(W, w̄) are nontrivial and pointed. We consider problem (61).
If ((ȳ, w̄), z̄) is a strict local minimizer of order 1 for F over Ω with respect to L, then there
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exists z∗ ∈ Z∗\{0}, z∗ = (z∗
1, ..., z∗

n), where z∗
i ∈ E∗, i = 1, ..., n, such that the following

three conditions are satisfied:
(i) The inequality

〈z∗, z〉 =
n∑

i=1

〈z∗
i , zi〉 ≥ 0 (83)

holds for all z = (z1, ..., zn) ∈ F(y,w) where

(y,w) = ((y1, ..., ym),w) ∈
⎛
⎝ m∏

j=1

K(Sj , ȳj )

⎞
⎠ × K(W, w̄) and (y,w) �= (0, 0). (84)

(ii) z∗
i ∈ N(Pi(z̄) ∪ {z̄i}, z̄i ), i = 1, ..., n.

(iii) There exists i0 ∈ {1, ..., n} such that
〈z∗

i0
, zi0〉 < 0 for all zi0 ∈ int(Pi0(z̄) − z̄i0). (85)

Proof First, we will show that the assumptions of Theorem 3 are satisfied for the particular
case described in Corollary 2. We consider problem (33) where F : Em+1 ⇒ Z is defined
by (59) and M = Ω is defined by (60). Let (ȳ, w̄) ∈ Ω and ((ȳ, w̄), z̄) ∈ graphF . We have

L(z̄) ∪ {z̄} =
n∏

i=1

(Pi(z̄) ∪ {z̄i}). (86)

Since the sets Pi(z̄) ∪ {z̄i} are convex, the set L(z̄) ∪ {z̄} is also convex. Moreover, we have
by (62) and the well-known property of topological interior,

intL(z̄) = int

(
n∏

i=1

Pi(z)

)
=

n∏
i=1

intPi(z).

Since the sets intPi(z) are nonempty, the set intL(z̄) is also nonempty. The set (45) has
now the form (72), so it is convex by Proposition 3. Therefore, the conclusion of Theorem
3 holds where D should be replaced by K(Ω, (ȳ, w̄))\{(0, 0)}. This gives the following
condition: there exists z∗ ∈ Z∗\{0}, z∗ = (z∗

1, ..., z∗
n), z∗

i ∈ E∗, such that

〈z∗, z〉 ≥ 0, ∀z ∈ F(y,w), (y,w) ∈ K(Ω, (ȳ, w̄))\{(0, 0)}, (87)

〈z∗, z〉 ≤ 0, ∀z ∈ (L(z̄) ∪ {z̄}) − z̄, (88)

〈z∗, z〉 < 0, ∀z ∈ int(L(z̄) − z̄). (89)

The implication (87) ⇒ (i) holds by (71). From (86) and (88), we obtain

z∗ ∈ N(L(z̄) ∪ {z̄}, z̄) =
n∏

i=1

N(Pi(z̄) ∪ {z̄i}, z̄i ),

where the equality follows from the well-known product formula for normal cones (see e.g.
[4, eq. (2.6)]). Hence, z∗

i ∈ N(Pi(z̄) ∪ z̄i , z̄i ) for i = 1, ..., n. Finally, we will verify (iii).
Suppose there is no i0 ∈ {1, ..., n} satisfying (85). Then, for all i ∈ {1, ..., n}, there exists
zi ∈ int(Pi(z̄) − z̄i ) such that 〈z∗

i , zi〉 ≥ 0. Consequently, we have

〈z∗, z〉 =
n∑

i=1

〈z∗
i , zi〉 ≥ 0 and z ∈ int(L(z̄) − z̄),

which contradicts (89).
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6 Examples

In this section, we present two concrete examples of problem (61). We show that Theorem
6 can be applied to both examples but not at all points (ȳ, z̄) ∈ graphF .

Example 4 There are m companies on the global pharmaceutical market which produce
COVID -19 vaccines. Every company has limited production capabilities: the production
volume of company j for a given year belongs to some bounded set Sj (j = 1, ...,m). The
governments of n countries are applying for the purchase of these vaccines. Each country
i would like to vaccinate as many people as possible but not more than the size di of adult
population of this country. We assume that various vaccines can be used interchangeably
in every age group. It can be assumed that every set Sj is a closed interval of the form
Sj = [0, pj ], where pj is the maximum volume of production of company j in a considered
period of time. Suppose also that there is no initial supply of vaccines: W = {0}. Then
formula (59) can be simplified to the form:

F(y) :=
⎧⎨
⎩z ∈ Z :

n∑
i=1

zi −
m∑

j=1

yj = 0

⎫⎬
⎭ , (90)

where F : R
m ⇒ Z. The set Z = R

n is the set of consumption plans of the form z =
(z1, ..., zn), while minimization F is considered on the set S1 × ... × Sm ⊂ R

m. The set of
preferences of the i-th customer (country) has the form

Pi(z) := {ui ∈ R : zi < ui ≤ di},
which means that every country wants to have as many vaccines as possible for itself, and
it is not interested in the situation in other countries.

Let (ȳ, z̄) ∈ graphF . We consider the following two cases, which are interesting from
the practical viewpoint:

(a) There exists l ∈ {1, ...,m} such that ȳl ∈]0, pl[ (that is, at least one company does
not sell its whole possible production). Then K(Sl, ȳl) = R, and we cannot apply Theorem
5 because this cone is not pointed.

(b) We have ȳj = pj for all j ∈ {1, ...,m} (that is, the production level of each company
is set to maximum, and all the vaccines are sold). The following sub-cases are of practical
interest (we omit the discussion of the case where z̄i = 0 for some i):

(b1) There exists r ∈ {1, ..., n} such that z̄r = dr (the demand of at least one country is
fully satisfied). Then Pr(z̄) = ∅, which violates the assumptions of Theorem 6.

(b2) We have 0 < z̄i < di for all i ∈ {1, ..., n}. Then N(Pi(z̄) ∪ {z̄i}, z̄i ) =] − ∞, 0] for
all i, and it is easy to see that conditions (ii) and (iii) of Theorem 6 are satisfied if and only
if z∗ �= 0 and z∗

i ≤ 0 for all i. Concerning condition (i), since K(Sj , ȳj ) =] − ∞, 0[ for all
j ∈ {1, ...,m}, then by (90), conditions

z ∈ F(y), y ∈
m∏

j=1

K(Sj , ȳj )

imply that
n∑

i=1

zi =
m∑

j=1

yj ≤ 0.
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By taking z∗
i = −1 for all i, we get that

〈z∗, z〉 =
n∑

i=1

〈z∗
i , zi〉 = −

n∑
i=1

zi = −
m∑

j=1

yj ≥ 0,

and therefore condition (i) of the theorem holds in this case.

Discussion We now discuss the results of this example from the point of view of possi-
ble application. First, in case (a) our theorem cannot be used but the answer can easily be
deduced from the conditions of the problem. Indeed, if the demand of each country is fully
satisfied, then the corresponding production-consumption plan is optimal for customers (but
not necessarily for producers). If this is not the case, then the plan is obviously not optimal
and can be improved by buying more vaccines by some customers. For sub-case (b1), The-
orem 6 also gives no answer but generally such plans should be avoided. It is better to have
some shortage of vaccines in each country as it is known that some people don’t want to be
vaccinated. Finally, in sub-case (b2), our theorem gives a positive answer which means that
the corresponding plan is a candidate for optimal solution.

Example 5 In some country, there are two factories producing electric cars. These cars
can be either class A or class B. Factory 1 has one production line which can be used to
assemble cars of both classes, depending on customers’ orders. The maximum production
capacity of this line for a given year is 2000 cars. Factory 2 has two independent production
lines: the first one is designed for class A cars, and the second one – for class B cars. The
maximum production capacity of each line is 1000 cars. There is only one company (a car
dealer) which can buy cars form the two factories and sell them to individual customers,
at the same time providing service to them. However, due to restricted infrastructure (the
number of existing workshops and charging stations), this company cannot distribute more
than d cars for a year. For simplicity, we assume that one unit means 1000 cars.

In this example, we have Z = R
2. A feasible consumption plan z ∈ Z for the dealer

has the form z = (z1, z2), where z1 is the number of distrubuted cars of class A, and z2 –
of class B; every such plan must satisfy the restriction z1 + z2 ≤ d. Hence, the preference
mapping of the dealer is defined by

P(z) := {u = (u1, u2) : ui ≥ zi, i = 1, 2, u �= z, u1 + u2 ≤ d}. (91)

The production sets for factories 1 and 2 are defined, respectively, by

S1 := {y1 = (y1
1 , y2

1 ) : yi
1 ≥ 0, i = 1, 2, y1

1 + y2
1 ≤ 2},

S2 := {y2 = (y1
2 , y2

2 ) : 0 ≤ yi
2 ≤ 1, i = 1, 2}.

The mapping F : R2 × R
2 → R

2 (here it is single-valued) has now the form

F(y) := {z ∈ R
2 : z = y1 + y2}, where y = (y1, y2).

Because this example is illustrative, we we will not consider all possible cases but only
several selected ones. Below we consider three different values of d.

(a) Let d = 5. We consider the following two sub-cases.
(a1) Suppose that ȳ = (ȳ1, ȳ2), where ȳ1

1 ∈]0, 2[, ȳ2
1 = 2 − ȳ1

1 , and ȳ2 = (1, 1). We
compute the contingent cones to the production sets:

K(S1, ȳ1) = {(y1
1 , y2

1 ) : y1
1 + y2

1 ≤ 0}, (92)

K(S2, ȳ2) = {(y1
2 , y2

2 ) : yi
2 ≤ 0, i = 1, 2}. (93)
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It is easy to see that, for any z̄ = ȳ1 + ȳ2, ȳj ∈ Sj , j = 1, 2, we have

z∗ = (z∗1, z∗2) ∈ N(P (z̄) ∪ {z̄}, z̄) ⇔ (z∗i ≤ 0, i = 1, 2).

Let us take z∗ = (−1, −1). We now check the fulfillment of conditions conditions (i)–(iii)
of Theorem 6.

Let z = F(y) = y1 + y2, where y �= 0 and yj ∈ K(Sj , ȳj ), j = 1, 2. In particular, we
have by (92)–(93),

y1
1 + y2

1 ≤ 0 and zi = yi
1 + yi

2 ≤ yi
1, i = 1, 2.

Consequently,
〈z∗, z〉 = −z1 − z2 ≥ −y1

1 − y2
1 ≥ 0,

so that conditions (i) and (ii) hold. Further, assuming that

z ∈ int(P (z̄) − z̄) ⊂ {(z1, z2) : zi > 0, i = 1, 2},
we have

〈z∗, z〉 = −z1 − z2 < 0,

and condition (iii) is also fulfilled.
(a2) Suppose now that ȳ = (ȳ1, ȳ2), where ȳ1

1 ∈]0, 2[, ȳ2
1 = 2 − ȳ1

1 , and ȳ2 = (1, ȳ2
2 ),

ȳ2
2 ∈]0, 1[. Then K(S1, ȳ1) is given by (92) and

K(S2, ȳ2) = {(y1
2 , y2

2 ) : y1
2 ≤ 0}. (94)

We can observe that the algebraic sum K(S1, ȳ1)+ K(S2, ȳ2) is equal to the whole space
R

2. Therefore, it is impossible to find a nonzero vector z∗ = (z∗1, z∗2) with z∗i ≤ 0,
i = 1, 2, which would satisfy 〈z∗, z〉 ≥ 0 for all z ∈ K(S1, ȳ1) + K(S2, ȳ2). This means
that Theorem 6 excludes such points ȳ as candidates for a strict local minimizers of order 1
in the considered optimization problem.

(b) Let d = 4.
(b1) Suppose that ȳ = (ȳ1, ȳ2), where ȳ1

1 ∈]0, 2[, ȳ2
1 = 2 − ȳ1

1 , and ȳ2 = (1, 1). Let
z̄ = ȳ1 + ȳ2. Then

z̄1 + z̄2 = ȳ1
1 + ȳ2

1 + ȳ1
2 + ȳ2

2 = 4.

Hence, it follows from (91) that P(z̄) = ∅, and the assumption intP(z̄) �= ∅ of Theorem 6
is not satisfied.

(b2) – The same as (a2) before.
(c) Let d = 3. If ȳi ∈ intSi for i = 1 or i = 2, then the respective contingent cone is

not pointed and we cannot apply Theorem 6. Suppose now that ȳi ∈ bdSi for i = 1, 2, and
take, for example, the point ȳ1 such that ȳ1

1 + ȳ2
1 = 2, and ȳ2 = (1, 0). Then it is easy to see

that P(z̄) = ∅, and the theorem also cannot be used. On the other hand, if ȳ1 = (0, 1) and
ȳ2 = (1, 0), then K(S1, ȳ1)+ K(S2, ȳ2) = R

2, and the theorem gives negative answer as in
case (a2).

Discussion Observe that in case (a) there are no restrictions on the number of cars sold:
both factories can sell everything they are able to produce. The results given by Theorem 6
in this case agree with the intuition. In fact, in sub-case (a1), where the maximum production
capacity of both factories (i.e., 4 units) is sold, the necessary conditions of Theorem 6 are
fulfilled, and so, the corresponding production-consumption plan is a candidate for optimal
solution. This plan can be further optimized with respect to the profit of the first factory
(while the plan for the second factory remails fixed) but this would require an extended
mathematical model taking into account, for example, the prices of cars of class A and B.
On the other hand, in sub-case (a2), the production capacity of the second factory is not
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fully used, and the plan can obviously be improved by increasing ȳ2
2 to become 1 (which

in fact reduces this case to (a1)). Theorem 6 excludes such plans and this is correct as
they are evidently not optimal. Let us now consider case (b). In sub-case (b1) we have the
same plans as in (a1) but now the theorem gives no answer because the preference sets are
empty. Obviously, each plan with an empty preference set is optimal, and we don’t need to
apply any optimality conditions here. In case (b2) the situation is identical as in (a2): the
theorem excludes such nonoptimal plans. Finally, case (c) is most difficult to handle because
Theorem 6 gives no answer if the production plan for some factory belongs to the interior
of its production set. But in case of a serious restriction on the number of distributed cars
(d = 3) it is natural to seek an optimal production plan somewhere between the boundaries
of production sets. This shows that better optimality conditions should be developed to
include such situations.

7 Conclusions

In Sections 2–4, we have presented necessary optimality conditions for strict local minima
of arbitrary order for set-valued optimization problems in which minimization is performed
with respect to arbitrary preference mappings, not necessarily cone-valued ones. Then, we
have applied these results for the special case of order one to welfare economics problems
in Section 5 and we have given two concrete examples of such problems in Section 6.
However, there are still several points that need attention:

1. Theorem 6 is formulated as a necessary condition for strict local minimizers of order
one. It is a rather strong assumption, and one should examine whether or not the same
necessary conditions hold for all local minimizers.

2. The examples presented is Section 6 show that, although Theorem 6 can be applied
to them, it is not possible at all points. Therefore, developing still better necessary
optimality conditions and also sufficient optimality conditions for welfare economics
problems with general preference mappings will be important.
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7. Flores-Bazán, F., Jiménez, B.: Strict efficiency in set-valued optimization. SIAM J. Control Optim.
48(2), 881–908 (2009)

8. Gale, D., Mas-Colell, A.: On the role of complete, transitive preferences in equilibrium theory. In:
Schwödiauer, G. (ed.) Equilibrium and Disequilibrium in Economic Theory, pp. 7–14. D. Reidel
Publishing Company, Dordrecht (1977)

9. Isac, G., Khan, A.A.: Second-order optimality conditions in set-valued optimization by a new tangential
derivative. Acta Mathematica Vietnamica 34, 81–90 (2009)

10. Jahn, J.: Vector Optimization. Springer, Berlin (2004)
11. Jahn, J., Khan, A.A., Zeilinger, P.: Second order optimality conditions in set-valued optimization. J.

Optim. Theory Appl. 125, 331–347 (2005)
12. Khan, A.A., Soleimani, B., Tammer, C.: Second-order optimality conditions in set-valued optimization

with variable ordering structure. Pure and Applied Functional Analysis 2, 305–316 (2017)
13. Khan, A.A., Tammer, C.: Generalized Dubovitskii-Milyutin approach in set-valued optimization.

Vietnam J. Math. 40, 285–304 (2012)
14. Khan, A.A., Tammer, C.: Second-order optimality conditions in set valued optimization via asymptotic

derivatives. Optimization 62, 743–758 (2013)
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