
https://doi.org/10.1007/s11228-021-00610-3

SI: OPTIMIZATION, CONVEX AND VARIATIONAL ANALYSIS

Convergence of the Gradient Sampling Algorithm
on Directionally Lipschitz Functions

J. V. Burke1 ·Q. Lin2

Received: 2 July 2021 / Accepted: 25 September 2021 /
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
The convergence theory for the gradient sampling algorithm is extended to directionally
Lipschitz functions. Although directionally Lipschitz functions are not necessarily locally
Lipschitz, they are almost everywhere differentiable and well approximated by gradients
and so are a natural candidate for the application of the gradient sampling algorithm. The
main obstacle to this extension is the potential unboundedness or emptiness of the Clarke
subdifferential at points of interest. The convergence analysis we present provides one path
to addressing these issues. In particular, we recover the usual convergence theory when the
function is locally Lipschitz. Moreover, if the algorithm does not drive a certain measure
of criticality to zero, then the iterates must converge to a point at which either the Clarke
subdifferential is empty or the direction of steepest descent is degenerate in the sense that it
does lie in the interior of the domain of the regular subderivative.

Keywords Gradient sampling algorithm · Non-Lipschitzian · Directionally Lipschitz ·
Nonsmooth optimization

Mathematics Subject Classification (2010) 49J22 · 65K05 · 65K10 · 90C26

1 Introduction

The gradient sampling (GS) algorithm is designed to solve non-smooth optimization prob-
lems by using locally sampled gradients to approximate the Clarke subdifferential and
the associated direction of steepest descent. The objective is assumed to be continuously
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differentiable on an open set D of full Lebesgue measure. Although the method was orig-
inally applied to minimize non-Lipschitzian nonsymmetric spectral functions [4–6], the
existing convergence theory only applies to locally Lipschitz functions. The purpose of this
note is to extend the convergence theory to directionally Lipschitz functions (see Defini-
tion 1). Directionally Lipschitz functions were introduced by Rockafellar in [16] and further
developed in [17]. Loosely speaking, a function is directionally Lipschitz at a point x̄ if it
is possible to “tilt” its epigraph in such a way that the tilted set is the epigraph of a func-
tion that is locally Lipschitz at x̄. A function can be directionally Lipschitz at a point but
not locally Lipschitz or even continuous at that point. Some of the ideas for our approach
appear in [12] and are motivated by the results from [3, 6, 7, 11]. In particular, our choice
of directionally Lipschitz functions is inspired by [3, Corollary 6.1] (see Theorem 3) where
it is shown that nearby gradients can be used to approximate their subdifferential. The pri-
mary difficulty in the non-Lipschitzian case is the potential unboundedness or emptiness of
the subdifferential. Indeed, in this setting, it is not entirely clear what kind of convergence
result can reasonably be expected.

Both our choice of how the algorithm is stated and the consequent convergence theory
closely parallels those proposed by Kiwiel in [11] since his approach provides the most
complete picture in the Lipschitzian case. A nice discussion of this approach as well as other
recent advances and ongoing work is given in [7]. The paper proceeds as follows. Section 2
is broken into 4 parts: (1) notation and a review of the subdifferential calculus especially
the Clarke subdifferential and its relationship to the generalized (Mordukhovich or limit-
ing) subdifferential, (2) pointedness of cones and its use in approximating the distance to a
convex set, (3) the direction of steepest descent for nonsmooth functions, and (4) an intro-
duction to directionally Lipschitz functions. In Section 3 we state the version of the gradient
sampling algorithm to be examined and present our convergence results. We conclude in
Section 4 with a few comments on the algorithm and its convergence.

2 Preliminaries

2.1 Notation

Our notation is based on that used in [14]. We work in the n-dimensional Euclidean space
R

n with the standard inner product x , y , with · denoting the associated 2-norm whose
closed unit ball is B := {x ∈ X x ≤ 1 }. Given x ∈ R

n, define the open 0 ball about
x as the set B (x) := {y x − y }. Let C be a subset of a Euclidean space X whose
norm is denoted by · . We say C is convex if every line segment connecting two points
in C is contained in C, and C is affine if it is the translate of a subspace. The affine hull
of C, denoted affC, and the convex hull of C, denoted convC, are the intersection of all
affine, respectively, convex sets that contain it. If C is convex, its relative interior is the set
riC := {x ∈ C | ∃ 0 s.t. affC ∩ B (x) ⊂ C }. Denote the closure and interior of C by
clC and intC, respectively. The distance to C is defined by dist (x | C ) := infz∈C x − z .
The Projection Theorem for convex sets tells us that for a nonempty closed convex set
C ⊂ X and any x ∈ X there is a unique vector x̂ ∈ C such that dist (x | C ) = x − x̂ . The
vector x̂ is called the projection of x onto C and is denoted by projC (x).

The set of natural numbers is denoted by N := {1, 2, . . . }. Let Δn :=
λ ∈ R

n+1+ | λ1 + · · · + λn+1 = 1 be the unit simplex inRn+1,R+ the set of non-negative

reals, and R++ the set of positive reals.
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A subset K of the Euclidean space X is said to be a cone if 0 ∈ K and λx ∈ K for
all x ∈ K and λ ≥ 0. It is said to be a convex cone if it is both a cone and a convex set.
The cone K ⊂ R

n is said to be pointed if for all k ≥ 2 and x1, x2, . . . , xk ∈ K one has
x1 + x2 + · · · + xk = 0 if and only if xi = 0, i = 1, . . . , k.

The horizon cone and polar of C ⊂ X are given by

C∞ := w ∃{xk} ⊂ C, tk ↓ 0 s.t. tkx
k → w and

C∗ := v ∈ X
∗ v , x ≤ 1 ∀, x ∈ C ,

respectively. The polar of a nonempty set is aways a closed convex set. In addition, if C is
a cone, then one can show that C∗ = {v ∈ X v , x ≤ 0 ∀, x ∈ C }. The convex indicator
and support function for C are give by

δC(x) := 0, x ∈ C,

+∞, x /∈ C
and δ∗

C(v) := sup
x∈C

v , x ,

respectively.
Given Euclidean spaces X and Y, a mapping S from X to Y for which S(x) is a subset

of Y for every x ∈ X (possibly empty) is called a multivalued mapping and is denoted by
S : X ⇒ Y. The domain of S is the set dom (S) := {x | S(x) = ∅}. Such a mapping S is
said to be outer semicontinuous (osc) if

v ∃ (xk, vk) → (x, v) with vk ∈ S(xk)∀ k ⊂ S(x) ∀ x ∈ dom (S) .

The graph of S is the set graph(S) := {(x, y) | y ∈ S(x) } and the osc hull of S is the
multivalued mapping cl S : X ⇒ Y such that graph(cl S) = cl graph(S).

Let f : R
n → R := R ∪ {+∞} and set

dom (f ) := {x | f (x) < ∞}
epif := {(x, μ) | f (x) ≤ μ } ⊂ R

n × R.

Let x̄ ∈ dom (f ). The regular subdifferential of f at x̄ is given by ∂̂f (x) :=
{v | f (z) ≥ f (x) + v , z − x + o( z − x ) }. This set is always closed and con-
vex, but may be empty. The subdifferential of f at x̄ is given by ∂f (x̄) =
v ∃ xk → x̄, vk → v s.t. vk ∈ ∂̂f (xk) ∀ k ∈ N , and the horizon subdifferential of f at

x̄ is given by

∂∞f (x̄) := v
∃ xk → x̄, tk ↓ 0, tkv

k → v, s.t.
vk ∈ ∂̂f (xk) ∀ k ∈ N

. (1)

These sets are always closed, and if f is lower semi-continuous (lsc) at x̄ then either
∂f (x̄) = ∅ or ∂∞f (x̄) contains at least one nonzero element [14, Corollary 8.10]. These
subdifferentials are all mutivalued mappings with ∂f and ∂∞f osc along f -attentive
sequences by construction (an f -attentive sequence is any sequence {xk} ⊂ dom (f ) such
that if xk → x̄ then f (xk) → f (x̄)).

Given a closed nonempty set C ⊂ R
n and a point x̄ ∈ C, the regular normal cone to C

at x̄ is the set

NC(x̄) := {v v , x − x̄ ≤ o( x − x̄ ) for x ∈ C } .
The osc hull of this multivalued mapping is called the normal cone mapping and is denoted
by NC(x̄). The Clarke normal cone to C at x is given by NC(x) := cl convNC(x̄). The
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cone of regular tangents to C at a point x ∈ C where C is locally closed is defined by
TC(x) := NC(x)∗ [14, Theorem 6.28].

Given f : R
n → R and x̄ ∈ dom (f ) at which f is lsc, the Clarke sub-

differential of f at x̄ is ∂̄f (x) := v (v,−1) ∈ Nepif (x, f (x)) , and ∂̄∞f (x) :=
v (v, 0) ∈ Nepif (x, f (x)) is the Clarke horizon subdifferential of f at x̄ [14, Theorem
8.49]. The subdifferential and the Clarke subdifferential reduce to the usual subdifferential
in convex analysis when f is convex. Finally, the regular subderivative of f at x ∈ dom (f ),
denoted d̂f (x) : R

n → R ∪ {±∞}, at points where f is lsc is defined by the relation
epi(d̂f (x)) = Tepif (x, f (x)) [14, Theorem 8.17]. The regular subderivative coincides with
Clarke’s directional derivative when f is locally Lipschitz [10]. The following theorem
establishes the relationships between the subdifferential and the Clarke subdifferential.

Theorem 1 (Subdifferential Relationships) [14, Theorem 8.49 and Exercise 8.23] Let f :
R

n → R be locally lsc and finite-valued at x̄ ∈ R
n. Then the following hold:

1. ∂f (x) and ∂∞f (x) are osc at x̄ with respect to f −attentive convergence, that is, with
respect to sequences {xk} ⊂ dom (f ) such that (xk, f (xk)) → (x, f (x)).

2. ∂̄f (x̄) is a closed convex set and ∂̄∞f (x̄) is a closed convex cone.
3. ∂̄∞f (x̄) = ∂̄f (x̄)∞ when ∂̄f (x̄) = ∅, or equivalently, ∂f (x̄) = ∅.
4. If the cone ∂∞f (x̄) is pointed (or equivalently, ∂̄∞f (x̄) is pointed), then

∂̄f (x̄) = conv ∂f (x̄) + conv ∂∞f (x̄) and ∂̄∞f (x̄) = conv ∂∞f (x̄).

Moreover, if ∂̄f (x̄) = ∅ (equivalently, ∂f (x̄) = ∅), then d̂f (x) = δ∗̄
∂f (x)

.

Finally, at various points in the paper we say that a set Q is a full measure subset of
another set V . By this we mean a full Lebesgue measure subset, i.e., both Q and V are
Lebesgue measurable, Q ⊂ V , and for every Lesbesgue measurable set M, M ∩ Q) =
M ∩ V), where is Lebesgue measure on Rn with the value of n determined by context.

In addition, we say that an event occurs with probability 1 if it occurs with probability 1
relative to any probability measure that is absolutely continuous with respect to Lebesgue
measure.

2.2 Pointedness

We review pointedness and a few of its properties.

Lemma 1 Let K be a non-empty closed cone in R
n and consider the following

statements:

(i) K is pointed.
(ii) K ∩ (−K) = {0}.
(iii) intK∗ = ∅.
Statements (i) and (ii) are equivalent, and if K is convex, both are equivalent to (iii).
Moreover, in the convex case, z ∈ intK∗ if and only if there exist 0 such that
z ,w ≤ − w for all w ∈ K .

Proof The statements concerning (i)-(iii) follow from [14, Proposition 3.14, Exercise 6.22].
Therefore, we need only establish the the final statement of the lemma. Let z ∈ intK∗ and
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0 be such that z + B ⊂ K∗. Then, for all w ∈ K and u ∈ B, 0 ≥ z + =
z ,w + u , w . Hence, 0 ≥ z ,w + supu∈B u , w = z ,w + w .
On the other hand, if there is a z ∈ R

n and 0 is such that z , w ≤ − w for all
w ∈ K , then, for all u ∈ B and w ∈ K , z + 2u ,w ≤ − w + 2 w = − 2 w so that
z ∈ intK∗.

We now connect the pointedness of C∞ to projections and the distance function for a
non-empty closed convex set. This result extends lemma [11, Lemma 3.1] and introduces a
condition that is key to our analysis of the non-Lipschitzian setting.

Lemma 2 (Pointedness, and Projections) Let C be a non-empty closed convex subset of Rn

such that C∞ is pointed. Let z /∈ C be such that

z − projC (z) ∈ int (C∞)∗ . (2)

Then, for all β ∈ (0, 1), there is a δ > 0 such that if u, v ∈ C with z − u ≤ dist (z | C )+
δ, then z − v , z − u > β z − u 2. In particular, if z = 0, then v , u > β u 2 whenever
u, v ∈ C and u satisfies u ≤ dist (0 | C ) + δ.

Proof Let β ∈ (0, 1). If the result is false, there exists a sequence {(uk, vk)} ⊂ C × C with
z − uk ≤ dist (z | C ) + 1/k such that

z − vk , z − uk ≤ β z − uk
2 ∀ k. (3)

Since {uk} is bounded we can assume with no loss of generality that uk → projC (z). The
projection theorem tells us that

v − projC (z) , z − projC (z) ≤ 0 ∀ v ∈ C,

or equivalently,

dist (z | C )2 ≤ z − v , z − projC (z) ∀ v ∈ C. (4)

If {vi} has a bounded subsequence, we can again assume with no loss in generality
that vi → v̄ ∈ C. Then, by (3), z − v̄ , z − projC (z) ≤ βdist (z | C )2 which contra-
dicts (4) since β ∈ (0, 1) and dist (z | C ) > 0. Hence, the sequence {vi} is divergent.
Consequently, we can assume, with no loss in generality, that vi/ vi → v̄ ∈ C∞ with
v̄ = 1. Dividing (3) by vi and taking the limit yields v̄ , z − projC (z) ≥ 0. But

v̄ ∈ C∞ and z − projC (z) ∈ int (C∞)∗, so, by Lemma 1, there is an 0 such that
v̄ , z − projC (z) ≤ − v̄ . This contradiction establishes the result.

Condition (2) plays a central role in our analysis of the GS algorithm. The following
lemma gives insight into this condition by describing properties of the horizon cone C∞
and its polar.

Lemma 3 (Normal, Barrier, and Horizon Cones) [8, Lemma 5] LetC be a non-empty closed
convex set and define K := x∈C NC(x). Then ri barC ⊂ K ⊂ barC, and

clK = cl barC = (C∞)∗ and C∞ = (barC)∗,

where barC := dom δ∗
C is called the barrier cone of C.
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Recall that it is always the case that z−projC (z) ∈ NC projC (z) , and so, by Lemma 3,
we have

z − projC (z) ∈ NC projC (z) ⊂ cl
x∈C

NC(x) = (C∞)∗.

In particular, if C is bounded, then (C∞)∗ = R
n so condition (2) is trivially satisfied.

Intuitively, the “smaller” the horizon cone of C the more “likely” condition (2) is satisfied.

2.3 Steepest Descent Directions

In the smooth setting the direction of steepest decent is given by the direction of unit length
that minimizes the directional derivative. By contrast, in the nonsmooth setting there are
several notions of directional derivative to choose from. From a numerical perspective, the
most useful permit a dual representation as the support function of an associated subdiffer-
ential which in turn yields a dual representation of the direction of steepest descent via the
Minimum Norm Duality Theorem, e.g. see [9, Theorem 2.8].

Since our analysis uses the Clarke subdifferential, our direction of steepest descent is
based on the regular subderivative (see Theorem 1). That is, the direction of steepest descent
for f at x is given by

d̄x := arg min
x ≤1

d̂f (x)(d) . (5)

The dual to this optimization problem is given by the Minimum Norm Duality Theorem.

Theorem 2 (Minimum Norm Duality Theorem) [13] Let X be a normed linear space with
norm · and dual norm · ∗, and let B denote the closed unit ball in X. Given a nonempty
closed convex set C ⊂ X

∗ and z̄ ∈ X
∗ with z̄ /∈ C, we have

dist∗(z̄ | C) = sup
v ≤1

[ v , z̄ − δ∗
C(v)], (6)

where δC is the convex indicator of C and f ∗ denotes the convex conjugate of a function f .
In particular, if z̄ = 0, then

inf
v ≤1

δ∗
C(v) = −dist∗(0 | C).

The Projection Theorem for convex sets tells us that for a nonempty closed convex set
C and any z̄ ∈ X one has ẑ = projC (z̄) if and only if z̄ − ẑ ∈ NC(ẑ). This implies

that v̄ := (z̄−projC (z̄))

z̄−projC (z̄)
is the unique solution to the supremum problem in (6). By taking

C = ∂̄f (x), we obtain a dual interpretation for the direction of steepest descent.

Corollary 1 (Steepest Descent Duality) [9, Theorem 2.8] Let f : R
n → R and x ∈

dom (∂f ) be such that f is lsc at x. Then

inf
d ≤1

d̂f (x)(d) = −dist 0 ∂̄f (x) ,

and the vector d̄x in (5) is given by d̄x = −proj∂̄f (x) (0)/ proj∂̄f (x) (0) .

Proof By Theorem 1, ∂̄f (x) is a nonempty closed convex set with d̂f (x) = δ∗̄
∂f (x)

. The

corollary follows by taking C = ∂̄f (x) and z̄ = 0 in Theorem 2.
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2.4 Directionally Lipschitz Functions and Subdifferential Approximation

Rockafellar builds the notion of a directionally Lipschitzian function on that of epi-
Lipschitzian sets [15]. He then establishes a useful characterization of directionally Lips-
chitzian functions through horizon subgradients [16]. We circumvent the epi-Lipschitzian
construction and instead use the characterization given in [14, Exercise 9.42] as our
definition.

Definition 1 (Directionally Lipschitzian Functions) Suppose f : R
n → R is finite at

x̄ ∈ R
n. We say f is directionally Lipschitz at x̄ if f is locally lsc at x̄ and there is a unit

vector u such that

lim sup
x→

f
x̄

v→u
t↓0

f (x + tv) − f (x)

t
< ∞,

where the notation x →
f

x̄ means that we consider only f -attentive convergence to x̄, i.e.,

x → x̄ with f (x) → f (x̄). We say that f is directionally Lipschitz if it is directionally
Lipschitz at every point of Rn.

A simple characterization of directionally Lipschitz functions is obtained through the
pointedness of the horizon cone of the subdifferential.

Lemma 4 [14, Exercise 9.42(b)] A function f : R
n → R finite at x ∈ R

n is directionally
Lipschitz at x if and only if f is locally lsc at x and the horizon subdifferential ∂∞f (x) is
pointed.

In particular, locally Lipschitz functions are directionally Lipschitz. In [14, Exercise
9.42(c)], Rockafellar and Wets show that a function f : R

n → R that is finite and locally
lsc at x̄ is directionally Lipschitz at x̄ if there is a convex cone K ⊂ R

n having nonempty
interior such that f is K-nonincreasing, i.e. f (x +w) ≤ f (x) for all x ∈ R

n and w ∈ K . In
[2, Theorem 6], it is shown that if intK = ∅, then K-monotone functions (K-nonincreasing
or K-nondecreasing) are continuous and almost everywhere differentiable. These authors
also establish the following characterization of continuous directionally Lipschitz functions
in terms of monotonicity.

Proposition 1 [2, Proposition 8] A continuous function f : R
n → R is directionally

Lipschitz at x if and only if it is locally representable near x as f = g + l where g is
monotone with respect to a convex cone with interior and l is linear.

The pointedness of ∂∞f (x), or equivalently, ∂̄∞f (x), is also related to the continuity of
the regular subderivative d̂f (x).

Lemma 5 (Continuity of d̂f (x)) Suppose f : R
n → R is finite at x ∈ R

n with ∂f (x̄) = ∅,
then d̂f (x) is continuous on

int [(∂̄∞f (x̄))∗] = int dom d̂f (x̄)(·) .
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Proof By Theorem 1, Lemma 3 and the closure properties of convex sets, we have

int [(∂̄∞f (x̄))∗] = int [(∂̄f (x̄)∞)∗] = int [cl bar ∂̄f (x̄)]
= int [bar ∂̄f (x̄)] = int [dom δ∗̄

∂f (x̄)
]

= int dom d̂f (x̄)(·) .

Since d̂f (x̄) is convex, it is continuous on the interior of its domain.

In general, directionally Lipschitzian functions need not be locally Lipschitz or even
continuous at x̄. For example, for every η ≥ 0, the function

f (x) := x1/3 − η, x ≤ 0,

x1/3 + η, x > 0,

is directionally Lipschitz at x̄ = 0 and continuous at x̄ = 0 if and only if η = 0. Nonetheless,
in [3, Corollary 6.1] it is shown that when ∂∞f (x) is pointed, then ∂̄f (x) can be locally
approximated by nearby gradients. We offer a slight improvement of this result that is useful
to our discussion. We begin with the following technical lemma.

Lemma 6 (Limits of Gradients) Let f : R
n → R and x̄ ∈ dom (f ) be such that, ∂∞f (x̄)

is pointed, f is continuous on an open neighborhood V of x̄ and differentiable on an open
setQ ⊂ V of full measure in V . For each x ∈ V and δ > 0 such that x̄ + δB ⊂ V set

Gδ(x) := clconv∇f ((x + δIB) ∩ Q). (7)

Let xk → x̄ and δk ↓ 0 with xk + δkB ⊂ V for all k ∈ N.

(a) If wk → w̄ with wk ∈ Gδk
(xk) for all k ∈ N, then w̄ ∈ ∂̄f (x̄).

(b) If vk → v̄ with vk ∈ Gδk
(xk)∞ for all k ∈ N, then v̄ ∈ ∂̄∞f (x̄).

Proof We only show (b) since the proof of (a) follows the same pattern but is signif-
icantly simpler. By Carathéodory’s Theorem, for each k ∈ N, there exist sequences
{(xkj1, . . . , xkj (n+1)) | j ∈ N} ⊂ Xn+1

i=1 R
n, {αkj ∈ Δn | j ∈ N}, and {tkj | j ∈ N} ⊂ R+

such that tkj ↓j 0, xkji ∈ (x̄ + δkIB) ∩ Q ((j, i) ∈ N × {1, 2, ..., n + 1}), and
tkj

n+1
i=1 α

kj
i ∇f (xkji)

j→ vk . Choose k ↓ 0. For each k ∈ N, let jk ∈ N be such that tkjk
<

k and vk − tkjk

n+1
i=1 α

kjk

i ∇f (xkjki) ≤ k . For each k ∈ N, set (x̄k1, . . . , x̄k(n+1)) :=
(xkjk1, . . . , xkjk(n+1)), ᾱk := αkjk and t̄k = tkjk

so that (x̄k1, . . . , x̄k(n+1)) → (x̄, . . . , x̄),
t̄k ↓ 0, and t̄k

n+1
i=1 ᾱk

i ∇f (x̄ki) → v̄. By compactness, we can assume that ᾱk → ᾱ ∈ Δn.
Suppose the sequence {t̄k(∇f (x̄k1), . . . , ∇f (x̄k(n+1)))} is unbounded. Let νk denote the

norm of the kth member of this sequence. We can assume that νk ↑ ∞ since the sequence
is unbounded. Then, with no loss in generality, there exists (w1, . . . , w(n+1)) such that

(t̃k1∇f (x̄k1), . . . , t̃k(n+1)∇f (x̄k(n+1))) → (w1, . . . , w(n+1)) = (0, . . . , 0),

where t̃ki := (t̄kᾱ
k
i )/νk for i = 1, . . . , (n + 1) and k ∈ N. Since t̃ki ↓ 0 and ∇f (x̄ki) ∈

∂̂f (x̄ki) for i = 1, . . . , n+ 1 and k ∈ N, we have wi ∈ ∂∞f (x̄) for i = 1, . . . , (n+ 1) (see
(1)). We have

n+1

i=1

t̃k∇f (x̄ki) = ν−1
k t̄k

n+1

i=1

ᾱk
i ∇f (x̄ki) → 0,
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since t̄k
n+1
i=1 ᾱk

i ∇f (x̄ki) → v̄ and νk ↑ ∞. But n+1
i=1 t̃k∇f (x̄ki) → n+1

i=1 wi by con-
struction. Hence 0 = i=1 wi with (w1, . . . , w(n+1)) = (0, . . . , 0) which contradicts the
pointedness of ∂∞f (x̄). Therefore, {t̄k(∇f (x̄k1), . . . , ∇f (x̄k(n+1)))} is bounded, so we may
assume that there exist wi ∈ ∂∞f (x̄) such that t̄k∇f (x̄ki) → wi for i = 1, . . . , (n + 1).
Consequently, by Theorem 1, v = n+1

i=1 ᾱiw
i ∈ conv ∂∞f (x̄) = ∂̄∞f (x̄) proving the

result.

The outer semi-continuity of ∂f and ∂∞f along f -attentive sequences [14, Proposition
8.7] implies that pointedness is a local property and that the pointedness of ∂∞f and Gδ

are related.

Lemma 7 (Pointedness of ∂∞f (x) is a local property) Let f : R
n → R and x̄ ∈ dom (f )

be such that ∂∞f (x̄) is pointed, f is continuous on an open neighborhood V of x̄ and
differentiable on an open set Q ⊂ V of full measure in V . Let Gδ(x) be as in (7). Then the
following statements hold.

(i) There is an 0 with (x̄ + B) ⊂ V such that ∂∞f (x) is pointed on (x̄ + B).
(ii) There is a δ̄ > 0 with (x̄ + δ̄B) ⊂ V such that Gδ(x̄)∞ is pointed for all δ ∈ (0, δ̄].
(iii) There exist δ̄ > 0 with (x̄ + B) ⊂ V and (x + δ̄B) ⊂ V for all x ∈ (x̄ + B) such

that both ∂∞f (x) and Gδ(x)∞ are pointed for all x ∈ x̄ + B and 0 < δ < δ̄.

Proof The statements (i)-(iii) are proved in essentially the same manner. Therefore we only
prove (iii). If the result is false, then there exist ¯ 0 with (x̄ + 2 ¯B) ⊂ V and sequences
{xk} ⊂ (x̄ + ¯B) and {δk} ⊂ (0, ¯ with xk → x̄ and δk ↓ 0 such that either ∂∞f (xk)

is not pointed for all k = 1, 2, . . . or Gδk
(xk)∞ is not pointed for all k = 1, 2, . . . . Let

us first suppose that the cone ∂∞f (xk) is not pointed for all k = 1, 2, . . . . Then there
exist vk1, vk2 ∈ ∂∞f (xk) such that vk1 + vk2 = 0 and vk1 + vk2 = 1 for all k.
Compactness and the osc of ∂∞f at x̄ (Theorem 1) tells us that we can also assume there
exist v̄1, v̄2 ∈ ∂∞f (x̄) with (vk1, vk2) → (v̄1, v̄2), v̄1 + v̄2 = 0 and v1 + v2 = 1. This
contradicts the pointedness of ∂∞f (x̄). Next suppose that the cone Gδk

(xk)∞ is not pointed
for all k = 1, 2, . . . . Again, there exist vk1, vk2 ∈ Gδk

(xk)∞ such that vk1 + vk2 = 0 and
vk1 + vk2 = 1 for all k ∈ N. Compactness tells us that we can assume there exist v̄1, v̄2

with (vk1, vk2) → (v̄1, v̄2), v̄1 + v̄2 = 0 and v1 + v2 = 1. But Lemma 6(b) tells us
that v1, v2 ∈ ∂̄∞f (x̄) contradicting the pointedness of ∂̄∞f (x̄).

In the next lemma we establish a relationship between regular subgradients and gradients
at nearby points. The lemma extracts a portion of the proof of [3, Theorem 5.2] which we
will use to extend [3, Corollary 6.1].

Lemma 8 (Gradients and Regular Subgradients) Let f : R
n → R be continuous on Bδ(x̄)

for x̄ ∈ R
n and δ > 0, and assume that Q is a full measure subset of Bδ(x̄) consisting

of points where f is differentiable. If either f is absolutely continuous on line segments in
Bδ(x̄) orQ is open and f is continuously differentiable onQ, then ∂̂f (x̄) ⊂ Gδ(x̄).

Proof If f is absolutely continuous on line segments in Bδ(x̄), the result is the first state-
ment established in the proof of [3, Theorem 5.2]. If Q is open and f is continuously
differentiable onQ, the result requires only a very small change to this proof.
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If y /∈ Gδ(x̄), the separation theorem tells us that there exists a non-zero vector z and
k ∈ R such that

y , z > k but ∇f (x) , z ≤ k ∀ x ∈ Q ∩ (x̄ + δB).

If y ∈ ∂̂f (x̄), then f (x+tz) ≥ f (x̄)+t y , z +o(t). Let t̄ > 0 be such that t y , z +o(t) >

kt for all t ∈ (0, t̄] so that f (x̄ + tz) > f (x̄) + kt̄ for all t ∈ (0, t̄). By continuity, given
t ∈ (0, t̄), for all points w sufficiently close to x̄, f (w + t̄ z) > f (w) + kt̄ . Hence, we can
choose w̄ ∈ Q and t̂ ∈ (0, t̄) so that

w + sz ∈ Q ∩ (x̄ + (δ/2)B) ∀ s ∈ (0, t̂] with f (w + t̂ z) > f (w) + kt̂ . (8)

Now consider the function g : [0, t̂] → R defined by g(s) := f (w+sz). By construction
g is continuously differentiable on (0, t̂) with g (s) = ∇f (w + sz) , z ≤ k. Therefore, by
the Fundamental Theorem of Calculus, f (w + t̂ z) = g(t̂) ≤ g(0) + kt̂ = f (w) + kt̂ which
contradicts (8).

Theorem 3 (Subdifferential Approximation) Suppose that, close to x̄ ∈ R
n, the function

f : R
n → R is continuous and absolutely continuous on line segments, with ∂∞f (x̄)

pointed. If Q is a full measure subset of a neighborhood of x̄ consisting of points where f

is differentiable, then

∂̄f (x̄) =
δ>0

Gδ(x̄) and ∂̄∞f (x̄) =
δ>0

Gδ(x̄)∞.

Moreover, if Q is open with f continuously differentiable on Q, then the requirement that
f be absolutely continuous on line segments can be dropped.

Proof The statement of the theorem differs in two respects from the result given in [3,
Corollary 6.1]. First, the result in [3] makes no mention of the case when Q is open, and,
second, there is no formula for the horizon cone equivalence. The case when Q is open
follows from Lemma 8 since the lemma tells us that the implication in [3, Theorem 5.2]
follows from this hypothesis. Consequently, [3, Corollary 6.1] follows from this hypothesis
as well.

We now prove the horizon cone equivalence. By Lemma 8, for all small δ > 0, ∂̂f (x) ⊂
Gδ/2(x) ⊂ Gδ(x̄) for all x ∈ Bδ/2(x̄). Hence ∂∞f (x̄) ⊂ Gδ(x̄)∞, and so, by Theorem 1(4),
∂̄∞f (x̄) ⊂ Gδ(x̄)∞ for all small δ > 0. Consequently, ∂̄∞f (x̄) ⊂ δ>0 Gδ(x̄)∞. For the
reverse inclusion let v ∈ δ>0 Gδ(x̄)∞. Then there exist sequences δk ↓ 0 and vk → v

such that vk ∈ Gδk
(x̄)∞ for all k ∈ N. By Lemma 6(b), v ∈ ∂̄∞f (x̄) which proves the

result.

The next lemma establishes a key property of approximate directions of steepest descent
for directionally Lipschitz functions and extends the content of [11, Lemma 3.1] to these
functions.

Lemma 9 (Approximate Directions of Steepest Descent) Let x̄ ∈ R
n be such that f :

R
n → R is differentiable on a full measure subset Q of an open convex neighborhood

N of x̄. Further suppose that f is either continuous and absolutely continuous along line
segments inN or thatQ is open. If

0 ∈ ∂̄f (x̄), ∅ = ∂̄f (x̄), and − proj∂̄f (x̄) (0) ∈ int (∂̄∞f (x̄))∗, (9)

958 J.V. Burke, Q. Lin



then, for all β ∈ (0, 1), there exists δ > 0 and η > 0 such that 0 /∈ Gη(x̄) and, for every
u, v ∈ Gη(x̄) with u ≤ dist 0 Gη(x̄) + δ, we have v , u > β u 2.

Proof Since 0 ∈ ∂̄f (x̄), Theorem 3 tells us that there is an η̄ > 0 such that 0 /∈ Gη(x̄)

for all η ∈ (0, η̄]. Theorem 3 also tells us that ∂̄f (x̄) ⊂ Gη(x̄) for all η ≥ 0. Therefore,
dist 0 Gη(x̄) ≤ dist 0 ∂̄f (x̄) < ∞ for all η ≥ 0.

We suppose the result is false and establish a contradiction. Since the result is false, there
exist β̂ ∈ (0, 1) and sequences {(ui, vi)} in R

2n and {(ηi, δi)} in R
2+ with ηi ↓ 0 and δi ↓ 0

such that, for all i ∈ N,

ui, vi ∈Gηi
(x̄), ui ≤dist 0 Gηi

(x̄) + δi and vi , ui ≤ β̂ ui
2
. (10)

Let δ0 ≥ δ1. Since { ui } is bounded by dist 0 ∂̄f (x̄) + δ0, we may assume that
ui → ū, where ū ∈ ∂̄f (x̄) by Lemma 6. Theorem 3 tells us that ∂̄f (x̄) ⊂ Gηi

(x̄) for all
i ∈ N. Hence, for all i large, ui ≤ dist 0 ∂̄f (x̄) + δi . Therefore ū = proj∂̄f (x̄) (0) and

so −ū ∈ int (∂̄∞f (x̄))∗ by (9).
Next consider the sequence {vi}. If this sequence is bounded, then, again, Lemma

6 tells us that, with no loss in generality, there is a v̄ ∈ ∂̄f (x̄) such that vi → v̄.
The projection theorem for convex sets tells us that v̄ , ū ≥ ū 2, but, by construc-
tion, v̄ , ū ≤ β̂ ū 2 < ū 2. This contradiction implies that the sequence {vi} is
unbounded. Therefore, with no loss in generality, {vi} is divergent. By Carathéodory’s
Theorem, there exists λi ∈ Δn and xij ∈ Gηi

(x̄) such that vi = n+1
j=1 λij∇f (xij )

for all i. Since the sequence {vi} is divergent, the sequence defined by ĝi :=
(λi1∇f (xi1), . . . , λi(n+1)∇f (xi(n+1))) must also be divergent, and so, again with no loss
in generality, there is a (ḡ1, . . . , ḡn+1) such that ĝi/ ĝi → (ḡ1, . . . , ḡn+1) = 0,
where we have taken ĝi := maxj=1,...,n+1 λij ∇f (xij ) . Theorem 1 tells us that
ḡj ∈ ∂∞f (x̄), j = 1, . . . , n + 1. Clearly, vi ≤ ĝi for all i = 1, 2, . . . . If
{vi/ ĝi } has a subsequence convergent to zero, then taking the limit along this sub-

sequence yields n+1
j=1 ḡj = 0 which contradicts the fact that ∂∞f (x̄) is pointed. So

we can assume that vi/ ĝi = n+1
j=1 λi

j∇f (xij )/ ĝi → ṽ ∈ ∂∞f (x̄) \ {0}. The-
orem 1 tells us that ṽ ∈ ∂̄∞f (x̄) = ∂̄f (x̄)∞. But −ū ∈ int (∂̄f (x̄)∞)∗, so, by
Lemma 1, ṽ , ū > 0 while ṽ , ū ≤ 0 by (10). This final contradiction establishes
the result.

The condition −proj∂̄f (x̄) (0) ∈ int (∂̄∞f (x̄))∗ in (9) plays an important role in our
analysis. Although examples where it fails to hold are easily generated, such points are
degenerate in the sense that the direction of steepest descent for the regular subderivative
does not lie in the interior of its domain (see Lemma 5). Further discussion of this issue is
given in our concluding remarks.

Example 1 Let h : R
2 → R be given by h(x) := y , x + [dist x R

2+ ]1/2, where
y := (−1, β)T . Then ∂̄h(0) = y + R

2−, (∂̄∞h(0))∗ = R
2+ and

−proj∂̄f (x̄) (0) = (1, 0)T ∈ int (∂̄∞f (0))∗ , β ≥ 0,

(1, −β) ∈ int (∂̄∞f (0))∗ , β < 0.
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3 The Gradient Sampling Algorithm

Assume that f : R
n → R satisfies the following hypothesis:

H: f is continuous on Rn and continuously differentiable on an open full measure set
D ⊂ R

n.

We use the form of the gradient sampling algorithm given in [7] which is based on the
version proposed by Kiwiel in [11].

The GS Algorithm (Gradient sampling algorithm).

Initialization: Let x0 ∈ D the set of points where f is differentiable. Choose termination
tolerances opt , νopt ) ∈ [0, ∞) × [0, ∞) and the initial sampling radius 0 ∈ opt ,∞),
initial stationarity target ν0 ∈ [νopt ,∞), sample size m ≥ n + 1, line search parameters
(β, γ ) ∈ (0, 1) × (0, 1), and reduction factors (θ , θν) ∈ (0, 1] × (0, 1].

For k ∈ N do
(i) Independently sample {xk,1, . . . , xk,m} uniformly from xk + kB.
(ii) Terminate the algorithm if {xk,1, . . . , xk,m} ⊂ D.
(iii) Compute gk as the solution of ming∈Gk

1
2 g 2, where

Gk := conv {∇f (xk), ∇f (xk,1), . . . , ∇f (xk,m)}.
(iv) If ∇f (xk) = 0 or ( gk

2 ≤ νopt and k ≤ opt ), then terminate.
(v) If gk

2 ≤ νk

(vi) then set νk+1 ← θννk , k+1 ← θ k , and tk ← 0
(vii) else set νk+1 ← νk , k+1 ← k , dk ← −gk/ gk , and

tk ← max t ∈ {1, γ, γ 2, . . . } : f (xk + tdk) < f (xk) − βt gk . (11)
(viii) If f is differentiable at xk + tkd

k

(ix) then set xk+1 ← xk + tkd
k

(ix) else set xk+1 randomly as any point where f is
differentiable and such that

f (xk+1) < f (xk) − βtk gk and
xk + tkd

k − xk+1
2 ≤ min{tk k}

End for

Remark 1 As shown in [6, Page 756], the line search (11) in the algorithm is finitely
terminating when ∇f (xk) = 0.

Remark 2 In [11, Section 4.1] it is observed that one can also take dk to be the un-
normalized direction −gk when f is Lipschitz. However, the argument in [11] explicitly
depends on f being Lipschitz continuous. In the non-Lipschitzian case, our proof of con-
vergence requires the normalized direction in the statement of the GS algorithm given
above.

Remark 3 The algorithm terminates in Step (ii) if {xk,1, . . . , xk,m} ⊂ D. But the reader
should note that the hypotheses imply that {xk,1, . . . , xk,m} ⊂ D for all k with probability
1 since the countable intersection of probability one events has probability one.
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3.1 Convergence

We now introduce the key tools in analyzing the GS algorithm introduced in [6]: for 0
and x̄, x ∈ R

n, let
ρ (x) := dist (0 | G (x) )

and set

Dm(x) :=
m

1

((x + B) ∩ D) ⊂ R
n and

V (x̄, x, δ):= (y1, y2, . . . , ym)∈Dm(x) dist(0 |conv{∇f (yi)}mi=1)≤ρ (x̄)+δ ,

where m ≥ n + 1 is as given in the statement of Algorithm I.
The next lemma shows that the convex hull of a collection of gradients can be used to

obtain directions of approximate steepest descent.

Lemma 10 [6, Lemma 3.2(i)] [11, Lemma 3.2(i)] Let 0 and x̄ ∈ R
n. For all δ > 0

there is a τ > 0 and a non-empty open set V such that V ⊂ V (x̄, x, δ) for all x ∈ Bτ (x̄)

with dist 0 conv {∇f (yi)}mi=1 ≤ ρ (x̄) + δ for all (y1, . . . , ym) ∈ V .

Remark 4 The statement of this lemma parallels the form given in [11, Lemma 3.2(i)] rather
than the form given in [6, Lemma 3.2(i)]. Essentially the same proof is given in both papers
and follows from the continuity of ∇f on D.

We make use of the following mean value theorem to provide a lower bound on the step
sizes tk in step (vi) of the GS algorithm when 0 /∈ ∂f (x).

Theorem 4 (Approximate Mean Value Theorem) [1, Theorem 3.4.7]
Let ϕ : R

n → R be lsc and assume that r ∈ R and x, y ∈ R
n are such that x = y,

ϕ(x) < +∞, and r < ϕ(y) − ϕ(x). Then there is a x̂ ∈ [x, y) such that for all 0 there
exists (x̃, ϕ(x̃)) ∈ B ((x̂, ϕ(x̂))) and ṽ ∈ ∂̂ϕ(x̃) for which

ṽ , x̂ − x̃ > − ṽ , y − x > r, and ϕ(x̃) ≤ ϕ(x) + |r| + .

Lemma 11 (Stepsize Bound) Let f : R
n → R be such that H holds. Let β, γ ∈ (0, 1)

be given, and let x̄ ∈ R
n be such that all three conditions in (9) hold. Then there exist

η > 0 and δ > 0 so that the consequences of Lemma 9 hold. Moreover, given 0,
we can choose τ ∈ (0 3) so that the consequences of Lemma 10 hold for this δ. That
is, there exists a non-empty open set V such that V ⊂ V (x̄, x, δ) for all x ∈ Bτ (x̄) with
dist 0 conv {∇f (yi)}mi=1 ≤ ρ (x̄) + δ for all (y1, . . . , ym) ∈ V . Then, for all x ∈ Bτ (x̄)

and (x1, . . . , xm) ∈ V ,

t̄ :=min{1 3}≤ t̂ :=max t
f (x + td)<f (x) − βt g

t ∈ {1, γ, γ 2, . . . } , (12)

where g := arg min v v ∈ conv {∇f (xi)}mi=1} and d := −g/ g .

Proof Since the hypotheses of Lemmas 9 and 10 are satisfied, the parameters η, δ and τ can
be chosen as required. Set G := conv{∇f (xi)}mi=1. Since (x1, . . . , xm) ∈ V ⊂ V (x̄, x̄, δ),
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Lemma 10 tells us that dist 0 G ≤ ρ (x̄) + δ and G ⊂ G (x̄). Hence, g ∈ G (x̄) and
g ≤ ρ (x̄) + δ. Consequently, Lemma 9 tells us that

v , g > β g 2 ∀ v ∈ G (x̄). (13)

Assume to the contrary that the inequality (12) is false. Then t̂ < 1 and so

−βγ −1 t̂ g ≤ f (x + γ −1 t̂d) − f (x).

By taking f = ϕ, x = x, y = x + γ −1 t̂d and r = −βγ −1 t̂ g in Theorem 4, there
exists x̂ ∈ [x, x + γ −1 t̂d) such that for all ˜ 0 there exists (x̃, f (x̃)) ∈ B (x̂, f (x̂)) and
ṽ ∈ ∂̂f (x̃) such that

−βγ −1 t̂ g < γ −1 t̂ ṽ , d ,

or equivalently,
ṽ , g < β g 2 .

So ṽ /∈ G (x̄) by (13). Assume that we have chosen ˜ ∈ (0 3). Since the inequality
(12) is false, ˆ 3 or equivalently, γ −1 t̂ d 3. Consequently, x̃ ∈ B (x̄) and
∂f (x̃) ⊂ G (x̄). Therefore, ṽ ∈ ∂̂f (x̃) ⊂ ∂f (x̃) ⊂ G (x̄). This contradiction establishes
the result.

The main convergence result for the GS Algorithm now follows. Our proof is inspired
by Kiwiel’s proof of [11, Theorem 3.3].

Theorem 5 (Convergence: 0 = νopt = opt ) Suppose f : R
n → R satisfies H. Let {xk}

be a sequence generated by the GS Algorithm with ν0 0 ∈ R++, θ , θν ∈ (0, 1), and
opt = νopt = 0. With probability 1 the algorithm does not terminate in line (ii) and one of
the following must occur:

(a) There is a k0 ∈ N such that ∇f (xk0) = 0 and the algorithm terminates.
(b) f (xk) ↓ −∞.
(c) 0 < ν̄ := infk νk and the sequence converges to some x̄ ∈ R

n for which at least one of
the three conditions in (9) must be violated, that is, either

∅ = ∂̄f (x̄), 0 ∈ ∂̄f (x̄), or − proj∂̄f (x̄) (0) /∈ int (∂̄∞f (x̄))∗. (14)

(d) νk ↓ 0 and every cluster point x̄ of {xk} (if one exists) satisfies 0 ∈ ∂̄f (x̄).

Moreover, if f is locally Lipschitz, then outcome (c) cannot occur.

Proof If f is locally Lipschitz, then the result follows from [11, Theorem 3.3]. The assump-
tions on the function f imply that, with probability 1, the algorithm does not terminate
in line (ii) of the GS Algorithm and we can assume {xk,1, . . . , xk,m} ⊂ D for all k (see
Remark 3). We also assume that neither (a) nor (b) occurs and show that either (c) or (d)
must occur. Let J ⊂ N be those iterations for which xk = xk+1. Observe that if J is finite
with maximum value k0, then ∇f (xk0) = 0, hence, J is infinite. Since

f (xk+1) ≤ f (xk) − βtk gk ∀ k ∈ N,

the sequence {f (xk)} is non-increasing and bounded below, and so has a limit f̃ . Summing
this inequality over k and taking the limit tells us that

β

∞

k=1

xk+1 − xk gk ≤ β

∞

k=1

tk gk ≤ f (x0) − f̃ < ∞, (15)
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where the first inequality follows from lines (viii)-(x) of the GS algorithm. In particular,
xk+1 − xk gk →0. We decompose this fact into two mutually exclusive possibilities:

either 0 < ν̄ := infk νk or νk ↓ 0.
Let us first suppose that 0 < ν̄ := infk νk . By lines (v) and (vi) of the algorithm, 0 <

¯ := infk k and ν̄ ≤ infk∈J gk . Therefore, (15) tells us that ∞
k=1 xk+1 − xk < ∞

and tk ↓ 0. In particular, this implies that the sequence {xk} is Cauchy, and so there exists
x̄ such that xk → x̄. Assume to the contrary that none of the conditions in (14) holds, or
equivalently, the hypotheses of Lemma 11 (9) hold at x̄. Let ∈ R++ and V ⊂ R

n

be an open set satisfying the conditions of Lemma 11. We may assume that τ < infk k .
Since for all k sufficiently large tk 3, we must have (xk1, . . . , xkm) /∈ V for all
large k. But since V is open, the probability of this event is zero. Hence, with probability 1,
Lemma 11 tells us that at least one of the three conditions in (14) must hold, that is, (c) is
satisfied.

Finally, suppose that νk ↓ 0. By line (vi) of the algorithm, k ↓ 0. Let x̄ be a cluster point
of the sequence {xk}. If there is any subsequence J ⊂ N such that

xk J→ x̄ and gk J→ 0, (16)

then 0 ∈ ∂̄f (x̄) by Lemma 6. Therefore, we assume that no such subsequence exists and
establish a contradiction. In particular, this implies that xk → x̄. Since no subsequence
satisfies (16), there exist ν̄ > 0 such that if xk − x̄ ≤ ν̄, then gk > ν̄; otherwise,
there exists J ⊂ N and ν̄k ↓J 0 and such that xk − x̄ ≤ ν̄k and gk ≤ ν̄k for all
k ∈ J which implies that J satisfies (16), a contradiction. Since x̄ is a cluster point, the set
K := k xk − x̄ ≤ ν̄ is infinite with gk > ν̄ for all k ∈ K . Since xk → x̄, we can
reduce ν̄ if necessary so that the set N \ K is infinite. Observe that inequality (15) tell us
that k∈K xk − x̄ < ∞. Let K := k xk − x̄ ≤ ν̄/3 . Again K is infinite since x̄

is a cluster point of {xk}. Both K and K ⊂ K define subsequences of {xk}. Since N \ K

is infinite, for each k ∈ K there is a k̂ > k such that k̂ /∈ K but xi ∈ K for k ≤ i < k̂.

By construction, xk̂ − xk ≥ ν̄/3 for all k ∈ K; otherwise, xk̂ ∈ K , a contradiction. By

the triangle inequality, we have ν̄/3 ≤ xk̂ − xk ≤ k̂−1
i=k xi+1 − xi for all k ∈ K . But

k∈K xk − x̄ < ∞ and K ⊂ K so that k̂−1
i=k xi+1 − xi K→ 0. This contradiction

implies that our assumption that there is no subsequence satisfying (16) is false. That is,
0 ∈ ∂̄f (x̄).

In the Lipschitzian case, Theorem 5 differs from [11, Theorem 3.3] with the introduction
of possible outcome (c). Kiwiel’s proof of [11, Theorem 3.3] shows that the case 0 <

ν̄ := infk νk does not occur if f is locally Lipschitz continuous. The absence of the case
(c) requires that ∂̄f is an osc, compact, convex valued operator whose domain is all of
R

n, in particular, it requires that f be locally Lipschitz. On the other hand, if f is not
locally Lipschitz, then ∂̄f is not locally bounded and possibly empty at some points. These
possibilities are reflected in the outcome (c), and only in (c). This does not imply that ∂̄f (x̄)

is bounded in outcome (d), but outcome (d) does require that ∂̄f (x̄) be nonempty. Note
that outcome (c) signals why νk is not reduced to zero. These observations are reviewed in
our final comments. We conclude this section by stating two corollaries that describe the
behavior of the algorithm under standard variations in the choice of of initial parameters.

Corollary 2 (Convergence: 0 opt , 0 < νopt ) Suppose f : R
n → R satisfies H. Let

{xk} be a sequence generated by the GS Algorithm with ν0 0 ∈ R++, θ , θν ∈ (0, 1) and
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0 opt , 0 < νopt . With probability 1 the algorithm does not terminate in line (ii) and one
of the following must occur:

(a) There is a k0 ∈ N such that dist 0 ∂̄ opt f (xk0) ≤ νopt and the algorithm terminates.
(b) f (xk) ↓ −∞.
(c) νopt < ν̄ := infk νk and the sequence converges to some x̄ ∈ R

n at which at least one
of the three statements in (14) is true.

Proof By assumption the algorithm does not terminate in line (ii) of the GS Algorithm with
probability 1 and we can assume {xk,1, . . . , xk,m} ⊂ D for all k (see Remark 3). Next we
assume that neither (a) nor (b) occur and show that (c) must occur. Since (a) does not occur
and ∇f (xk) ∈ ∂̄

k
f (xk), the algorithm does not terminate in step (iv) and step (v) of the

algorithm occurs at most finitely many times. Therefore, νopt < ν̄ := infk νk , the algorithm
does not terminate and the sequence {xk} is infinite. Consequently, Theorem 5 tells us that
(c) must occur and the final statement of the corollary follows.

Corollary 3 (Convergence: 0 opt = 0, 0=νopt =ν0) Suppose f : R
n → R satisfiesH.

Let {xk} be a sequence generated by the GS Algorithm with νopt = ν0 = 0, opt = 0 > 0
and 0 = θν, 1 = θ . Let J ⊂ N be those iterations for which xk = xk+1. With probability
1 the algorithm does not terminate in line (ii) and one of the following must occur:

(a) The algorithm terminates at some iteration k0 ∈ N with either ∇f (xk0) = 0 or gk0 =
0, and consequently 0 ∈ ∂̄ opt f (xk0).

(b) f (xk) ↓ −∞.
(c) The sequence {xk} is infinite with infk∈J gk > 0 in which case there exists x̄ ∈ R

n

such that xk → x̄ and at least one of the conditions in (14) is satisfied.
(d) The sequence {xk} is infinite with infk∈J gk = 0 in which case every cluster point x̄

of {xk} (if one exists) satisfies 0 ∈ ∂̄f (x̄).

Proof The proof strategy follows that of the Theorem 5. By assumption the algorithm
does not terminate in line (ii) of the GS Algorithm with probability 1 and we can assume
{xk,1, . . . , xk,m} ⊂ D for all k (see Remark 3). We also assume that neither (a) nor (b)
occurs and show that either (c) or (d) must occur. Observe that if J is finite with maxi-
mum value k0, then, by step (iv) of the algorithm, (a) occurs, hence, J is infinite. Following
the proof of Theorem 5, we have that (15) holds. We analyze the two mutually exclusive
possible outcomes infk∈J gk > 0 and infk∈J gk = 0 separately.

First suppose that ν̄ := infk∈J gk > 0. By (15), the sequence {xk} is Cauchy so that
xk → x̄ for some x̄ ∈ R

n. The argument used in Theorem 5 applies to show that one of the
conditions in (14) is satisfied.

Next suppose that infk∈J gk = 0 and x̄ is a cluster point of the sequence {xk}. As in the
proof of Theorem 5, assume that there is no subsequence J ⊂ N satisfying (16). Following
the proof of Theorem 5, we again find that 0 ∈ ∂̄f (x̄).

4 Concluding Remarks

The extension of the gradient sampling algorithm to non-Lischitzian, continuous, direc-
tionally Lipschitz functions addresses the possibility of unbounded and potentially empty
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Clarke subdifferentials. These possibilities affect both the construction of the algorithm and
the convergence results. Specifically, in line (vii) of the algorithm, we require that the direc-
tion of steepest descent be normalized to have unit magnitude since it may happen that the
sequence {gk} is unbounded. Although other normalization strategies are possible, we chose
a unit normalization for simplicity. As for the convergence results, the results differ from
the Lipschitzian case only by the inclusion of outcome (c) in Theorem 5 as well as Corol-
laries 2 and 3. This outcome occurs only if the sequence {gk} does not converge to zero in
which case it is shown that the sequence {xk} converges to a limit x̄. Lemma 11 indicates
that this can be manifested in excessively short stepsizes. Nonetheless, in this case failure
to converge to a Clarke stationary point only occurs when either ∂̄f (x̄) = ∅ or ∂̄f (x̄) is
unbounded and

−proj∂̄f (x̄) (0) /∈ int [(∂̄∞f (x̄))∗] = int dom d̂f (x̄)(·) ,

or equivalently, the regular subderivative d̂f (x̄)(·) is not continuous at the direction of
steepest descent (see Lemma 5). This observation yields two open questions in the direc-
tionally Lipschitz case. First, is it possible for ∂̄f (x̄) = ∅, and if so, when does this occur?
Second, is there a way to modify the search direction so that the iterates are not attracted
to non-stationary points at which −proj∂̄f (x̄) (0) /∈ int (∂̄∞f (x̄))∗, or is this a fundamental
limitation of the method?

Finally, we note that the class of directionally Lipschitz functions is still not sufficiently
broad to capture the non-symmetric spectral functions even though the method has success-
fully been applied in this case [4–6]. For these functions, there is still much more work to
do and it is likely that a very different approach to the convergence analysis is required.
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