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Abstract
In many practical applications models exhibiting chance constraints play a role. Since, in
practice one is also typically interesting in numerically solving the underlying optimization
problems, an interest naturally arises in understanding analytical properties, such as dif-
ferentiability, of probability functions. However in order to build nonlinear programming
methods, not only knowledge of differentiability, but also explicit formulæ for gradients
are important. Unfortunately, differentiability of probability functions cannot be taken for
granted. In this paper, motivated by applications from energy management, wherein we
face a variety of non-linear transforms of underlying Elliptical distributions, we investigate
probability functions acting on decision dependent union of polyhedra. Union of polyhedra
naturally occur as soon as one approaches the components of “difference-of-convex” (DC)
functions with their respective cutting plane models. In this work, we will establish that the
probability functions are locally Lipschitzian and exhibit explicit formulæ for “the” Clarke
sub-gradients, under very mild conditions. We also highlight, on a numerical example, that
the formulæ can be put to use “in practice”.
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1 Introduction

Handling uncertainty affecting constraints is a key feature of many optimization problems
from practice. In a great deal of these applications, it is meaningful to consider the deci-
sion structure to be such that decisions have to be taken prior to observing uncertainty. As
a consequence, the effect of both the decision and uncertainty vector impact the underly-
ing inequality systems of the optimization problem at hand. It thus only becomes known
a posteriori if the resulting inequalities are met. This raises the question of what meaning
should be given to this underlying “random inequality system”. Here, probabilistic con-
straints provide an intuitive tool. One requests that the underlying inequalities hold true
with sufficiently large probability level. The requested probability level becomes a param-
eter that the user can adjust, within reasonable range, to reflect a certain risk aversion.
Likely, because of the intuitive strength, probabilistic constraints have become very popular,
which becomes apparent from the vast literature describing applications. We care to men-
tion one such field: energy management. Therein one can be interested in “cost”-optimally
handling various generation assets. Uncertainty manifests itself through intermittent gener-
ation (wind turbines, solar panels) and random fluctuating load. The decisions are subject
to constraints that reflect to some degree physical restrictions, or even best practice rules
(e.g., avoiding premature ageing of components). It is also frequent, within a certain scope,
that some key decisions have to be taken ahead of time. As an example of a possible proba-
bilistic constraint in this context, one can think of ensuring, with large probability, sufficient
generation to meet load. We refer to [1–4] for various introductory texts on probabilistic
constraints. We recall that in a general setting a probabilistic constraint is of the following
form

P[g(x, ξ) ≤ 0] ≥ p,

wherein g : R
n × R

m → R
k is a continuous map, p defines a confidence level, and ξ

a random vector defined on an appropriate probability space. In current literature chance-
constraints are either studied as “conventional” constraints ϕ(x) ≥ p, with ϕ(x) :=
P[g(x, ξ) ≤ 0] or by using scenario approaches, with a trade-off between numerical effi-
ciency and approximation quality. Although in this work we will study probability functions
from the “non-linear” programming viewpoint thus following the first path, we also briefly
mention a wide variety of other approaches, mostly numerical, to handle probability func-
tions. Indeed, popular methods for dealing with probabilistic constraints are sample-based
approximations, e.g., [5–11] with various strenghtening procedures, e.g., [12] ; recent trends
involve a combination of sampling and smoothing and exhibit promise, e.g., [13, 14] ;
boolean approaches, e.g., [15, 16] ; p-efficient point based concepts, e.g., [17–23] ; robust
optimization [24, 25] ; penalty approach [26] ; scenario approximation [27, 28] ; convex
approximation [29] or yet other approximations [30–32].

In this paper, our motivation stems from an energy application. We are for instance inter-
ested in accounting for uncertainty jointly in load, wind and inflows. Then, as it turns out, the
underlying inequality system on which the probabilistic constraint acts is of the “difference-
of-convex” type in the argument represented by the random vector (see Example 1.1 for
an explicit description). When approximating the underlying (convex) component functions
with their cutting plane models, we actually end up with unions of polyhedra. Therefore, in
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this paper we will be interested in investigating (generalized) differentiability of probability
functions ϕ : Rn → [0, 1] of the following form

ϕ(x) = P[ξ ∈
�⋃

j=1

Mj(x)], (1)

where Mj(x) = {
z ∈ R

m : Aj (x)z ≤ bj (x)
}
, Aj , bj are a continuous matrix and vec-

tor valued maps respectively and ξ ∈ R
m is assumed to be elliptically symmetrically

distributed. We are interested in considering finite unions, i.e., � < ∞ is implicitly assumed.
Although [30] also consider probability functions and DC optimization, their approach

is quite different. Indeed an approximation of the indicator function is constructed using a
DC function. In this work however we fully study the probability function and its properties,
thus providing quite a different approach.

The following example makes precise what happens when g is “difference-of-convex”
in the second argument.

Example 1.1 Let us consider the following situation g : Rn ×R
m → R where g admits the

following representation
g(x, z) = g1(x, z) − g2(x, z), (2)

where g1 and g2 are both convex in the second argument. We refer to such functions as
DC in their second argument. From [33, Proposition 4.1], it is well known that finite max-
ima of DC functions are also DC, and we here recall an explicit DC formulation. Should
g(x, z) = maxi∈I(hi(x, z)) = maxi∈I(h1,i (x, z) − h2,i (x, z)) hold for a finite index set I
with h1,i , h2,i both convex in their second argument, then g1(x, z) = maxi∈I(h1,i (x, z) +∑

j∈I\{i} h2,j (x, z)) and g2(x, z) = ∑
i∈I h2,i (x, z) is a valid DC decomposition. As a

consequence, we may restrict our attention to the situation wherein g is a scalar function
without loss of generality.

Let us moreover assume that both g1 and g2 are polyhedral in the second argument and
so uniformly (in the first). This assumption can be naturally encountered in the field of DC
optimization where some algorithms make use of polyhedral approximation of the first and
second components, as in “cutting-plane models”. Then for some �1, �2 ≥ 1 it follows:

g1(x, z) = max
i=1,...,�1

{
ai

1(x) +
〈
si

1(x), z
〉}

, (3)

and
g2(x, z) = max

j=1,...,�2

{
a

j

2 (x) +
〈
s
j

2 (x), z
〉}

, (4)

for appropriate scalar and vector valued functions x �→ ai
k(x), x �→ si

k(x), i = 1, ..., �k ,
k = 1, 2.

Now when looking at the constraint g(x, z) ≤ 0 and the impact on z, thanks to the
previously exhibited structure, we can rewrite this as:

min
j=1,...,�2

max
i=1,...,�1

ai
1(x) +

〈
si

1(x), z
〉
− a

j

2 (x) −
〈
s
j

2 (x), z
〉
≤ 0, (5)

or when introducing, for j = 1, ..., �2, the set-valued maps Mj : Rn ⇒ R
m defined as:

Mj(x) :=
{
z ∈ R

m : (si
1(x) − s

j

2 (x))Tz ≤ a
j

2 (x) − ai
1(x), i = 1, ..., �1

}
(6)

it becomes clear that {z ∈ R
m : g(x, z) ≤ 0} =⋃�2

j=1 Mj(x): a finite union of polyhedra.

Derivatives of Probability Functions: Unions of Polyhedra... 489



It thus holds that

P[g(x, ξ) ≤ 0] := P[ξ ∈
�2⋃

j=1

Mj(x)],

which is exactly the structure we will investigate in this work.

In our targeted applications, the non-linear mapping ϕ of (1), will be part of a constraint
of the form ϕ(x) ≥ p, where p ∈ [0, 1] is a user defined safety level. Should one actually
seek to solve such an application with numerical software, then one requires knowledge
of properties of ϕ. Primordial, th0en would be knowledge of “first-order” information, but
evidently also some numerical procedure to efficiently compute such information. Since
understanding differentiability is relatively natural, it is not surprising that this property has
indeed received significant attention. Differentiability, however, can not be asserted without
additional regularity properties. One form of such a regularity condition is for instance the
assumption that the set

K := {z ∈ R
m : g(x, z) ≤ 0

}

is bounded near or at a point of interest x̄. Alternatively one can assume that the density
function of the random vector ξ has compact support. A condition of either form can be
found in [34–42]. While the just given condition is one among other conditions needed to
obtain smoothness of ϕ, this particular one is interesting to highlight as its relaxation brings
more complexity to the analysis and may result in non-smoothness.

To continue our historical account, let us briefly mention that a first formula, in the form
of an involved surface integral, for the gradient of a probability function was derived in [38].
It turned out that this formula could in fact be generalized by employing a combination of
a surface and volume integral (e.g., [41, 42]). The transformation to a volume integral is
interesting in the respect that it ensures that the integration domain will no longer depend on
the decision vector (e.g., see [36], who was first to make this observation). As a result, the
above mentioned papers provide gradient formulæ for relatively general classes of distribu-
tions. Although the results are very general, the mentioned surface/volume integrals are not
immediate to transpose to numerical computer code. This is especially true when the map-
ping g is non-linear. We refer to [1, p. 207], [40, p.3], where this observation is also made.
Furthermore, beyond this first point, the above stipulated compactness condition on K (e.g.,
[41, p. 200, Assumptions (A2)], [40, Assumption 2.2 (i)],[37, p. 902]) is also somewhat
restrictive. For instance it rules out the consideration of distribution functions. Nonetheless,
let us mention shortly [35, Remark 4.6] wherein an abstract integrability condition is sug-
gested as replacement for the compactness condition. By taking a slightly different stance,
and upon assuming the random vector ξ to belong to a specific class of distributions, it turns
out that some of the “abstract conditions” just mentioned, can in fact be tied in with nomi-
nal properties of the underlying data. Such underlying properties can be related to verifiable
conditions on the mapping g. The rich class of elliptically symmetric random vectors has
turned out quite promising. In particular it has allowed a relaxation of the compactness con-
dition previously mentioned. We refer to [43–49] for various works in this line of research.
In these previously cited works, the inequality system g is assumed to be convex in the sec-
ond argument. The pioneering works [39, 40] request rather a “star-shaped” structure and
append a regularity condition (Assumption 2.2(iii) [40]) to avoid a certain degeneracy. It
was also possible to allow x to be an element of an appropriate Banach space [47]. For as
far as we are aware, the only work not requiring convexity in the second argument is [50].
The latter paper carefully discusses the potential issues caused by relaxing this require-
ment. In our situation too, we will relax this convexity request in the second argument. Our
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contribution therefore resides in being able to cover significantly more situations than our
prior analyses allowed. We are also currently working on a different intermediate loosely
related approach, [51] wherein we will be able to handle constraints that contain either the
“convex” or “concave” part of a “DC” inequality, but not both. The extension to that set-
ting, while not having polyhedrality as here, requires a completely different analysis from
what is investigated here. Moreover the random vector ξ can be relatively arbitrary whereas
it is elliptically symmetric here. In a situation of possible overlap however, the formulae
presented in this work is more efficient computationally.

Let us also observe that the use of tools from non-smooth analysis provide a rather
powerful methodology for the analysis of probabilistic constraints. They typically allow us
to obtain sub-differential inclusions and even assert that the probability function itself is
locally Lipschitzian. Additional “qualification” conditions then allow us to assert that in
fact the probability function was smooth at a given trial point. We expect this to be the regu-
lar situation. In the current work we present a readily verifiable condition of such kind. The
subdifferential inclusions can themselves also be put to use in deriving enlarged optimality
conditions. Designing dedicated robust optimization algorithms for the general non-smooth
and non-convex situation is an open research topic for future developments.

This work is organized as follows. Section 2 provides background material, carefully
presenting the setting. In order to properly study (1), we will analyse in Section 3 the case
where only one polyhedron is at hand, which amounts to setting � = 1. A novel analysis
is required, since a previously made assumption on the position of the mean vector of ξ is
relaxed. This entails the need to carefully partition the space into mutually disjoint open and
closed sets. Re-uniting the results on the whole space requires in turn the study of specific
limits.

Section 4 builds upon our study of the single polyhedral case to provide efficient
estimates for the sub-differential of ϕ when dealing with a finite union of polyhedra.

Finally Section 5 highlights on a numerical example how the formulæ can be put to use
in practice.

Our notation is essentially standard. We therefore mention only the use of ∂C to denote
Clarke’s sub-differential.

2 Discussion of BackgroundMaterial

2.1 Elliptical Distributions

Since elliptically symmetric random vectors play a vital role in our analysis, we will lay
down in this section, not only the definition, but also some of the heavily employed results.

Definition 2.1 A random vector ξ ∈ R
m is said to be elliptically symmetrically distributed

with mean m, covariance-like1 matrix � and generator θ : R+ → R+, and this will be
denoted by ξ ∼ E(m, Σ, θ), if and only if its density fξ : Rm → R+ is given by

fξ (z) = ( det Σ
)−1/2

θ

(
(z − m)TΣ−1(z − m)

)
, (7)

1It is the covariance matrix up to a scalar factor, see, e.g., Theorem 2.17 [52]
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where the generator function θ : R+ → R+ must satisfy∫∞
0 t

m
2 θ(t)dt < ∞.

The covariance-like matrix � will be assumed to be positive definite and throughout this
manuscript the matrix L will designate the resulting Choleski factor, i.e., Σ = LLT. With
this notation in place, we can show that ξ can be represented alternatively as follows:

ξ = m + RLζ . (8)

In this decomposition, the random vector ζ has a uniform distribution over the Euclidean m-
dimensional unit sphere S

m−1 := {z ∈ R
m : ∑m

i=1 z2
i = 1}. The random variable R, which

is independent of ζ , possesses a density, by virtue of ξ having one, and the corresponding
density function has the following analytical form:

fR(r) :=
{

2π
m
2

�( m
2 )

rm−1θ(r2), if r > 0

0, if r ≤ 0.

In our work we will make the mild blanket assumption that θ is continuous, which entails
continuity of fR. Moreover, with R we associate the distribution function FR. We can
observe that FR(0) = 0 holds true.

The just described family of elliptical symmetric random vectors is quite rich. As promi-
nent examples, we can state that it contains Gaussian and Student random vectors, but
also logistic or exponential power random vectors (see e.g. [52] and [53]). The Gaussian
and Student random vectors fall in this class upon considering respectively the following
generators

θGauss(t) = exp(−t/2)/(2π)m/2

θStudent(t) = Γ
(

m+ν
2

)

Γ
(

ν
2

) (πν)−m/2(1 + t

ν

)− m+ν
2 ,

where Γ is the usual gamma-function.

2.2 Representing the probability function through the spherical radial
decomposition

As a consequence of (8), for any Lebesgue measurable set M ⊆ R
m the following identity

holds:

P[ξ ∈ M] =
∫

v∈Sm−1

μR ({r ≥ 0 : m + rLv ∩ M �= ∅}) dμζ (v), (9)

where μR and μζ are the laws of R and ζ , respectively. Therefore, in particular for any
j = 1, ..., �, it follows that

P[ξ ∈ Mj(x)] =
∫

v∈Sm−1

μR
({r ≥ 0 : r(Aj (x)Lv) ≤ (bj (x) − Aj (x)m)}) dμζ (v), (10)

and consequently (1) can be written in the following form:

ϕ(x) =
∫

v∈Sm−1

μR
({r ≥ 0 : ∃j = 1, ..., � : r(Aj (x)Lv) ≤ (bj (x) − Aj (x)m)}) dμζ (v).

(11)
There is an immediate keen advantage to representation (11) when it comes to numerical
evaluation. As observed (e.g., [43, eq. (1.5)]), representation (11) allows for a reduction in
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sample variance when compared directly with sampling from the “native” representation
(1).

2.3 Continuity of the probability function

Before discussing differentiability of the probability function at all, let us first try to come
to insights regarding continuity. In our argumentation, we will require the upcoming classic
result. Let us briefly recall that the result is easily shown through application of induction
and elementary properties of measures, e.g., [54, Satz 1.7(b)].

Lemma 2.1 (Inclusion-Exclusion Formula) Consider a finite measure space (�,μ,A) and
let a finite family Bi ∈ A, i ∈ I be given. Then:

μ(
⋃

i∈I

Bi) =
∑

J⊆I,J �=∅
(−1)|J |+1μ(

⋂

j∈J

Bj ). (12)

We can thus already observe that ϕ in (11) can be expressed as a finite, involved, sum of
terms akin to those of (10), involving various intersections of polyhedra.

For these latter polyhedra, i.e., for an arbitrary J ⊆ {1, ..., �}, we can assume without loss
of generality that MJ (x) := {

z ∈ R
m : Aj (x)z ≤ bj (x), j ∈ J

}
has non-empty interior.

Indeed should that be true on a set of strictly positive measure of R
n, using continuity

arguments, this would hold on R
n: we could discard the corresponding “empty” polyhedra

from the union of polyhedra. We may thus assume that x is such that MJ (x) has non-empty
interior. Moreover, it is well known that MJ (x) := {

z ∈ R
m : Aj (x)z ≤ bj (x), j ∈ J

}

satisfies the regularity condition:

bd
{
z ∈ R

m : Aj (x)z ≤ bj (x), j ∈ J
} ⊆ {z ∈ R

m : ∃j ∈ J, max
{
Aj (x)z − bj (x)

} = 0
}
,

whenever MJ (x) is not empty, and none of the rows of Aj (x) are the null vector. Observe
under these assumptions that the set

{
z ∈ R

m : Aj (x)z = bj (x)
}

is of at most dimension
m − 1 and thus a Lebesgue null set (in R

m). Therefore, since ξ admits, by assumption, a
density with respect to the Lebesgue measure, it follows, from well known arguments that
x �→ P[ξ ∈ MJ (x)] is continuous (see, e.g., Propositions 2 and 3 [55]). It thus follows from
Lemma 2.1 that ϕ is also continuous. It should be observed here that it is not immediate
that ϕ possesses further regularity! To this end, let us briefly recall an example that we have
already cited in many earlier works, but care to provide once more for the convenience of
the reader.

Example 2.1 (Example 1 in [56, 57]) Let ξ ∼ N (0, 1) and B = (
1 1
)T

be given. Now
observe that the identity ϕ(x) = P[Bξ ≤ x] = P[ξ ≤ min {x1, x2}] holds true. Observe
also that this example fits the structure (1), by setting � = 1, M1(x) = {z ∈ R : Bz ≤ x}.
Since the mapping ϕ consists of the evaluation of the 1-dimensional Gaussian distribution
function on min {x1, x2}, it fails to be differentiable on the line x1 = x2.

2.4 Growth condition

Much like continuous differentiability that can not be taken for granted, it is also not nec-
essarily true that ϕ is locally Lipschitzian. The latter, will require the somewhat involved
analysis of Section 3, but also a certain growth condition that we will now introduce.
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Definition 2.2 (First-order polynomial growth condition) Let ξ ∈ R
m be elliptically sym-

metrically distributed with associated radial density function fR : R+ → R+. Then we say
that ξ or fR is compatible with the first order polynomial growth condition if and only if:

lim
r→∞ fR(r)r2 = 0. (13)

Observe also that the growth condition can be immediately expressed in terms of the
generator:

lim
r→∞ rm+1θ(r2) = 0.

Remark 2.1 Table 1 in [45] provides a large family of radial distributions compatible with
this first order polynomial growth condition. When ξ is multivariate Gaussian random, the
condition is satisfied. It also holds for multivariate Student random vectors ξ , whenever the
related degrees of freedom ν is larger than 1.

3 Polyhedra in General Position

In order to work out the full situation considered in (1), let us first focus on the case � = 1,
that is a probability function of the form

ϕ(x) = P[g(x, ξ) ≤ 0], (14)

wherein

g(x, z) = A(x)z − b(x),

and ξ elliptical symmetric.
Before starting our analysis, let us briefly mention already well understood cases:

– The case of Eq. 14 around a point x̄ with g(x̄,m) < 0. This situation is studied in [44]
and [45].

– The situation wherein A and b are constant, ξ is multivariate Gaussian, which are
covered by [56, 58].

– The situation wherein A is of full rank locally around a point x̄ [59], once more with ξ

multivariate Gaussian.

The position of the polyhedra is characterized as general as we abandon the assumption
g(x̄,m) < 0, and only discard some troublesome cases at the margin that we will discuss.

This assumption was convenient, since it allowed us to assert a certain non-degeneracy
of vital terms in our analysis. The general difficulty is well illustrated in [50] and we will
thus require a fundamentally extended non-trivial analysis. This will be the topic of the
current section. Prior to this topic, we care to mention that we make extensive use of the
spherical-radial representation of ξ (8) which offers a didactic geometric interpretation. As
described by (10), computing ϕ amounts to computing the spherical integral of measures
along directions which are functions of v. It is readily seen that the integrand values are
dependent on the position of the mean vector m, on direction v, and on the polyhedron state
for a given x value. Our first steps will then be to carefully partition space accordingly.
We will then analyse the variation of the integrand on each of the partition subsets, before
providing a concluding result over the whole initial set.
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3.1 Partitioning the space

A polyhedron is the intersection of hyperplanes. We’ll start by looking at a single row i =
1, ..., p of A(x), where p denotes the number of rows of this matrix. Studying the behaviour
of gi(x,m+rLv) will naturally lead to the partition of space of variables (x, v), as we show
in this subsection.

Should a neighbourhood U of x̄ be given on which for x ∈ U , ai(x)Tm > bi(x) holds
true, then

{r ≥ 0 : gi(x,m + rLv) ≤ 0} =
[

bi(x) − ai(x)Tm

ai(x)TLv
, ∞
)

, (15)

for all v ∈ S
m−1 for which ai(x)TLv < 0. For all v ∈ S

m−1, with ai(x)TLv ≥ 0, it
holds that {r ≥ 0 : gi(x,m + rLv) ≤ 0} = ∅. Both facts are immediately checked through
straightforward computation.

Should we be given a neighbourhood U of x̄ on which, for x ∈ U , ai(x)Tm < bi(x)

holds true, then

{r ≥ 0 : gi(x,m + rLv) ≤ 0} =
[

0,
bi(x) − ai(x)Tm

ai(x)TLv

]
, (16)

for all v ∈ S
m−1 for which ai(x)TLv > 0. For all v ∈ S

m−1, with ai(x)TLv ≤ 0, it holds
that {r ≥ 0 : gi(x,m + rLv) ≤ 0} = [0, ∞).

Let us lay down formally our trial point of interest:

Assumption 1 Let x̄ ∈ R
n be given such that ai(x̄)Tm �= bi(x̄) for all i = 1, ..., p.

Let us thus distinguish and separate the index set {1, ..., p} = I+ ∪ I− as well as fix the
neighbourhood U of x̄ with ai(x)Tm < bi(x) for all i ∈ I+ and x ∈ U ; ai(x)Tm > bi(x)

for all i ∈ I− and x ∈ U . As already argued, we will assume the existence of i = 1, ..., p
such that ai(x)Tm > bi(x) holds on an appropriate neighbourhood U of the point of interest
x̄. This condition translates as I− being not empty. It is still however possible for I+ to be
empty. Observe that we rule out that x̄ is such that ai(x̄)Tm = bi(x̄) for some i = 1, ..., p.
This condition, combined with definition of U , that requires the whole neighbourhood to
verify strict inequalities, ensures the local stability with respect to x of our index sets I−
and I+. Following the geometric interpretation, one could notice that I− corresponds to
the set of hyperplane indices that (strictly) do not include mean vector m for x ∈ U ;
symmetrically, I+ corresponds to hyperplane indices that strictly include m. Additionally,
one could see that the intersection of the closed half-line emanating from m and of direc-
tion v and the hyperplane defined by row i of A and b is intrinsically related to the sign
of ai(x)TLv. Figure 1a provides a visualization of these index sets as well as the general
context.
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Fig. 1 a Illustration of the partition I+, I− as well as the resolvant mappings r1, r2 for a case where (x, v) ∈
B−. b Illustration of the partition of U × S

m−1. The dotted set is B−, while A+ is the darker set. Sets with
dashed inner linings are closed, the other ones being open

These observations will allow us to partition the set U × S
m−1 usefully, with the help of

the following sets:

Definition 3.1 Let x̄ ∈ R
n be given as by Assumption 1 and let U be the neighbourhood of

x̄ on which the index sets I−, I+ are stable. Define the following subsets of U × S
m−1:

B− =
{
(x, v) ∈ U × S

m−1 : ai(x)TLv < 0, ∀i ∈ I−} , (17a)

O− =
{
(x, v) ∈ U × S

m−1 : ai(x)TLv ≤ 0, ∀i ∈ I− ∧ ∃i ∈ I− | ai(x)TLv = 0
}

(17b)

A− =
{
(x, v) ∈ U × S

m−1 : ∃i ∈ I− | ai(x)TLv > 0
}

, (17c)

B+ = {
(x, v) ∈ B− : ai(x)TLv < 0, ∀i ∈ I+} (17d)

O+ = {
(x, v) ∈ B− : ai(x)TLv ≤ 0, ∀i ∈ I+ ∧ ∃i ∈ I+ | ai(x)TLv = 0

}
(17e)

A+ = {
(x, v) ∈ B− : ∃i ∈ I+ | ai(x)TLv > 0

}
(17f)

The following lemma shows the structure of Definition 3.1and backs up Fig. 1b

Lemma 3.1 With notation as in Definition 3.1, it holds that the sets B+,O+, A+ form
a partition of B− (i.e., are mutually disjoint and their union makes up the whole set).
Furthermore the sets B+,O+, A+,O−, A− form a partition of U × S

m−1.

Proof It is clear from the definition that B+,O+, A+ are mutually disjoint, even when I+
is empty in which case O+, A+ are empty and B+ = B−. Otherwise, for an arbitrary i ∈ I+
and an arbitrary (x, v) ∈ B−, we must have ai(x)TLv < 0, ai(x)TLv = 0 or ai(x)TLv > 0.
In the third case (x, v) ∈ A+. We may thus assume that ai(x)TLv ≤ 0 for all i ∈ I+, in
which case should there be i with ai(x)TLv = 0, we deduce (x, v) ∈ O+, if not, it follows
that (x, v) ∈ B+.

For the second claim it now suffices to show that B−,O−, A− form a partition of U ×
S

m−1. The argumentation is analogous to the one just given, except that we recall that I− is
assumed to not be empty.

For any i = 1, ..., p, we can now define ri : B− → R ∪ {−∞,∞} as

ri (x, v) = bi(x) − ai(x)Tm

ai(x)TLv
, (18)
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where division “by zero” is interpreted as leading to ±∞. Our first observation is that for
i ∈ I−, and (x, v) ∈ B−, ri (x, v) ∈ (0, ∞) always. Furthermore, since B− is open,
ri is evidently continuously differentiable on this set. For any i ∈ I+ and any (x, v) ∈
A+∪B+, we observe that ri (x, v) is finite valued. Moreover ri is continuously differentiable
on A+ ∪ B+, the latter being an open set.

With the help of these mappings, we now define r1 : B− → R+ as

r1(x, v) = max
i∈I− ri (x, v) = max

i∈I−
bi(x) − ai(x)Tm

ai(x)TLv
> 0. (19)

Since r1 is the maximum of continuously differentiable maps on the open set B−, it is
locally Lipschitz there. Figure 1a shows how at a specific point (x, v), r1(x, v) = r2(x, v),
r1(x, v) being strictly smaller at this (x, v).

We can also define r2 : B− → R+ ∪ {∞} as follows:

r2(x, v) =
{

supt t

s.t. tai(x)TLv ≤ bi(x) − ai(x)Tm, i ∈ I+

It now follows that Dom(r2) = A+ and with I(x, v) = {
i ∈ I+ : ai(x)TLv > 0

}
(being

locally stable), it follows that r2(x, v) = mini∈I(x,v) ri (x, v) = mini∈I(x,v)
bi (x)−ai (x)Tm

ai (x)TLv
>

0 and this mapping is once more locally Lipschitzian on its domain (being open). This
follows from Lemma 3.1 [44], when considering a reduced inequality system to the index
set I+.

From a practical point of view, one could have the following interpretations:

– at a given (x, v) ∈ B−, r1(x, v) is the largest distance r ≥ 0 on the half-line from m in
direction v before reaching the intersection of all hyperplanes defined by rows of I−.

– At a given (x, v) ∈ A+, r2(x, v) is the smallest distance r ≥ 0 on the half-line from m

in direction v before leaving any hyperplane defined by rows of I+.

Now it is readily visible in (11) that the value of the integrand depends on the order
between r1(x, v) and r2(x, v). Depicted in Fig. 1a is the particular case where r1(x, v) <

r2(x, v) but obviously this does not hold in general. We may therefore partition further the
set A+ as follows:

A+− = {(x, v) ∈ A+ : r1(x, v) > r2(x, v)
}

(20a)

A+0 = {(x, v) ∈ A+ : r1(x, v) = r2(x, v)
}

(20b)

A++ = {(x, v) ∈ A+ : r1(x, v) < r2(x, v)
}

(20c)

(20d)

and it follows, from the previous observations, that A+−, A++ are both open (since r1, r2
are continuous). Based on this partition, we will now provide an explicit representation of
the integrand occurring in the spherical radial representation (10) that will be called e.

3.2 Studying and representing the inner radial probability function: e

We now define the mapping e : U × S
m−1 → [0, 1] as

e(x, v) = μR ({r ≥ 0 : r(A(x)Lv) ≤ (b(x) − A(x)m)}) , (21)

and recall that ϕ(x) = ∫
v∈Sm−1 e(x, v)dμζ (v) as a result of (10).

Due to the preparatory material above, we can now provide a full partition-wise
description of e:
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Lemma 3.2 The mapping e : U × S
m−1 → [0, 1] specified in (21) is also given by:

e(x, v) =
⎧
⎨

⎩

0 if (x, v) ∈ A− ∪ O− ∪ A+− ∪ A+0

1 − FR(r1(x, v)) if (x, v) ∈ B+ ∪ O+
FR(r2(x, v)) − FR(r1(x, v)) if (x, v) ∈ A++

. (22)

Proof It holds:

{r ≥ 0 : g(x,m + rLv) ≤ 0} =
p⋂

j=1

{
r ≥ 0 : gj (x,m + rLv) ≤ 0

}
. (23)

Observe that on O− ∪A−, there exists j ∈ I− for which
{
r ≥ 0 : gj (x,m + rLv) ≤ 0

} =
∅. Hence, e(x, v) = 0 on these sets. Moreover for all (x, v) ∈ B− and j ∈ I−, (15) holds
true. It thus follows that

⋂

j∈I−

{
r ≥ 0 : gj (x,m + rLv) ≤ 0

} = [r1(x, v), ∞).

For (x, v) ∈ O+ ∪ B+, r2(x, v) = ∞ and hence

{r ≥ 0 : g(x,m + rLv) ≤ 0} =
⋂

j∈I−

{
r ≥ 0 : gj (x,m + rLv) ≤ 0

} = [r1(x, v),∞),

so that e(x, v) = 1 − FR(r1(x, v)).
Finally on A+, (16) holds true and recalling also Lemma 3.2 [44], we have

⋂

j∈I+

{
r ≥ 0 : gj (x,m + rLv) ≤ 0

} = [0, r2(x, v)).

It thus remains to work out the intersection of [r1(x, v),∞) and [0, r2(x, v)], which is the
interval [r1(x, v), r2(x, v)] on A++ ∪A+0 (reduced to a singleton on the last set) and empty
on A+−. The proof is thus complete.

3.3 Useful partition-wise limits

The main focus of the lemmas in this section is to characterize the asymptotic behaviour of
the sub-differential of e over certain subsets of our partition. These lemmas will be useful
to go from an initial subset-wise study to the unified result over U × S

m−1. In particu-
lar, asymptotic studies are necessary along sequences from within an open subset of our
partition to a neighbouring closed subset. Difficulties arise from the fact

mapping r1 and r2 can, in principle, reach arbitrarily large values: we will need to care-
fully study the behaviour of “their” sub-differentials under such limits. This will be the topic
of the current section. First, we will concentrate on r2, for which the result follows relatively
analogously to earlier established results.

Lemma 3.3 Let fR be compatible with a 1st order polynomial growth condition (see Def-
inition 2.2). Let (xk, vk) ∈ A+ be a sequence such that (xk, vk) → (x̄, v̄) ∈ O+, then it
holds that

i) r2(xk, vk) → ∞
ii)

lim
k→∞ fR(r2(xk, vk))∂

C
x r2(xk, vk) = {0} ,

where the last limit is to be understood in the Painlevé-Kuratowski sense.
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Proof We may observe here that r2(x, v) on A+ is the unique solution (in r) to the equation

max
j∈I+ gj (x,m + rLv) = 0,

where g is convex in the second argument (it is actually linear therein) and g(x,m) < 0
holds true. The first item thus follows from Lemma 2.4 [44], which can be applied when
restricting the analysis to the subsystem defined by the index set I+. The second item
follows from Lemma 3.4 [44].

The analogue of Lemma 3.3 for r1 is novel and requires carefully working out several
estimates.

Lemma 3.4 Let fR be compatible with a 1st order polynomial growth condition. Let
(xk, vk) ∈ B− be a sequence such that (xk, vk) → (x̄, v̄) ∈ O−, then it holds that

i) r1(xk, vk) → ∞
ii)

lim
k→∞ fR(r1(xk, vk))∂

C
x r1(xk, vk) = {0} ,

where the last limit is to be understood in the Painlevé-Kuratowski sense.

Proof The first item is an immediate consequence of the fact that along any sequence
(xk, vk) → (x̄, v̄) ∈ O−, there must exist an index i ∈ I− such that ai(xk)

TLvk → 0. Thus
from the definition of r1, it follows immediately that r1(xk, vk) → ∞.

As for the second point, observe first that for all (x, v) ∈ B−,

∂Cx r1(x, v) = Co
{∇xri (x, v) : i ∈ I−(x, v)

}
,

with I−(x, v) := {
i ∈ I− : ri (x, v) = r1(x, v)

}
being the active index set. Indeed, each

mapping ri is continuously differentiable on B− and has gradient:

∇xri (x, v) = (bi(x) − ai(x)Tm)∇ai(x)Lv − (ai(x)TLv)∇bi(x)

(ai(x)TLv)2
.

We claim that there exists a constant C > 0, such that ‖∇xri (x, v)‖ ≤ Cri (x, v)2. This
can be seen as follows,

‖∇xri (x, v)‖ ≤
∣∣bi(x) − ai(x)Tm

∣∣ ‖∇ai(x)Lv‖
(ai(x)TLv)2

+
∣∣ai(x)TLv

∣∣ ‖∇bi(x)‖
(ai(x)TLv)2

=
∣∣bi(x) − ai(x)Tm

∣∣2

(ai(x)TLv)2

(
‖∇ai(x)Lv‖∣∣bi(x) − ai(x)Tm

∣∣ + ‖∇bi(x)‖
∣∣bi(x) − ai(x)Tm

∣∣2

)

= (ri (x, v))2

(
‖∇ai(x)Lv‖∣∣bi(x) − ai(x)Tm

∣∣ + ‖∇bi(x)‖
∣∣bi(x) − ai(x)Tm

∣∣2

)
.

With the fact that we can assume the neighbourhood U to be compact, (bi(x) − ai(x)Tm)

to be non vanishing, we may assume that
∣∣bi(x) − ai(x)Tm

∣∣ > δ for all x ∈ U . The matrix
L is regular, i.e., Lv �= 0, and the continuous maps x �→ ‖∇ai(x)‖, x �→ ∇bi(x) and
x �→ ‖ai(x)‖ can be assumed to have an upper bound on U . We may thus indeed assume
given, a constant C > 0, such that ‖∇xri (x, v)‖ ≤ Cri (x, v)2 as claimed.
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Consequently,

lim
k→∞ ‖fR(ri (xk, vk))∇xri (xk, vk)‖ ≤ lim

k→∞ fR(ri (xk, vk)) ‖∇xri (xk, vk)‖ (24)

≤ lim
k→∞ CfR(ri (xk, vk))(ri (xk, vk))

2 = 0, (25)

where the last limit results from item 1 combined with Definition 2.2.
Now any sk ∈ fR(r1(xk, vk))∂

Cr1(xk, vk) is of the form:

sk =
∑

j∈I−
λk

jfR(rj (xk, vk))∇xrj (xk, vk),

with λk
j simplex weights such that λk

j = 0 if j /∈ I−(xk, vk). Since λk
j belongs to the unit

simplex of dimension I−, it must admit a cluster point, moreover all right hand side terms,
admit zero as limit. It thus follows that sk → 0 and the result is shown.

Prior to continuing we now need to establish that certain limits, within our partition can
not exist:

Lemma 3.5 There can not exist any sequence (xk, vk) ∈ A+0∪A+− with limit (x̄, v̄) ∈ O+
(likewise with B+).

Proof Any such sequence belongs to A+, which is disjoint from B+, both sets are open.
Continuity of the data shows that one has to move through O+, thus the statement holds
for the case B+. Observe now that on B−, r1 is locally Lipschitz and finite valued. Further-
more, as a result of Lemma 3.3 any sequence in A+ tending to a limit in O+ must have
r2(xk, vk) → ∞. Now let us assume by contradiction the existence of some sequence in
A+0 ∪ A+− tending to (x̄, v̄) ∈ O+ and let W be the neighbourhood of (x̄, v̄) on which
r1 is locally Lipschitzian. We may in particular pick W to be compact and assume given
some M > 0 such that r1(x, v) < M for all (x, v) ∈ W . Of course for k sufficiently large
(xk, vk) ∈ W . But for k (possibly even larger), sufficiently large as well r2(xk, vk) > M

must hold true equally. Then for such k we have r1(xk, vk) ≤ M < r2(xk, vk) so that by
definition (xk, vk) ∈ A++ must hold true, which contradicts our assumption.

3.4 On the partial subgradients of e

Now that some of the preparatory material has been laid out, we turn our attention to the
identification of the sub-differential of e. First, on part of the set U × S

m−1, the partial
sub-differential of e with respect to x is easily identified.

Lemma 3.6 The mapping e, given in (21), is locally Lipschitzian on the open set A−∪B+∪
A++ ∪ A+− and has partial Clarke derivative, w.r.t. x satisfying:

∂Cx e(x, v) ⊆
⎧
⎨

⎩

{0} if (x, v) ∈ A+− ∪ A−
−fR(r1(x, v))∂Cx r1(x, v) if (x, v) ∈ B+

fR(r2(x, v))∂Cx r2(x, v) − fR(r1(x, v))∂Cx r1(x, v) if (x, v) ∈ A++
(26)
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Proof The sets A−, A+−, A++ and B+ are all open as already commented. In particular
on A+− ∪ A−, e = 0 so that e is continuously differentiable there and thus also locally
Lipschitzian with immediately identified Clarke subgradient.

On B+ as a subset of B−, the mapping r1 is locally Lipschitzian, the mapping FR is
continuously differentiable, by assumption, and so since e(x, v) = 1 − FR(r1(x, v)) is
locally Lipschitzian too, Clarke’s chain rule, e.g., [60, Theorem 2.3.9(ii)] yields the desired
formula.

On the open set A++, both the mapping r1 and r2 are locally Lipschitzian. Moreover
on this set we have e(x, v) = FR(r2(x, v)) − FR(r1(x, v)) and so e is, as the sum of two
locally Lipschitzian maps also locally Lipschitzian. The Clarke sum rule, [60, Proposition
2.3.3] and chain rule [60, Theorem 2.3.9(ii)] give the indicated formula.

As a final observation, we note that the generalized derivatives of r1 and r2, as finite
extrema are also immediately identified, and we will not make them fully explicit.

Our next idea is to identify a set-valued mapping which is a good candidate for “being”
∂Cx e. Observe however that for the time being we have not yet established that e is locally
Lipschitz on U × S

m−1. We therefore define the map ex : U × S
m−1 ⇒ R

n as follows

ex(x, v) =

⎧
⎪⎨

⎪⎩

{0} if (x, v) ∈ A+− ∪ O− ∪ A−
−fR(r1(x, v))∂Cx r1(x, v) if (x, v) ∈ O+ ∪ B+

Co({0} ∪ fR(r2(x, v))∂Cx r2(x, v) − fR(r1(x, v))∂Cx r1(x, v)) if (x, v) ∈ A+0

fR(r2(x, v))∂Cx r2(x, v) − fR(r1(x, v))∂Cx r1(x, v) if (x, v) ∈ A++
(27)

and observe that this map coincides with the upper-estimation found in Eq. 3.6 over the open
sets on which e was shown to be locally Lipschitz (recall Lemma 3.6). Our first endeavour
will be to establish that ex is outer semi-continuous (o.s.c.). To this end, we require the
following result:

Lemma 3.7 Let fR be compatible with a 1st order polynomial growth condition. Along
any sequence (xk, vk) ∈ A++ ∪ O+ ∪ B+ converging to (x̄, v̄) ∈ O− it holds

the last limit is to be understood in the Painlevé-Kuratowski sense.

Proof For the subsequence (xk, vk) contained in O+ ∪ B+ ⊂ B− the result follows from
Lemma 3.4, item 2. We may thus focus on the subsequence (xk, vk) contained in A++, but
then we may simply invoke the triangular inequality and use both Lemmas 3.4 and 3.3.

Lemma 3.8 Let fR be compatible with a 1st order polynomial growth condition. Along
any sequence (xk, vk) ∈ A++ ∪ A+− converging to (x̄, v̄) ∈ A+0 it holds that
lim supk→∞ ex(xk, vk) ⊆ ex(x̄, v̄).

Proof Observe first that on A+ = A++ ∪A+− ∪A+0 both r2 and r1 are well defined, finite
and locally Lipschitz. Moreover on A+, ex is nothing other than ∂Cx h(x, v), with

h(x, v) = max {FR(r2(x, v)) − FR(r1(x, v)), 0} ,

which is clearly locally Lipschitzian on A+. Moreover ∂Cx h(x, v) is outer semi-continuous
as is known, thus yielding the claim.

We can now gather all are findings into the following proposition:
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Proposition 3.1 Let fR be compatible with a 1st order polynomial growth condition.
Then the mapping ex defined in (27) is outer semi-continuous on U × S

m−1 and locally
bounded.

Proof The sets O−,O+, A+0 are closed, all the other sets open. The cases are therefore

– Convergence from within A− or A+− into O−, which is evident.
– Convergence from A++ ∪ O+ ∪ B+ into O−, which is the object of Lemma 3.7.
– Convergence to O− can not occur from within the closed set A+0.
– Convergence from within A+ to O+, which only can occur from within A++ due to

Lemma 3.5 and is thus the result of Lemma 3.3.
– Convergence from within A+− or A++ into A+0 and is the result of Lemma 3.8.

3.5 Gluing the pieces together: themain result

In order to show that e is locally Lipschitzian on U × S
m−1, we require a technical result

that allows us to bridge, the closed sets that interspace A−, B−, A++ and A+−. We thus
need to glue together in a way, the various open sets.

Lemma 3.9 (Gluing lemma) Let U ⊆ R
n be an open set, U be partitioned into U ′ open

and O (closed). Assume given the following objects:

i) f : U → [0, 1] a continuous mapping that is locally Lipschitzian on U ′, constant on
O;

ii) ∂f : U → R
n a set-valued mapping such that ∂f = ∂Cf on U ′ that is moreover outer

semi-continuous (o.s.c.) and locally bounded.

Then f is locally Lipschitzian on U and ∂Cf ⊆ Co ∂f if ∂f contains 0 on O and f is
extremal on O (i.e., takes the values 0 or 1).

Proof First let us show that f is locally Lipschitzian on U . Indeed, let x ∈ U be arbitrary
and fixed. We may of course assume that x ∈ O, since the case x ∈ U ′ follows by assump-
tion. Now, since ∂f is locally bounded we can find a constant M ≥ 0 and a open convex
neighbourhood W of x such that

‖∂f (w)‖ ≤ M, ∀w ∈ W .

We will show that f is Lipschitzian on W , i.e., for all y, z ∈ W :

|f (y) − f (z)| ≤ M‖y − z‖. (28)

Let y, z ∈ W be fixed. If both elements belong to O, then (28) holds trivially. Let us
assume that y ∈ U ′, and consider ε > 0 to be such that x : (−ε, 1 + ε) → U given by
x(t) := (1 − t)y + tz ∈ W for all t .

Define the set A := {t ∈ (−ε, 1 + ε) : x(t) ∈ U ′}, since A is an open set in R, it can be
written as a disjoint union of a sequence intervals (an, bn), that is, A =⋃n∈N(an, bn).

Let n ∈ N and points t1, t2 ∈ (an, bn) be fixed but arbitrary. Then by Lebourg’s mean
value theorem (Theorem 1.7 [60]) there exists t∗ ∈ [t1, t2] and x∗ ∈ ∂Cf (x(t∗)) such that

|f (x(t1)) − f (x(t2))| ≤ ‖x∗‖‖x(t1) − x(t2)‖ ≤ M‖x(t1) − x(t2)‖ = M |t1 − t2| ‖y − z‖ ,

where we have used the fact that x(t∗) ∈ W .
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By continuity of f we conclude that for every n ∈ N and every t1, t2 ∈ [an, bn]
|f (x(t1)) − f (x(t2))| ≤ M‖x(t1) − x(t2)‖ = M|t1 − t2| · ‖y − z‖ (29)

Finally, let us show (28). By our assumptions we have that 0 ∈ A (recall y ∈ U ′), which
implies that 0 ∈ (an0 , bn0) for some n0 ∈ N. Let us distinguish two cases:

i) 1 /∈ A. Then, f (x(bn0)) = f (z) (because in this case x(bn0), z ∈ O) and by (29)

|f (y) − f (z)| ≤ |f (y) − f (x(bn0))| + |f (x(bn0)) − f (z)| ≤ Mbn0‖y − z‖ ≤ M‖y − z‖.

Here we have used that 0 < bn0 < 1 holds true since 1 /∈ A.
ii) 1 ∈ (ak, bk) for some k ∈ N. First, if k = n0, then the inequality follows from (29).

Second, let us assume that k �= n0, then, without loss of generality we can assume that
0 < bn0 < ak < 1, so using (29) and the fact that f (x(bn0)) = f (x(ak)) we have that

|f (y) − f (z)| ≤ |f (y) − f (x(bn0))| + |f (x(bn0)) − f (x(ak))| + |f (x(ak)) − f (z)|
≤ M

(
bn0 + 1 − ak

) ‖y − z‖ ≤ M‖y − z‖.

This shows that (28) holds and consequently f is locally Lipschitz on U .
Now, let us show that U ⊆ D, where D := U ′ ∪ int(O). Indeed, consider x ∈ U , then

there exists r > 0 such that B(x, r) ⊆ U . Now, if there exists ε ∈ (0, r) such that B(x, ε) ⊆
O we have that x ∈ int(O), otherwise for every ε ∈ (0, r), it holds that B(x, ε) ∩ U ′ �= ∅,
which implies that x ∈ U ⊆ D.

Now, by [61, Proposition 2.2] we have that for every x ∈ U :

∂Cf (x) ⊆ cl Co

⎛

⎝lim sup

D�y
f→x

∂Cf (y)

⎞

⎠

Furthermore, from the assumptions we have that

∂Cf (y) ⊆ ∂f (y), ∀y ∈ D.

Indeed recall that on intO, f is extremal and with f moreover being constant on O, it must
follow that ∂Cf = {0} on intO. Consequently, by using the o.s.c. of ∂f , it follows that:

∂Cf (x) ⊆ cl Co

⎛

⎝lim sup

D�y
f→x

∂f (y)

⎞

⎠ ⊆ cl Co (∂f (x)) .

Finally since the space is finite dimensional the above closure operation can be omitted.

We can now put to use all these results to establish that the mapping e itself, is locally
Lipschitz, on the whole set U × S

m−1.

Proposition 3.2 Let fR be compatible with a 1st order polynomial growth condition. The
mapping e : U × S

m−1 → [0, 1] defined in (22) is locally Lipschitzian. Moreover, for any
(x, v) ∈ U × S

m−1, the following inclusion holds ∂Cx e(x, v) ⊆ ex(x, v), where ex is as in
(27).

Proof Let us first establish that e is locally Lipschitzian on the open set A+. Indeed
on this set, e(x, v) = max {FR(r2(x, v)) − FR(r1(x, v)), 0}, with (x, v) ∈ A++ if and
only if FR(r2(x, v)) − FR(r1(x, v)) > 0, (x, v) ∈ A+− if and only if FR(r2(x, v)) −
FR(r1(x, v)) < 0 and (x, v) ∈ A+0 if and only if FR(r2(x, v))−FR(r1(x, v)) = 0. More-
over both FR(r2(x, v)) − FR(r1(x, v)) and 0 are locally Lipschitzian (and finite valued)
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on A+. It is thus also true that e is locally Lipschitzian on A+ and Proposition 2.3.12 [60]
gives the identification ∂Cx e(x, v) = ex(x, v) on A+.

Let us now turn our attention to the situation of establishing that e is locally Lipschitzian
on the open set B−, which as we recall is partitioned into the open sets B+, A+ and closed
set O+. It is already clear that e is locally Lipschitz on A+ and B+. Moreover the mapping
(x, v) �→ FR(r1(x, v)) is locally Lipschitz on B− (and finite valued). By Lemma 3.5, it is
sufficient to concentrate on the open set A++ ∪ B+, since neighbourhoods of O+ can be
made sufficiently small to not intersect with A+0 ∪ A+−. Let us define f : A++ ∪ B+ ∪
O+ → [0, 1] as

f (x, v) =
{

1 if (x, v) ∈ B+ ∪ O+
FR(r2(x, v)) if (x, v) ∈ A++

then it follows that e(x, v) = f (x, v) − FR(r1(x, v)) on A++ ∪ B+ ∪ O+. Moreover
f is evidently extremal on O+ and constant (taking the maximal value 1). Together with
Proposition 3.1, we may thus apply Lemma 3.9 to conclude that f is locally Lipschitz on
A++ ∪ B+ ∪ O+, and therefore so too is e as the sum of two Lipschitz mappings.

We have thus shown that e is Lipschitz on B− and it is clearly so on A−. Moreover e

takes the extremal value 0 on O− and is constant there. Once more through Proposition 3.1
and Lemma 3.9 we can conclude that e is locally Lipschitz on U × S

m−1 and the asserted
inclusion also follows.

We can now gather all previously established material and show that the probability
function ϕ itself is locally Lipschitzian. We can also obtain an outer estimate of its Clarke
sub-differential:

Theorem 3.1 Let A : Rn → R
p×m be a continuously differentiable matrix valued map,

and let b : R
n → R

p be continuously differentiable. Let the random vector ξ ∈ R
m be

elliptically symmetric with mean m, covariance-like matrix � and generator θ . Let ξ be
compatible with the 1st order polynomial growth condition.

Let g : Rn × R
m → R

p be defined as g(x, z) = A(x)z − b(x). Let x̄ and the neigh-
bourhood U of x̄ be such that gi(x,m) �= 0 for all i = 1, ..., p and all x ∈ U . Then, the
probability function ϕ : Rn → [0, 1] defined as

ϕ(x) = P[A(x)ξ ≤ b(x)], (30)

is locally Lipschitz on U and has Clarke sub-differential satisfying:

∂Cϕ(x) ⊆
∫

v∈Sm−1
ex(x, v)dμζ (v), (31)

where μζ is the uniform measure over the sphere Sm−1 = {z ∈ R
m : ‖z‖2 = 1

}
, and ex is

as in (27).

Proof With e being continuous, even locally Lipschitzian as a result of Proposition 3.2, for
any x ∈ U , the map v �→ e(x, v) is measurable.

Let us define α : U × S
m−1 → R as

α(x, v) = max
{‖s‖ : s ∈ ∂Ce(x, v)

}
.

Then as a result of Proposition 3.2, first of all e is well defined and in particular finite valued.
Moreover, α is upper semi-continuous on U × S

m−1. Should this not hold, then at some
(x̄, v̄) ∈ U × S

m−1 and for some ε > 0 we may find a sequence (xk, vk) → (x̄, v̄) such
that α(xk, vk) ≥ α(x̄, v̄) + ε. We can thus find sk ∈ ∂Ce(xk, vk), with ‖sk‖ ≥ α(x̄, v̄) + ε

2
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for all k. However, sk must admit a cluster point s∗, since e is locally Lipschitzian at (x̄, v̄)

(see Proposition 2.1.5(d) [60]). In particular, since Clarke’s sub-differential is o.s.c, s∗ ∈
∂Ce(x̄, v̄). But, then we arrive at the contradiction ‖s∗‖ ≥ α(x̄, v̄) + ε

2 , so that α must be
upper semi-continuous (u.s.c.).

We may well assume that U is compact (or restrict U further if needed). So then it
follows that α as an u.s.c. map on U × S

m−1 must reach a maximum, say M . Moreover in
Proposition 3.2 we have shown that e is locally Lipschitz on U ×S

m−1. We may thus at any
x, y ∈ U and for an arbitrary v employ Lebourg’s mean-value theorem to entail that

|e(x, v) − e(y, v)| ≤ ‖s‖ ‖x − y‖ ≤ M ‖x − y‖ ,

with s ∈ ∂Cx e(u, v) for some u ∈ [x, y]. We can invoke Clarke’s Theorem of the interchange
of integration and sub-differentiation [60, Thm 2.7.2] (see also [62] for further extensions)
to establish that ϕ is locally Lipschitz on U and to obtain that

∂Cϕ(x) ⊆
∫

v∈Sm−1
∂Cx e(x, v)dμζ (v) ⊆

∫

v∈Sm−1
ex(x, v)dμζ (v), (32)

where the last inequality follows from Proposition 3.2.

Let us briefly comment on the assumption of the placement of x and the neighbourhood,
excluding ai(x)Tm = bi(x) for some i = 1, ..., p and x in this neighbourhood:

Example 3.1 Consider the following data:

A(x)T =
[

2 −1 0 0
−1 1 1 −1

]

and b(x) = (1, 1, 1 + x,−x). Consider x̄ = 0, and say ξ ∼ N (0, I ), i.e., R is a χ

distribution with m − 1 = 1 degree of freedom. Now for any v = (v1, v2) ∈ S
m−1, with

v1 < 0, e(x̄, v) = 0, yet e(x̄, (0, 1)) = FR(1) = 0.6827. Moreover for any arbitrary x > 0,
e(x, (0, 1)) = 0. It thus immediately follows that e is not continuous at (x̄, (0, 1)), neither
in x, nor in v. It can therefore not be locally Lipschitz and our argument to interchange sub-
differentiation and integration not used in their current form. This example thus shows the
importance of the assumptions ai(x)Tm �= bi(x) at the point of interest.

4 Union of Polyhedra

We can now turn our attention to the case of probability functions given in the form of (1),
and drop the assumption � = 1 we had in Section 3. Let us first justify the interchange of
sub-differentiation and integration, prior to giving formulæ for the sub-differential of the
probability function.

Theorem 4.1 Consider the probability function (1), wherein the random vector ξ ∈ R
m is

elliptically symmetric with mean m, covariance-like matrix Σ and generator θ . For each
j = 1, ..., �, let Aj : Rn → R

pj ×m be a continuously differentiable matrix valued map, and
let bj : Rn → R

pj be continuously differentiable. Assume moreover that ξ is compatible
with the 1st order polynomial growth condition.

Let x̄ ∈ R
n be given along with a neighbourhood of x̄ such that aij (x)Tm − bij (x) �= 0

for all i = 1, ..., pj , j = 1, ..., � and all x ∈ U holds true. Here aij denotes the ith row of
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matrix Aj . Then ϕ is (locally) Lipschitz on U and

∂Cϕ(x) ⊆
∫

v∈Sm−1
∂Cx e(x, v)dμζ (v), (33)

where μζ is the uniform measure over the sphere S
m−1 = {

z ∈ R
m : ‖z‖2 = 1

}
, and e :

U × S
m−1 → [0, 1] is also locally Lipschitz and given by:

e(x, v) = μR(

⎧
⎨

⎩r ≥ 0 : m + rLv ∈
�⋃

j=1

Mj(x)

⎫
⎬

⎭). (34)

Proof It follows immediately from (9) and (1) that

ϕ(x) =
∫

v∈Sm−1
e(x, v)dμζ (v),

with e as in (34). Alternatively let us write {m + rLv : r ≥ 0} = m + R+Lv =: R, so that
e(x, v) = μR(R ∩⋃�

j=1 Mj(x)). We recall that R ∩⋃�
j=1 Mj(x) = ⋃�

j=1(R ∩ Mj(x))

and we now apply Lemma 2.1 to obtain

e(x, v) =
∑

J⊆{1,...,�},J �=∅
(−1)|J |+1μR(R ∩

⋂

j∈J

Mj (x)).

For any given index set J above, define eJ : U × S
m−1 → [0, 1] as eJ (x, v) = μR(R ∩⋂

j∈J Mj (x)).
Observe moreover that

⋂

j∈J

Mj (x) = {z ∈ R
m : Aj (x)z ≤ bj (x), j ∈ J

}
.

Consequently, as a result of Proposition 3.2, the mapping eJ is locally Lipschitz. Hence,
so is e as a finite sum of locally Lipschitzian mappings. With this having been established,
we may argue completely analogously as in Theorem 3.1 to justify the interchange of sub-
differentiation and integration and to obtain the asserted formula.

Remark 4.1 (On subdifferential inclusion) If we make the additional assumption that the
mapping e is regular at x (see [60, Definition 2.4.10]), then the inclusion (33) is in fact an
equality at x (see [60, Thm 2.7.2]).

Moreover, a closer look at the proof of [60, Thm 2.7.2] gives us that the inclusion
∫

v∈Sm−1
∂Fx e(x, v)dμζ (v) ⊆ ∂Fϕ(x)

should also hold under the assumptions of Theorem 4.1. Here ∂F denotes Fréchet’s subd-
ifferential. Finally, it is worth mentioning that other upper-estimations can be shown using
the Mordukhovich/limiting subdifferential instead of Clarke subdifferential (see, e.g., [62]).

In general we could make use of these subdifferential inclusions in “relaxed optimality
conditions”. One can think here of a problem exhibiting a first order condition of the type
0 ∈ ∂Cϕ(x̄). The situation is very similar when ϕ appears in constraints, when an appro-
priate qualification condition holds (e.g., when applying Propositions 2.1 and Theorem 2.3
[63]) in which case an appropriate scalar multiple of ∂Cϕ(x̄) appears. In this case the sub-
differential inclusion given allows us to formulate relaxed conditions that would hold for
every local solution. These conditions thus allow us, in principle, to identify favourable
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candidates. The use of inclusions is typical in MPECs (see the discussion following Theo-
rem 4.1 in [64]). The restricted inner Fréchet characterization would allow us to formulate
restrictive conditions. However it is well possible that these restrictive conditions allow no
solution.

We will also formulate a readily numerically verifiable condition in Theorem 4.2 below
under which ϕ turns out to be continuously differentiable. This condition holds true, except
on a set of zero Lebesgue measure. The just given formula could thus in principle be put
to use in (smooth) first order optimization methods, wherein an additional check of the
condition given in Theorem 4.2 ensures proper use. It can not be excluded that a local (or
global) optimal solution lies in a point of non-differentiability of the probability function.
We have not observed this in the experiments conducted in this work. However, we believe
this to be a very good reason to investigate dedicated solvers for nonsmooth and nonconvex
optimization.

The issue with the expanded form of e, through the inclusion-exclusion formula, is that it
does not help produce an efficient estimate of ∂Cx e(x, v). We will illustrate this in Example
4.1 below. First however we will introduce notation that will help us provide a more elegant
representation of e and ∂Cx e(x, v). To this end, let us introduce the set

Oij =
{
(x, v) ∈ U × S

m−1 : aij (x)TLv = 0
}

, (35)

for i = 1, ..., pj and j = 1, ..., � and O = ⋃�
j=1 ∪pj

i=1Oij as well as Z = U × S
m−1 \ O.

Then we can observe that the sets Oij are all of zero measure (the latter fact follows from
Lemma 2.2 [65] and Korollar V.1.6 [54]). Consequently O is also of zero measure (in λ ⊗
μζ ).

Next for each j = 1, ..., � we define the following sets:

I−
j = {i = 1, ..., pj : aij (x)Tm > bij (x), ∀x ∈ U

}

I+
j = {i = 1, ..., pj : aij (x)Tm < bij (x), ∀x ∈ U

}

B−
j =

{
(x, v) ∈ Z : aij (x)TLv < 0, ∀i ∈ I−

j

}

A−
j =

{
(x, v) ∈ Z : ∃i ∈ I−

j : aij (x)TLv > 0
}

,

where implicitly it is assumed that U is sufficiently small, for the index sets I−
j and I+

j to

form a partition of
{
1, ..., pj

}
. Observe that this can be achieved as a result of continuity

and the standing assumption at x̄.
Next we may observe that B−

j ∪ A−
j = Z , and that both B−

j and A−
j are open sets.

Moreover, should I−
j = ∅, then simply B−

j = Z . Moreover define for all i = 1, ..., pj ,
j = 1, ..., �, the map rij : Z → R as

rij (x, v) = bij (x) − aij (x)Tm

aij (x)TLv
(36)

and observe that this map is well defined and continuously differentiable on Z .
Now for each j = 1, ..., �, we define r

j

1 : B−
j → R+ as

r
j

1 (x, v) =
{

0 if I−
j = ∅.

maxi∈I−
j
rij (x, v) otherwise
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and we define r
j

2 : B−
j → R+ ∪ {∞} as

r
j

2 (x, v) =
{

supt t

s.t. taij (x)TLv ≤ bij (x) − aij (x)Tm, i ∈ I+
j

.

Now at any (x, v) ∈ Z , let us define the index set F(x, v) =
{
j = 1, ..., � : (x, v) ∈ B−

j

}
.

Then, we can observe that F is locally stable since B−
j is open and that

e(x, v) = μR

⎛

⎝
⋃

j∈F(x,v)

[rj

1 (x, v), max
{
r
j

2 (x, v), r
j

1 (x, v)
}
]
⎞

⎠ , (37)

since
{
r ≥ 0 : m + rLv ∈ Mj(x)

} = ∅ if (x, v) ∈ A−
j . In order to further simplify the

formula, let us introduce for any (x, v) ∈ Z , the index set F ′(x, v), defined as follows:

F ′(x, v) =
{
j ∈ F(x, v) : r

j

2 (x, v) ≥ r
j

1 (x, v)
}

.

Hence, formula (37) becomes:

e(x, v) = μR

⎛

⎝
⋃

j∈F ′(x,v)

[rj

1 (x, v), r
j

2 (x, v)]
⎞

⎠ . (38)

We have already hinted on the potential issue, in representing economically ∂Cx e(x, v)

when employing the inclusion-exclusion formula. The problem is fully illustrated in the
next example:

Example 4.1 We consider a trial point x ∈ R
n and two polyhedra M1(x) and M2(x),

as well as a direction v at which we have r1
1 (x, v) < r2

1 (x, v), r1
2 (x, v) < r2

2 (x, v)

and r2
1 (x, v) < r1

2 (x, v). The inclusion-exclusion based formula from Theorem 4.1 yields
e(x, v) = FR(r2

2 (x, v))−FR(r2
1 (x, v))+FR(r1

2 (x, v))−FR(r1
1 (x, v))− (FR(r1

2 (x, v))−
FR(r2

1 (x, v))), which in turn provides a non-economic representation of its sub-differential:

∂Cx e(x, v) ⊆ [ fR(r2
2 (x, v))∂Cx r2

2 (x, v) − fR(r2
1 (x, v))∂Cx r2

1 (x, v) + fR(r1
2 (x, v))∂Cx r1

2 (x, v) −
fR(r1

1 (x, v))∂Cx r1
1 (x, v) − (fR(r1

2 (x, v))∂Cx r1
2 (x, v) − fR(r2

1 (x, v))∂Cx r2
1 (x, v))].

One can of course observe that in most cases, (38), through potentially tedious compu-
tations, will allow us to identify swiftly the most economic representation of e. One would
simply have to work out, what the union of intervals amounts to and, unless some local
degeneracy occurs, this will immediately provide the appropriate estimate of ∂Cx e(x, v).
Degeneracy will occur as soon as any two interval bounds match and locally “cross”. The
subsequent result provides a unified formula, rendering this interval calculus unnecessary
in the above situation. We will also illustrate, that typically, an efficient estimate of the
sub-differential is obtained. Let us just briefly mention, prior to stating the result, that FR
is increasing in increasing arguments. Therefore, minimum/maximum operations may be
pulled through FR at will.
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Proposition 4.1 At any (x, v) ∈ Z , the following identity holds true:

e(x, v) = max

{
FR( max

j∈F ′(x,v)
r
j

2 (x, v)) − FR( min
j∈F ′(x,v)

r
j

1 (x, v)), 0

}

−
∑

S,S′⊆F ′(x,v),S∩S′=∅,S∪S′=F ′(x,v),S,S′ �=∅
max

{
FR(min

i∈S′ r
i
1(x, v))−FR(max

i∈S
ri

2(x, v)), 0

}
, (39)

where FR(∞) = 1 is to be understood.

Proof The proof will be performed by induction. To this end, let us fix an arbitrary (x̄, v̄) ∈
Z , and first of all observe that on an appropriate neighbourhood of (x̄, v̄), F(x̄, v̄) remains
unchanged. We may thus, without loss of generality assume that F(x̄, v̄) = {1, ..., �}.

When � = 1, the stipulated formula is immediately seen to be identical to the formula of
(22).

Let us thus assume that the formula is valid for a given �′ ≥ 1, we will then show that
the formula is valid for �′ + 1. First of all, we may assume that for all j = 1, ..., �′ + 1, it
holds that r

j

2 (x̄, v̄) ≥ r
j

1 (x̄, v̄). Indeed, should this not be the case, i.e., should there exist

j = 1, ..., �′ + 1 for which r
j

2 (x̄, v̄) < r
j

1 (x̄, v̄) holds true, then as a result of continuity, this
continues to hold true on an appropriate neighbourhood of (x̄, v̄), therefore, for (x, v), near
(x̄, v̄), j /∈ F ′(x, v). Re-arranging indices if needed, we may assume j = �′ + 1 and hence
locally,

e(x, v) = μR(

⎧
⎨

⎩r ≥ 0 : m + rLv ∈
�′⋃

j=1

Mj(x)

⎫
⎬

⎭).

We may thus use the induction assumption to obtain the formula for the case �′. Since
�′ + 1 /∈ F(x, v) for (x, v) near (x̄, v̄), the formulae (39) with �′ and �′ + 1 do indeed
coincide.

From now on we will thus assume that F ′(x, v) = {1, ..., �′}.
Next, let us assume the existence of k = 1, ..., �′ such that rk

1 (x̄, v̄) ≤ r�′+1
1 (x̄, v̄) ≤

r�′+1
2 (x̄, v̄) ≤ rk

2 (x̄, v̄). We may employ the induction assumption to derive the formula
(39), since indeed (38) holds true also when eliminating the �′ + 1th term. It is moreover
clear that:

max
j∈F ′(x,v)

FR(r
j

2 (x, v)) = max
j∈F ′(x,v)∪{�′+1}

FR(r
j

2 (x, v))

min
j∈F ′(x,v)

FR(r
j

1 (x, v)) = min
j∈F ′(x,v)∪{�′+1}

FR(r
j

1 (x, v)).

Let us now pick an arbitrary but fixed partition S′, S of F ′(x, v) ∪ {�′ + 1
}
, then, an

exhaustive case distinction yields the identity:

max

[
FR

(
min
i∈S′ ri

1(x̄, v̄)

)
− FR

(
max
i∈S

ri
2(x̄, v̄)

)
, 0

]
=

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max

[
FR

(
min

i∈S′\{�′+1}
ri

1(x̄, v̄)

)
− FR

(
max
i∈S

ri
2(x̄, v̄)

)
, 0

]
if k, �′ + 1 ∈ S′

max

[
FR

(
min
i∈S′ ri

1(x̄, v̄)

)
− FR

(
max

i∈S\{�′+1}
ri

2(x̄, v̄)

)
, 0

]
if k, �′ + 1 ∈ S

0 if k ∈ S and �′ + 1 ∈ S′
0 if �′ + 1 ∈ S and k ∈ S′
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and thus consequently, the sum over all partitions in (39) is unaltered when moving from
partitions of F ′(x̄, v̄) to all partitions of F ′(x̄, v̄)∪{�′ + 1

}
. We have thus shown the formula

to extend to �′ + 1 in this particular situation.
For the remainder we may, upon reordering the indices if needed, assume that

r�′+1
1 (x̄, v̄) ≤ ri

1(x̄, v̄) for all i ∈ F ′(x̄, v̄). Now two further cases appear

– The situation wherein r�′+1
2 (x̄, v̄) < ri

1(x̄, v̄) for all i ∈ F ′(x̄, v̄)

– Or the existence of i ∈ F ′(x̄, v̄) such that ri
1(x̄, v̄) ≤ r�′+1

2 (x̄, v̄).

The first case corresponds to adding a disjoint interval to the union of intervals. It thus
immediately follows that:

e(x̄, v̄) = FR(r�′+1
2 (x̄, v̄)) − FR(r�′+1

1 (x̄, v̄)) +
max

{
max

j∈F ′(x,v)
FR(r

j

2 (x, v)) − min
j∈F ′(x,v)

FR(r
j

1 (x, v)), 0

}

−
∑

S,S′⊆F ′(x,v),S∩S′=∅,S∪S′=F ′(x,v),S,S′ �=∅
max

{
FR(min

i∈S′ r
i
1(x, v)) − FR(max

i∈S
ri

2(x, v)), 0

}
,

upon employing the indication hypothesis for the �′ remaining intervals. Observe now that
on F ′(x̄, v̄), maxj∈F ′(x,v) FR(r

j

2 (x, v)) − minj∈F ′(x,v) FR(r
j

1 (x, v)) ≥ 0, so that the first
max operation can be removed. We can now identify:

max
j∈F ′(x̄,v̄)∪{�′+1}

FR(r
j

2 (x̄, v̄)) = max
j∈F ′(x̄,v̄)

FR(r
j

2 (x̄, v̄))

FR(r�′+1
1 (x̄, v̄)) = min

j∈F ′(x̄,v̄)∪{�′+1}
FR(r

j

1 (x̄, v̄))

xFR(r�′+1
2 (x̄, v̄)) − min

j∈F ′(x̄,v̄)
FR(r

j

1 (x̄, v̄)) = − max

{
FR(min

j∈S′ r
j

1 (x̄, v̄)) − FR(max
j∈S

r
j

2 (x̄, v̄)), 0

}
,

with S′ = F ′(x̄, v̄), S = {
�′ + 1

}
. Now let S, S′ be an arbitrary parti-

tion of F ′(x̄, v̄) ∪ {
�′ + 1

}
. Then as soon as �′ + 1 ∈ S′, it follows that:

max
{
FR(minj∈S′ rj

1 (x̄, v̄)) − FR(maxj∈S r
j

2 (x̄, v̄)), 0
}

= 0. If |S| ≥ 2 and �′ + 1 ∈ S,

then, clearly:

max

{
FR(min

j∈S′ r
j

1 (x̄, v̄)) − FR(max
j∈S

r
j

2 (x̄, v̄)), 0

}

= max

{
FR(min

j∈S′ r
j

1 (x̄, v̄)) − FR( max
j∈S\{�′+1}

r
j

2 (x̄, v̄)), 0

}

Combining these derivations with the already derived formula for e(x̄, v̄), we thus establish
the validity of Eq. 39 for �′ + 1.

In the last situation, we may thus assume the existence of some i for which
ri

1(x̄, v̄) ≤ r�′+1
2 (x̄, v̄). We may assume w.l.o.g. that i = �′. Then setting r̄�′

2 =
max

{
r�′

2 (x̄, v̄), r�′+1
2 (x̄, v̄)

}
and r̄�′

1 = min
{
r�′

1 (x̄, v̄), r�′+1
1 (x̄, v̄)

}
, and r̄ i

1,2(x̄, v̄) =
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ri
1,2(x̄, v̄) for i < �′, we may employ the induction assumption to derive (39) holds for

e(x̄, v̄) but involving r̄ i
1,2. It is however clear that:

max
j∈F ′(x̄,v̄)∪{�′+1}

FR(r
j

2 (x̄, v̄)) = max
j∈F ′(x̄,v̄)

FR(r̄
j

2 (x̄, v̄))

min
j∈F ′(x̄,v̄)∪{�′+1}

FR(r
j

1 (x̄, v̄)) = min
j∈F ′(x̄,v̄)

FR(r̄
j

1 (x̄, v̄)).

Once again, let S, S′ be an arbitrary partition of F ′(x̄, v̄) ∪ {
�′ + 1

}
.

Now should �′ ∈ S′, �′ + 1 ∈ S or vice-versa, then it follows that:

max
{
FR(minj∈S′(rj

1 (x̄, v̄))) − FR(maxj∈S(r
j

2 (x̄, v̄))), 0
}

= 0. For the latter term to

contribute it must thus hold that �′, �′ + 1 ∈ S′ or �′, �′ + 1 ∈ S′, and thus by construction:

FR(min
j∈S′(r

j

1 (x̄, v̄))) = FR(minj∈S′\{�′+1})(r̄j

1 (x̄, v̄)))

FR(max
j∈S

(r
j

2 (x̄, v̄))) = FR(maxj∈S\{�′+1}(r̄j

2 (x̄, v̄))),

so that upon combining these derivations, the formula (39) is shown for �′ + 1.
The proof is thus completed, by induction over �′.

Let us now revisit our earlier example 4.1 and show that an efficient estimate is obtained.

Example 4.2 (Example 4.1 revisited) By definition F ′(x, v) = {1, 2}. Using notations from
formula (39), either S′ = {2} and S = {1}, or S′ = {1} and S = {2}. Consequently, the
formula (39) yields:

e(x, v) = max

{
max

j∈{1,2} FR(r
j

2 (x, v)) − min
j∈{1,2} FR(r

j

1 (x, v)), 0

}

− max
{
FR(r1

1 (x, v)) − FR(r2
2 (x, v)), 0

}
− max

{
FR(r2

1 (x, v)) − FR(r1
2 (x, v)), 0

}

= FR(r2
2 (x, v)) − FR(r1

1 (x, v)),

which immediately offers an economic estimate of the sub-differential ∂Cx e(x, v).

Although up until now we have fully left open the possibility for the probability function
ϕ to be non-smooth, we will briefly mention some conditions under which the probability
function will turn out smooth after all.

Theorem 4.2 Additional to the assumptions of Theorem 4.1, assume that the point x̄ ∈ R
n

is such that the following qualification condition holds:

(bi1,j1(x̄) − ai1,j1(x̄)Tm)ai2,j2(x̄)T �= (bi2,j2(x̄) − ai2,j2(x̄)Tm)ai1,j1(x̄)T, (40)

for all j1, j2 = 1, ..., � and all i1 = 1, ..., pj1 , i2 = 1, ..., pj2 , such that (i1, j2) �= (i2, j2).
Then there exists a neighbourhood U of x̄ on which ϕ is continuously differentiable and
formula (33) holds as an equality, since at any x ∈ U : ∂Cx e(x, v) is a singleton for μζ

almost all v ∈ S
m−1.
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Proof First, let us make the observation that condition (40) can be assumed to hold locally,
due to continuity of the underlying data. The neighbourhood exhibited in Theorem 4.1, may
thus be assumed to encompass this condition. As a result, our claim will be that for any
(i1, j1), (i2, j2) selected as in the statement of condition (40), it holds, for all x ∈ U fixed
but arbitrary, that:

μζ (
{
v ∈ S

m−1 : ri1,j1(x, v) = ri2,j2(x, v)
}
) = 0.

Indeed, the set of v ∈ S
m−1 at which ri1,j1(x, v) = ri2,j2(x, v) holds is

M =
{
v ∈ S

m−1 : c(i1,j1),(i2,j2)(x)TLv = 0
}

,

with

c(i1,j1),(i2,j2)(x) := (bi1,j1(x) − ai1,j1(x)Tm)ai2,j2(x) − (bi2,j2(x) − ai2,j2(x)Tm)ai1,j1(x).

We may recall (36) to see this. Now by assumption (40), c(i1,j1),(i2,j2)(x) �= 0 and the
claim thus follows from Lemma 2.2 [65] regarding hyperspherical caps. As an immediate
consequence, for any j = 1, ..., � and μζ almost all v ∈ S

m−1, both r
j

1 (., v) and r
j

2 (., v)

are in fact smooth around x, since they are the finite maximum (minimum respectively) of
mappings rij , of which the active index set is a singleton. Furthermore also, the set of v ∈
S

m−1 at which r
j

2 (x, v) = r
j

1 (x, v) for some j = 1, ..., � is of μζ zero measure. In formula

(39), we may thus rather consider F ′(x, v) =
{
j ∈ F(x, v) : r

j

2 (x, v) > r
j

1 (x, v)
}

, which

as a result of continuity is locally stable. Moreover, in light of the above discussion it is clear
that all maxima/minima in (39) have for μζ almost all v ∈ S

m−1 a singleton active set, thus
ensuring that e is in fact differentiable with respect to x. Since x was arbitrary, this is also
true on the neighbourhood of x̄. Now, since ∂Cϕ is nonempty by local Lipschitz continuity
of ϕ, on the one hand [60, Proposition 2.1.2], and is contained in the single-valued integral,
by (33) and the above, it follows that ∂Cϕ(x) coincides with the integral. In particular,
∂Cϕ(x) is single-valued, and hence ϕ is Fréchet differentiable [60, Proposition 2.2.4]. Since
this holds for x ∈ U arbitrarily, continuous differentiability follows from [60, corollary to
Proposition 2.2.4].

Remark 4.2 Under the assumptions of Theorem 4.2, the computation of ∂Cx e(x, v) amounts

to the computation of ∂xr
j

1 (x, v) and ∂xr
j

2 (x, v), j = 1, . . . , � (which are singletons). If
these assumptions are not met, computing an element of ∂Cx e(x, v) requires more work. In

case there is a single polyhedron j at hand, computing the values of r
j

1 (x, v) and r
j

2 (x, v)

amounts to computing a maximum and a minimum of list of values obtained from (18) thus
resulting in O(pj ) operations. In the general case with multiple polyhedra, there are 2� − 2
possible S, S′ sets in the sum of (39), that verify |S| + ∣∣S′∣∣ ≤ �. As a consequence the

worst-case complexity of computing (39) belongs to O(2�
∑�

j=1 pj ). Obtaining an element
of ∂Cx e(x, v) is then straightforward thanks to the preliminary material of Section 2.1. The
last operation is the spherical integral over Sm−1, of which the complexity depends on m.
This part could be treated by Monte-Carlo or Quasi Monte-Carlo sampling, e.g., [66]. We
also refer to the discussion in Section 5.1 of [67] on the efficiency of such a scheme and to
[68] for an extensive between Monte-Carlo and Quasi Monte-Carlo based sampling.
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5 Application

In order to show the relevance of our derived result, we will consider an application taking
inspiration from energy management systems. We will consider a system on the discretized
time horizon t = 1, ..., T . The stylized system contains a water reservoir subject to random
inflows (e.g., [69]). The water level in the reservoir is updated as follows:

�t+1 = �t − qt + at ,

where �t denotes the level of the reservoir at time t (in m3), qt is the amount of water
released through the turbine, thus producing electricity, and at the random amount of
inflows (both are in m3/s). The previous equation thus has to be understood in an almost
sure sense. The water level in the reservoir is subject to bounds, �t and �̄t , and ideally one
has �t ∈ [�t , �̄t ] for all t = 1, ..., T . We will however assume that the decisions q1, ..., qT

have to be taken prior to observing a1, ..., aT so that one has to give an appropriate meaning
to the inequalities. Introducing the vectors � = (�1, ..., �T ), �̄ = (�̄1, ..., �̄T ) and likewise
letting a, q denote the appropriate vectors, the matrix:

C =
⎛

⎝
1 0 · · · 0
1 1 · · · 0
1 1 · · · 1

⎞

⎠ ,

cumulating entries, as well as the vector �0 = (�0, ..., �0) gathering the initial volumes, the
system can be written in compact form as:

� − �0 ≤ Ca − Cq ≤ �̄ − �0.

This random inequality system, will constitute an important element of our, to be specified,
probabilistic constraint.

We have yet to comment on the model taken for a. It appears reasonable to consider
that inflows are modelled using a log-normal distribution, i.e., at = exp(ξt ), where ξt is a
Gaussian random variable (see e.g., comments in [70]). In our case this leads to a = exp(ξ),
where ξ ∼ N (ma, Σa) so that we can also account for a correlation structure.

The amount of released water qt interacts with load dt , energy generated by a wind
turbine wt and conventionally generated energy yt in the following energy balance equation:

dt − yt − ρqt − wt ≤ 0, t = 1, ..., T

thus ensuring that sufficient energy is generated to meet load dt . The efficiency ρ in
MWs/m3, represents in a stylized fashion, the hydro production function. Furthermore,
both dt and wt are also subject to uncertainty. Following [71], it appears reasonable to
model dt immediately as Gaussian, and following [72], for an appropriate constant c > 0,

wt = c max {ηt , 0} 3
θ , where θ > 0 is an appropriate parameter and ηt once again Gaussian.

Altogether we can thus gather the random elements (a, d,w) = h(ξ), where ξ ∼ N (m,Σ)

is a multivariate Gaussian random vector and h : R3T → R
3T will have typical DC struc-

ture. The conventional generator has an upper bound on the amount that can be generated ȳ

and a convex cost function f : RT → R+.
The full, stylized, model is thus given by:

min
y,q∈RT+

f (y)

s.t. y ≤ ȳ, q ≤ q̄

P[� − �0 ≤ Ca − Cq ≤ �̄ − �0, dt − yt − ρqt − wt ≤ 0, t = 1, ..., T ] ≥ p.
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The main idea is thus to minimize the costs of conventional generation, while ensuring that,
simultaneously the bounds of the reservoir are met, and sufficient energy is generated, all
with high probability. The typical DC structure in the argument ξ within this probabilistic
constraint is immediately apparent. Indeed, this is the case for w but also for a, that despite
being represented by an exponential function in ξ , is involved in bilateral inequalities! For
the “w-part”, we observe that despite being a convex function in η, wt is preceded by a
minus sign and hence dt − wt is of DC type. To fit the setting of our work, we will approxi-
mate the various convex mappings with a cutting plane model. We refer to Example 1.1 for
the relation to the studied structure.

It is also worthwhile to highlight that the model can account for any possible correlation
structure between the various underlying sources of uncertainty. In particular, we thus have
a consistent set of inflows, wind generation and load levels!

5.1 Data

For a set of breakpoints ŷ1, ..., ŷk and increasing proportional costs c1 < ... < ck , the
mapping f is given as follows:

f (y) =
T∑

t=1

max
i=1,...,k

ciy + bi,

with bi = ∑i−1
j=1(cj − cj+1)ŷj . The chosen vector c = (5, 35, 50, 70, 120) and ŷ =

(8, 12, 15, 20). The maximum generation level ȳ = 25 and q̄ = 15. The initial, mini-
mum and maximum reservoir level are respectively 1.5e5, 0 and 3.5e5. The time step is set
to be 2 hours in length and we consider 12 time steps, i.e., one day. The efficiency coef-
ficient ρ = 1.4 and the “wind” coefficients are c = 2.2/1000 and θ = 0.7. The latter
setting will correspond, roughly, to the consideration of a 4 MW wind turbine. The Gaus-
sian random vectors underlying inflows, wind and load have a persistency effect modelled
in their correlation structure: the correlations between adjacent time steps is 0.8, 0.7, 0.6
respectively. Furthermore the cross-correlations between inflows and “wind” are set to be
0.4, between inflows and load 0.3 and between “wind” and load they are set to 0.1. The
mean vector for “inflows” is (1.3, ..., 1.3) and the variance vector is (0.1, ..., 0.1). For
wind this is (4, ..., 4) and (0.5, ..., 0.5) respectively. Finally for load the mean vector is
(18, 18, 18, 18, 22.5, 27, 25.2, 21.6, 27, 27, 21.6, 18) and the variance is 10% of this mean
vector. The latter thus shows the daily variability of load as a result of the economic cycle. It
can also be noted that wind, in terms of installed capacity has a relatively large share. Alto-
gether, the underlying Gaussian random vector is in dimension 36. Finally, we set p = 0.9
as our target probability level.

5.2 Numerical experiment

For simplicity we have implemented the model in MatLab, and use the basic approximate
projected gradient method described in [67, Section 6]. This latter approach requires a fea-
sible point, in order to “project” back the intermediate solutions onto the feasible set. In our
particular situation, this feasible point is relatively easy to obtain, since it suffices to con-
sider large generation levels y, having a beneficial effect on satisfying the load inequality.
As the turbining levels are concerned, these can be approximately set, by looking at a set of
scenarios. A more extensive description of this algorithm can be found in Appendix A.
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Fig. 2 Illustration of the inequalities within the probabilistic constraint on 100 simulated scenariosx

As a stopping criterion we have set a condition on the distance between the next and current
iterate, that they differ less 0.01 MW. The solver thus stops after 5 iterations, producing the local
solution y∗ = (20.59, 20.14, 19.90, 21.01, 18.79, 16.42, 15.78, 17.81, 18.21, 23.16, 18.06,

20.55),q∗ = (0.131, 0.274, 0.281, 0.027, 4.819, 9.955, 9.095, 4.844, 9.804, 4.939, 4.772,

0.077) with objective function cost 1.5524e4.
Let us finally show the energy balance and water level balance, when generating 100

scenarios a posteriori. This is done on Fig. 2.
One can also evaluate, a posteriori the probability level under these 100 scenarios. It turns

out that empirically, under these 100 scenarios, the level is 0.92. This empirically computed
probability level is of course linked to the randomly generated 100 scenarios. Evaluating
the given rounded solution, through the computation of 50 batches of 1000 scenarios each,
allows us to evaluate the empirical probability level at 0.89. This value is confirmed when
performing a similar experiment with 10000 scenarios per batch.

This experiment is intended to show that the given formulæ can be readily put to work in
otherwise fairly simple software. Of course, should computational efficiency be a concern,
then one should orient oneself to a C++ implementation. Evidently, more sophisticated algo-
rithms would also be needed and likewise general purpose approaches to find good starting
points. Exploring those themes will be left for future research, and goes largely beyond the
scope of the current work.

6 Concluding Remarks

In this paper we have provided insights in generalized differentiation of probabilistic con-
straints acting on union of polyhedra. Such underlying structure naturally arises when
investigating certain energy applications.
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Appendix

A An approximate projected gradient algorithm

We present in this Appendix a generic algorithm, similar to the one used in [67, Section 6]
for solving the following problem:

min
x∈X

f (x)

s.t. ϕ(x) ≥ p,

where f is assumed to be affine, and ϕ is as defined in (1). We also assume that a point
x0 ∈ X′ := {x ∈ X : P[g(x, ξ) ≤ 0] ≥ p} is known (and therefore this set is not empty).
Let us define τ

x0
X′ : X �→ [0, 1] as follows:

τ
x0
X′ (x) =

{
mint∈[0,1] t

s.t. P[g((1 − t)x + tx0, ξ) ≤ 0] ≥ p

and let us define P
x0
X′ : X → X′ as P

x0
X′ (x) = (1−τ

x0
X′ (x))x +τ

x0
X′ (x)x0. Since X′ is a closed

set, τ
x0
X′ and thus P

x0
X′ are well defined. Since, it is not a proper projection, this algorithm is

sometimes referred to as an approximate projected gradient algorithm. Convergence of such
an algorithm is studied for example in [73]. Obtaining a numerical value for τ

x0
X′ can be done

using a bisection method, having at each iteration k to compute P[g((1−tk)x+tkx0, ξ) ≤ 0]
and stopping when it reaches p up to a given tolerance.

The formulæ (33) can be exploited to compute ∇ϕ(xk) at a given trial point upon
verifying condition (40).
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