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Abstract
This paper studies duality of optimization problems in a vector space without topologi-
cal structure. A strong duality relation is established by means of algebraic subdifferential
and algebraic conjugate functions. Topological duality relations are obtained by the alge-
braic approach without lower semicontinuity or quasicontinuity hypothesis on perturbation
functions. Applications are given for the sum of two convex functions, monotropic prob-
lems, infinite convex or linear problems. Attention is also made on the algebraic constraint
qualification for problems with countably infinitely many inequality constraints.
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1 Preliminaries

Let X be a linear space over the reals and h : X → R := R∪{±∞} an extended real valued
function. Recall that h is convex if its epigraph epih := {(x, r) ∈ X × R : h(x) ≤ r} is
a convex subset of the product vector space X × R, or equivalently, for any x, y ∈ X and
t ∈ (0, 1), one has

h(tx + (1 − t)y) ≤ th(x) + (1 − t)h(y) (1)

in which we adopt the convention (+∞) + (−∞) = (−∞) + (+∞) = +∞. The effective
domain of h is denoted domh := {x ∈ X : h(x) < +∞}. The function h is proper if h does
not take the value −∞ and domh �= ∅.
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The algebraic relative interior, or intrinsic core, of a convex subset A of X is given by

icr(A) := {a ∈ A : ∀x ∈ A, ∃λ > 0 such that a − λ(x − a) ∈ A}.
For each b ∈ X one has icr{b} = {b} and

b ∈ icr(A) ⇐⇒ cone(A − b) := R+(A − b) is a linear subspace of X.

The following lemma shows that if the domain of an extended real valued function has a
nonempty intrinsic core, then so does its epigraph (see also [8]).

Lemma 1 Let h : X → R be convex and let a ∈ X be such that h(a) �= −∞ and
a ∈ icr(domh). Then h is proper and (a, h(a) + θ) ∈ icr(epih) for every θ > 0.

Proof Let us first prove that h is proper. Suppose to the contrary that there is some x ∈ X

such that h(x) = −∞. Then x ∈ domh. Since a ∈ icr(domh) there exists y ∈ domh such
that a ∈ (x, y), that is, a = tx + (1 − t)y for some t ∈ (0, 1). Because h(y) < +∞ and
h(x) = −∞, in view of (1), one would have h(a) = −∞, a contradiction. Thus, h is proper.
Now let (x, r) ∈ epih and θ > 0. We wish to find λ > 0 such that

(a, h(a) + θ) − λ((x, r) − (a, h(a) + θ)) ∈ epih. (2)

Consider the restriction h|L of h on the straight line L := {a + t (a − x) : t ∈ R}. Then
h|L is a proper convex function on L and a is an interior point of its domain with respect
to the usual topology on a straight line. In view of Lemma 7.3 [17], (a, h(a) + θ) is an
interior point of epih|L in L × R. Hence, for (x, r) ∈ epih|L we can find λ̄ > 0 such that
(a, h|L(a) + θ) − λ((x, r) − (a, h|L(a) + θ)) ∈ epih|L, which evidently gives (2).

Let X′ denote the algebraic dual space of X. We consider the algebraic conjugate and
biconjugate of h defined by

h#(ϕ) := supx∈X{ϕ(x) − h(x)} for ϕ ∈ X′,
h##(x) := sup

ϕ∈X′
{ϕ(x) − h#(ϕ)} for x ∈ X.

The algebraic subdifferential of h at a point a ∈ X is given by

∂h(a) :=
{

{ϕ ∈ X′ : h(x) ≥ h(a) + ϕ(x − a),∀x ∈ X} if h(a) ∈ R

∅ if h(a) /∈ R

One says that h is algebraically subdifferentiable at a if ∂h(a) �= ∅. Moreover, if h(a) ∈ R,
then one has

ϕ ∈ ∂h(a) ⇐⇒ h(a) + h#(ϕ) = ϕ(a). (3)

Let us consider the case when X is a topological vector space and X∗ is its topological
dual. The usual Fenchel conjugate h∗ of h (see [4, 16, 18, 21]) is nothing, but the restriction
of h# on X∗. Namely,

h∗(x∗) := supx∈X(〈x∗, x〉 − h(x)), x∗ ∈ X∗.

Its biconjugate is defined on X by

h∗∗(x) = supx∗∈X∗(〈x∗, x〉 − h∗(x∗)), x ∈ X.

It is clear that

h∗∗(x) = (h# + δX∗)#(x) ≤ h##(x) ≤ h(x) for x ∈ X.
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Similarly, the usual subdifferential of h at a with h(a) ∈ R, denoted by ∂∗h(a), is given by
∂∗h(a) = ∂h(a) ∩ X∗.

Note that when X is finite dimensional, the two dual spaces X′ and X∗ coincide. There-
fore, the algebraic concepts of conjugate function and subdifferential are the same as the
usual ones. This, however, is not true in infinite dimension.

Example 1 Let X be an infinite dimensional separated locally convex space and ϕ ∈ X′
be a discontinuous linear function. Then ∂ϕ(0X) = {ϕ}, while ∂∗ϕ(0X) = ∅. Consider h

defined by h(x) = |ϕ(x)|, x ∈ X with ϕ as above. We have for every ψ ∈ X′ that

h#(ψ) = sup
x∈X

(ψ(x) − |ϕ(x)|)
= sup

x∈X

(ψ(x) − sup
−1≤t≤1

tϕ(x))

= sup
x∈X

inf−1≤t≤1
(ψ(x) − tϕ(x))

= inf−1≤t≤1
sup
x∈X

(ψ(x) − tϕ(x))

=
{

0 if ψ = tϕ for some t ∈ [−1, 1]
+∞ else

in which the fourth equality is obtained by the minimax theorem ([21], Theorem 2.10.2). It
follows that h∗ is the indicator function δ{0X∗ } of the set {0X∗ } and h∗∗(x) = 0 for every
x ∈ X, while h## = h.

Remark 1 Note that equality h## = h is not always true for h proper convex. For instance,
the function h : R → R given by

h(x) =
{

0 for x > 0
+∞ for ≤ 0,

has h##(0) = 0 < h(0). A criterion for equality h## = h can be established by equipping
X with a weak topology associated with X′. Namely, let T be a locally convex topology
such that the topological dual of X coincides with X′. Such topologies exist, for instance
the topology generated by the family of seminorms of type |ϕ|, ϕ ∈ X′, or the topology
generated by the family of all seminorms on X. These topologies are all locally convex. In
view of Proposition 5.3 [16] equality h## = h holds for a proper convex function h on X if
and only if h is lower semicontinuous with respect to T .

Two subsets A, B of the linear space X are said to be properly separated if there exists a
nonzero linear functional ξ ∈ X′ and (a, b) ∈ A × B such that

ϕ(a) ≤ ϕ(b) for (a, b) ∈ A × B, and ϕ(a) < ϕ(b).

The next separation criterion for convex sets in a linear space is crucial for our analysis (see
[1, 6, 8, 9, 13]).

Lemma 2 Two convex subsets A, B of a vector space such that icr(A) �= ∅ and icr(B) �= ∅
are properly separated if and only if

icr(A) ∩ icr(B) = ∅.
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The following criterion for algebraic subdifferentiability is a slight improvement of the
subdifferentiability theorem of [13] (page 27) (see also [9], page 23), stating that a real val-
ued convex function on a convex subset of a linear space is algebraically subdifferentiable at
each point of its intrinsic core. This improvement is quite easy to prove by a standard argu-
ment, but is useful in applications because the value functions associated with perturbation
functions we are going to study often take the values +∞ and −∞.

Lemma 3 Let h : X → R be convex, a ∈ X such that h(a) �= −∞ and R+(domh − a) is
a linear subspace of X. Then h is algebraically subdifferentiable at a.

Proof By Lemma 1 we have icr(epih) �= ∅. Moreover, h(a) ∈ R and (a, h(a)) /∈ icr(epih)

because otherwise (a, h(a) − ε) ∈ epih for some ε > 0, which is impossible. We apply
Lemma 2 to properly separate the convex sets {(a, h(a))} and epih in the linear product
space X × R. Thus, there exists (ϕ, s) ∈ X′ × R, (ϕ, s) �= (0X′ , 0) such that

ϕ(a) + sh(a) ≤ ϕ(x) + sr for all (x, r) ∈ epih (4)

and strict inequality holds for some (x̄, r̄) ∈ epih. It follows that s > 0. By dividing both
sides of (4) by s and setting ϕ0 = −ϕ/s, r = h(x) for x ∈domh, we obtain

−ϕ0(x) + h(x) ≥ −ϕ0(a) + h(a) ∀x ∈ domh.

This relation is true for all x ∈ X because h(x) = +∞ for x �∈ domh. Hence ϕ0 ∈ ∂h(a)

and the proof is complete.

In the present paper we aim at establishing strong duality for abstract optimization prob-
lems in a vector space without topological structure (Section 2). Applications are made to
obtain a formula of the algebraic conjugate of the sum of two convex functions (Section 3),
strong duality for problems with inequality constraints and strong duality for infinite convex
problems in Sections 4 and 5 respectively, in which particular attention is given to clarify
the algebraic constraint qualification. The results of Sections 4 and 5 concerning problems
in topological spaces show that in certain circumstances algebraic duality approach is useful
to establish topological duality without lower semicontinuity or quasicontinuity hypothesis
on the perturbation functions.

2 Algebraic Duality in Optimization

We consider an abstract optimization problem

(P)
inf f (x)

subject to x ∈ S,

where S is a nonempty set and f is a function on S with values in R ∪ {+∞}. We wish
to construct a dual of (P ) and establish duality relations between (P ) and its dual without
any topological structure on S. To this purpose, we consider a perturbation function F :
S × Y → R, where Y is a linear space, such that F(x, 0Y ) = f (x) for all x ∈ S. The
associated algebraic Lagrangian function L : S × Y ′ → R, is defined by

L(x, ψ) := inf
y∈Y

{F(x, y) − ψ(y)} for ψ ∈ Y ′.

The algebraic Lagrangian dual problem of (P ) is given as
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(AD)
sup infx∈S L(x,ψ)

subject to ψ ∈ Y ′.

The optimal values of (P ) and (AD) are respectively denoted by inf(P ) and sup(AD). We
write min and max instead of inf and sup if those values are attained. It is clear that

sup(AD) ≤ infx∈S supψ∈Y ′ L(x,ψ) ≤ inf(P ),

which is known as weak duality relation. We have strong duality if max(AD) = inf(P ),
and zero duality gap if sup(AD) = inf(P ).
We define the value function v : Y → R associated with F by

v(y) := infx∈SF (x, y) for y ∈ Y .

It follows from the definitions that v#(ψ) = − infx∈S L(x,ψ) for ψ ∈ Y ′ and

v(0Y ) = inf(P )

v##(0Y ) = sup(AD).

Weak duality relation between (P ) and (AD) is nothing, but inequalities −∞ ≤ v##(0Y ) ≤
v(0Y ) ≤ +∞. Note that the strict epigraphs and the domains of v and F are linked by

episv = projY×RepisF

domv = projY domF .

Moreover, since a function is convex if and only if its strict epigraph is convex, in the case
S is a vector space, the value function v is convex if and only if projY×RepisF is convex. In
particular, v is convex if projY×RepiF is convex, which is verified when F is convex. The
following condition, a kind of algebraic constraint qualification, will be used throughout:

(CQ) The set R+(projY domF) is a linear subspace of Y .

Theorem 1 Assume that v is convex and (CQ) holds. Then we have

−∞ ≤ inf(P ) = max(AD) < +∞.

In other words, there exists ψ ∈ Y ′ such that

inf(P ) = infx∈SL(x, ψ) ∈ [−∞, +∞). (5)

Proof If inf(P ) = −∞, then the conclusion of the theorem is evident and (5) holds for any
ψ ∈ Y ′. Let inf(P ) > −∞. We have v(0Y ) > −∞ and by the hypothesis, 0Y ∈ icr(domv).
In view of Lemma 3, v is algebraically subdifferentiable at 0Y , that is, there exists ψ ∈ Y ′
such that v#(ψ) ∈ R and (3) holds. Hence

inf(P ) = v(0Y ) = −v#(ψ) = infx∈XL(x,ψ) ≤ sup(AD) ≤ inf(P ),

and (5) follows.

Observe that the dual construction by the Lagrangian function allows us to obtain strong
duality (Theorem 1) in rather general setting in which the constraint set S is an arbitrary set.
We shall, however, focus on the case where S is a subset of a vector space X. By defining
f (x) = +∞ for x �∈ S we may assume S = X. In this case, the algebraic conjugate of
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f is defined on X′ and the algebraic conjugate of F is defined on X′ × Y ′. It is clear that
inf(P ) = −f #(0X′). Moreover, since

inf
x∈X

L(x, ψ) = inf
x∈X

inf
y∈Y

(F (x, y) − ψ(y)) = −F #(0X′ , ψ),

the dual (AD) takes the form

sup −F #(0X′ , ψ)

subject to ψ ∈ Y ′,

which is known as the algebraic conjugate dual of (P).

Corollary 1 Assume F is convex and (CQ) holds. Then for each ϕ ∈ X′ one has

− ∞ < f #(ϕ) = min
ψ∈Y ′ F

#(ϕ, ψ) ≤ +∞, (6)

and, in particular,

− ∞ ≤ inf(P ) = maxψ∈Y ′ − F #(0X′ , ψ) < +∞. (7)

Proof Let ϕ ∈ X′. Consider (P) with the objective function f −ϕ instead of f . Then F −ϕ

is a convex perturbation function of f −ϕ with projY dom(F −ϕ) = projY domF . We apply
Theorem 1 to obtain

−∞ ≤ −(f − ϕ)#(0X′) = max
ψ∈Y ′ −(F − ϕ)#(0X′ , ψ) < +∞,

which gives (6) because (f − ϕ)#(0X′) = f #(ϕ) and (F − ϕ)#(0X′ , ψ) = F #(ϕ, ψ).
Relation (7) is obtained from (6) by setting ϕ = 0X′ .

If in addition X and Y are topological vector spaces, then the topological conjugate dual
of (P) is nothing, but the restriction of (AD) on Y ∗, that is,

(TD)
sup −F ∗(0X∗ , y∗)
subject to y∗ ∈ Y ∗.

We have

−∞ ≤ sup(T D) = v∗∗(0Y ) ≤ v##(0Y ) = sup(AD) ≤ inf(P ) ≤ +∞.

If domv# ⊂ Y ∗, then v∗∗(y) = v##(y) for all y ∈ Y, and, consequently,

sup(T D) = sup(AD).

This property will be exploited in the sequel when we use algebraic constraint qualification
to derive topological duality relations. The next diagram summarizes some relationships
between the algebraic and the topological conjugate dualities.

F is convex, R+projY (domF) is a linear subspace
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⇓
−∞ < f #(ϕ) = min

ψ∈Y ′ F
#(ϕ, ψ) ≤ +∞ ∀ϕ ∈ X′

⇓ X, Y are topological vector space
projY ′(domF #) ⊂ Y ∗

−∞ < f ∗(x∗) = min
y∗∈Y ∗ F ∗(x∗, y∗) ≤ +∞ ∀x∗ ∈ X∗

⇓ X, Y are topological vector space

projX∗×R(epiF ∗) is w∗ − closed and domf �= ∅.

The first implication is due to Corollary 1. The second implication holds because the func-
tion f ∗ coincides with f # on X∗, F ∗ coincides with F # on X∗ × Y ∗, and under the
hypothesis projY ′(domF #) ⊂ Y ∗, one has

min
ψ∈Y ′ F

#(ϕ, ψ) = min
ψ∈Y ∗ F #(ϕ, ψ).

The third implication comes from the fact that projX∗×R(epiF ∗) = epif ∗. When X and Y

are separated locally convex spaces and f ∗∗ = F ∗∗(., 0Y ) the converse of the third impli-
cation is also true (Corollary 2.2 [15]; see also Theorem 9.1 [4] when F is proper convex
and lower semicontinuous).

Remark 2 If X and Y are vector spaces, then, as it was already discussed before, one may
equip them with a locally convex topology such that X′ = X∗ and Y ′ = Y ∗. Assume that F

is proper convex, lower semicontinuous with respect to the product topology on X × Y . In
view of Corollary 1, (6) holds, which, in its turn, by Theorem 9.1 [4], yields a closedness-
type condition that projX′×R(epiF #) is closed with respect to the weak* topology on X′ ×
R.

3 Algebraic Duality for the Sum of Convex Functions

Let W be a linear space and let p, q : W → R be functions on W . The infimal convolution
of p and q is defined by

p�q(w) := inf
z∈W

(
p(z) + q(w − z)

)
for w ∈ W .

It is exact at w if the infimum is attained at some point z̄ ∈ W , that is p(z̄) + q(w − z̄) ≤
p(z) + q(w − z) for all z ∈ W . We wish to apply Corollary 1 to establish a formula for the
algebraic conjugate of the sum f + g in terms of infimal convolution of their conjugates,
which is known as a generalized version of Fenchel’s duality (see Remark 3).

Proposition 1 Assume that f and g are proper convex and that R+(domf − domg) is a
linear subspace of X. Then, for each ϕ ∈ X′, one has

−∞ < (f + g)#(ϕ) = f #�g#(ϕ) ≤ +∞,

in which the infimal convolution is exact.
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Proof Consider (P) with the objective function f + g. Define a perturbation function F by

F(x, y) = f (x + y) + g(x) for (x, y) ∈ X × X.

Then F is a proper convex function and (CQ) holds because projXdomF = domf − domg.
Moreover, since f and g are proper, f # and g# do not take the value −∞, and one has

F #(ϕ, ψ) = f #(ψ) + g#(ϕ − ψ), ∀(ϕ, ψ) ∈ X′ × X′.
It remains to apply Corollary 1 (6) to complete the proof.

Remark 3 When X is finite dimensional, the hypothesis of Proposition 1 reads 0 ∈
ri(domf − domg) or, equivalently, ri(domf ) ∩ ri(domg) �= ∅, where “ri” denotes the rel-
ative interior of a set. Proposition 1 then gives Fenchel’s duality Theorem 31.1 [17], which
states that for proper convex functions f and g on R

n satisfying the above intersection con-
dition, one has infx∈Rn(f (x) + g(x)) = maxx∗∈Rn −(f ∗(x∗) + g∗(−x∗)). Note further
that the latter equality remains true without f and g being lower semicontinuous even in a
locally convex separated space provided that f is finite and continuous at a point of domg

(see Theorem 2.8.7 (iii) [21]).

In the remaining part of this section we apply Proposition 1 to obtain a formula for the
topological conjugate (f + g)∗.

Lemma 4 Let f, g : X → R be two proper convex functions on a topological vector space
X. Assume that R+(domf − domg) is a linear subspace of X and that either domf # ⊆ X∗
or domg# ⊆ X∗. Then, for each x∗ ∈ X∗ one has

− ∞ < (f + g)∗(x∗) = min
z∗∈X∗(f

∗(z∗) + g∗(x∗ − z∗)) ≤ +∞. (8)

Proof Let x∗ ∈ X∗. By Proposition 1 there exists ϕ ∈ X′ such that

−∞ < (f + g)∗(x∗) = (f + g)#(x∗) = f #(ϕ) + g#(x∗ − ϕ) ≤ +∞.

If (f +g)∗(x∗) = +∞, then f ∗(z∗)+g∗(x∗ −z∗) = +∞ for any z∗ ∈ X∗ and (8) holds. If
(f +g)∗(x∗) �= +∞, then ϕ ∈ domf # ∩(x∗ −domg#). It is immediate from the hypothesis
that ϕ ∈ X∗. Hence

(f + g)∗(x∗) = f ∗(z∗) + g∗(x∗ − z∗) ≥ infz∗∈X∗(f ∗(z∗) + g∗(x∗ − z∗)) ≥ (f + g)∗(x∗),
which implies (8).

The hypothesis that domf # ⊆ X∗, can be ensured when X is partially ordered by a
convex cone and all positive linear functionals with respect to that cone are continuous. Let
us assume that X is a topological vector space equipped with a partial order generated by
a convex cone C ⊂ X. The algebraic dual cone and the topological dual cone of C are
respectively denoted by C◦, C+ and given by

C◦ := {ψ ∈ X′ : ϕ(x) ≥ 0, ∀x ∈ C},
C+ := {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 ∀x ∈ C}) = C◦ ∩ X∗.

A function f : X → R is said to be monotone if it is either increasing in the sense that
x1 � x2 =⇒ f (x1) ≤ f (x2) for all x1, x2 ∈ Y or it is decreasing in the sense that
x1 � x2 =⇒ f (x1) ≥ f (x2) for all x1, x2 ∈ X.

Lemma 5 Let f : X → R be monotone with domf �= ∅. Then domf # ⊂ C◦ ∪ (−C◦).
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Proof Let ϕ ∈ domf #. Choose b ∈ domf . If h is increasing, then for every x ∈ C, we have

+∞ > f #(ϕ) ≥ ϕ(b − x) − f (b − x) ≥ ϕ(b) − ϕ(x) − f (b).

If ϕ(x0) < 0 for some x0 ∈ C, then for t > 0, we would have tx0 ∈ C and

+∞ > f #(ϕ) ≥ ϕ(b) − tϕ(x) − f (b),

which leads to a contradiction when t tends to +∞. Therefore, ϕ(x) ≥ 0 for all x ∈ C,
which means that ϕ ∈ C◦. If h is decreasing, then for every x ∈ C, we have

+∞ > f #(ϕ) ≥ ϕ(b + x) − f (b + x) ≥ ϕ(b) + ϕ(x) − f (b).

By a similar argument as above, we deduce ϕ(x) ≤ 0 for all x ∈ C, by which ϕ ∈ −C◦.

We shall need the following hypothesis:

(Q) All positive linear functionals on X are continuous, that is, C◦ = C+.

When this property is true, we also say that X has the property (Q). Here are some
examples of spaces having the property (Q).

a) Every finite dimensional space has property (Q). This, however, is not true in infinite
dimension. To see this, it suffices to consider a Banach space and a cone corresponding
to the positive part of a discontinuous linear functional. The topological dual of this
cone contains only the zero element while its algebraic dual contains the functional
defining it.

b) Let X be a Banach space and C ⊂ X a convex cone such that C − C is a closed linear
subspace of finite codimension, then Y has the property (Q) (see [20]). In particular,
the space C0(T ) of continuous real valued functions vanishing at infinity on a locally
compact topological space T equipped with the norm ||x||∞ = supt∈T |x(t)| and the
partially ordering cone C = {x ∈ C0(T ) : x(t) ≥ 0 ∀t ∈ T } has property (Q) (see
[14]).

c) Let X = R
N equipped with the product topology, and let C = R

N+. Then R
N has the

property (Q) (Lemma 2.1 [2]).

Remark 4 If X is a topological vector space such that C◦ = C+ for every convex cone C,
then its convergence is almost of finite dimension in the sense that from a certain term, all
elements of a convergent net belong to a finite dimensional subspace. Indeed, let (xα)α∈I be
a convergent net, where I is a directed index set. Without loss of generality we may assume
that it converges to 0X . By contradiction we suppose that the net has a subnet (xβ)β∈J

of linearly independent vectors, where J is a directed index subset of I . Let X1 be the
linear subspace generated by xβ, β ∈ J , and X2 its algebraic complement. Define a linear
functional ξ on X by ξ(xβ) = 1 for β ∈ J , and ξ(x) = 0 for x ∈ X2. Consider the cone
C = {x ∈ X : ξ(x) ≥ 0}. It is clear that C is a convex cone, ξ ∈ C◦ but it is not continuous.

Here is a formula for the conjugate of the sum of two functions one of which is monotone.

Corollary 2 Let f, g : X → R be two proper convex functions on a topological vec-
tor space X partially ordered by a convex cone C ⊂ X with property (Q). Assume that
R+(domf − domg) is a linear subspace of X and that either f or g is monotone. Then, for
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each x∗ ∈ X∗ one has

− ∞ < (f + g)∗(x∗) = min
z∗∈X∗(f

∗(z∗) + g∗(x∗ − z∗)) ≤ +∞. (9)

Proof By Lemma 5 and by condition (Q), we have either domf # ⊆ X∗ or domg# ⊆ X∗. It
remains to apply Lemma 4 to complete the proof.

Remark 5 In finite dimensional spaces the monotonicity condition is unnecessary (see
Remark 3). This, however, is not true in the infinite dimensional case as shown by the next
example.

Example 2 Let X = R
N, C = R

N+ and let f be a discontinuous linear functional on X. Set
g = −f . Then X satisfies (Q) and R+(domf − domg) = X. It is clear that (9) does not
hold because (f +g)∗ = δ{0X∗ } while f ∗(x∗) = g∗(x∗) = +∞ for all x∗ ∈ X∗. Notice that
f and g are not monotone with respect to C because otherwise, being positive or negative
on C, in view of Lemma 2.1 [2], they should be continuous.

We now apply Corollary 2 to an extended monotropic problem. Let (tn)n≥1 be a sequence
from the set R ∪ {+∞}. If some of its terms is equal to +∞, then we agree that the infinite
sum

∑
n∈N tn is equal to +∞, and it is equal to α ∈ R if the unconditional limit of the finite

sums
∑

i∈J ti , where J is a non-empty finite subset of N, exists and is equal to α.
Let (fn)n≥1 be a sequence of proper convex functions from R to R such that

f ((xn)n) :=
∑
n∈N

fn(xn) exists for each (xn)n ∈ R
N.

It is clear that f is a convex function on R
N. We assume that it is proper and consider the

constrained problem, known as an extended monotropic problem (see [3, 5, 7, 15, 19]):

(P)
inf f ((xn)n)

subject to (xn)n ∈ K,

where K ⊂ R
N is a convex cone. This problem can be written in the form

inf f ((xn)n) + δK((xn)n)

subject to (xn)n ∈ R
N.

The space RN equipped with the product topology is a locally convex space. Its topological
dual is the space R

[N] of real sequences with finite support. The standard bilinear coupling
between them is given by

〈(xn)n, (λn)n〉 =
∑
n∈N

λnxn for (xn)n ∈ R
N, (λn)n ∈ R

[N].

Fenchel’s algebraic dual of (P) is given by

sup −(
f #(ϕ) + δ#

K(−ϕ)
)

subject to ϕ ∈ (RN)′ .

According to Proposition 1 [15],

−∞ < f ∗((λn)n) =
∑
n∈N

f ∗
n (λn) ≤ +∞ ∀(λn)n ∈ R

[N].
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This and the fact that δ#
K(−ϕ) = 0 for ϕ ∈ K+ and δ#

K(−ϕ) = +∞ for ϕ �∈ K+ yield the
topological dual of (P):

(D)
sup − ∑

n∈N f ∗((λn)n)

subject to (λn)n ∈ K+.

Corollary 3 Assume that R+(domf − K) is a linear subspace of RN and one of the
following conditions holds:

i) K◦ = K+.
ii) f is monotone with respect to R

N+.
iii) Either RN+ ⊆ K or RN+ ⊆ −K .

Then −∞ ≤ inf(P ) = max(D) < +∞.

Proof Under i) we equip R
N with a partial order generated by K . It clearly satisfies (Q).

Moreover, the indicator function δK is monotone with respect to this order, and domδK =
K . By applying Corollary 2 we obtain

−∞ < (f + δK)∗((λn)n) = min

(∑
n∈N

f ∗
n (μn) : (μn)n ∈ (λn)n + K+

)
< +∞,

Setting λn = 0 for all n, we deduce −∞ ≤ inf(P ) = max(D) < +∞.
Under ii) or iii) we equip R

N with a partial order generated by R
N+. It is plain that under

iii) the function δK is monotone. Hence, in both cases, we may apply Corollary 2 to achieve
the proof.

Remark 6 As an application of Proposition 1 we can also obtain a version of Theorem 23.8
[17] on the algebraic subdifferential of the sum of two convex functions. Namely, assume
that f and g are proper convex and that R+(domf −domg) is a linear subspace of X. Then
for each x ∈ X, one has

∂(f + g)(x) = ∂f (x) + ∂g(x). (10)

Using the perturbation function F defined in the proof of Proposition 1, we also have
projX′×RepiF # = epif # + epig#. The closedness-type condition mentioned in Remark 2
implies the formula of Proposition 1, and hence equality (10) as well. Furthermore, under
the hypothesis of Corollary 2, (10) gives a formula for the topological subdifferential of the
sum of two functions : ∂∗(f + g)(x) = ∂∗f (x) + ∂∗g(x), because we have then either
∂f (x) or ∂g(x) a subset of the topological dual space X∗.

4 Problems with Inequality Constraints

Assume that the vector space Y is equipped with a partial order generated by a convex cone
C ⊂ Y : y1 � y2 ⇐⇒ y2 − y1 ∈ C. Let f : X → R be a proper convex function, where
X is a linear space. Let G : X → Y ∪ {+∞Y }, where +∞Y is a symbol with y � ∞Y for
all y ∈ Y . Consider the following problem with inequality constraint

(CP)
inf f (x)

subject to G(x) � 0Y .
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The domain of G is given by domG := {x ∈ X : G(x) �= +∞Y } and its epigraph is given
by epiG := {(x, y) ∈ X × Y : G(x) � y}.

Let us denote the feasible set of (CP) by E, that is, E := {x ∈ X : G(x) � 0Y } and
� := domf ∩ dom G. For each ψ ∈ Y ′ we consider

(ψ ◦ G)(x) =
{

ψ(G(x)) if x ∈ domG

+∞ else.

A perturbation function F can be given by

F(x, y) =
{

f (x) if G(x) � −y

+∞ else.
(11)

The algebraic dual cone of the cone C is denoted by C◦, that is,

C◦ := {ψ ∈ Y ′ : ψ(y) ≥ 0, ∀y ∈ C}.

Lemma 6 Assume � �= ∅. For each (ϕ, ψ) ∈ X′ × Y ′ we have

F #(ϕ, ψ) =
{

(f + ψ ◦ G)#(ϕ) if ψ ∈ C◦

+∞ else.

Proof We compute F #(ϕ, ψ) by definition

F #(ϕ, ψ) = sup
x∈�, G(x)�−y

(ϕ(x) + ψ(−y) − f (x))

= sup
x∈�,u∈C

(ϕ(x) − f (x) − ψ(G(x) + u))

= sup
x∈�,u∈C

(ϕ(x) − f (x) − (ψ ◦ G)(x)) − ψ(u))

=
{

(f + ψ ◦ G)#(ϕ) if ψ ∈ C◦

+∞ else.

The proof is complete.

Remark 7 When � = ∅ and C◦ �= Y ′, the conclusion of Lemma 6 is not true. In this case,
we have F #(ϕ, ψ) = −∞ for all (ϕ, ψ) ∈ X′ × Y ′.

In view of Lemma 6 we obtain the associated algebraic dual of (CP) in the form:

(ACD)
sup −(f + ψ ◦ G)#(0X′)
subject to ψ ∈ C◦.

Proposition 2 Assume f is proper convex, epiG is convex and the following condition
holds:

(CQ1) R+(G(�) + C) is a linear subspace of Y .

Then for each ϕ ∈ X′ one has
−∞ < (f + δE)#(ϕ) = minψ∈C◦(f + ψ ◦ G)#(ϕ) ≤ +∞,
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where δE denotes the indicator function of E. In particular,

−∞ ≤ inf(CP ) = max(ACD) < +∞.

Proof We have epi F = {(x, y, r) ∈ X×Y ×R : (x, r) ∈ epif }∩{(x, y, r) ∈ X×Y ×R :
(x, −y) ∈ epiG}. It follows that epiF is convex because epif and epiG are both convex, by
which F is convex. Moreover, (CQ) holds due to (CQ1) and the fact that

projY domF = {y ∈ Y : −y ∈ G(x) + C for some x ∈ �} = −(G(�) + C).

It remains to apply Corollary 1 and Lemma 6 to complete the proof.

Remark 8 When Y = R
m and C = R

m+, problem (CP) has m inequality constraints. The
constraint qualification (CQ1) is clearly equivalent to the well known Slater condition. In a
general case we have the following characterization of (CQ1).

Proposition 3 If (CQ1) holds, then C −C ⊆ R+(G(�)+C). Moreover, if G(�) ⊆ C −C,
then

(CQ1) ⇔ C − C = R+(G(�) + C).

Proof Observe that under (CQ1), the subspace R+(G(�)+C) contains the sets G(�)+C,
−G(�) − C and their sum as well. By picking an element p ∈ G(�), we have

C − C = p + C − p − C ⊆ G(�) + C − (G(�) + C) ⊆ R+
(
G(�) + C

)
. (12)

Now, if G(�) ⊆ C − C, then

R+
(
G(�) + C

) ⊆ R+
(
(C − C) + C

) = C − C.

This and (12) prove implication “ ⇒ ”. The implication “ ⇐ ” is clear because C − C is a
linear subspace.

Remark 9 In applications, as we will see later, it is often the case that C − C = Y . In such
cases, it follows from Proposition 3 that (CQ1) is equivalent to equality R+(G(�)+C) = Y ,
which is, in particular, satisfied if −G(�) meets the algebraic interior coreC of C. Note
also that if there exists b ∈ Y such that G(�) ⊆ b + C with −b �∈ coreC, then (CQ1) does
not hold.

We now consider a particular case of problem (CP). Let A : X → Y be a linear map,
l ∈ X′, and b ∈ Y, where X is a linear space and Y is another linear space equipped with a
partial order generated by a convex cone C ⊂ Y . We consider the following linear problem

(LP)
inf l(x)

subject to A(x) � b.

We denote the adjoint of A by A′, that is, A′ : Y ′ → X′ given by A′(ψ) = ψ ◦A for ψ ∈ Y ′.
Problem (LP) is a particular case of (CP) in which f (x) = l(x) and G(x) = b − A(x) for
x ∈ X. Moreover, epiG is convex and � = X. By using the perturbation function (11) and
Lemma 6 we obtain the following algebraic dual of (LP ) :

(ALD)
sup −F #(0X′ , ψ)

subject to ψ ∈ Y ′,
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in which

F #(ϕ, ψ) =
{

−ψ(b) if ψ ∈ C◦ and A′(ψ) = l − ϕ

+∞ else

because for ψ ∈ C◦ one has(
l + ψ ◦ (b − A)

)#
(φ) = sup

x∈X

(
φ(x) − l(x) − ψ(b) − ψ ◦ A(x)

)
= −ψ(b) − sup

x∈X

(
φ − l − A′(ψ)

)
(x)

=
{ −ψ(b) if A′(ψ) = l − ϕ

+∞ else.

It is clear that for l �∈ A′(C◦), the dual objective function −F #(0X′ , .) is identically equal
to −∞ and sup(ALD) = max(ALD) = −∞. For l ∈ A′(C◦), problem (ALD) is feasible
and written as

(ALD)’
sup ψ(b)

subject to A′(ψ) = l, ψ ∈ C◦.

Proposition 4 Assume that R+(A(X) − C − b) is a linear subspace of Y . For each l ∈ X′
one has either

inf(LP ) = −∞ and (ALD)′ unfeasible,
or

inf(LP ) �= −∞ and inf(LP ) = max(ALD)′ ∈ R.

Proof Observe that for G(x) = b − A(x) and � = X, one has R+(G(�) + C) = R+(C +
b − A(X)). It remains to apply Proposition 2 to complete the proof.

5 Infinite Convex Problems

We consider the following infinite constrained problem

(ICP)
inf f (x)

subject to gt (x) ≤ 0, t ∈ T ,

where T is an infinite index set, f : X → R and gt : X → R, t ∈ T are proper convex
functions on a vector space X. Set Y = R

T , C = R
T+ consisting of all families (λt )t ⊂ R

with λt ≥ 0 for all t ∈ T , and define G : X → Y ∪ {∞Y } by

G(x) =
{

(gt (x))t if x ∈ ⋂
t∈T domgt

∞Y else.

With this G, problem (ICP) takes the form of (CP) studied in Section 4. Its algebraic dual
is given by

(ICD)
sup −(f + ψ ◦ G)#(0X′)
subject to ψ ∈ (RT+)◦.

We have the following duality result.
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Corollary 4 Assume that f and gt , t ∈ T are proper convex and that
R+(

⋃
x∈domf ∩(∩t∈T domgt )

gt (x) + R
T+
)
is a linear subspace of RT . Then

−∞ ≤ inf(ICP ) = max(ICD) < +∞.

Proof Observe that the set � is given by � = domf ∩ (∩t∈T domgt ). It remains to apply
Proposition 2 to achieve the proof.

We are now interested in two particular problems corresponding to T = N and T being
a locally compact Hausdorff topological space. Since the topological dual space of RT is
well known for these T , we focus our study on the topological dual of (ICD) and specify
the condition (CQ1) for these problems. By so doing we show that in some cases usual
topological conditions for strong duality are not applied, but the algebraic ones are.

5.1 Countably Infinite Convex Problem

We consider (ICP) with T = N, that is,

(CICP)
inf f (x)

subject to gn(x) ≤ 0, n ∈ N,

where f : X → R and gn : X → R, n ∈ N are proper convex functions on a vector space
X (see [10–12]). By using (ICD) we obtain the associated topological dual of (CICP):

(CICD)
sup infx∈�

(
f (x) + ∑

n∈N λngn(x)
)

subject to (λn)n ∈ R
[N]
+ ,

where � = domf
⋂( ∩n∈N domgn

)
.

Let us first analyze condition (CQ1). The next result is a kind of Slater’s constraint
qualification in infinite dimension the proof of which requires some effort.

Lemma 7 The following conditions are equivalent:

(i) R+
( ⋃

x∈�

∏
n∈N[gn(x),+∞)

)
is a linear subspace;

(ii) R+
( ⋃

x∈�

∏
n∈N[gn(x),+∞)

) = R
N;

(iii) �− := {x ∈ � : gn(x) < 0 for all n ∈ N} �= ∅ and there is some k ≥ 1 such that

R
N\{1,...,k−1} =

⋃
x∈�−

∏
n≥k

[gn(x),∞). (13)

Proof The equivalence between (i) and (ii) follows from Proposition 3 and from the fact
that RN+ − R

N+ = R
N. We prove implication (iii) ⇒ (ii). Let a = (an)n ∈ R

N. By (13), for
the element (−|an|)n, there is some x̄ ∈ �− such that

− |an| ≥ gn(x̄) for n ≥ k. (14)

Choose ε > 0 such that gn(x̄) ≤ −ε for n = 1, ..., k − 1. Such ε exists because x̄ ∈ �−.
Set t = maxn=1,...,k−1 |an|/ε. Then −(t + 1)ε ≤ −|an|, n = 1, ..., k − 1. It follows that

(t + 1)gn(x̄) ≤ −(t + 1)ε ≤ −|an| ≤ an for n = 1, ..., k − 1.
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Moreover, as gn(x̄) < 0, we deduce from (14) that

(t + 1)gn(x̄) ≤ gn(x̄) ≤ −|an| ≤ an for n ≥ k.

Consequently, (an)n ∈ (t + 1)
(
(gn(x̄))n + R

N+
)
. This proves (ii).

Conversely, assume (ii). For (an)n with an = −1, n ∈ N, there exist some t > 0 and
x ∈ � such that an ≥ tgn(x) for all n ∈ N. In particular, gn(x) < 0, n ∈ N, which
shows that x ∈ �− and �− is nonempty. Further, suppose to the contrary that (13) does not
hold. For each k ≥ 1 there exists an element ak = (ak

n)n≥k that does not belong to the set⋃
x∈�−

∏
n≥k[gn(x),∞). Let bk = (bk

n)n≥k with bk
n = −|ak

n| − 1. Since bk
n < ak

n, we have

bk �∈
⋃

x∈�−

∏
n≥k

[gn(x),∞) for all k ≥ 1,

that is, for every x ∈ �− there is some index n(k, x) ≥ k such that

bk
n(k,x) < gn(k,x)(x). (15)

Let (cn)n≥1 ∈ R
N be defined by cn := min{b1

n, ..., bn
n}, n ≥ 1. It is clear that

cn ≤ bi
n ≤ −1 for all i ≤ n. (16)

Now consider the element (ncn)n ∈ R
N. By hypothesis, there are some t > 0 and x̄ ∈ �

such that
ncn ≥ tgn(x̄) for all n ∈ N. (17)

In particular, x̄ ∈ �− because cn, n ∈ N are all negative. In view of (15) and (16) we have

cn(k,x̄) ≤ bk
n(k,x̄) < gn(k,x̄)(x̄) for all k ≥ 1.

This implies that cn(k,x̄)/gn(k,x̄)(x̄) > 1, which together with (17) yields

t ≥ n(k, x̄)
cn(k,x̄)

gn(k,x̄)(x̄)
> n(k, x̄) ≥ k for all k ≥ 1.

We arrive at a contradiction when k > t . The proof is complete.

We are now in position to give conditions for strong duality

Proposition 5 Assume that there is some x ∈ � such that gn(x) < 0 for all n ∈ N and
there is some k ≥ 1 such that

R
N\{1,...,k−1} =

⋃
x∈�

∏
n≥k

[gn(x),∞). (18)

Then

−∞ ≤ inf(ICP ) = max(ICD) < +∞.

Proof Observe that G(�) + C = ⋃
x∈�

∏
n∈N[gn(x),+∞)

)
. It is clear that (18) is equiva-

lent to (13). In view of Lemma 7, (CQ1) holds. Applying Proposition 2 and Lemma 2.1 [2]
we find some (λn)n ∈ R

N such that

−∞ < (f + δE)#(0X′) = inf
x∈�

(
f (x) +

∑
n∈N

λngn(x)
) ≤ +∞.

This yields −∞ ≤ inf(ICP ) = max(ICD) < +∞ as requested.
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A simple class of problems that satisfy the hypothesis of Proposition 5 consists of convex
problems in which X = R

N and the constraints are separated in the sense that gn((xn)n) =
hn(xn) for (xn)n ∈ R

N with hn : R → R, n ≥ 1 being proper convex. We have � =
dom f ∩ ∏

n∈N domhn and denote Pk(dom f ) := {xk ∈ R : (xn)n ∈ dom f }.

Corollary 5 Assume that f is proper convex and there are some (xn)n ∈ � such that
hn(xn) < 0 for all n ∈ N and k ≥ 1 such that infx∈Pn(dom f ) hn(x) = −∞ for all n ≥ k.
Then

inf
hn(xn)≤0,n∈N f ((xn)n) = max

(λn)n∈R[N]
+

inf
(xn)n∈�

{f ((xn)n) +
∑
n∈N

λnhn(xn)} < +∞.

Proof Observe that (18) is satisfied because by the hypothesis, we have⋃
(xn)n∈�

∏
n≥k

{hn(xn)} = R
N\{1,...,k−1}.

It remains to apply Proposition 5 to complete the proof.

Remark 10 We notice that the hypothesis requested in Proposition 5 is sufficient, but not
necessary for strong duality inf(ICP ) = max(ICD). For instance with gn(x) = 0 for
all x ∈ domf and n ∈ N, the above mentioned equality holds trivially. However, the
set R+

( ⋃
x∈�

∏
n∈N[gn(x),+∞)

) = R
N+ is not a linear subspace. Moreover, as we have

already noticed in Remark 8 that for problems with finite number of inequality constraints
gi(x) ≤ 0, i = 1, ...,m, the constraint qualification is equivalent to the Slater condition:
there exists some x̄ ∈ domf such that gi(x̄) < 0, i = 1, ...,m. This, however, is not true
for (ICP).

Example 3 Let the constraints of (ICP) be defined by gn(x) = −n for all n ∈ N and let
� �= ∅. It is clear that the Slater condition holds. Consider an element (an)n ∈ R

N given
by an = −n2, n ∈ N. We claim that (an)n �∈ R+

(⋃
x∈�

∏
n∈N[gn(x),+∞)

)
. Indeed, by

supposing the contrary, we may find some t > 0 and x ∈ � such that an ≥ tgn(x) for all
n ∈ N. It follows that −n2 ≥ t (−n), or equivalently, t ≥ n for all n ∈ N, a contradiction.
Hence, the constraint qualification does not hold.

Remark 11 When X is a locally convex space and the functions f, gn, n ∈ N are proper
convex, lower semicontinuous, and inf(ICP) �= +∞, a necessary and sufficient condition
for strong duality has been established in Theorem 1 [12], which demands that the set
∪

(λn)n∈R[N]
+

epi(f +δdomG+∑
n∈N λngn)

∗ is w*-closed regarding {0X∗ }×R in the sense that

its intersection with {0X∗ }×R coincides with the intersection of its closure with {0X∗ }×R.

Finally we apply Proposition 5 to infinite linear problems. Consider the following alge-
braic infinite linear problem

(AILP)
inf l(x)

subject to ln(x) ≥ bn, n ∈ N,

where l, ln ∈ X′ and bn ∈ R, n ∈ N. By setting A(x) = (ln(x))n and C = R
N+ we can see

that (AILP) is exactly (LP) studied in Section 3.3. The algebraic dual (ALD)’ yields the
following associated topological dual
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(TILD)
sup

∑
n∈N λnbn

subject to (λn)n ∈ R
[N]
+ ,

∑
n∈N λnln = l.

Corollary 6 Assume that there is some x ∈ X such that bn < ln(x) for all n ∈ N and
there is some k ≥ 1 such that

R
N\{1,...,k−1} =

⋃
x∈X

∏
n≥k

[ln(x),∞). (19)

Then, either inf(AILP ) = −∞ and (TILD) is unfeasible, or inf(ALIP ) �= −∞ and
inf(ALIP ) = max(T ILD) ∈ R.

Proof Since inf(AILP ) ≥ sup(T ILD), we obtain that (TILP) has no feasible solution if
inf(AILP ) = −∞. For the case inf(AILP ) > −∞, we consider gn(x) = bn − ln(x),
� = X and show that (18) and (19) are equivalent. Indeed, if (19) holds, then for every
(an)n≥k ∈ R

N\{1,...,k−1}, one finds some x ∈ X such that ln(x) + sn = an − bn with
sn ≥ 0, n ≥ k. Setting y = −x, one obtains gn(y)+sn = bn−ln(y)+sn = bn+ln(x)+sn =
an, n ≥ k, which establishes (18). Conversely, let (18) hold. Let (an)n≥k ∈ R

N\{1,...,k−1}.
For (an + bn)n≥k , there are some x ∈ X and sn ≥ 0 such that gn(x) + sn = an + bn, n ≥ k.
This implies ln(−x) + sn = an, n ≥ k, which shows that (19) is satisfied. Now it remains
to apply Proposition 5 to complete the proof.

Remark 12 Condition (19) cannot be satisfied if X is finite dimensional. In fact, let ei, i =
1, ..., k be a basis of X and yi

n = ln(e
i). Choose (zn)n ∈ R

N with zn = −n
∑k

i=1(|yi
n| + 1).

We claim that (zn)n �∈ ⋃
x∈X

∏
n≥k[ln(x),∞). Suppose to the contrary that there is some

x ∈ X, say x = ∑k
i=1 tie

i with ti ∈ R such that ln(x) ≤ zn, n ∈ N. Then
∑k

i=1 tiy
i
n ≤

−n
∑k

i=1(|yi
n| + 1) for n ≥ 1. It follows that

k∑
i=1

|ti | ≥
∑k

i=1 tiy
i
n∑k

i=1(|yi
n| + 1)

≥ n,

which is impossible when n is sufficiently large.
In infinite dimension, (19) holds for instance when the linear operator from X to
R
N\{1,...,k−1} defined by x �→ (ln(x))n≥k for x ∈ X is surjective.

5.2 Continuous Convex Problems

We consider the following infinite constrained problem

(CCP)
inf f (x)

subject to gt (x) ≤ 0, t ∈ T ,

where the index set T is a locally compact Hausdorff topological space, f : X → R

and gt : X → R, t ∈ T are proper convex functions on a vector space X. To sim-
plify the writing, we use g(t, x) instead of gt (x) and assume throughout that for every
x ∈ M := ∩t∈T domg(t, .), the function t �→ g(t, x) belongs to the space C0(T ) of contin-
uous functions vanishing at infinity equipped with the sup norm and partially ordered by the
positive cone C := {y ∈ C0(T ) : y(t) ≥ 0 for all t ∈ T }. The algebraic dual of (CCP)
gives its associated topological dual in the form
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(CCD)
sup infx∈�

(
f (x) + 〈y∗, g(., x)〉)

subject to y∗ ∈ C+,

where � := M ∩ domf and C+ is the topological dual cone of C in the space of regular
Borel measures on T .

Proposition 6 Assume that R+
( ∪x∈� {g(., x)} + C

) = C0(T ). Then one has

−∞ ≤ inf(CCP ) = max(CCD) < +∞.

Proof We wish to apply Proposition 2 with Y = C0(T ) and

G(x) =
{

g(., x) if x ∈ M

∞Y else.
It is clear that epi(G) is convex. By the hypothesis,

R+
(
G(�) + C

) = R+
( ∪x∈� {g(., x)} + C

) = C0(T ),

which implies (CQ1). In view of Proposition 2,

−∞ ≤ inf(CCP ) = max
ψ∈C◦ inf

x∈�

(
f (x) + ψ ◦ g(., x)

)
< +∞.

According to Remark 3 b), C◦ = C+. We deduce

−∞ ≤ inf(CCP ) = max(CCD) < +∞
as requested.

When T is compact, the space C0(T ) coincides with C(T ), the space of continuous
functions on T . The cone C◦ of positive functionals on C is known to be the set R+(T ) of
positive Radon measures (regular Borel measures) on T . Thus, for each y∗ ∈ C+, there is
some μ ∈ R+(T ) such that 〈y∗, g(., x)〉 = ∫

g(t, x)dμ(t).

Lemma 8 Assume T is compact. Then R+
(∪x∈� {g(., x)}+C

) = C(T ) if and only if there
is some x̄ ∈ � such that g(t, x̄) < 0 for all t ∈ T .

Proof The “only if” part is clear. We prove the “if” part. Let y ∈ C(T ) be given. By the
definition of the sup norm, −‖y‖ ≤ y(t) for all t ∈ T . Since t �→ g(t, x̄) is continuous and
T is compact, there is some ε > 0 such that g(t, x̄) ≤ −ε for all t ∈ T . Choose s ≥ ‖y‖/ε.
We obtain sg(t, x̄) ≤ (‖y‖/ε)g(t, x̄) ≤ −‖y‖ ≤ y(t) for all t ∈ T . This shows that
y ∈ R+

( ∪x∈� {g(., x)} + C
)
. The proof is complete.

Corollary 7 Assume that T is compact and there is some x̄ ∈ � such that g(t, x̄) < 0 for
all t ∈ T . Then one has

−∞ ≤ inf(CCP ) = max
μ∈R+(T )

inf
x∈�

(
f (x) +

∫
g(t, x)dμ(t)

)
< +∞.

Proof By Lemma 8, R+
( ∪x∈� {g(., x)} + C

) = C(T ). The corollary is obtained by
Proposition 6.

Remark 13 The necessary and sufficient condition for the constraint qualification in Lemma
8 is not true when T is not compact as it is shown in the next example.
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Example 4 Let us consider T = [0, ∞) and g(t, x) = −1/(1 + t) for all t ∈ T and x ∈ �.
We have g(., x) ∈ C0(T ). We claim that R+

( ∪x∈� {g(., x)} + C
) �= C0(T ). To see this,

choose y(t) = −1/
√

1 + t . Suppose to the contrary that there is some α > 0 such that
y(t) ≥ αg(t, x), t ∈ T . We obtain that α ≥ y(t)/g(t, x) = √

1 + t for all t ∈ T , which is a
contradiction when t tends to infinity.

6 Conclusion

Throughout this work we have used condition (CQ) in one form or another to obtain strong
duality results. When X and Y are locally convex separated spaces the topological strong
duality

inf
x∈X

F(x, 0Y ) = max
y∗∈Y ∗(−F ∗ ( 0X∗ , y∗)

is classically established under a constraint qualification and some lower semicontinuity or
quasicontinuity hypothesis on F (Theorem 7 [18], Theorem 2.7.1 [21]). The main merit of
the algebraic duality approach we have developed in this work is that, in favorable circum-
stances, condition (CQ) is sufficient to ensure the topological strong duality without further
hypothesis on F .
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