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Abstract
We consider convergence of alternating projections between non-convex sets and obtain
applications to convergence of the Gerchberg-Saxton error reduction method, of the
Gaussian expectation-maximization algorithm, and of Cadzow’s algorithm.
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1 Introduction

We consider convergence of alternating projections ak ∈ PA(bk−1), bk ∈ PB(ak) between
closed sets A, B ⊂ R

n, where PA, PB are the potentially set-valued orthogonal projectors
on A,B. Since their invention [31] alternating projections have been understood as an algo-
rithmic solution to the feasibility problem of finding points x∗ ∈ A ∩ B. In the infeasible
case A ∩ B = ∅, alternating projections are still interpreted as of providing generalized
solutions realizing the gap between A and B.

It is well-known [3] that bounded alternating sequences converge if A, B are closed
convex, while convergence may fail already if one of the sets is non-convex. If ak, bk are
bounded and satisfy ak − ak−1 → 0, bk − bk−1 → 0 as k → ∞, then by Ostrowski’s
theorem the sets A∗, B∗ of accumulation points of the ak, bk are compact continua. This
includes the singleton case A∗ = {a∗}, B∗ = {b∗} with convergence, but allows examples
where A∗, B∗ are non-singleton. The first cases of failure of convergence with non-singleton
A∗ = B∗ ⊂ A ∩ B were constructed in [4] and [5].

In the feasible case A ∩ B 	= ∅ local convergence of alternating projections was
established under transversality hypotheses in [7, 8, 14, 19, 22, 23], where the speed
of convergence is linear. Convergence for cactus sets without transversality was proved
in [4], and the case of tangential intersection was addressed in [27, 28]. General convergence
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conditions are given in [13], but are difficult to check in practice. The Kurdyka-Łojasiewicz
(KL) circle of ideas plays a crucial role in the approach [28], and there had previously been
results for related projection based methods in [2]. In [34] the approach of [28] and the KL-
property is used to address the infeasible case, where the authors do not focus on geometric
properties of the sets A,B, but on properties of the sequence ak, bk directly.

In this work we show that the infeasible case can be covered by suitably adapting the
approach of [28]. This gives convergence under geometric conditions in terms of A,B.

A central concern of this work is application of alternating projections to the Gerchberg-
Saxton error reduction method [18], introduced in 1972. This classical tool for phase
retrieval has been used successfully for more than 40 years without convergence certificate.
The first convergence proof ever appeared in 2013 in [27, 28], addressing the feasible case
and including subanalytic sets. Here we give the first convergence proof covering also the
infeasible case, providing criteria which can often be checked in practice.

It turns out that not only had Gerchberg-Saxton error reduction been used without the-
oretical convergence certificates for decades, neither had the question ever been raised
whether there could be cases where convergence fails. We therefore supplement a first coun-
terexample, showing that Gerchberg-Saxton error reduction may indeed fail to converge
even in the feasible case if only the prior information set is sufficiently irregular.

We end with a glimpse on the EM-algorithm, where the situation is not unlike in phase
retrieval, inasmuch as since the 1970s a satisfactory convergence theory outside the realm of
convexity is missing. For variants of the EM-algorithm which are realizations of alternating
projections, we can prove convergence without convexity. Our findings also concern the
speed of convergence, which is shown to be sublinear.

The structure of the paper is as follows. After the preparatory Sections 2, 3, Sections 4–
7 adapt notions developed for the feasible case in [28] to address the infeasible case.
Section 8 gives the central convergence result. Gerchberg-Saxton error reduction is dis-
cussed in Section 9, counterexamples for the Gerchberg-Saxton and Hybrid-Input-Output
(HIO) algorithms are constructed in Sections 10 and 11. The Gaussian EM-algorithm is
given attention in Section 12, and Cadzow’s algorithm in Section 13.

Notation

Notions from nonsmooth analysis are covered by [26, 30]. Euclidean balls are denoted
B(x, δ), and N (A, δ) = {x ∈ R

n : dA(x) ≤ δ} is the Euclidean δ-neighborhood of a set
A. The proximal normal cone to A at a ∈ A is N

p
A(a) = {λu : λ ≥ 0, a ∈ PA(a + u)},

the normal cone is the set NA(a) of v for which there exist ak ∈ A with ak → a and
vk ∈ N

p
A(ak) such that vk → v. The Fréchet normal cone ̂NA(a) to A at a ∈ A is the set of v

for which lim supA�a′→a
〈v,a′−a〉
‖a′−a‖ ≤ 0; cf. [26, (1.2)]. We have N

p
A(a) ⊂ ̂NA(a) ⊂ NA(a);

cf. [26, Chapter 2.D and (1.6)] or [7, Lemma 2.4]. The proximal subdifferential ∂pf (x)

of a lower semi-continuous function f at x ∈ domf is the set of vectors v ∈ R
n such

that (v, −1) ∈ N
p

epif (x, f (x)); [26, (2.81)]. The subdifferential ∂f (x) of f at x ∈ domf

is the set of v satisfying (v, −1) ∈ Nepif (x, f (x)). The Fréchet subdifferential ̂∂f (x) at
x ∈ domf is the set of v ∈ R

n such that (v,−1) ∈ ̂Nepif (x, f (x)), cf. [26, (1.51)]. The
indicator function of a set A is iA, the distance to B is dB . We have the following

Lemma 1 Let r∗ ≥ 0, f = iA + 1
2 (dB − r∗)2, a+ ∈ A, v = λ(b − a+) ∈ N

p
A(a+), where

b ∈ B, λ ≥ 0. Then v + dB(a+)−r∗
dB(a+)

(a+ − PB(a+)) ⊂ ̂∂f (a+).
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Proof By [26, Cor. 1.96] or [30, p. 340] we have a+−PB(a+)
‖a+−PB(a+)‖ ∈ ̂∂dB(a+), hence by the

chain rule (dB(a+) − r∗) a+−PB(a+)
‖a+−PB(a+)‖ ∈ ̂∂ 1

2 (dB − r∗)2(a+). Since ̂∂iA(a+) = ̂NA(a+)

by [26, Prop. 1.79], we have v ∈ N
p
A(a+) ⊂ ̂NA(a+) ⊂ ̂∂iA(a+), and by the sum rule

[21, Lemma 2.4] we have ̂∂iA(a+) +̂∂ 1
2 (dB − r∗)2(a+) ⊂ ̂∂f (a+), which completes the

proof.

The importance of f in KL-theory is well-known. See for instance [2, 10, 13, 14, 28].

2 Preparation

Given nonempty closed sets A, B ⊂ R
n, we consider sequences of alternating projec-

tions bk ∈ PB(ak), ak+1 ∈ PA(bk), where PA, PB are the possibly set-valued orthogonal
projectors on A,B. We use the notation

ak → bk → ak+1, bk−1 → ak → bk

for the building blocks of the alternating sequence, and sometimes the index free notation
a → b → a+ and b → a+ → b+ introduced in [28]. If a projection is single-valued, we
write b = PB(a).

For a bounded alternating sequence ak → bk → ak+1 let A∗, B∗ be the set of accumu-
lation points of the ak , bk , and r∗ = inf{‖ak − bk‖ : k ∈ N}, then we call (A∗, B∗, r∗)
the gap of the alternating sequence. For every a∗ ∈ A∗ there exists b∗ ∈ B∗ ∩ PB(a∗)
with ‖a∗ − b∗‖ = r∗, and vice versa, for every b∗ ∈ B∗ we find a∗ ∈ A∗ ∩ PA(b∗)
with ‖b∗ − a∗‖ = r∗. We are interested in those cases where the sequences ak, bk con-
verge ak → a∗, bk → b∗ i.e., A∗ = {a∗}, B∗ = {b∗}. In the alternative, if this fails, we
would hope that at least one of the sequences converges. The case r∗ = 0 treated in [28] is
referred to as the feasible case. Here convergence of one of the sequences ak or bk implies
convergence of the other, but this may no longer be true in the infeasible case r∗ > 0.

In [22], and subsequently in [7, 8, 14, 19, 23, 28], the following point of view is taken:
Given a point x∗ ∈ A∩B, find conditions under which any alternating sequence, once it gets
sufficiently close to x∗, is captured and forced to converge to some point in the intersection.
Here we investigate under which conditions a similar local attraction phenomenon may
occur in the infeasible case r∗ > 0.

Given subsets A∗ ⊂ A, B∗ ⊂ B and r∗ ≥ 0, we say that (A∗, B∗, r∗) is a gap between
A and B, or simply a gap, if for every a∗ ∈ A∗ there exists b∗ ∈ B∗ with b∗ ∈ PB(a∗)
and ‖a∗ − b∗‖ = r∗, and vice versa, for every b∗ ∈ B∗ there exists a∗ ∈ A∗ with a∗ ∈
PA(b∗) and ‖a∗ − b∗‖ = r∗. The question is then the following: Suppose an alternating
sequence gets close to that gap in the sense that ak is close to A∗, bk is close to B∗, and
r∗ < ‖ak − bk‖ < r∗ + η for some small η > 0, will this sequence be captured and forced
to converge ak → a∗, bk → b∗, with ‖a∗ − b∗‖ = r∗, realizing that gap?

3 Local Alternating Projections

Despite the absence of a satisfactory convergence theory, non-convex alternating projections
had been used on a purely experiment basis for decades. With [28] many of these heuristics
have now a sound theoretical basis, but occasional experiments would suggest to go a little
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further and include cases, where projections are computed only locally. This point of view
will now be given consideration.

We say that a+ ∈ A is a local projection of b ∈ B onto A if there exists a neighborhood
V of a+ such that a+ ∈ PA∩V (b). In other words, there might be points in A closer to b

than a+, but not in the neighborhood V of a+. Now in this situation there exists a point
c ∈ (b, a+), sufficiently close to a+, such that a+ = PA(c). But then by Lemma 1, v +
dB(a+)−r∗

dB(a+)
(a+ − PB(a+)) ⊂ ̂∂f (a+), where as before f = iA + 1

2 (dB − r∗)2. Since

a+ +R
+(b − a+) = a+ +R

+(c − a+), we have λ(b − a+) + dB(a+)−r∗
dB(a+)

(a+ − PB(a+)) ⊂
̂∂f (a+) for every λ ≥ 0. In consequence, we have the following extension of Lemma 1:

Lemma 2 Suppose a+ ∈ A is a local projection from b ∈ B, and b+ ∈ PB(a+). Then

λ(b − a+) + dB(a+)−r∗
dB(a+)

(a+ − b+) ∈ ̂∂f (a+).

Definition 1 A sequence ak ∈ A, bk ∈ B with ‖ak− bk−1‖ ≤ ‖ak−1− bk−1‖, bk ∈ PB(ak),
and ak a local projection of bk−1, noted

ak → bk
�→ ak+1, bk−1

�→ ak → bk, (1)

is called a local alternating sequence of projections.

Remark 1 Our definition of local alternating sequence ak → bk
�→ ak+1 has to require

that the distance is decreasing, while this is automatically true for traditional alternating
sequences. Note also that (1) breaks the symmetry between A and B.

Remark 2 The definition of a local projection is convenient, because in applications the
projection on one of the sets often requires solving a non-linear and non-convex optimiza-
tion program min{dA(b) : b ∈ B}, and finding a global minimum might be hard. On the
other hand, a local solver using a descent method started at the last projected point b ∈ B

will obviously lead to a local projection a+ ∈ A satisfying ‖a+ − b‖ < ‖a − b‖. Naturally,
for convex A local projections are just ordinary projections.

Lemma 1 suggest going even one step further. We do not need a+ ∈ A to be a local
projection from b ∈ B. What is needed is b − a+ ∈ N

p
A(a+). This leads to the following:

Definition 2 A sequence ak ∈ A, bk ∈ B with ‖bk−1 −ak‖ ≤ ‖bk−1 −ak−1‖, bk ∈ PB(ak),
and bk−1 − ak ∈ N

p
A(ak) is called a prox-alternating sequence of projections, noted

ak → bk
p→ ak+1, bk−1

p→ ak → bk . (2)

Remark 3 Clearly every alternating sequence is local alternating, and every local alternating
sequence is a prox-alternating. For convex A,B those all coincide.

Remark 4 Let ak → bk
p→ bk+1 be a bounded prox-alternating sequence, A∗, B∗ the sets

of accumulation points of the ak, bk with gap value r∗ = inf{‖ak − bk‖ : k ∈ N}. Define

As = {ak : k ∈ N} ∪ A∗, Bs = {bk : k ∈ N} ∪ B∗. (3)

Then ak, bk is converted into a traditional alternating sequence between As, Bs , where
PBs (ak) = bk ∈ PB(ak), but where the projection PAs (bk−1) = PA∩V (bk−1) = ak , which
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was local for A, is now rendered global for As , because points in A which might make
the projection bk−1 → ak a local one have been removed from As . We continue to call
(A∗, B∗, r∗) the gap of the prox-alternating sequence.

Theorem 1 Let ak ∈ A, bk ∈ B be a bounded prox-alternating sequence with gap
(A∗, B∗, r∗). Then every a∗ ∈ A∗ is a critical point of f = iA + 1

2 (dB − r∗)2. When r∗ > 0
and bk−1 − bk → 0, then a∗ ∈ A∗ is also a critical point of g = iA + 1

2d2
B .

Proof Every a∗ is a global minimum of f , hence a critical point. Consider g for the case
r∗ > 0. From Lemma 1 we get bk−1 − ak + ak − PB(ak) ⊂ ̂∂g(ak). Select an infinite
subsequence k ∈ K such that bk−1 → b∗, ak → a∗, k ∈ K, then also bk → b∗, using the
hypothesis bk−1 −bk → 0. Then bk−1 −ak +ak −bk ∈ bk−1 −ak +ak −PB(ak) ⊂ ̂∂g(ak),
hence 0 = b∗ − a∗ + a∗ − b∗ ∈ ∂g(a∗), where ∂g(a∗) is the limiting subdifferential.

4 Angle Condition

We extend the angle condition introduced in [28] for the feasible case to the general case
r∗ ≥ 0 and to prox-alternating sequences.

Definition 3 (Angle Condition) We say that the gap (A∗, B∗, r∗) satisfies the angle con-
dition with constant γ > 0 and exponent ω ∈ [0, 2), if there exist neighborhoods U of B∗

and V of A∗ such that for every building block b
p→ a+ → b+ with r = ‖a+ − b+‖ > r∗

and a+ ∈ V , b+ ∈ U , the estimate

1 − cos α

(r − r∗)ω
≥ γ (4)

holds for the angle α = ∠(b − a+, b+ − a+).

Remark 5 The interpretation of (4) is that if the angle α between consecutive projection
steps wants to get close to 0 as the alternating sequence approaches the gap, then this
decrease has to be controlled by the speed with which the alternating sequence approaches
the gap value r∗. Condition (4) is strongest for ω = 0, and becomes less binding as ω

approaches 2. Values beyond 2 are too weak to be of interest. The case ω = 0 is allowed,
and here the angle α stays away from 0.

Remark 6 In [28] the condition was formulated for the feasible case ({x∗}, {x∗}, 0), where
x∗ ∈ A ∩ B. Note that the angle condition breaks the symmetry. If we want to use the

corresponding condition for building blocks a
p→ b → a+, then we have to refer to a gap

(B∗, A∗, r∗).

Remark 7 In the feasible case the sets A, B intersect at x∗, and in [28] the term separable
intersection, or intersection at an angle, was employed synonymously with the term angle
condition with ω = 0. One could also refer to this as tangential intersection, as opposed to
transversal intersection, or intersection at an angle.

Definition 4 (Łojasiewicz Inequality) Let f : Rn → R ∪ {∞} be lower semi-continuous
with closed domain such that f |domf is continuous. We say that f satisfies the Łojasiewicz
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inequality with exponent θ ∈ [0, 1) at the critical point x∗ of f if there exist γ > 0, η > 0,
and a neighborhood V of x∗ such that (f (x) − f (x∗))−θ‖g‖ ≥ γ for every x ∈ V with
f (x∗) < f (x) < f (x∗) + η and every g ∈ ∂f (x).

Here x∗ is critical in the sense of the limiting subdifferential, see [26, 30]. Note that we
expect values θ ∈ [ 1

2 , 1). Indeed, consider a real-analytic function f of one variable with a
critical point at x∗. If f ′(x∗) = · · · = f (N)(x∗) = 0, f (N+1)(x∗) 	= 0, then the Łojasiewicz
inequality holds with θ = N/(N + 1), so the best possible value is θ = 1

2 for N = 1.

Remark 8 Suppose K∗ is a compact set of critical points of f with f (K∗) constant on K∗.
If f satisfies the Łojasiewicz inequality at every x∗ ∈ K∗, then by a simple compactness
argument there exists a neighborhood V of K∗ and parameters θ and γ, η > 0, valid for the
whole of K∗, for which the same estimate is satisfied.

Let (A∗, B∗, r∗) be a gap and a∗ ∈ A∗, b∗ ∈ B∗ with b∗ − a∗ ∈ N
p
A(a∗), b∗ ∈ PB(a∗).

Let f = iA + 1
2 (dB − r∗)2, then by Lemma 1 a∗ is a critical point of f . Since the domain

A of f is closed, f is amenable to Definition 4. We deduce the following

Lemma 3 Let (A∗, B∗, r∗) be a gap with compact A∗ and suppose f = iA + 1
2 (dB − r∗)2

satisfies the Łojasiewicz inequality with exponent θ ∈ [0, 1) and constant γ > 0 on A∗.
Then θ ≥ 1

2 , and there exists a neighborhood V of A∗ and η > 0 such that for every prox-

building block b
p→ a+ → b+ with a+ ∈ V and r∗ < r = ‖a+ − b+‖ < r∗ + η the angle

condition
1 − cos α

(‖a+ − b+‖ − r∗)4θ−2
≥ γ (5)

is satisfied, where α = ∠(b − a+, b+ − a+).

Proof The function f = iA + 1
2 (dB − r∗)2 has constant value 0 on A∗. By the definition of

the Łojasiewicz inequality there exists a neighborhood V of A∗ and γ > 0 such that every
a+ ∈ A ∩ V with r∗ < dB(a+) < r∗ + η satisfies

f (a+)−θ dist
(

0,̂∂f (a+)
) ≥ γ .

By Lemma 1 this means

2θ
(

dB(a+) − r∗)−2θ

∥

∥

∥

∥

λ(b − a+) + (dB(a+) − r∗) a+ − PB(a+)

‖a+ − PB(a+)‖
∥

∥

∥

∥

≥ γ

for every λ ≥ 0. We deduce using the substitution μ = λ
‖a+−PB(a+)‖

dB(a+)−r∗ that for every b+ ∈
PB(a+)

2θ

(

dB(a+) − r∗)−2θ+1

‖a+ − PB(a+)‖ min
μ≥0

∥

∥μ(b − a+) + a+ − b+∥

∥ ≥ γ . (6)

Assume that the angle α = ∠(b − a+, b+ − a+) is smaller than 90◦, then the minimum in
(6) is ‖a+ − b+‖ sin α. Hence

sin α
(

dB(a+) − r∗)2θ−1
≥ 2−θ γ .
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Since 1 − cos α ≥ 1
2 sin2 α, we obtain

1 − cos α

(dB(a+) − r∗)4θ−2
≥ 2−2θ−1γ 2. (7)

Now for angles α > 90◦ we have cos α < 0, hence 1−cos α > 1. The minimum in (6) is
now attained at μ = 0, with value ‖a+−b+‖. Hence (6) implies (dB(a+)−r∗)1−2θ ≥ 2−θ γ ,
hence (dB(a+) − r∗)2−4θ ≥ 2−2θ γ 2 > 2−2θ−1γ 2, so that (7) holds also in this case.

Remark 9 We do not expect exponents better than θ = 1
2 in Definition 4, and hence in (5),

and due to ω = 4θ − 2 this corresponds to the best value ω = 0 in (4). As we shall later see,
in the case r∗ > 0 we even expect values θ ∈ [ 3

4 , 1), or in terms of (4), values ω ≥ 1.

Remark 10 For the best possible θ = 1
2 the denominator in (5) equals 1, so that the con-

dition requires α to stay away from 0. Here we expect linear convergence, and that will be
proved in Theorem 3. In the feasible case r∗ = 0 this was referred to in [28] as separable
intersection.

We now apply our findings to subanalytic sets. Recall that A ⊂ R
n is semi-analytic if for

every x′ ∈ R
n there exists an open neighborhood V of x′ such that

A ∩ V =
⋃

i∈I

⋂

j∈J

{x ∈ V : φij (x) = 0, ψij (x) > 0} (8)

for finite sets I, J and real analytic functions φij , ψij : V → R. A set B ⊂ R
n is subana-

lytic if for every x′ ∈ R
n there exists a neighborhood V of x′ and a bounded semi-analytic

set A ⊂ R
n × R

m for some m such that B ∩ V = {x ∈ R
n : ∃y ∈ R

m (x, y) ∈ A}. A
function f : Rn → R ∪ {∞} is subanalytic if its graph is a subanalytic set in R

n × R.

Corollary 1 Let A,B be subanalytic sets, and let ak, bk be a bounded prox-alternating
sequence with gap r∗. Then there exists an exponent θ ∈ [ 1

2 , 1) and a constant γ > 0, such
that

1 − cos αk

(‖ak − bk‖ − r∗)4θ−2
≥ γ

for k ∈ N.

Proof Let (A∗, B∗, r∗) be the gap of the alternating sequence. Then by Theorem 1 every
a∗ ∈ A∗ is a critical point of f = iA + 1

2 (dB − r∗)2. Since A,B are subanalytic, so is f

(cf. [28, Thm. 3]), and by [9, Thm. 3.1] f satisfies the Łojasiewicz inequality with the same
exponent θ ∈ [ 1

2 , 1) throughout A∗. Now the result follows from Lemma 3.

Remark 11 Let A,B be subanalytic, and consider a prox-alternating sequence ak, bk . Then
trivially the angle condition (5) still holds for the gap of the sequence, but now with regard
to the sets As, Bs in (3). This is significant in so far as As, Bs are defined recursively and
have no reason to be subanalytic.

5 Hölder Regularity

We extend the notion of Hölder-regularity introduced for the feasible case in [28].
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Definition 5 (Hölder Regularity) We say that a gap (A∗, B∗, r∗) is σ -Hölder regular with
constant c > 0 and exponent σ ∈ (0, 1) if there exist a neighborhood V of A∗ and η > 0
such that every building block b → a+ → b+ with r = ‖a+ − b+‖, r∗ < r < r∗ + η and
a+ ∈ V satisfies:

B(a+, (1 + c)r)∩{b ∈ P −1
A (a+) : 〈a+ −b+, b −b+〉 >

√
cr(r − r∗)σ ‖b −b+‖}∩B = ∅,

(9)
or what is the same with the angle β = ∠(a+ − b+, b − b+):

B(a+, (1 + c)r) ∩ {b ∈ P −1
A (a+) : cos β >

√
c(r − r∗)σ } ∩ B = ∅. (10)

Remark 12 Note the asymmetry in the definition. If we want A∗, B∗ to change roles, we
say that the gap (B∗, A∗, r∗) is σ -Hölder regular.

Remark 13 The definition agrees with the notion of σ -Hölder-regularity of B with respect
to A at x∗ ∈ A ∩ B in [28] when we take as gap ({x∗}, {x∗}, 0). Even in the feasible case
this is already an asymmetric condition.

Remark 14 Note that in the case r∗ = 0 the notion σ -Hölder regularity with σ = 0 includes
a very weak form of transversality generalizing the transversality notions in [7, 8, 14, 19, 22,
23]. Consequently, linear convergence results based on our concepts of 0-Hölder regularity
in tandem with 0-separability are the strongest in this class.

Remark 15 Let ak, bk be an alternating sequence and let A∗, B∗ be the corresponding sets
of accumulation points. Suppose the gap (A∗, B∗, r∗) is σ -Hölder regular with constant
c > 0. Then trivially (A∗, B∗, r∗) is also σ -Hölder regular with regard to the underlying
sets As , Bs . This simply means that (9) is only required for the elements of the alternating
sequence.

Definition 6 (Hölder Regular Sequence) An alternating sequence is σ -Hölder regular
with constant c > 0 if the gap (A∗, B∗, r∗) of its accumulation points is σ -Hölder regular
with constant c > 0 in the sense of Definition 9 with the underlying sets As, Bs .

6 Slowly Shrinking Reach

In this section we provide a sufficient condition for Hölder regularity. Let b ∈ B and d be
an outer normal of B at b, d ∈ NB(b), d 	= 0. We define

R(b, d) = sup{R ≥ 0 : PB(b + Rd/‖d‖) = b}

and call this the reach of B at b along d . Note that R(b, d) ∈ [0, ∞], and R(b, d) > 0 for
a proximal normal, i.e., if d ∈ N

p
B(b). We say that B(b + R(b, d)d/‖d‖, R(b, d)) is the

largest ball with centre on the ray b +R+d which touches the set B from outside. The case
R(b, d) = +∞ occurs e.g. when B is convex at b, in which case the largest ball is the half
space 〈x − b, d〉 ≥ 0. If d is not a proximal normal, then R(b, d) = 0, so the largest ball is
a dot.
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Definition 7 (Slowly Shrinking Reach) Let σ ∈ (0, 1]. The set B has σ -slowly shrinking
reach with respect to A and gap (A∗, B∗, r∗) if there exists 0 ≤ τ < 1 such that

lim sup
r∗<‖a+−b+‖→r∗

(‖a+ − b+‖ − r∗)σ

R(b+, d) − r∗ ≤ τ, (11)

where d = (a+ − b+)/‖a+ − b+‖, and the limit is over building blocks b → a+ → b+
approaching the gap. We say that the reach shrinks with exponent σ and rate τ .

In [28] this was introduced for the case r∗ = 0, where it was termed slowly vanishing
reach. The following—not surprisingly—extends [28, Prop. 5].

Proposition 1 Let σ ∈ (0, 1), τ ∈ [0, 1). Suppose B has σ -slowly shrinking reach with
rate τ ≥ 0 with respect to A and gap (A∗, B∗, r∗). Then that gap is (1 −σ)-Hölder regular
with any constant c > 0 satisfying τ

2

√
2 + c < 1.

Proof We choose τ ′ > τ and ε > 0 such that τ ′
2

(

ε + √
ε2 + 2 + c

)

< 1. By hypothesis

there exists neighborhoods U of B∗ and V of A∗ such that (r−r∗)σ
R(b+,d)−r∗ < τ ′ for every

building block b → a+ → b+ with b+ ∈ U , a+ ∈ V and d = (a+ − b+)/‖a+ − b+‖,
r = ‖a+ − b+‖ > r∗. By shrinking U, V further if necessary, we may arrange that (r −
r∗)1−σ < ε. We show that the neighborhoods are as required in (10).

We have to show that b ∈ B is not an element of the set (10). We may assume that
b ∈ B(a+, (1 + c)r), as otherwise there is nothing to prove. Let β = ∠(a+ − b+, b − b+).
We have to show cos β ≤ √

c(r − r∗)1−σ . This is clear for cos β ≤ 0, so let cos β > 0.

Following the proof of [28, Prop. 5] we put R = r
2

(

1 +
√

1 + 2c+c2

cos2 β

)

. As in [28] it now

follows that B(b+ + Rd,R) contains b, which implies R > R(b+, d). Hence by the choice
of U,V , (r − r∗)σ /(R − r∗) < τ ′. Substituting the definition of R gives

1 < (r − r∗)−σ τ ′
⎛

⎝r

⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cos2 β

⎞

⎠ − r∗
⎞

⎠

= (r − r∗)1−σ τ ′
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cos2 β

⎞

⎠ + (r − r∗)−σ τ ′r∗
⎛

⎝1 −
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cos2 β

⎞

⎠

⎞

⎠

≤ (r − r∗)1−σ τ ′
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

cos2 β

⎞

⎠ ,

the rightmost term being ≤ 0. Now suppose that cos β >
√

c(r − r∗)1−σ contrary to what
is claimed, then

1 < (r − r∗)1−σ τ ′
⎛

⎝

1

2
+ 1

2

√

1 + 2c + c2

c(r − r∗)2(1−σ)

⎞

⎠

= τ ′

2

(

(r − r∗)1−σ +
√

(r − r∗)2(1−σ) + 2 + c
)

<
τ ′

2

(

ε +
√

ε2 + 2 + c
)

< 1,
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a contradiction, which proves the result.

For the following recall the definition of prox-regularity e.g. in [30].

Corollary 2 Let (A∗, B∗, r∗) be a gap and suppose B is prox-regular at the points of B∗
with reach > r∗. Then for every constant c > 0 and every σ ∈ (0, 1) the gap is Hölder
regular with constant c and exponent σ .

Proof Here τ = 0, so for every τ ′ > 0 and σ ′ ∈ (0, 1) the set B has (1 − σ ′)-slowly
shrinking reach with rate τ ′ for the gap r∗ for any constant c with τ ′

2

√
2 + c < 1. Given any

c > 0, we can adjust τ ′ � 1 so that this condition is met, and we let σ = 1 − σ ′.

Applying the argument of Proposition 1 to prox-building blocks gives the following
extension of [28, Cor. 3].

Corollary 3 Consider a prox-alternating sequence ak−1 → bk−1
p→ ak with gap

(A∗, B∗, r∗). Suppose B is prox-regular with reach > r∗ at the points of B∗. Then for every
constant c > 0 and every σ ∈ (0, 1) the gap is Hölder regular with constant c and exponent
σ for the sets As, Bs .

Example 1 Let B = {(x, |x|3/2) : x ∈ R}, then B has vanishing reach at the origin in
direction d = (0, 1). We claim that the radius Rx of the largest ball touching B at b =
(x, |x|3/2) from above is of the order Rx = O(|x|1/2) as x → 0. This can be seen as
follows. An upper bound for Rx is the radius of the osculating circle at (x, |x|3/2), which
is Rx = 4

3 |x|1/2(1 + 9
4 |x|)3/2, so for small x we have Rx ∼ 4

3 |x|1/2. For a lower bound,
note that for a plane C2-curve with positive reach and without bottlenecks the reach is 1/σ

when σ is the maximal curvature, cf. [1]. To apply this we approximate B by curves Bε

with positive reach. We let y = ax2 + bx + c on (−∞, ε] and y = x3/2 on [ε, ∞) so that
the combined function is C2. This works with a = 3

8ε−1/2, b = 3
4ε1/2, c = − 1

8ε3/2. Now
the reach rε of Bε can be computed exactly via [1] and is bounded below by rε ≥ 3

4ε−1/2.
This means any ball touching Bε from above with radius r < rε has a unique contact point.
Since this is also true for the contact points b = (x, x3/2) ∈ B with x > ε, we see that the
reach Rx of b = (x, x3/2) with x ≥ ε is ≥ O(ε1/2). Namely 3

4 |x|1/2 ≤ Rx ≤ 4
3 |x|1/2 as

x → 0, proving R(b, d) = O(|x|1/2) for the denominator in (11).
Now let 1 < α < 3

2 and put A = {(x, |x|α) : x ∈ R}, so that A is above B and touches
it at the origin. Let a = (y, yα), b = (x, x3/2), b = PB(a), then the ansatz (x, x3/2) +
t (− 3

2x1/2, 1) = (y, yα) gives t = yα − x3/2 and, y(1 + 3
2x1/2yα−1) = x(1 + 3

2x), hence

‖a − b‖ = |yα − x3/2|
√

1 + 9
4x ∼ |yα − x3/2| ∼ |xα

(

1+(3/2)x

1+(3/2)x1/2yα−1

)α − x3/2| = xα(1 +
o(1) − x3/2−α) ∼ xα . Then ‖a−b‖σ

R(b,d)
= O(xασ− 1

2 ), which is O(1) for σ ≥ 1/2α, so that B

has σ -slowly vanishing reach with respect to A.
For the infeasible case we use B = {(x, |x|3/2 + 1

2x2) : x ∈ R}, then B has slowly
shrinking reach at (0, 0) with regard to A = {(x, |x|α + 1) : x ∈ R} and gap value r∗ = 1.

7 Three-point estimate

The following result extends [28, Lemma 1], where it was given for the feasible case r∗ = 0.
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Lemma 4 (Three-point Estimate) Suppose the building block b → a+ → b+ satisfies
the angle condition for r∗ with constant γ > 0 and exponent ω. Suppose further that the
building block is ω/2-Hölder regular with constant c > 0 satisfying c < γ/2. Then it
satisfies the three-point estimate

‖a+ − b+‖2 + �‖b − b+‖2 ≤ ‖b − a+‖2 (12)

with � = min
{

1
2 , 1 −

√

2c
γ

, c
2+c

}

depending only on c, γ .

Proof Following the proof of [28, Lemma 1] we have to show that 1−�
2 ‖b − b+‖ ≥ ‖a+ −

b+‖ cos β, where β = ∠(b − b+, a+ − b+). As in that reference there are three cases. Case
I is when β ∈ [π/2, π ], where � = 1/2 works. Case II is when β ∈ [0, π

2 ), and the latter
has two subcases IIa and IIb.

Case IIa is when b ∈ B(a+, (1 + c)r), in which event regularity gives cos β ≤ √
c(r −

r∗)ω/2. Here we need the angle condition. With α = ∠(b−a+, b+−a+) the cosine theorem
gives

‖b − b+‖2 ≥ 2‖b − a+‖‖a+ − b+‖(1 − cos α)

≥ 2γ ‖b − a+‖‖a+ − b+‖(r − r∗)ω

≥ 2γ

c
‖a+ − b+‖2 cos2 β.

This leads to � = 1 −
√

2γ
c

.

The remaining case IIb is when cos β >
√

c(r − r∗)ω/2. Here by Hölder regularity we
must have ‖b − a+‖ ≥ (1 + c)r . Now the argument in part 4) of [28, Lemma 1] can be
adopted without changes and requires � = c

c+2 . Altogether, covering the three cases gives
the formula for � in the statement.

Remark 16 The three point inequality could be considered as stand-alone, as in [13, 34].
Here, following [28], we consider it as a technical tool, to be derived from regularity of the
sets, as this includes the important case when B is prox-regular.

8 Convergence

In the feasible case [28] local convergence was understood in the sense that if an alternating
sequence gets sufficiently close to A∩B, then it converges to some point in the intersection.
Presently we obtain a similar statement for gaps (A∗, B∗, r∗). If the ak get close to A∗ and
the bk close to B∗, and if r∗ < ‖ak − bk‖ < r∗ + η for some small η > 0, then we expect
convergence ak → a∗ ∈ A, bk → b∗ ∈ B to a pair ‖a∗ − b∗‖ = r∗ realizing the gap.
As in the feasible case, this requires the angle condition in tandem with Hölder regularity.
However, for r∗ > 0 we need a third ingredient.

Definition 8 We say that a gap (A∗, B∗, r∗) is saturated, if for every neighborhood V of
A∗ there exists a neighborhood U of B∗ such that PA(b) ⊂ V for every b ∈ B ∩ U .

Remark 17 Note that every zero gap (F, F, 0) with F ⊂ A ∩ B is saturated. Indeed, let
V = N (F, δ) be the neighborhood of F , and choose U = V . If b ∈ U ∩ B, then there
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exists c ∈ F with ‖b − c‖ < δ. But F ⊂ A, hence c ∈ A, hence dA(b) ≤ ‖b − c‖ < δ gives
PA(b) ⊂ N (F, δ).

Remark 18 If PA is single-valued on the set {b ∈ B ∩ N (B∗, δ) : r∗ < dist(b,A∗) <

r∗ +η}, then the gap is automatically saturated. This could still allow PA to be many-valued
on B∗.

Remark 19 The gap (A∗, B∗, r∗) of accumulation points of an alternating sequence ak, bk

is automatically saturated with regard to the underlying sets As = {ak : k ∈ N} ∪ A∗ and

Bs = {bk : k ∈ N}∪B∗. This remains true for a prox-alternating sequence ak−1 → bk−1
p→

ak .

Definition 9 We say that the alternating sequence reaches the δ-neighborhood of the gap
(A∗, B∗, r∗) if there exists k ∈ N with bk ∈ N (B∗, δ), ak+1 ∈ N (A∗, δ), r∗ < ‖ak −bk‖ <

r∗ + δ.

Theorem 2 (Local Attraction) Suppose B satisfies the angle condition with exponent ω =
4θ − 2, θ ∈ [ 1

2 , 1) and constant γ > 0 for the saturated gap (A∗, B∗, r∗). Moreover,
suppose the gap is ω/2-Hölder regular with constant c <

γ
2 . Then there exists δ > 0 such

that whenever an alternating sequence reaches the δ-neighborhood of the gap, then bk → b

for some b ∈ B realizing the gap r∗. If A� is the set of accumulation points of the ak , then
dA�(b) = dA(b) = r∗.

Proof 1) Since there is nothing to prove if the iterates attain the gap in a finite number of
steps, we assume that the sequence bk is infinite. By Lemma 4 there exists a neighborhood
N (A∗, ε) of A∗, η > 0, and � ∈ (0, 1), such that for every building block bk → ak+1 →
bk+1 with ak+1 ∈ V = N (A∗, ε) and r∗ < ‖ak+1−bk+1‖ < r∗+η the three-point-estimate

‖bk − ak+1‖2 ≥ ‖ak+1 − bk+1‖2 + �‖bk − bk+1‖2

is satisfied. Then for these ak+1 ∈ N (A∗, ε) we have also the four point estimate

dB(ak)
2 − dB(ak+1)

2 ≥ �‖bk − bk+1‖2. (13)

2) Since the neighborhood V = N (A∗, ε) chosen in Lemma 4 has the property that the
angle inequality is satisfied for the gap (A∗, B∗, r∗) as soon as ak ∈ V , we have

1 − cos αk

(‖ak − bk‖ − r∗)4θ−2
≥ γ,

where αk = ∠(bk−1 − ak, bk − ak). Now following the lead of [28, Thm. 1] we apply the
cosine theorem to obtain

‖bk−1 − bk‖2 = (‖bk−1 − ak‖ − ‖ak − bk‖)2 + 2‖bk−1 − ak‖‖ak − bk‖(1 − cos αk)

≥ 2γ ‖bk−1 − ak‖‖ak − bk‖
(‖ak − bk‖ − r∗)4θ−2

≥ 2γ dB(ak)
2 (

dB(ak) − r∗)4θ−2 . (14)

Here we have dropped the square term on the right and used ‖bk−1 − ak‖ ≥ ‖ak − bk‖ =
dB(ak). Taking square roots and re-arranging gives

(

dB(ak) − r∗)−2θ+1 ≥ √

2γ dB(ak)‖bk−1 − bk‖−1. (15)

At this point we observe a junction, because when r∗ = 0, the term dB(ak) on the right
matters and leads to the estimate dB(ak)

−2θ ≥ √
2γ ‖bk−1−bk‖−1. This case was handled in
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[28, Theorem 1], so we may for the moment concentrate on the infeasible case r∗ > 0. The
difference will be relevant in the next theorem when rates of convergence will be computed.

Here we use the fact that s �→ s2−2θ is concave, so that s2−2θ
1 − s2−2θ

2 ≥ (2 −
2θ)s1−2θ

1 (s1 − s2). We apply this to s1 = dB(ak) − r∗ and s2 = dB(ak+1) − r∗ to obtain

[

dB(ak) − r∗]2−2θ − [

dB(ak+1) − r∗]2−2θ ≥
≥ (2 − 2θ)

[

dB(ak) − r∗]1−2θ
(dB(ak) − dB(ak+1))

≥ (2 − 2θ)21/2γ 1/2dB(ak)‖bk−1 − bk‖−1 (dB(ak) − dB(ak+1))

≥ (2 − 2θ)21/2γ 1/2�
dB(ak)

dB(ak) + dB(ak+1)
‖bk−1 − bk‖−1‖bk − bk+1‖2

≥ (2 − 2θ)2−1/2γ 1/2�‖bk−1 − bk‖−1‖bk − bk+1‖2, (16)

where the next to last line is obtained by applying (13). Multiplying by ‖bk−1 − bk‖ and
putting C = (2 − 2θ)−121/2γ −1/2�−1, we get

C
(

[

dB(ak) − r∗]2−2θ − [

dB(ak+1) − r∗]2−2θ
)

‖bk−1 − bk‖ ≥ ‖bk − bk+1‖2.

Using the fact that a2 ≤ bc implies a ≤ 1
2b + 1

2c for positive a, b, c, we deduce

‖bk − bk+1‖ ≤ 1

2
‖bk − bk−1‖ + C

2

(

[

dB(ak) − r∗]2−2θ − [

dB(ak+1) − r∗]2−2θ
)

. (17)

Altogether, what we have proved in 1), 2) above is that ak, ak+1 ∈ V = N (A∗, ε) implies
(17).

3) Let us now define our δ > 0. First choose δ > 0 with δ < η, δ < ε/3 and δ′′ :=√
δ(2r∗ + δ)/� < ε/6, and such that a ∈ N (A∗, δ) implies δ′ := C

2 (dB(a) − r∗)2−2θ < ε
3 .

The latter is possible, since dB has constant value r∗ on A∗, so that δ′ → 0 as a gets closer
to A∗, or what is the same, δ′ → 0 as δ → 0. Using this and the fact that the gap is saturated,
shrink δ > 0 further such that PA(B ∩ N (B∗, δ + δ′ + 2δ′′)) ⊂ N (A∗, ε). Note that we
have δ + δ′ + 2δ′′ < ε. We show that δ is as claimed in the statement.

Relabeling the sequence, we may assume that we have reached

b0 ∈ N (B∗, δ), a1 ∈ N (A∗, δ), r∗ < ‖a0 − b0‖ < r∗ + δ. (18)

From this we first deduce ‖b0 − b1‖ < δ′′. Indeed, from the three point estimate and (18)
we get r∗2 < ‖a0 − b0‖2 + �‖b0 − b1‖2 ≤ ‖a1 − b0‖2 ≤ (r∗ + δ)2, hence �‖b0 − b1‖2 ≤
(r∗ + δ)2 − r∗2 = δ(2r∗ + δ), hence ‖b0 − b1‖ ≤ √

δ(2r∗ + δ)/� = δ′′ < ε/6. That gives

b1 ∈ N (B∗, δ + δ′′), a2 ∈ N (A∗, ε), (19)

the latter using a2 ∈ PA(b1), b1 ∈ B ∩ N (B∗, δ + δ′′) ⊂ B ∩ N (B∗, δ + δ′ + δ′′), and the
fact that we assured above that PB(B ∩ N (B∗, δ + δ′ + δ′′)) ⊂ N (A∗, ε).

4) We will now prove the following two conditions by induction over k ≥ 1:

bk−1, bk ∈ N (B∗, ε), ak, ak+1 ∈ N (A∗, ε) (20)
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and
k

∑

j=1

‖bj − bj+1‖ ≤ 1

2

k
∑

j=1

‖bj−1 − bj‖ + C

2

(

[dB(a1) − r∗]2−2θ − [dB(ak+1) − r∗]2−2θ
)

. (21)

Let us initialize the induction. We prove (20)1. Since the sequence has reached the neigh-
borhood of the gap, we have (18), (19), and since δ + δ′′ < ε, condition (20)1 is clear. Now
to prove (21)1, since a1, a2 ∈ N (A∗, ε) by (20)1 just proved, we get from part 1)-2) that

‖b1 − b2‖ ≤ 1

2
‖b0 − b1‖ + C

2

(

[dB(a1) − r∗]2−2θ − [dB(a2) − r∗]2−2θ
)

,

which is just (21)1. This settles initialization.
Let us now do the induction step. Suppose (20)k−1, (21)k−1 are satisfied for some k ≥ 2.

We have to prove them for k. Let us first show that (20)k−1∧ (21)k−1 =⇒ (20)k . Indeed,
from (21)k−1 we get

k−1
∑

j=1

‖bj − bj+1‖ ≤ 1

2

k−1
∑

j=1

‖bj−1 − bj‖ + C

2

(

[dB(a1) − r∗]2−2θ − [dB(ak) − r∗]2−2θ
)

hence

k−1
∑

j=1

‖bj − bj+1‖ ≤ ‖b0 − b1‖ + C
(

[dB(a1) − r∗]2−2θ − [dB(ak) − r∗]2−2θ
)

− 2‖bk−1 − bk‖

≤ ‖b0 − b1‖ + C[dB(a1) − r∗]2−2θ . (22)

Therefore, if we fix b∗ ∈ B∗ such that ‖b1 − b∗‖ < δ + δ′′, then

‖bk − b∗‖ ≤ ‖bk − b1‖ + ‖b1 − b∗‖ ≤
k−1
∑

j=1

‖bj − bj+1‖ + ‖b1 − b∗‖

≤ ‖b0 − b1‖ + C[dB(a1) − r∗]2−2θ + ‖b1 − b∗‖
< δ′′ + δ′ + δ + δ′′ < ε,

using (22) and δ + δ′ + 2δ′′ < ε, so we are done for bk . Now since ak+1 ∈ PA(bk) and
bk ∈ N (B∗, δ+δ′+2δ′′), it also follows that ak+1 ∈ N (A∗, ε), because PA(B∩N (B∗, δ+
δ′ + 2δ′′)) ⊂ N (A∗, ε). This settles (20)k .

Now by (20)k we have ak, ak+1 ∈ N (A∗, ε), hence the argument of 1) 2) gives us (17)k .
But adding (17)k and (21)k−1 gives (21)k . That ends the induction step.

5) To conclude, as (21) is now true for all k, we see e.g. from (22) that the series
∑∞

j=1 ‖bj − bj+1‖ converges, hence bk is a Cauchy sequence, which converges to some

b� ∈ B. But then (14) shows dB(ak) − r∗ → 0, so every accumulation point a� ∈ A of the
ak satisfies ‖b� − a�‖ = r∗, and the gap r∗ is realized.

Remark 20 Saturatedness is used in (19) to assure that when b0, a1 have reached the neigh-
borhood of the gap, the next iterate a2 stays close. For individual sequences approaching
their own gap this is automatically true, but local attraction has to work simultaneously for
all sequences getting close to a given gap. Saturatedness is also redundant when PA is single
valued at b1, or when r∗ = 0, as shown in [28].
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Remark 21 We stress that it is not claimed that b� ∈ B∗, nor do we have A� ⊂ A∗. This was
already observed in [28] for the feasible case. Observe a difference between the case r∗ > 0
and the zero gap case. With r∗ > 0 we do not readily obtain convergence of the ak , while
this holds when r∗ = 0. On the other hand we see that

∑∞
k=1 (dB(ak) − r∗)2θ−1 < ∞.

Theorem 3 (Rate of Convergence for r∗ > 0) Under the hypotheses of Theorem 2, for

r∗ > 0 the speed of convergence is ‖bk − b∗‖ = O
(

k
− 1−θ

2θ−3/2

)

for θ ∈
(

3
4 , 1

)

. For θ = 3
4

convergence is R-linear. For θ ∈ ( 1
2 , 3

4 ) convergence is R-linear with rate 1
2 + ε, where

ε > 0 can be chosen arbitrarily small. For θ = 1
2 convergence is finite.

Proof 1) Summing (17) from k = N to k = M for M > N gives

− 1

2
‖bN − bN−1‖ + 1

2

M−1
∑

k=N

‖bk − bk+1‖ + ‖bM − bM+1‖ ≤ C

2

(

[

dB(aN ) − r∗]2−2θ − [

dB(aM+1 − r∗]2−2θ
)

,

and passing to the limit M → ∞ leads to

−1

2
‖bN − bN−1‖ + 1

2

∞
∑

k=N

‖bk − bk+1‖ ≤ C

2

[

dB(aN) − r∗]2−2θ .

Introducing SN = ∑∞
k=N ‖bk − bk+1‖, we have

− 1

2
(SN−1 − SN) + 1

2
SN ≤ C

2

[

dB(aN) − r∗]2−2θ . (23)

Now from (14)

(

dB(aN) − r∗)2−2θ ≤
(
√

2γ dB(aN)
) 2−2θ

1−2θ ‖bN−1 − bN‖ 2−2θ
2θ−1 (24)

hence regrouping and using dB(aN) < r∗ + η gives

1

2
SN ≤ C

2

(
√

2γ (r∗ + η)
) 2−2θ

1−2θ
(SN−1 − SN)

2−2θ
2θ−1 + 1

2
(SN−1 − SN). (25)

2) Now consider θ ∈ ( 3
4 , 1), then the term (SN−1−SN)

2−2θ
2θ−1 ultimately dominates SN−1−

SN , so there exists a constant C′ > 0 such that for large enough N ,

S
2θ−1
2−2θ

N ≤ C′(SN−1 − SN).

From here onward the proof follows exactly the line in [28, Cor. 4], and we arrive at the

estimate SM = O(M− 2−2θ
4θ−3 ), which implies ‖bM − b∗‖ = O

(

M− 2−2θ
4θ−3

)

as M → ∞.

3) For θ = 3
4 the estimate (25) gives SN ≤ (1 + C′′)(SN−1 − SN) with C′′ =

C
(√

2γ (r∗ + η)
)−1. Hence SN ≤ 1+C′′

2+C′′ SN−1 gives Q-linear convergence SN → 0, hence
R-linear convergence bN − b∗ → 0.

4) For θ ∈ ( 1
2 , 3

4 ) the term (SN−1 − SN)
2−2θ
2θ−1 is dominated by SN−1 − SN , hence we get

SN ≤ (1 + C′′)(SN−1 − SN) with a constant C′′ that can be made arbitrarily small. Then
SN ≤ 1+C′′

2+C′′ SN−1 with a Q-linear rate that can be chosen arbitrarily close to 1
2 .

5) Finally, for θ = 1
2 the angle condition gives 1 − cos αk > γ > 0, so the angles

αk = ∠(bk−1 − ak, bk − ak) stay away from 0. Since r∗ > 0, this means ‖bk−1 − bk‖ ≥
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2 sin(αk/2)r∗ > ε > 0. But since we proved in Theorem 2 that the sequence bk converges
when it is infinite, we conclude that the sequence bk must converge finitely.

Corollary 4 (Rate of Convergence for r∗ = 0, cf. [28]) Under the hypotheses of Theorem

2, now with r∗ = 0, the speed of convergence is ‖bk − b∗‖ = O
(

k− 1−θ
2θ−1

)

, ‖ak − b∗‖ =
O

(

k− 1−θ
2θ−1

)

for θ ∈
(

1
2 , 1

)

. For θ = 1
2 the speed is R-linear.

Proof We can go all the way till (23) in the above proof. But now due to r∗ = 0, (14) reads

dB(ak)
−2θ ≥ √

2γ ‖bk−1 −bk‖−1. Then we get the estimate dB(ak)
2−2θ ≤ (2γ )

θ−1
2θ ‖bk−1 −

bk‖ 1−θ
θ replacing (24). As seen in [28, Cor. 4], this leads to the slightly slower rate ‖bk −

b∗‖ = O(k− 1−θ
2θ−1 ), which due to r∗ = 0 then also holds for the ak .

Remark 22 Consider φ(x) = 1 + 1
2x2 and B = epi(φ) ⊂ R

2, A the x-axis. Then con-
vergence of alternating projections to the gap ({(0, 0)}, {(0, 1)}, 1) is with asymptotic linear
rate 1

2 . With some more elementary calculus one can show that f = iA + 1
2 (dB − 1)2 has

Łojasiewicz exponent θ = 3
4 , which corroborates the statement of Theorem 3 for that case.

If we shift the set B down by letting ψ(x) = 1
2x2, B = epi(ψ), so that A,B touch at the

origin, then even though f = iA + 1
2d2

B still has Łojasiewicz exponent θ = 3
4 , this now in

accordance with Corollary 4 only assures a sublinear rate O(k−1/2). Since A,B are convex,
this is not surprising, as here linear convergence would require A,B to intersect at an angle,
and not tangentially. For the Łojasiewicz exponent of iA + 1

2d2
B in the convex case see also

[10], and for general considerations as to obtaining optimal θ see [15].

Corollary 5 (Global Convergence for r∗ > 0) Let ak, bk be a bounded prox-alternating
sequence with gap ‖ak − bk‖ → r∗ > 0. Suppose Bs satisfies the angle condition for that
gap with exponent ω = 4θ − 2, θ ∈ ( 3

4 , 1) and constant γ > 0, and suppose the gap is
ω/2-Hölder regular with constant c < γ/2. Then bk → b∗ for some b∗ ∈ B with rate

‖bk − b∗‖ = O(k
− 1−θ

2θ−3/2 ). For θ = 3
4 the speed is R-linear.

Proof Let A∗, B∗ be the sets of accumulation points of the sequences ak, bk , then
(A∗, B∗, r∗) is a saturated gap for As, Bs . By hypothesis the set Bs satisfies the angle con-
dition with exponent ω = 4θ − 2, θ ∈ [ 3

4 , 1) and constant γ > 0 for this gap, and moreover
the gap is ω/2-Hölder regular with constant c < γ/2. The alternating sequence therefore
automatically reaches the gap, and the main convergence theorem with the underlying sets
As, Bs implies convergence of the bk . The speed of convergence follows from Theorem 3,

which in terms of ω is O(k− 2−ω
2ω−2 ).

The corresponding global convergence theorem for the case r∗ = 0 is obtained in the
same way using the sets As, Bs and [28, Theorem 1], which leads to the rate ‖bk − b∗‖ =
O(k− 1−θ

2θ−1 ) = O(k− 2−ω
2ω ), and also ‖ak − b∗‖ = O(k− 1−θ

2θ−1 ).

Corollary 6 (Subanalytic Sets) Suppose A,B are closed subanalytic sets and B is prox-
regular. Let ak, bk be any bounded prox-alternating sequence approaching its gap with
value r∗ < R, where R > 0 is the reach of B at the points of B∗. Then the bk converge with
speed ‖bk − b∗‖ = O(k−ρ) for some ρ > 0.
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Proof Let A∗, B∗ be the set of accumulation points of the sequences ak, bk . Since B is
prox-regular and B∗ is compact, B has positive reach R > 0 at the points of B∗. Then
by Corollary 3 every gap with r∗ < R is Hölder regular on a neighborhood V of A∗. By
Proposition 1 we may also assume that the angle condition is satisfied on this neighborhood,
and Lemma 4 then gives the three-point inequality on V . That means the argument 1)+2) in
the proof of Theorem 2 works as long as ak, ak+1 ∈ V .

But PA(bk) ∈ V from some counter k onward, so that whenever the argument above
produces a new bk+1 satisfying (17), we have ak+2 = PA(bk+1) ∈ V , so that we can iterate
the procedure. Therefore by the main convergence theorem the sequence bk converges to a
b∗ ∈ B realizing the gap r∗. The speed of convergence is governed by Theorem 3.

The main convergence theorem derives convergence from the angle condition in tandem
with the four-point estimate (13). Hölder regularity is only used to prove the latter, but is not
used directly in the proof of Theorem 2, and similarly already in [28]. We therefore have
the following

Corollary 7 Let ak, bk be a bounded alternating sequence between A, B such that building
blocks ak−1 → bk−1 → ak → bk satisfy the four-point estimate (13) with the same � > 0.
Suppose B satisfies the angle condition for the gap generated by the alternating sequence.
Then bk → b∗ for some b∗ ∈ B with speed O(k−ρ) for some ρ > 0.

Remark 23 This means we can understand (13) as a regularity property replacing convexity,
which in tandem with the angle condition assures convergence with rate. In particular, for
r∗ > 0, an R-linear rate is obtained from (13) and the angle condition (4) with ω = 1, while
for r∗ = 0, the R-linear rate occurs under (13) and the angle condition with ω = 0.

Let us look for conditions under which not only the sequence bk , but also the ak , con-
verge. This is obviously the case when the hypotheses in the main convergence theorem or
in corollaries 5, 6 are satisfied symmetrically, and we leave this to the reader. The following
observation is also useful.

Remark 24 Let A,B be prox-regular and suppose an alternating sequence ak, bk within
reach of both sets is generated. Then the gap (A∗, B∗, r∗) of accumulation points of the
ak, bk has the property that PA : B∗ → A∗ is a bijection and PB : B∗ → A∗ is its inverse.
In that case, if one of the sequences converges, then so does the other.

This is for instance used in the following, where we recall from [32] that semi-algebraic
sets are those which satisfy (6) with φij , ψij polynomials:

Corollary 8 (See [34]) Suppose A,B are semi-algebraic sets, and let ak, bk be a bounded
alternating sequence satisfying the three point inequality. Suppose there exists L > 0 such
that ‖PA(b) − PA(b′)‖ ≤ L‖b − b′‖ for b, b′ ∈ Bs . Then bk → b∗ ∈ B and ak → a∗ ∈ A,
both with rate O(k−ρ) for some ρ > 0.

Proof With the three-point estimate satisfied by hypothesis, and with the angle condition
satisfied by Lemma 5, we get a neighborhood V of A∗ on which the argument 1)-2) in the
proof of Theorem 2 works. For k large enough, we have PA(bk) ∈ V , hence condition (17)
can be reproduced, and that gives convergence of the bk . Convergence of the ak then follows
easily with the Lipschitz condition.
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We close this section by considering the averaged projection method. For closed sets
C1, . . . , Cm in R

n, the method iterates as follows: Given the current average x ∈ R
n,

compute projections xi ∈ PCi
(x), and form the new average x+ = 1

m
(x1 + · · · + xm).

Corollary 9 (Averaged Projections) Let C1, . . . , Cm be subanalytic, and let xk be a
bounded sequence of averaged projections. Then the xk converge to a limit average x∗ with
rate ‖xk − x∗‖ = O(k−ρ) for some ρ > 0. If (x∗

1 , . . . , x∗
m) is any of the accumulation

points of the projections (xk
1 , . . . , xk

m) with xk
i ∈ PCi

(xk), then 1
m

(x∗
1 + · · · + x∗

m) = x∗ and
x∗
i ∈ PCi

(x∗).

Proof As is well-known, we may interpret the situation as alternating projections between
A = C1 × · · ·×Cm and the diagonal B = {(x, . . . , x) : x ∈ R

n}. Both sets are subanalytic,
and B is convex, hence the main convergence theorem gives global convergence of the B

iterates, hence of the xk , at rate O(k−ρ). As in the general case, a priori nothing can be said
about convergence of the (xk

1 , . . . , xk
m) ∈ C1 × · · · × Cm, but any of their accumulation

points realizes the gap value
∑m

i=1(x
∗
i − x∗)2 = mV (x∗

1 , . . . , x∗
m), which is m times the

biased sample variance.

In other words, all accumulation points (x∗
1 , . . . , x∗

m) of the projected vector have the
same sample mean x∗ and the same sample variance. Naturally, conditions which assure
convergence to a single limit are obtained in much the same way as for the general case.
For instance, if m − 1 of the m projections are single valued at x∗, then A∗ is singleton. A
probabilistic interpretation of this result in terms of the EM-algorithm will be given attention
in Section 12.

9 Gerchberg-Saxton

In phase retrieval one has to determine an unknown signal x(t) with physical coordinates
t = 0, . . . , N − 1 from measurements |̂x(ω)|2 = m(ω)2 of its Fourier magnitude obtained
at frequency coordinates ω = 0, . . . , N −1. Given the magnitude m(ω), we have to recover
the unknown phase x̂(ω)/|̂x(ω)| of the signal, hence the name. As this is generally an
under-determined problem, prior information about the unknown x(t) under the form of a
constraint x ∈ A is added. For instance in electron microscopy x ∈ A accounts for a second
set of measurements of the physical domain amplitude or intensity |x(t)|2, while in other
situations x ∈ A could stand for a pattern like sparsity, prior information about the spatial
localization, non-negativity, and much else. An exact solution of the phase retrieval prob-
lem would then be an object x ∈ C

N with pattern x ∈ A satisfying |̂x| = m. Since due to
noisy measurements an exact solution is rarely possible, the measured data may lead us to
accept pairs x∗, y∗ ∈ C

N as generalized solutions, where y∗ is a phase retrieval for x∗, and
x∗ is a pattern, or prior, for y∗. In other words,

x∗ ∈ PA(y∗), ŷ∗ = m · x̂∗/|̂x∗|,
or in fixed-point terminology:

x∗ = PA
(

(m · x̂∗/|̂x∗|)∼)

, y∗ = (

m · P̂A(y∗)/|P̂A(y∗)|)∼
,
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where ∼ is the inverse Fourier transform. The Gerchberg-Saxton error reduction method is
now the following iterative procedure:

Algorithm Gerchberg-Saxton error reduction.

� Step 1 (Adjust magnitude) . Given current iterate x ∈ A, compute Fourier
transform x̂ and correct Fourier magnitude by computing ŷ(ω) = m(ω) · x̂(ω)

|̂x(ω)| .
� Step 2 (Adjust pattern) . Compute inverse Fourier transform y of ŷ and obtain new

iterate x+ as orthogonal projection of y on prior information set A, i.e., x+ ∈ PA(y).

As is well-known, the magnitude correction step can be interpreted as orthogonal
projection of the current prior x ∈ A on the magnitude set

B = {y ∈ C
N : |̂y(ω)| = m(ω), ω = 0, . . . , N − 1}, (26)

so that Gerchberg-Saxton error reduction is the special case x+ ∈ PA (PB (x)), y+ ∈
PB(PA(y)) of alternating projections. If we call x ∈ A priors or pattern, and y ∈ B phase
retrievals, then a generalized solution of the phase retrieval problem is a pair (x∗, y∗), where
y∗ ∈ B is a phase retrieval closest to the prior x∗ ∈ A, and x∗ is closest to y∗ among the pri-
ors. Since B is bounded, the algorithm will by default give a gap (A∗, B∗, r∗), consisting of
generalized solutions (x∗, y∗). Primarily we hope B∗ to be singleton, as this means a unique
phase retrieval y∗ for all priors x∗ ∈ A∗. Secondarily, we would also not be averse to A∗
being singleton, as this would indicate that prior information A was successful in orienting
us toward a unique prior x∗ ∈ A with that phase retrieval y∗ ∈ B∗. Notwithstanding, the
ideal case is convergence to x∗ = y∗ ∈ A ∩ B, in which case we find a prior which is also a
phase retrieval.

One may argue that the least useful prior information is A = {0}, as this gives no orienta-
tion whatsoever on how to select a phase retrieval y∗ ∈ B among the candidates y ∈ B. Any
guess x 	= 0 would seem better. We conclude that meaningful prior information A should
allow a guess x ∈ A better than just x = 0. Since dist(0, B) = ‖m‖ := (∑N−1

ω=0 m(ω)2
)1/2,

we shall say that A allows a prior guess better than 0 if there exists x ∈ A with
dist(x, B) < ‖m‖.

Theorem 4 Let prior information x ∈ A be represented by a closed subanalytic set A
allowing a guess better than 0. Suppose Gerchberg-Saxton error reduction is started from
that guess and generates sequences xn ∈ A, yn ∈ B. Then yn converge to a phase retrieval
y∗ ∈ B with speed ‖yn−y∗‖ = O(n−ρ) for some ρ > 0. Every accumulation point x∗ ∈ A∗
of the sequence of priors xn has phase retrieval y∗ = PB(x∗), and every prior x∗ ∈ A∗ is
best for y∗, i.e., A∗ ⊂ PA(y∗).

Proof Since the method is an instance of alternating projections, the result will follow from
the main theorem. Note that the sequences xn, yn generate a gap (A∗, B∗, r∗), where r∗ <

‖m‖, because by assumption the initial guess satisfies already dist(x0, B) < ‖m‖.
We check the hypotheses of the main theorem. The fact that B is subanalytic was shown

in [28], and since A is subanalytic by hypothesis, the first part of the requirements in the
main theorem is met.
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For the following we identify C
N with R

2N in the natural way. Then up to Fourier
transforms PB is the mapping

(̂x1(ω), x̂2(ω)) → m(ω)

(

x̂1(ω)
√

x̂1(ω)2 + x̂2(ω)2
,

x̂2(ω)
√

x̂1(ω)2 + x̂2(ω)2

)

, (27)

which can be understood as the cartesian product of N projections on circles with radii
m(ω) in R

2.
Working for simplicity in the frequency domain, let y ∈ B and d a unit proximal nor-

mal vector to B at y. Then d = (dω) where for every ω = 0, . . . , N − 1 dω is a normal
to the sphere y1(ω)2 + y2(ω)2 = m(ω)2 at (y1(ω), y2(ω)) ∈ R

2. That means dω =
±(y1(ω), y2(ω))/‖m‖. This gives us now the reach of B at y with respect to d. We have
R(y, d) = ‖m‖ if there exists at least one coordinate ω with dω = −(y1(ω), y2(ω))/‖m‖,
while R(y, d) = ∞ if all signs are positive. Indeed, we have to determine the largest R ≥ 0
such that the projection PB(y + Rd) = y. We may without loss assume that y = (0,m(ω)),
then y + Rd = (0,m(ω)) ± R

‖m‖ (0,m(ω)) = (0, (1 ± R
‖m‖ )m(ω)). Now it follows that

PB(y + Rd) = (0, sign(1 ± R
‖m‖ )m(ω)), and for this to equal y = (0,m(ω)), we need

1 − R
‖m‖ > 0 if there is at least one negative sign, while this is always true when all signs

are positive. This means R < ‖m‖ if there is one negative sign, so the limiting case gives
the reach R = ‖m‖.

In consequence, as the sequence xn, yn has gap r∗ < ‖m‖, the xn ∈ A are within reach
of B, so Hölder regularity of the gap (A∗, B∗, r∗) associated with the alternating sequence
follows from Corollary 2. Convergence yn → y∗ ∈ B with B∗ = {y∗} now follows from the
main theorem, the rate being provided by Theorem 3.

Remark 25 As in the case of the main theorem no information on convergence of the
sequence xn ∈ A is available in the infeasible case r∗ > 0, while convergence of the xn

is assured [28] when r∗ = 0. In the feasible case starting from a guess better than 0 is not
required to get convergence, see [28]. Moreover, the projection on A may be performed
locally, which gives additional flexibility.

When r∗ > 0 additional properties of the prior set A are needed to assure that A∗ is also
singleton. During the following we discuss a number of prominent examples. Historically
the first instance of Gerchberg-Saxton error reduction along with (31) had measurements of
the signal magnitude in a second Fourier plane. This can be modeled by taking the prior set

A = {x ∈ C
N : |x(t)| = m̃(t), t = 0, . . . , N − 1} (28)

where ‖m̃‖ = ‖m‖. Here B and A have the same reach, and consequently we have the
following

Corollary 10 The historically first instance of Gerchberg-Saxton error reduction (26), (28),
if started from an initial guess x0 better than 0, converges with speed ‖xk − x∗‖ = O(k−ρ),
‖yk − y∗‖ = O(k−ρ) for some ρ > 0. The limit pair x∗, y∗ has the following properties:
|x∗| = m̃, |̂y∗| = m, ŷ∗ = m · x̂∗/|̂x∗|, x∗ = m̃ · y∗/|y∗|.

Proof This follows by applying Theorem 4 to both gaps (A∗, B∗, r∗) and (B∗, A∗, r∗) and
using r∗ < ‖m‖ = ‖m̃‖. Note that A, B are both subanalytic, so the hypotheses of the
theorem are met.
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Remark 26 The case r∗ = 0 is allowed and gives x∗ = y∗. As was shown in [28], if
A ∩ B 	= ∅, then there exists a neighborhood V of A ∩ B such that whenever a Gerchberg-
Saxton sequence enters V , it will converge toward a phase retrieval x∗ = y∗ ∈ A ∩ B. We
mention that the case of two Fourier planes arises for instance in electron microscopy and
in wave front sensing [16, 17].

Another typical case arising in a variety of applications in crystallography (see [17])
is when the unknown signal x has support in a known subset S of the physical domain
{0, . . . , N − 1}, i.e., supp(x) ⊂ S.

Corollary 11 Consider a support prior A = {x ∈ C
N : x(t) = 0 for t 	∈ S} in the

physical domain, where Gerchberg-Saxton error reduction has the compact form x+ =
1S · (m̂x/|̂x|)∼, y+ = (

m 1̂S · y/|1̂S · y|)∼
. Here the xk ∈ A converge with speed O(k−ρ) to

a unique x∗ with its support in S, while every accumulation point y∗ of the yk is a possible
phase retrieval of x∗. If, in addition, the prior allows a guess better than 0 from which the
iterates are started, then both sequences converge with that speed to a pair (x∗, y∗), where
supp(x∗) ⊂ S, |̂y∗| = m, x∗ = 1S · y∗, m̂x∗/|̂x∗| = ŷ∗.

Proof The constraint set A is convex and algebraic, hence convergence xk → x∗ ∈ A
follows from Theorem 4, applied to the gap (B∗, A∗, r∗), using that A has infinite reach.
On the other hand, when r∗ < ‖m‖, we can use the previous result and obtain convergence
yk → y∗, so that both sequences converge.

Remark 27 Another case in the rubrique of convex priors is A = {x ∈ C
N : Im(x) =

0, Re(x) ≥ 0}, which occurs for instance if x is an unknown image, known to have real
non-negative gray values. This arises for instance in astronomic speckle interferometry, cf.
[17].

An interesting case often discussed in the literature is a sparsity prior. Let k � N and
define

A = {x ∈ C
N : at most k of the x(t) are non-zero}. (29)

The projection PA on A is easily identified: If |y(t0)| ≤ |y(t1)| ≤ · · · ≤ |y(tN−1)| for
a permutation t0, . . . , tN−1 of 0, . . . , N − 1, then x with x(t0) = 0, . . . , x(tk−1) = 0,
x(tk) = y(tk), . . . , x(tN−1) = y(tN−1) belongs to PA(y), and every element of PA(y) is
of this type. Let S ⊂ {0, . . . , N − 1} denote subsets of cardinal N − k, and let PS be the
projection on the linear subspace {x : x(t) = 0 for t 	∈ S}, that is PS(y) = 1S · y. Then
PA(y) ⊂ ⋃{PS(y) : |S| = N −k}. Moreover, there exists a subset S of P({0, . . . , N −1}),
depending on y, such that PA(y) = ⋃{PS(y) : S ∈ S}.

Now suppose r∗ < ‖m‖, so that the sequence yn in the Gerchberg-Saxton algorithm
converges to a unique phase retrieval y∗. Let A∗ be the set of accumulation points of the
sequence xn ∈ A. Then A∗ = ⋃{PS(y∗) : S ∈ S∗} for the S∗ associated with y∗. That
means, A∗ is a finite set of cardinal |A∗| ≤ |S∗| ≤ (

N
N−k

)

. |A∗| can be computed accurately.
Let |y∗(t0)| ≤ · · · ≤ |y∗(tk−1)| ≤ · · · ≤ |y∗(tN−1)|, and suppose there is ambiguity around
position k − 1 in the sense that |y∗(tk−1−r )| = · · · = |y∗(tk−1)| = · · · = |y∗(tk−1+s)| for
s > 0. Then we have

(

r+s+1
r+1

)

possibilities to arrange |y| in increasing order and truncate at
k − 1, so this is the cardinal of A∗. Now choose ε > 0 such that the balls B(x∗, ε), x∗ ∈ A∗
are mutually disjoint. Note that xn ∈ ⋃{B(x∗, ε) : x∗ ∈ A∗} from some counter n(ε)

onward. That means we get a finite partition N = N1 ∪ · · · ∪N|A∗| into infinite sets Ni such
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that the subsequence xn, n ∈ Ni , converges to the ith element of A∗. If |y∗(tk−1)| < |y∗(tk)|,
which corresponds to the case s = 0, then the projection is unique, and the entire sequence
xn converges.

Corollary 12 Suppose A is the sparsity prior (29) and allows a guess better than 0, at
which Gerchberg-Saxton error reduction is started. Then ‖yn −y∗‖ = O(n−ρ) for a unique
phase retrieval y∗, while the xn have finitely many sparse accumulation points x∗, each
admitting y∗ as its phase retrieval. If choosing the k smallest |y∗(t)| is unambiguous, then
the entire sequence xn converges to a unique sparse x∗, whose phase retrieval is y∗.

Remark 28 Due to the special discrete structure of A∗, if it is known that xn − xn−1 → 0,
then the sequence xn converges as well.

In [33] sparsity of the phase in the frequency domain is considered with the prior

A = {x ∈ C
N : arg(̂x(ω)) 	= 0 for at most k frequencies ω}. (30)

We have to find the projection on A. Given y, we arrange |Im(̂y(ω0))| ≤ |Im(̂y(ω1))| ≤
· · · ≤ |Im(̂y(ωN−1))| for a permutation ω0, . . . , ωN−1 of 0, . . . , N − 1. Then x defined
by x̂(ω0) = Re(̂y(ω0)), . . . , x̂(ωk−1) = Re(̂y(ωk−1)), x̂(ωk) = ŷ(ωk), . . . , x̂(ωN−1) =
ŷ(ωN−1), satisfies x ∈ PA(y). This situation is now similar to sparsity in the physical
domain. Let ̂S ⊂ {0, . . . , N − 1} denote subsets of cardinal |̂S| = N − k, and let P

̂S be
the projection on the linear subspace {y ∈ C

N : ŷ(ω) ∈ R for all ω ∈ ̂S}. That is P
̂S(y) =

(1 − 1
̂S) · y + 1

̂S · Re(y). Then PA(y) ⊂ ⋃{P
̂S(y) : |̂S| = N − k}, and for every y there

exists a set ̂S of such ̂S, depending on y, such that PA(y) = ⋃{P
̂S(y) : ̂S ∈ ̂S}.

Corollary 13 Let xn, yn be the Gerchberg-Saxton sequence for the sparse phase prior (30).
Suppose A allows a guess better than 0, from which error reduction is started. Then the yn

converge toward a unique phase retrieval y∗ with speed O(n−ρ) for some ρ > 0. The xn

admit a finite set of accumulation points, each with sparse phase, and having y∗ as their
phase retrieval.

It is again clear that when |Im(y∗(tk−1))| < |Im(y∗(tk))|, then the entire sequence xn

converges, and the same is true when xn − xn−1 → 0.

Remark 29 For the feasible case A ∩ B 	= ∅ it has often been argued in the literature, see
e.g. the essai [24], that convergence of alternating projections and Gerchberg-Saxton error
reduction should be linear as a rule. Typical supporting arguments are as follows: A,B

drawn randomly, will almost always intersect transversally. Or in the same vein: Even when
A, B happen to intersect tangentially (as opposed to transversally), the slightest perturbation
of their mutual position would countermand this and lead back to transversality. Even if
one agrees with this reasoning, one should be aware that this does by no means resolve
the dilemma of the phase retrieval literature [24]. Namely, transversality is not a useful
convergence criterion, because it is impossible to check it in practical situations. (Readers
may convince themselves of the validity of our argument by trying to prove transversality
of A ∩ B 	= ∅ in any of the practical situations of this section.) For the feasible case, the
only practically useful criterion for convergence of Gerchberg-Saxton error reduction ever
published is [28]. Our present contribution completes this picture by providing the very first
verifiable conditions in the general case r∗ ≥ 0.
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10 Cylinder and Spiral

In this section we show that Gerchberg-Saxton error reduction, even though convergent in
natural situations, may fail to converge even in the feasible case when the constraint set A
is sufficiently pathological. We use an example constructed in [5], which we briefly recall.
We consider the cylinder mantle

B = {x ∈ R
3 : x2

1 + x2
2 = 1, 0 ≤ x3 ≤ 1} (31)

the circle
F = {(cos t, sin t, 0) : t ≥ 0}, (32)

and the logarithmic spiral

A = {((1 + e−t ) cos t, (1 + e−t ) sin t, e−t/2) : t ≥ 0} ∪ F (33)

winding around the cylinder with A ∩ B = F . Alternating projections between the sets
A, B have been analyzed in [5], where in addition a picture is available. The findings can
be summarized as follows:

Lemma 5 (See [5, Cor. 2]) Every alternating sequence ak, bk between cylinder mantle B

and spiral A, started at a1 ∈ A \ F , winds infinitely often around the cylinder, satisfies
ak−ak+1 → 0, bk−bk+1 → 0, ak−bk → 0, but fails to converge and its set of accumulation
points is F .

Remark 30 The only hypothesis from Theorem 2 which fails here is the angle condition,
which is thereby shown to be essential. Note that we may consider the sequence ak, bk as
alternating between the spiral and the solid cylinder co(B), which is convex, so the patho-
logical behavior is caused by the spiral. While A is not prox-regular, we can see that the
projector PA is single-valued and even Lipschitz at the points of B. This can be seen from an
estimate obtained in [5]. Suppose PA(b(t)) = a(τ), where b(t) = (cos t, sin t, e−t/2) ∈ B

and a(τ) = ((1+e−τ ) cos τ, (1+e−τ ) sin τ, e−τ/2) ∈ A and τ(t) = argminτ‖b(t)−a(τ)‖,
then t < τ(t) < t − 2 ln(1 − e−t/2) from [5], which shows that t �→ τ(t) is Lipschitz.

Remark 31 The projector PA is certainly locally Lipschitz on a neighborhood of Bs if
A is prox-regular and Bs is within reach. The case of the spiral A, which is not prox-
regular, shows that Lipschitz behavior of PA|Bs is a considerably weaker requirement, but
sufficient to imply convergence of the A-sequence, provided the B-sequence converges. In
particular, for the spiral PA is locally Lipschitz on Bs , but not on a neighborhood of Bs .
This leads to the following open problem: Find compact prox-regular sets A,B with non-
empty intersection and an alternating sequence ak, bk with ak − bk → 0, ak − ak−1 → 0,
which fails to converge. We know that at least one of the sets must fail to be subanalytic.

We use this example to construct an instance of Gerchberg-Saxton error reduction, where
convergence to a single limit fails. Consider an unknown image x(t) with two pixels t =
0, 1, where amplitude measurements of the discrete Fourier transform

x̂(ω) = 1√
2

1
∑

t=0

eiπtωx(t), ω = 0, 1 (34)

are available under the form

|̂x(0)| = 1, |̂x(1)| = 1. (35)
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This corresponds to the Fourier magnitude set

B = {x ∈ C
2 : |̂x(0)| = 1, |̂x(1)| = 1}. (36)

Since unique reconstruction of x(t) based on these measurements is not possible, the fol-
lowing prior information is added. The unknown source is assumed to belong to the prior
set

A = {

x ∈ C
2 : |̂x(0)| = 1 + (Re x̂(1))2 , |̂x(1)| = 1, 0 ≤ Re x̂(1) ≤ 1,

Re x̂(0) = (1 + Re x̂(1)2) cos (ln Re x̂(1))
}

∪ F, (37)

where
F = {x ∈ C

2 : |̂x(0)| = 1, Re x̂(1) = 0, Im x̂(1) = 1}. (38)

Now any Gerchberg-Saxton sequence xk ∈ A, yk ∈ B corresponds to a unique alternating
sequence ak ∈ A, bk ∈ B. Let F be the Fourier transform (34), F ′ the inverse Fourier
transform, P the projector x ∈ C

2 → (Re x(0), Im x(0), Re x(1)) ∈ R
3, P ′ its adjoint the

inclusion x ∈ R
3 → (x1 + ix2, x3 + i0) ∈ C

2. Then we have

PA = F ◦ P ′ ◦ PA ◦ P ◦ F ′, PB = F ◦ P ′ ◦ PB ◦ P ◦ F ′. (39)

All we have to see is that (37) is just a way of encoding the spiral (33) in frequency coor-
dinates, and bearing in mind that the fourth coordinate is fixed throughout. In other words,
A = P(F ′(A)), and A = F (P ′(A)), and the same for B, B. Our findings, based on
[5, Thm. 3], are now summarized by the following:

Theorem 5 Gerchberg-Saxton error reduction for the two pixel reconstruction problem
(34), (35) with prior information (37) fails to converge even though xk − xk+1 → 0, yk −
yk+1 → 0, xk − yk → 0. Every x∗ ∈ F is an accumulation point of the sequences xk, yk

and represents a possible exact solution of the phase retrieval problem.

11 Fienup’s HIO-Algorithm for Phase Retrieval

Our construction can be used to show failure of convergence of other methods used in phase
retrieval, like hybrid input-output (HIO), relaxed averaged alternating reflections (RAAR),
relaxed reflect reflect (RRR), as those include the Douglas-Rachford algorithm for specific
parameter values. We consider the Douglas-Rachford algorithm

x+ = x + PA(2PB(x) − x) − PB(x) = 1
2 (RARB + I ) (x),

where as before B is the magnitude set (35), and A gives prior information. We use again
[5, Thm. 3] to construct an example of failure of convergence.

Consider again the cylinder mantle B, but choose as set A a double spiral defined as
follows:

a±(t) =
(

(1 ± e−t ) cos t, (1 ± e−t ) sin t, e−t/2
)

∈ R
3 (40)

where A± = {a±(t) : t ≥ 0} and A = A+ ∪ A− ∪ F . The inner and outer spirals are
mutual reflections of each other with respect to the cylinder mantle. If we denote b(t) ∈ B

the projection of the two spirals on the mantle, then we obtain three curves winding down
inside, on, and around the cylinder toward the circle F (see the picture in [5]). If one starts
a Douglas-Rachford iteration at some point x1 = a−(t1) ∈ A− with t1 > 0 on the inner
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spiral, then PB(x1) = b(t1), hence RB(x1) = a+(t1) ∈ A+ ⊂ A, and therefore x2 =
(x1 + a+(t1))/2 = (a−(t1) + a+(t1))/2 = b(t1) ∈ B, which ends the first step of the
DR-algorithm. Now the second step starts at x2 ∈ B. The reflection in B changes nothing
RB(x2) = x2, while reflection in A needs PA(x2) = PA(b(t1)), and as shown in [5], this
projects always onto the inner spiral A−, that is, we get PA(b(t1)) = PA−(b(t1)) = a−(t2)

for some t2 > t1. Then RA(x2) = 2a−(t2) − x2, which means x3 = a−(t2) ∈ A− ⊂ A.
Hence after two DR-steps we are back to the situation at the beginning, but at a slightly
increased parameter value t2 > t1.

As further shown in [5], the sequence tk so defined satisfies tk → ∞ and 0 ≤ tk−tk−1 →
0. That means,

x2k−1 = a−(tk), x2k = b(tk)

and the xk fail to converge and wind around the cylinder in the same way as the alternating
projection sequence between B and the inner spiral A−. All points in F are accumulation
points of the DR-sequence and also of the shadow sequences.

Now we lift this to produce a counterexample in the context of phase retrieval, using
the same method as in section 10. We interpret the situation from the point of view of the
phase retrieval problem (34), (35). Since this is under-determined, we add the following
prior information about x, which is just a way to lift the double spiral A into C

2:

A = {

x ∈ C
2 : |̂x(0)| = 1 ± (Re x̂(1))2 , |̂x(1)| = 1, 0 ≤ Re x̂(1) ≤ 1,

Re x̂(0) = (1 ± Re x̂(1)2) cos (ln Re x̂(1))
}

∪ F, (41)

where F is as before. Using (39), we see that any Douglas-Rachford sequence for A, B
corresponds to a unique Douglas-Rachford sequence for A,B. Therefore, based on [5, Thm.
3], we derive the following

Theorem 6 The Fienup phase retrieval algorithm HIO for the two pixel reconstruction
problem (34), (35) with prior information (41) just as well as the RAAR and RRR variants
fail to converge even though xn − xn+1 → 0, yn − yn+1 → 0, xn − yn → 0. Every x∗ ∈ F
is an accumulation point of the sequences xn, yn and represents a possible exact solution of
the phase retrieval problem.

Remark 32 Recall that the DR-algorithm is asymmetric with regard to A,B, so one may
wonder whether changing order and using 1

2 (RBRA + I ) gives still failure of convergence.
We now reflect first in the double spiral, then in the cylinder mantle, and then average. Start-
ing at x1 = a+(t1) ∈ A+ in the outer spiral, we get RA(x1) = x1, and then RB(RA(x1)) =
a−(t1) ∈ A−, so that averaging gives x2 = (a−(t1) + a+(t1))/2 = b(t1) ∈ B. Now
RA(x2) = 2a−(t2)−x2 for a−(t2) = PA−(b(t1)), and then RB(RA(x2)) = 2a+(t2)−x2, so
that averaging gives x3 = a+(t2), when we are back in A+ with a slightly enlarges t2 > t1.
So here we can see that the DR-iterates follow alternating projections between B and A+,
and convergence fails again.

Remark 33 Convergence theory of the DR-algorithm for phase retrieval is even less
advanced than for alternating projections. Even the most pertinent currently available result
[29] needs some form of transversality of A ∩ B 	= ∅, which as we argued above is
impossible to verify in practice. It is therefore of interest to dispose at least of a limiting
counterexample.
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12 Gaussian EM-Algorithm Revisited

The following situation involves a special case of the EM-algorithm for gaussian ran-
dom vectors with unknown mean and known variance. It can be used in image restoration
methods; cf. Bauschke et al. [6], where this has been applied to emission tomography.

We consider a random vector Y with joint distribution fY (y|x) representing the incom-
plete data space, where the law depends linearly on a parameter x ∈ � ⊂ R

n

via

E(Yj |x) =
n

∑

i=1

cjixi, j = 1, . . . , m.

Defining C = (cji), this can be written as E(Y |x) = Cx, where C may typically lead to
a certain loss of information. Suppose a sample y ∈ R

m of Y is given, then the maximum
likelihood estimation problem is

minimize − ln fY (y|x)

subject to x ∈ �

Now assume that Z is a random vector of size nm and joint distribution fZ(z|x), depending
on the parameter x ∈ �, representing the complete data space, where

E(Zji |x) = cjixi .

Introducing the linear operator � : x �→ cjixi , this reads E(Z|x) = �x. Assuming that
maximum likelihood estimation is easier in complete data space, one applies the well-known
EM-algorithm, which is the following alternating procedure:

Algorithm EM-algorithm.

� Step 1 (E-step) . Given current parameter estimate x(t) ∈ �, supply completed data
by computing conditional expectation

z(t) = E
(

Z|Zj1 + · · · + Zjn = yj , x
(t)

)

.

� Step 2 (M-step) . Given completed data sample z(t) for Z, perform maximum
likelihood estimation in complete data space

minimize − ln fZ(z(t)|x)

subject to x ∈ �

The result is the new parameter estimate x(t+1) ∈ �.

If we consider the case where Y,Z are independent and normally distributed with known
variance σ 2, the E-step has the explicit form

z
(t)
j i = 1

n
yj + cjix

(t)
i − 1

n

n
∑

i′=1

cji′x
(t)

i′ , (42)

which is the orthogonal projection of the estimate v(t) ∈ R
nm with v

(t)
j i = cjix

(t)
i onto the

set B = {z ∈ R
nm : zj1 + · · · + zjn = yj , j = 1, . . . , m}. At the same time, the M-step as
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well turns out to be an orthogonal projection, namely, the orthogonal projection of z(t) onto
the set

A = {v ∈ R
mn : v = �x for some x ∈ �},

where v(t+1) ∈ PA(z(t)). This leads now to the following

Theorem 7 Suppose � is a bounded closed subanalytic set, and consider sequences
z(t), x(t) and v(t) generated by the Gaussian EM-algorithm with known variance σ 2. Then
the sequence z(t) converges to a limit z∗ with rate ‖z(t) − z∗‖ = O(t−ρ) for some
ρ > 0. Moreover, if x∗ ∈ � is any of the accumulation points of the x(t), then z∗ =
E(Z|Zj1 +· · ·+Zjn = yj , x

∗) = 1
n
yj +cjix

∗
i − 1

n

∑n
i′=1 cji′x∗

i′ , x
∗ is a critical point of the

complete data space maximum likelihood estimation problem min{− ln fZ(z∗|x) : x ∈ �},
and z∗

ji − cjix
∗
i is independent of i for every j .

Proof The main convergence theorem gives convergence z(t) → z∗ with rate O(t−ρ) if
we consider that B, being an affine subspace, has infinite reach, while A is subanalytic.
The latter follows because A can be defined equivalently by the relations (vj1/cj1) ∈ �,
vjic1i = v1icki .

Clearly v(t) = �x(t) implies v∗ = �x∗ for every accumulation point x∗ ∈ � of the
x(t) ∈ �. Now from (42) z∗

ji − 1
n
yj = cjix

∗
i − 1

n

∑n
i′=1 cji′x∗

i′ for all i, j we see that
for two accumulation points x∗

1 , x∗
2 ∈ � the shift x∗

1 − x∗
2 is in the kernel of the operator

(�x)ji − 1
n
(Cx)j , because the left hand term is the same for every x∗. It also follows that

z∗
ji − cjix

∗
i = 1

n
yj − 1

n

∑n
i′=1 cji′x∗

i′ is independent of i for every j .

Remark 34 The result is interesting for two reasons. Firstly, even for this very elementary
case no convergence result has been known for a non-convex parameter set � since the
1970s. For a convex � convergence follows of course from the classical convergence result
[3]. The second aspect is that some insight into the speed of convergence is provided. This
has been a point of vivid interest in various forms of the EM-algorithm, and our result
suggests that the speed O(t−ρ) can be extremely slow. Note also that the M-step may be
optimized locally, which is convenient when � is ‘curved’.

Remark 35 In [6] this method is applied to dynamic SPECT imaging with slow camera
rotation, where xik = xi(tk) represents the unknown tracer activity in voxel i at angular
camera position θk = k�θ at time tk = k�t , while yjk = yj (tk) is the sinogram, i.e.,
the activity received in camera bin j at position θk and time tk , with C the linear operator
representing camera geometry and collimator specifications. The artificial complete data
zijk = zij (tk) represent that part of the activity emanating from voxel i toward camera bin
j at time tk and camera position θk . Due to missing data, a dynamic model of the form
xi(t) = Aie

−λi t + Bie
−μi t + Ci is imposed, giving rise to the non-convex set �.

In [25] a Prony type model xik −α1ixi,k−2 −α2ixi,k−1 −α1i = 0 is used instead to imple-
ment a constraint on the tracer dynamics, giving rise to yet another non-convex parameter
set �, to which our convergence result applies.

Remark 36 The averaged projection method can be obtained as a special case of the Gaus-
sian EM-algorithm. Let � = C1 × (−C2) × C3 × · · · × (±Cm) and � = I . Then the
M-step is equivalent to the coordinatewise projection xi ∈ PCi

(x). For the E-step we have to
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come up with the operator C, which we model as x1 − x2 = 0, −x2 + x3 = 0, . . . . Then
averaging is the E-step (42) with data vector y = 0.

13 Structured Low-Rank Approximation

Structured low-rank approximation has the general form:

find a matrix S ∈ A such that rank(S) ≤ r, (43)

where A ⊂ C
n×m is a closed set of structured n × m-matrices, and r � min(n,m). Letting

B = {R ∈ C
n×m : rank(R) ≤ r}, we seek a matrix S ∈ A ∩ B which has structure and

low rank, and this is addressed via alternating projections between A,B in the euclidean
space Cn×m, equipped with the Frobenius norm ‖ · ‖F . Motivated by [11, 12], see Example
2 below, we call the corresponding alternating sequence

Rk ∈ PB(Sk), Sk+1 ∈ PA(Rk), k = 1, 2, . . .

a Cadzow alternating sequence, and its limit S∗ ∈ A ∩ B a Cadzow solution of (43).
Projections R ∈ PB(S) on the low-rank set are obtained by singular value decomposition

(SVD). Let S = U�V T with � = diag(σ1, . . . , σmin(n,m)) and σ1 ≥ σ2 ≥ . . . be an SVD
of S, then every r-truncation �′ = diag(σ1, . . . , σr , 0, . . . ) of �, i.e., keeping r largest
singular values and zeroing the others, gives rise to an element R = U�′V T ∈ PB(S).
Assuming σ1 ≥ · · · ≥ σk−1 > σk = · · · = σr = · · · = σ� > σ�+1 ≥ . . . for certain
k ≤ r ≤ �, we have

(

�−k+1
r−k+1

)

possibilities to choose such an r-truncation �′ of �, and
since each gives rise to a unique R = U�′V T , this is the cardinality of PB(S). Since
‖�′ − �′′‖F ≥ 2σr for any two r-truncations, it follows that B has positive reach σr at
every projected point R, and on B(R, σr) the projection PB is single valued. This leads now
to our first result.

Theorem 8 Let A ⊂ C
n×m be a closed subanalytic set of structured matrices, B matrices

of rank ≤ r . Let Rk, Sk be a bounded Cadzow alternating sequence with gap (A∗, B∗, r∗),
and suppose r∗ < σ ∗

r for the reach σ ∗
r = min{σr(R) : R ∈ B∗} of B∗. Then the Rk

converge to a low rank matrix R∗ ∈ B with speed ‖Rk − R∗‖F = O(k−ρ) for some ρ > 0.
All accumulation points S∗ ∈ A of the sequence Sk are structured matrices, and all admit
R∗ as their low-rank approximation. If in addition r∗ = 0, then Sk → R∗ ∈ A ∩ B with the
same speed.

Proof Since R ∈ B iff the determinants of all (r +1)× (r +1)-minors of R vanish, B is the
solution set of a finite number of polynomial equations, i.e., a semi-algebraic variety, also
known as determinantal variety of dimension r(n + m − r); [20]. Since A is subanalytic
by hypothesis and B is prox-regular and closed, we may apply our convergence theory. For
r∗ > 0 we use Corollary 5, whereas the case r∗ = 0 is already contained in [28, Thm.1].

The limitation here is that the attracting neighborhoods N (A∗, δ),N (B∗, δ) of the gap
(A∗, B∗, r∗) may be small, as δ depends on the reach σ ∗

r of B at the R∗ ∈ B∗. Often we
can do better, since usually the structure set A has additional properties.

Theorem 9 Let the structure set A be closed subanalytic and prox-regular. Let Rk, Sk be a
bounded Cadzow sequence with gap (B∗, A∗, r∗), where r∗ < ρ∗ for the reach ρ∗ of A∗.
Then the Sk converge to a structured matrix S∗ ∈ A with speed ‖Sk − S∗‖F = O(k−ρ) for
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some ρ > 0. The sequence Rk has a finite set of accumulation points R∗ ∈ B, and each
R∗ is a low-rank approximation of S∗. If in addition r∗ < σ ∗

r for the rth singular value σ ∗
r

of S∗, then the sequence Rk converges to a unique low-rank approximation R∗ of S∗. The
same is true when σ ∗

r > σ ∗
r+1, or when lim supk→∞ ‖Rk − Rk−1‖F < 2σ ∗

r .

Proof Here we apply the main convergence theorem to the dual gap (B∗, A∗, r∗), where
it is now the reach of A∗ that matters. We obtain convergence Sk → S∗ ∈ A from the
main convergence theorem. The specific structure of PB assures that the set of accumulation
points R∗ of the Rk is finite, and clearly every such R∗ is a low rank approximation of the
same S∗.

For σ ∗
r > σ ∗

r+1 the projection R∗ = PB(S∗) is single valued, hence the Rk converge to
R∗, and the same is true for ‖Rk − Rk−1‖F ≤ 2σ ∗

r − ε for k ≥ k0, because the distance
between two elements R∗ ∈ B∗ is 2σ ∗

r , hence the sequence Rk can then have only one
accumulation point, to which it converges. Finally, for r∗ < σ ∗

r , the projection PB is single-
valued and locally Lipschitz, so the Rk converge to R∗ = PB(S∗) with the same speed
‖Rk − R∗‖F = O(k−ρ).

In most applications the set A is convex and subanalytic, or even affine, in which case the
sequence Sk , when bounded, converges from an arbitrary starting point, while the Rk still
admit their finite set of accumulation points as described above. In the literature Cadzow’s
method is usually presented for affine A, but we use the term in a broader sense, because
we get convergence for a much broader class of structures A.

Example 2 Historically the first application is Cadzow’s basic algorithm in signal de-
noising; cf. [11, 12]. Given a Toeplitz matrix ˜T ∈ C

n×n, encoding a noisy signal, one wishes
to solve the problem:

minimize ‖T − ˜T ‖F

subject to rank(T ) ≤ r, T Toeplitz
(44)

where the de-noised signal is encoded in the solution T of (44). Letting A be the set
of Toeplitz matrices, Cadzow’s heuristic [11] consists in projecting alternatively on A,B,
starting at ˜T ∈ A, R1 ∈ PB(˜T ), Tk+1 = PA(Rk), Rk ∈ PB(Tk). Here T = PA(R),
the nearest Toeplitz matrix to a given matrix R, is obtained explicitly by fixing the value
in each diagonal of T as the average of the values in the corresponding diagonal in R:
T1+k,i+k = T1i = (R1i + R2,i+1 + · · · + Rn−i+1,n)/(n − i + 1). This example motivated
our nomenclature.

Corollary 14 (Global Convergence for Cadzow) Let A be closed convex and subanalytic.
Then every bounded Cadzow sequence Sk ∈ A converges to S∗ ∈ A with speed ‖Sk −
S∗‖F = O(k−ρ) for some ρ > 0. The corresponding low rank Rk ∈ B have a finite set of
low-rank accumulation points R∗

1 . . . , R∗
N ∈ B, where S∗ is the nearest structured matrix to

each R∗
i , and where each R∗

i is a r-truncated SVD of S∗. Convergence of the Rk to a single
R∗ occurs under any of the additional conditions in Theorem 9.

Proof The set A is subanalytic and convex, hence of infinite reach, and since B is sub-
analytic, the sequence Sk is now convergent with limit S∗ ∈ A for an arbitrary starting
point. All accumulation points R∗

i of the sequence Rk satisfy R∗
i ∈ PB(S∗), and we have

S∗ = PA(R∗
i ) for every i. From the discussion above we know that there are only finitely

many such accumulation points.
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Convergence to a single low rank R∗ occurs under any of the conditions in Theorems
8, 9, that is, when σ ∗

r > σ ∗
r+1, or when the Rk come within reach of B, or again when

lim supk→∞ ‖Rk − Rk−1‖F < 2σ ∗
r .

Corollary 15 (Feasible Case for Cadzow) Let S� ∈ A∩B be a Cadzow solution to the low
rank structured approximation problem (43). There exists δ > 0 such that every Cadzow
sequence Sk, Rk which enters the δ-neighborhood of S� converges to a Cadzow solution
S∗ ∈ A ∩ B with speed O(k−ρ) for some ρ > 0.

Remark 37 In the case of Cadzow’s basic sequence in Example 2 it is important to be
allowed the starting point ˜T , because we want a restoration T ∗ ∈ A ∩ B close to ˜T . The
method is a heuristic, because even in the case of convergence Tk, Sk → T ∗ we do not get
the exact solution of (44). Convergence to the projection of the initial guess on A ∩ B is
only obtained for alternating projections between affine subspaces [3].

Remark 38 Even for affine A our convergence result is new, while in the feasible case
r∗ = 0 convergence is already affirmed by [27, 28], even though there this was not stated
explicitly for the Cadzow case.

Remark 39 Convergence claims for Cadzow’s basic method, and for more general affine
structures A, have been made repeatedly in the literature. None of the published arguments
the author is aware of are tenable. Most authors claim that convergence is linear and follows
form [22]. We show by way of an example that this is incorrect, because [22] requires the
manifolds to intersect transversally, and this fails in general.

Example 3 Consider the set B of 2 × 2 matrices of rank ≤ 1, B1 those of rank equal 1,

B = B1 ∪ {02×2}. Let Ȳ =
[

1 −1
2 −2

]

∈ B1 and parametrize Y ∈ B1 in the neighborhood

of Ȳ by a vector y = (y1, y2, y3) ∈ R
3 as Y =

[

y1 y1y2
y3 y3y2

]

, where ȳ = (1,−1, 2) gives

Ȳ . Let y(t) = (y1(t), y2(t), y3(t)) ∈ R
3 be a smooth curve with y(0) = ȳ, then Y (t) =

[

y1(t) y1(t)y2(t)

y3(t) y3(t)y2(t)

]

∈ B1 is a smooth surface curve on B1 near Y (0) = Ȳ . Its tangent vector

is

Ẏ (t) =
[

ẏ1(t) ẏ1(t)y2(t) + y1(t)ẏ2(t)

ẏ3(t) ẏ3(t)y2(t) + y3(t)ẏ2(t)

]

,

hence Ẏ (0) =
[

ẏ1(0) −ẏ1(0) + ẏ2(0)

ẏ3(0) −ẏ3(0) + 2ẏ2(0)

]

is an element of the tangent space to B1 at Ȳ .

If we choose ẏ1(0) = ẏ2(0) = ẏ3(0) = 1, then Ẏ =
[

1 0
1 1

]

is a tangent direction to B1

at Ȳ . We have Ȳ + t Ẏ 	∈ B for t 	= 0, which corroborates that B1 is curved. Now let A

be the affine set A = Ȳ + RẎ which defines our structure, then A ∩ B = {Ȳ }, and the
intersection is tangential, because Ẏ belongs to both tangent spaces. Indeed, TȲ A = RẎ ,
hence TȲ A + TȲ B1 = TȲ B1 	= R

2×2, the latter since the tangent space of B1 at Ȳ is not the
full R2×2, given that dim(B1) = 3. Hence A,B do not intersect transversally at Ȳ .

Convergence for this simple example can be derived from [28], but results based on
transversality do not apply. In particular, convergence to Ȳ can be proved to be sublinear, as
can be confirmed numerically.
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Example 4 We may expand on Example 3 by choosing a second smooth curve z(t) with
z(0) = ȳ, now with ż1(0) = 1, ż2(0) = −1, ż3(0) = 0, which gives a second tangent

Ż =
[

1 −2
0 −2

]

to B1 at Ȳ . Then A = Ȳ+RẎ+RŻ is two-dimensional, but still TȲ A ⊂ TȲ B1,

and the intersection is again tangential with A ∩ B = {Ȳ }.

Example 5 It should also be stressed that one has to assume that the Cadzow alternating
sequence is bounded, because the low rank set B may have asymptotes, so that Cadzow
iterates may escape to infinity. We give an example again for B ⊂ R

2×2. Choose the affine
structure A = {S ∈ R

2×2 : S12 = S21 = 1, S22 = 0}, then the Cadzow alternating
sequence, started at S0 with S0

11 = 1 produces Sk ∈ A where Sk
11 → ∞, as can also be

verified numerically.
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