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Abstract

The presence of Lipschitzian properties for solution mappings associated with nonlinear
parametric optimization problems is desirable in the context of, e.g., stability analysis or
bilevel optimization. An example of such a Lipschitzian property for set-valued mappings,
whose graph is the solution set of a system of nonlinear inequalities and equations, is R-
regularity. Based on the so-called relaxed constant positive linear dependence constraint
qualification, we provide a criterion ensuring the presence of the R-regularity property. In
this regard, our analysis generalizes earlier results of that type which exploited the stronger
Mangasarian—Fromovitz or constant rank constraint qualification. Afterwards, we apply our
findings in order to derive new sufficient conditions which guarantee the presence of R-
regularity for solution mappings in parametric optimization. Finally, our results are used to
derive an existence criterion for solutions in pessimistic bilevel optimization and a sufficient
condition for the presence of the so-called partial calmness property in optimistic bilevel
optimization.
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1 Introduction

Lipschitzian properties of implicitly given set-valued mappings are of essential importance
in order to study the stability of optimization problems, see e.g. [25, 32, 37] and the refer-
ences therein. Particularly, such stability is desirable in the context of bilevel optimization
where a function has to be minimized over the graph of a solution mapping associated with
a given parametric optimization problem, see [5, 12, 16] or Section 4.2 for details. Indeed,
in order to infer existence results, optimality conditions, or solution algorithms in bilevel
programming, one generally has to assume the presence of certain properties of this solu-
tion map. However, it is often not easy to verify such properties. In this paper, we focus
on the derivation of sufficient criteria for the presence of so-called R-regularity of set-
valued mappings, see Definition 2.2. This property, in turn, is beneficial in order to study
Lipschitzian properties of marginal (or optimal value) functions and solution mappings in
parametric optimization, see [6, 32, 36], and these features possess some extensions to
bilevel optimization as well.
In this paper, we investigate set-valued mappings I': R” = R of the form

Vx e R": T'(x):= {yeRm (1.1)

hi(x,y) <0 iel
hi(x,y) =0 ielJ

where I :={1,...,¢}and J := {£+1, ..., p}areindexsetsand A, ..., h,: R"xR™ — R
are given functions. Precise assumptions on the continuity and smoothness properties of
hi, ..., h, will be specified in the course of the paper. It is well known that the presence
of R-regularity for mappings of this type is guaranteed under validity of the Mangasarian—
Fromovitz constraint qualification, see [8, 32]. More recently, this result has been extended
to situations where relaxed versions of the constant rank constraint qualification hold at the
underlying reference points, see [6, 36]. However, in some situations, these qualification
conditions may turn out to be too selective when investigating the presence of R-regularity
for solution mappings, see e.g. Remark 4.2. That is why we aim for a generalization of these
findings in the presence of the so-called relaxed constant positive linear dependence con-
straint qualification, introduced in [1], which is generally weaker than the aforementioned
qualification conditions. Our main results Theorems 3.2 and 3.3 depict that this is indeed
possible. With these new sufficient conditions for the presence of R-regularity for the map-
ping I" at hand, we are in position to state new criteria ensuring local Lipschitz continuity
of the marginal function and R-regularity of the solution mapping associated with nonlin-
ear parametric optimization problems whose feasible region is modeled with the aid of T".
Afterwards, we use these findings in order to study the existence of so-called pessimistic
solutions as well as the presence of the celebrated partial calmness property in bilevel
optimization. The latter, introduced in [46], is one of the key assumptions one generally
postulates on the optimal value reformulation of an optimistic bilevel optimization problem
in order to infer necessary optimality conditions and solution algorithms, see Section 4.2
for details and suitable references.

The remaining parts of this manuscript are organized as follows: In Section 2, we provide
the fundamental notation exploited in this paper. Furthermore, we recall some important
constraint qualifications from nonlinear programming as well as the underlying fundamen-
tals of set-valued analysis. Section 3 is dedicated to the study of the relaxed constant positive
linear dependence constraint qualification as a sufficient condition for R-regularity of the
mapping I'. In Section 4, we investigate some applications of our findings. First, we apply
the obtained results to nonlinear parametric optimization problems in order to state new
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sufficient conditions for the local Lipschitz continuity of the associated optimal value func-
tion as well as R-regularity of the associated solution mapping in Section 4.1. Afterwards,
we employ these results in the context of bilevel optimization in order to formulate criteria
ensuring the existence of pessimistic solutions as well as the presence of partial calmness in
Section 4.2. In Section 5, we close the paper with the aid of some final comments.

2 Notation and Preliminaries

In this paper, we mainly make use of standard notation. The tools of set-valued analysis we
exploit here can be found, e.g., in [4, 37, 42].

2.1 Basic Notation

Throughout the paper, we equip R” with the Euclidean norm |-||. For some point x € R"
and a scalar ¢ > 0, we use

Ue(x) :={y e R" [y — x|l <&}, Be(x) :={y e R"[|ly — x|l < &}

in order to denote the open and closed e-ball around x, respectively. For brevity, we make
use of B := B (0). For a nonempty and closed set A C R”", we use

dist(x, A) := inf{|ly — x|/ y € A}, (x, A) := argmin{[ly — x| | y € A}

to denote the distance of x to A and the set of projections of x onto A, respectively. It is well
known that the distance function dist(-, A) : R" — Ris Lipschitz continuous with Lipschitz
modulus 1. Generally, we call a map ¢: R" — R™ locally Lipschitz continuous at x w.r.t.
Q C R” whenever there are § > 0 and L > 0 such that

Vy,y € Us(x)NQ: llg(y») — ¢ < Llly =¥l

holds. Note that this notion is only reasonable in the situation x € cl2. For Q := R", we
recover the classical definition of local Lipschitz continuity.

Let I, as well as I be finite index sets and let (a’);c;, C R" as well as (b');c;, C R"
be two given families of vectors. We call the pair of families ((ai iel; s b)ie 1,) positive-
linearly dependent whenever there are scalars o; > 0,1 € I}, and B;, i € I, which are not
all vanishing such that

. i

Ziell wia + Zielz Bib" = 0.
Otherwise, we refer to this pair of families as positive-linearly independent. A family of
vectors (a');ey, is called positive-linearly dependent (independent) whenever the pair of

families ((a’ diel, @) is positive-linearly dependent (independent).
The following lemma follows from [1, Lemma 1].

Lemma 2.1 Let v',...,v"™ € R" be given vectors such that the family (v");:1 is
linearly independent. Furthermore, let z € R" \ {0} be given as z = er:i o v’ for
reals Ay, ..., 0rrs Satisfying 41, ...,%+s > 0. Then there exist an index set T C
{r+1,...,r+s}andreals a;, i € {1,...,r} UL, satisfying &; > 0 foralli € I, such that
the family (vi)ie{l ruz is linearly independent and

.....

.....
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182 P. Mehlitz, L.I. Minchenko

2.2 Constraint Qualifications in Nonlinear Programming

Supposing that I" models the feasible region of a given parametric optimization problem,
certain constraint qualifications need to be imposed on the images of I" in order to ensure
that the associated Karush—-Kuhn-Tucker conditions provide a necessary optimality condi-
tion. In this regard, we postulate the following assumption which may hold throughout the
section.

Assumption 2.1 Let us fix a reference parameter x € R” and some point y € I'(x). Further-
more, let all the functions £, ..., k), be continuous as well as continuously differentiable
w.r.t. y in a neighborhood of {x} x I'(x).

Let us now introduce the qualification conditions of our interest. Therefore, we will
exploit the set of indices associated with inequality constraints active at (x, y) which is
defined as stated below:

I(x,y):={i € I'lhi(x,y) =0}.

Definition 2.1 We say that

(a) the linear independence constraint qualification (LICQ) holds at (x, y) whenever the
family (Vyh; (%, 7)), ., (t.5uy 1 linearly independent,

(b) the Mangasarian—Fromovitz constraint qualification (MFCQ) holds at (X, y) when-
ever the pair of families

((Vyhi(i’ y))iel(i,y)’ (Vyhi(f’ 5’))561)

is positive-linearly independent,

(c) the relaxed constant rank constraint qualification (RCRCQ) holds at (x, y) (w.r.t. Q C
R"™) whenever there is a neighborhood U of (x, y) such that for each set K C I(x, y),
the family (Vh;(x, ¥))ickuy has constant rank on U (on U N (2 x R™)),

(d) the relaxed constant positive linear dependence constraint qualification (RCPLD)
holds at (x, y) (w.r.t. 2 C R") whenever there are a neighborhood U of (X, y) and an
index set S C J such that the following conditions hold:

(i) {Vyh;(x,y)|i € S}is abasis of the span of {V,h;(x,y)|i € J},
(if) the family (Vyh;(x, ¥))ies has constant rank on U (on U N (2 x R™)), and
(iii) for each set K C I(x, y) such that the pair of families

((V,vhi(fv )_’))ieK’ (Vyhi(fv )_]))ieS)

is positive-linearly dependent, the family (Vyh;(x, y))ickus is linearly depen-
dent for each point (x, y) € U (for each point (x, y) € U N (2 x R™)).

While LICQ and MFCQ are well-known constraint qualifications, RCRCQ and RCPLD
are less popular. Let us mention that RCRCQ, which has been introduced in [35], is a less
restrictive constraint qualification than the classical constant rank constraint qualification,
see [30]. On the other hand, RCPLD dates back to [1] and generalizes the classical constant
positive linear dependence constraint qualification, see [2, 40]. Checking these references,
one can observe that both MFCQ and RCRCQ individually imply validity of RCPLD. How-
ever, neither does MFCQ imply validity of RCRCQ nor vice versa. Clearly, LICQ is stronger
than MFCQ and RCRCQ. Let us mention that RCPLD is stable in the sense that whenever
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it is valid at some reference point, then it also holds in a neighborhood of this point. In order
to see this, one may adapt the proof of [1, Theorem 4], which is stated in the non-parametric
setting, to the situation at hand. Finally, we would like to mention that the notion of RCPLD
can be extended to non-smooth constraint systems as well as complementarity-type feasible
regions, and, thus, applies to mathematical programs with complementarity constraints and
different reformulations of bilevel optimization problems, see [10, 26, 27, 44] for details.

2.3 Properties of Set-Valued Mappings

Let Y: R" =% R™ be a set-valued mapping. We refer to the sets
gphY = {(x,y) e R* x R" |y € T(x)}, domY :={x e R"| T (x) # &}

as graph and domain of Y, respectively. Let us fix a point x € domY. We call Y locally
bounded at X whenever there are a bounded set B C R and a neighborhood U C R" of x
such that Y'(x) C B holds for all x € U. One calls Y upper semicontinuous at X whenever
for each open set O C R™ which satisfies Y (x) C O, there exists a neighborhood U C R”
of x such that T (x) C O holds for all x € U. Recall that Y is called lower semicontinuous
at X (wrt. 2 C R") whenever for each open set O C R” with T(x) N O # O, there
is a neighborhood U C R”" of x such that Y'(x) N O # & holds for all x € U (for all
x € UN Q). We call Y inner semicontinuous at some point (x,y) € gphY (w.rt. )
whenever for each sequence {xKhen € R ({x¥jreny C€ Q) converging to X, there exists
a sequence {y*}reny C R™ which converges to y and satisfies y* € Y (x¥) for sufficiently
large k € N. Note that Y is lower semicontinuous at x (w.r.t. Q) if and only if it is inner
semicontinuous at each point from {x} x Y (x) (w.r.t. ). The situation 2 := domY will be
of particular interest in this manuscript.

In the theory of set-valued analysis, there exist several different notions of Lipschitzian-
ity. Recall that Y possesses the Aubin property at some point (X, y) € gphY (w.r.t. Q)
whenever there exist neighborhoods U and V of x and y, respectively, as well as a constant
k& > 0 such that

Vx,x' eU Vx,x eUNQR): YNV CYX)+«|x—x'|B

holds. One can easily check that whenever YT possesses the Aubin property at (x, y) (w.r.t.
2), then it is inner semicontinuous (w.r.t. 2) at this point. Using the concept of coderivatives
which is based on the limiting normal cone from variational analysis, one can formulate
a necessary and sufficient condition for the presence of the Aubin property for set-valued
mappings with closed graphs, see [37, Theorem 4.10]. In [37, Corollary 4.39], one can find
a characterization of the Aubin property of I from (1.1) at some point of its graph under
validity of an MFCQ-type assumption. Let us, however, note that MFCQ from Definition 2.1
is only sufficient but not necessary for the presence of the Aubin property. A recent study
on the presence of the Aubin property for implicitly defined set-valued mappings of more
general form can be found in [25].

Let us now focus on the particular mapping I' from (1.1) in more detail. In this
manuscript, we are interested in the property of I' being so-called R-regular at a point of its
graph, see [32, Section 6.2].
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184 P. Mehlitz, L.I. Minchenko

Definition 2.2 Fix (x,y) € gphI’ and some set & C R". Then I' is called R-regular at
(x,y) (w.r.t. Q) whenever there exist a constant « > 0 and a neighborhood U of (x, ¥) such
that the condition

V(x,y) € U ¥(x,y) e UN(Q x R™):
dist(y, I'(x)) <« max{0, max{h;(x, y)|i € I}, max{|h;(x, y)||i € J}} (2.1)
holds.

The notion of R-regularity can be traced back to [21, 28] where it has been exploited as a
constraint qualification. Following [9, 20, 41], one might be tempted to say that the presence
of R-regularity is equivalent to the validity of a local error bound condition at some reference
point of the constraint system induced by I' provided the latter does not depend on the
parameter. In this regard, R-regularity of a parametric constraint system is a generalization
of the concept of error bounds. We refer the interested reader to [45] where the concept of so-
called uniform parametric error bounds, which is closely related to R-regularity, is studied.
Let us note that due to [41, Theorem 1] or [8, Theorem 3.2], R-regularity of I at a given
reference point is implied by validity of MFCQ at the latter. A generalization of this result to
the setting where the functions k1, ..., h, are non-smooth can be found in [48]. We would
like to point out that R-regularity can be interpreted as a variant of metric regularity, see
[29] and the references therein, and is stronger than metric subregularity of the feasibility
mapping associated with the given parametric constraint set where the parameter is fixed,
see [24, Section 1]. Furthermore, following [24, 41], it is possible to generalize the concept
of R-regularity, which is called stability or Robinson stability in these papers, to geometric
constraint systems of the type

h(x,y)eC
where i : R” x R" — R is continuously differentiable w.r.t. y and C C R” is a closed set.

Invoking [6, Theorem 5.1], one can easily check that whenever I is R-regular at (x, y)
w.r.t. £ while all the functions &y, ..., h, are locally Lipschitz continuous at this point,
then I possesses the Aubin property w.r.t. 2 at this point. By means of simple examples,
one can check that the converse statement does not hold in general even if the data functions
are continuously differentiable and, thus, locally Lipschitzian, see [36, Example 1]. The
following result even holds in the absence of local Lipschitz continuity of the data functions.

Lemma 2.2 Let I" be R-regular at some point (x, y) € gphl" w.r.t. domI". Furthermore, let
the functions hy, ..., h, be continuous at (x,y) and let hy(x,-), ..., hy(x,): R" — R
be continuous for each x € doml” which comes from a neighborhood of x. Then I is inner
semicontinuous at (x, y) w.r.t. domlI.

Proof The assumptions of the lemma particularly imply the existence of a constant k > 0
and some § > 0 such that

dist(y, I'(x)) < « max{0, max{h;(x, y)|i € I}, max{|h;(x, y)||i € J}}

holds for all x € Us(x) N domI". Thus, for each sequence {xk tken C domI” with x> x,
the estimate

15 — ¥*Il <« max{0, max{h; (x*, §)|i € I}, max{|h; (x*, $)| i € J}}

holds for sufficiently large k € N where yk e TI(y, T'(x¥)) is arbitrarily chosen. Note
that TI(y, I'(x*)) is nonempty for each k € N since I'(x¥) is nonempty and closed by
continuity of /1 (xk, 3 T h,,(xk, -) and the choice x* € domr for sufficiently large k €
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N. Exploiting the continuity of &1, ..., k) at (x, y), we find ||y — yk|| — 0ask — oo, 1e.,
I" is inner semicontinuous at (x, y) w.r.t. domlI. O

By definition, R-regularity of a set-valued mapping at a given reference point is stable
in the sense that it extends to points in a sufficiently small neighborhood. However, we get
the following even stronger stability property from [32, Lemma 6.19] which shows that the
modulus of R-regularity is uniformly bounded in a neighborhood of a compact set of points
where a given set-valued mapping is R-regular.

Lemma 2.3 Let C C gphI be compact and assume that T is R-regular w.r.t. domI" at each
point from C. Furthermore, let O be a neighborhood of C where hy, ..., h, are continuous.
Then there exist a constant k > 0 and an open set U such that C C U C O while (2.1)
holds with Q := domT, i.e., there is a uniform modulus « of R-regularity on C.

3 A Sufficient Condition for R-Regularity

If not stated otherwise, we assume that Assumption 2.1 holds throughout the section. For
simplicity, let us postulate that the functions 4; (x, -): R™ — R,i € I U J, are continuous
for each x € domI". Finally, we will, at some instances, exploit the following additional
assumptions.

(A1) For each x € R”, the functions A;(x,-): R™ — R, i € I, are convex while the
functions 4; (x, -): R™ — R, i € J, are affine.
(A2) The set-valued mapping I" is locally bounded at x € domI".

Subsequently, we will first derive a sequential characterization of R-regularity which
holds under validity of the aforementioned conditions. Afterwards, we will relate this
sequential characterization with the validity of the constraint qualification RCPLD.

3.1 A Sequential Characterization of R-Regularity

For some parameter x € domI" and v ¢ I'(x), [T(v, I'(x)) equals the solution set of
m}in{lly -]y e}

since I'(x) is a closed set by continuity of 41(x,-),...,hp(x,-). Due to v ¢ I'(x), the
objective function of the above problem is continuously differentiable in a neighborhood
of all points from IT(v, I'(x)). Thus, it is reasonable to investigate the associated Lagrange
multiplier set

y -
ly —vll

Ay(x,y) = {K e R?P

+ZAVh(x y)=0Viel: A >0, Aihi(x,y):O}

foreach y € IT(v, I'(x)) as long as the pair (x, y) is close to {x} x I'(x). For some constant
M > 0, we make use of

Ay = {re e [ Y07 il = .

Let us note that under validity of (A1), the image sets of I" are convex which yields that the
associated projection sets from above are actually singletons.
Using this notation, we obtain the following technical lemma.
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186 P. Mehlitz, L.I. Minchenko

Lemma 3.1 Let (A1) and (A2) hold. Assume that there exist a constant M > 0 as well
as sequences {x*}ren C dom[, {V¥}rey C R™, and {y*}ren C R™ satisfying x* — %,
v = 5, as well as V¥ ¢ T(x%) and y* € TI(W*, T (x%)) for all k € N such that the set
A%(xk, vk is nonempty for sufficiently large k € N. Then we have y* — ¥ and

dist(*, I'(x%)) < M max{0, max{h; (x*, V%) |i € I}, max{|h; &%, V9|11 € T} (3.
for sufficiently large k € N.

Proof Due to (A2), {y*}xen is bounded. Fix an arbitrary convergent subsequence { VR }sen
with limit y € R™. By assumption, for all sufficiently large s € N, we find a multiplier
ks e AS’{X (xks, ykf). Exploiting (A1) and the definition of the set Aﬁ’é (ks ykf), we obtain
ks ks — P ks ks kT (o ks ks
Iyl —vb i =D a7 Tyhi (L Y Tk =y
P ks ks ks ks kY — N aksp ks ks
< D A (OaGR ) — haRyR)) = Y T A v
ks ks ks ks 17 (ks o ks
Doy v max(O a4y 1A [ V)

M max{0, max{h; (x*s, v5) |i € I}, max{|h; (x5, vE)| i € J})

IA

IA

for sufficiently large s € N. Taking the limit s — oo yields |y — y|| < 0, i.e., we find
7 = ¥. Particularly, the bounded sequence {y*};cny possesses the unique accumulation point
y which must be its limit. Reprising the above arguments, we infer the second statement of
the lemma from dist(v*, I'(x¥)) = ||y* — v¥|. O

Next, we exploit Lemma 3.1 in order to characterize R-regularity of I" under validity of
(A1) and (A2). This result is related to [6, Theorem 3.2] and [36, Theorems 2 and 3] where
these assumptions are replaced by some a-priori inner semicontinuity of I'. Here, we follow
the ideas used for the proof of [36, Theorem 2].

Theorem 3.1 Let (A1) and (A2) hold. Then the following statements are equivalent.

(a) The mapping T is R-regular at (x, y) w.r.t. doml.

(b) There exists a constant M > 0 such that for each sequences {xk ben C doml,
{vk}keN c R”, and {y*}reny C R™ satisfying = x50k > y, and pk ¢ INE)
as well as y* € TI(v*, T'(x%)) for all k € N, the set A{)"A’,(xk, yk) is nonempty for
sufficiently large k € N.

Proof We show both implications separately.
(@) = (b): Let I" be R-regular at (x, y) w.r.t. domI". Then we find x > O and y,§ > 0

such that
Vx € Uy (¥) NdomI" Vy € Us(3): 32)
dist(y, I'(x)) <« max{0, max{h;(x, y) |i € I}, max{|h;(x, y)||i € J}} ’

holds. Furthermore, let {x*}reny € dom[, {v¥}ren € R™, and {yk}keN C R™ be sequences
which satisfy the requirements in (b). We first show y* — ¥. Indeed, we have

Iy =3I < Iy* = vEIl+ vk = 31 = dist¥, T ) + v = 31,

and the term on the right tends to zero as k — oo by R-regularity of I" at (x, y) and

continuity of iy, ..., hp at (X, y).
Fix k € N and define mappings @, ¥ : R™ — R by means of
Vw e R":  dp(w) = |lw — v¥, Wi (w) := Pr(w) + 2dist(w, T'(x5)).
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Observing that @y is globally Lipschitz continuous with Lipschitz modulus 1 while T'(x¥)
is nonempty and closed, Clarke’s principle of exact penalization, see [11, Proposition 2.4.3],
implies that y* is a global minimizer of Wy.

For sufficiently large k € N, we have xk e U, (x) and yk € Us;2(y). Consider such
k € N and an arbitrary vector w € Us/» (y%). Then the above considerations and (3.2) yield
the estimate

P (y) = We(") < W (w) = Py (w) + 2 dist(w, ['(x*))
®r(w) + 2« max{0, max{h; (x*, w) |i € I}, max{|h; (x*, w)||i € J}}

Viel: x>0, 2 min{0, h; (x*, w)} =0
Pl <2 :

A

max {lbk(w) + Zf:l )»,-hi(xk, w) ’
Using the function Ly : Us/2 (yk) x R? — R and the set Kk(w) given by
Li(w, ) = Bxw) + Y ik (K, w)
Ry = [heRP| 300 hil =26, Vi€ 12y = 0, 3y minf0, hi (¥, w)) = 0}
forallw € Ua/z(yk) and A € R?, we have
Yw € Uﬁ/z(yk): Dr(yh) < max{l:k(w, A) |A € T\k(w)}.

By continuity of the functions h; (xk, 9,i =1,...,4£,the inclusion Kk(w) C Ak (yk) holds
for all w € Us/»(y*) close enough to y* which is why we find 8, € (0, §/2] such that

Yw e Uy (%) @x(y") < max{Li(w, 1) |1 € AN} 3.3)
Defining Q : IU(;;( (y¥) = R by means of
Vw € Uy 0" Qe(w) == max{Li(w, 1) | » € A¥(H)],

we obtain @ (y¥) < Qu(w) for all w € Uy, (y*) from (3.3). Furthermore, ®;(y*) =

Ok (y*) holds which is why y* is a global minimizer of Qy. For sufficiently large k € N,
Ly is continuously differentiable at y*. Noting that Ak (y¥) is a compact polyhedron, Qy is
directionally differentiable at y*, and the directional derivative can be approximated from
above by means of

Vd e R™:  Qp(yF, d) < max{V,Le(Y*, 1)Td |x € A¥(yN))

which follows from Danskin’s theorem, see [7, Proposition B.25], due to validity of (A1).
Recalling that y¥ is a global minimizer of Qy, we have Q;{(yk, d) > 0foralld € R™.
Defining a polytope P C R™ by means of

P = {V, Lok, ) | € AR (YY),

we fjlld max{€'d|& € P} > 0foralld € R™. This yields O € P. By definition of P, L,
and AK, Ai’[ (x*, y%) # @ follows. Since the above arguments apply to all sufficiently large
k € N, (b) holds.

(b) = (a): Let (b) hold and assume that I" is not R-regular at (x, y) w.r.t. domI". Then we
find sequences {xF}reny C domI and {vF}reny € R™ such that x¥ — %, vk — 3, and

dist(V*, T'(x¥)) > k max{0, max{h; (<", v¥) |i € I}, max{|h; <X v0)[ i e J}}  (3.4)
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as well as v ¢ ' (x*) hold for all k € N. For each k € N, we fix yk e IT(v¥, I'(x%)). Due
to validity of (b), the set Af)",{ (x*, y¥) is nonempty for sufficiently large k € N. By means of
(A1) and (A2), Lemma 3.1 yields a contradiction since (3.1) and (3.4) are incongruous. [

3.2 R-Regularity Under RCPLD

In this section, we want to exploit the sequential characterization of R-regularity obtained in
Theorem 3.1 in order to show that validity of RCPLD is a sufficient criterion for R-regularity
in the presence of (A1) and (A2). This generalizes [6, Theorem 4.2] and [36, Theorem 4]
where a-priori inner semicontinuity of I" at the reference point as well as RCRCQ were the
necessary ingredients to come up with a related result in the absence of (A1) and (A2).

Theorem 3.2 Let (A1) and (A2) hold. Suppose that RCPLD holds at each point from the
set {x} x I'(x) w.r.t. domI". Then I is R-regular at each point from {x} x I (x) w.r.t. domT".

Proof Suppose that there exists ¥ € I'(x) such that I' is not R-regular at (x, y) w.r.t. domI.
Due to Theorem 3.1, this shows that for each 0 € N, there exist sequences {x(]j}keN -
dom[, (V& }ren € R™, and {yX }rey C R™ satisfying x¥ — %, vk — 5,0 ¢ T'(xk) as well
as y(’; € H(v(’;, F(x(’;)) for all k € N, and A:k_‘_ (x(lﬁ“', yfg") = @ for all s € N, i.e., the latter

holds at least on a subsequence. Performing ‘a standard diagonal sequence argument, we,
thus, find sequences {x°},ey C domI, {V9};eny € R™, and {y? },cn satisfying x° — X,
V7 — y,aswellasv® ¢ I'(x?), y7 € T(v?, I'(x?)), and A, (x7, y7) = @ forallo € N.

Invoking (A2) and the continuity of 41, ..., k), at each point from {x} x I'(x), we obtain
that for each ¢ > 0, there is a § > 0 such that I'(x) C I'(x) + ¢B holds for all x €
Us(x) since I" is upper semicontinuous at x, see [42, Theorem 5.19] as well. Thus, recalling
that RCPLD is locally stable, it needs to hold at the points (x?, y?) for sufficiently large
o € N. Exploiting the fact that RCPLD is, actually, a constraint qualification, this implies
Ayo (x7,y%) # @. Since we have A7, (x?, y°) = & from above, we conclude that each
sequence {{t% }yen With u® € Ao (x7, y°) for all o € N satisfies ||u% || — oo as 6 — oo.
Choose such a sequence. Recall that this means

:ﬁ+zp 1O Vyohi (x%, y7) (3.52)
lye — vl =1 e '

Viel(x?,y%): pL? >0, (3.5b)
VieI\I(x%,y%): ul =0 (3.5¢)

for all o € N sufficiently large.

Clearly, (A2) guarantees that {y°},cn is locally bounded and, thus, converges along a
subsequence (without relabeling) to some y € I'(x) by continuity of A1, ..., k), at each
point from {x} x I'(x). Since RCPLD holds at (x, y) w.r.t. domI", we find a neighborhood
U of this point as well as an index set S C J satisfying the requirements (i), (ii), and (iii)
from part (d) of Definition 2.1. Particularly, the family (Vyh;(x, y));es needs to be linearly
independent while the vectors from (Vyh; (x, y))ies\s need to be linearly dependent on the
family (Vyh;(x, y))ies for all (x, y) € U N (domI" x R™). For sufficiently large o € N,
(x?,y?) € U N (domI" x R™) holds true. The above arguments lead to the existence of 1],
i € J, such that

Do, Vi) =D ATV ), (3.6a)
VieJ\S: il =0 (3.6b)
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holds for sufficiently large 0 € N where, additionally, the family (Vyh;(x?, y7))ies is
linearly independent. Now, (3.6a) allows to rewrite (3.5a) as

o _ o

_y v o (T O o (vO O
~llye =l + Ziel Wi Vyhi 7, 70 + ZieS A Vyhi 7 y7)
for sufficiently large 0 € N. Observing that there are only finitely many subsets of 1, we
may pass to a subsequence (without relabeling) in order to guarantee 7 (x°, y°) = J for all
o € N and some set J C /. Now, we apply Lemma 2.1 to the situation at hand. Thus, for
each sufficiently large o € N, we findaset /7 C Jas wellasreals A7, i € 17 US, satisfying
A7 > Oforalli € 17, such that the family (Vyh;(x?, ¥%))iesous is linearly independent
while
ya -7 ‘av h o 0

B M + Ziel”uski yhi (7. y7)
holds for all o € N. By passing once more to a subsequence (without relabeling), we may
ensure that /% = 7 holds for all o € N and some index set Z C I. Let us set A7 := 0 for
alli € (I \Z) U (J \ S) in order to rewrite the above equation as

ya_va

p -
=T Do M Vyhi(x®, 7). 3.7

Thus, we have shown A% € Ao (x?, y")_. The above arguments show ||A%|| — oo as
o — o0. Consequently, dividing (3.7) by ||A?|| and taking the limit o — oo, we infer

P - -
0= KiVyhi(%.§).
Viel: k>0,
Yie(IND)UWJ\S): 4 =0

for some non-vanishing multiplier A € R” by the assumed continuity of the derivatives
Vyhi, ..., Vyhp at (%, y). Thus, the pair of families ((Vyh; (X, y))iez, (Vyhi (X, ¥))ies) is
positive-linearly dependent. On the other hand, we have already shown above that the fam-
ilies (Vyh;(x?, y7))iezus are linearly independent. This, however, contradicts the validity
of RCPLD at (x, y) and, thus, completes the proof. O

As a consequence of the above theorem and Lemma 2.2, we obtain the following
corollary.

Corollary 3.1 Let the assumptions of Theorem 3.2 hold. Then T is lower semicontinuous
w.r.t. domI at x.

Inspecting the proofs of Lemma 3.1 as well as Theorems 3.1 and 3.2, one can check that
continuity of all involved functions w.r.t. the set domI" x R" is actually enough in order to
proceed. A remark, which provides another slight generalization of our setting, is presented
below.

Remark 3.1 Observe that the proofs of Lemma 3.1 as well as Theorems 3.1 and 3.2 remain
true in the following setting which is slightly more general than the one of Assumption 2.1:
Foreachi € {1, ..., p}, there exist functions g; : R x R” — Rand¢;: R" — R such that
hi(x,y) = gi(x, y)+t; (x) holds true for all (x, y) € R" xR™. Furthermore, g; is continuous
as well as continuously differentiable w.r.t. y in a neighborhood of {x} x I"(x). Finally, we
have |#; (x)| < oo for all x € domI" from a neighborhood of x and #; is continuous at x.
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Observe that the assertion of Theorem 3.2 is essentially different from the one of [6,
Theorem 4.2]. In [6], the authors claimed validity of inner semicontinuity and RCRCQ at
one point from the graph of I" in order to obtain R-regularity at the reference point. Here,
however, we postulate (A1) and assume validity of RCPLD at all points from {x} x I'(x) in
order to deduce R-regularity of I" at all these points. Thus, in this setting, one may interpret
the statement of Theorem 3.2 as a sufficient condition for lower semicontinuity of I" as
well, see Corollary 3.1. Observe that we cannot modify the statement of Theorem 3.2 in
such a way that assuming validity of RCPLD at one reference point (¥, y) € gphI" ensures
R-regularity of I" at the same point without adding inner semicontinuity of I" at (x, y) while
relying on the provided proof. However, we obtain the following result which generalizes
[6, Theorem 4.2].

Theorem 3.3 Assume that T is inner semicontinuous at (x, y) w.r.t. domI" and let RCPLD
hold at this point w.r.t. domID". Then I" is R-regular at (x, y) w.r.t. domI.

Proof We follow the lines of the proof of Theorem 3.2 while respecting the following
changes: First, the role of y is played by y. Second, inner semicontinuity of I" at (x, y) w.r.t.
domI" ensures validity of the sequential characterization of R-regularity from Theorem 3.1
in the absence of (A1) and (A2), see [6, Theorem 3.2]. Third, inner semicontinuity of I" at
(x, y) w.r.t. domI" can be used to infer the convergence y° — y without presuming validity
of (A2). Fourth, the relation A0 (x?, y7) # & follows for sufficiently large o € N directly
from local stability of RCPLD. O

Let us note that all the assumptions of Theorem 3.3 hold whenever MFCQ is valid at
(x,y) € gphl'. In this case, I is inner semicontinuous at (x, y), see [22, Section III] for
a demonstration, which particularly yields that x is an interior point of doml, i.e., " is
R-regular at (x, y) in this case. Note that, on the other hand, validity of MFCQ at (x, y) guar-
antees R-regularity of I" at this point by means of e.g. [8, Theorem 3.2]. Due to Lemma 2.2,
this also shows that I" is inner semicontinuous at (x, y) and, thus, that X belongs to the
interior of domI".

Let us point out that in case where I does not depend on the parameter x, Theorem 3.3
provides a sufficient condition for the presence of an error bound at some reference point of
a nonlinear constraint system. For a similar result under slightly stronger assumptions, we
refer the interested reader to [1, Theorem 7]. Furthermore, we would like to mention [10,
Theorem 4.2] where this result has been obtained in the context of mathematical problems
with complementarity constraints.

Using the popular tools of directional limiting variational analysis, the authors in [24]
struck a completely different path in order to derive first- and second-order sufficient con-
ditions for the R-regularity of I which are also weaker than MFCQ. However, in order
to obtain a first-order sufficient condition in terms of initial problem data from [24, The-
orem 3.5], differentiability of the functions hy,...,h, wr.t the parameter as well as
injectivity of the associated derivative seems to be necessary, and this is far beyond the
regularity which was necessary in order to derive Theorems 3.2 and 3.3.

The upcoming example, which closes this section, shows that the statements of Theo-
rems 3.2 and 3.3 do not need to hold in the absence of the convexity assumption (A1) or the
inner semicontinuity of I" at the reference point, respectively.

Example 3.1 We consider the mapping I': R = R given by
VxeR: Tx)={yeR|x—y=<0 y—y><0, y—1<0}.
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A simple calculation reveals

[x,0]U{1} x € (—o00,0],
VxeR: TI'(x)=1{ {1} x € (0,1],
& x € (1, 00).

We study the point x := 0 as well as the associated images y := 0 and y := 1 in I'(x).
Note that I' is inner semicontinuous at (x, ¥) but not at (x, y). Thus, I' cannot be R-regular
at (x, y) due to Lemma 2.2.

Observe that the family (—1, 1 — 2y) is positive-linearly dependent around y while the
family (1 — 2y, 1) is positive-linearly dependent around y. Thus, RCPLD is valid at (X, y)
and (x, y), respectively. This shows that the statement of Theorem 3.2 does not generally
hold in the absence of (A1) while the assertion of Theorem 3.3 is not generally true if I" is
not inner semicontinuous at the reference point.

4 Applications
4.1 Parametric Optimization

For a function f: R"” x R™ — R, we investigate the parametric optimization problem
myin{f(x, V 1y eTlx)} (P(x))

where I': R” == R™ is the set-valued mapping given in (1.1). Associated with the problem
(P(x)) are the solution mapping S: R" = R given by

Vx e R": Skx):= argrnvin{f(x, y)|lyelx)}

as well as the optimal value (or marginal) function ¢ : R” — R defined via

Vx e R": o) := ir)lyf{f(x, y)|y e '(x)}.

Clearly, we have the relation

VxeR": S ={yel®]|fx, y <ek)}

which is why S can be interpreted as a solution mapping associated with a parametric system
of nonlinear inequalities and equations. It is well known that under comparatively weak
assumptions, the optimal value function ¢ is continuous at a given reference point, see e.g.
[4]. Keeping Remark 3.1 in mind, we are thus in position to apply the theory from Section 3
to this representation of S in order to infer its R-regularity at a given reference point under
suitable assumptions. This way, we also obtain new sufficient criteria for the presence of
the Aubin property of S or its inner semicontinuity at a given reference point. For the sake
of brevity and consistency, we define /o: R” x R™ — R by means of

Vx e R"Vy e R":  ho(x,y) = f(x,y) —e(x)
and emphasize that S possesses the representation
hi(x,y) =0 i € IU{0}
hi(x,y) =0 ielJ ’

This representation of S can be addressed with the theory from Section 3. In this section, we
need to refer to the parametric constraint systems induced by I" and S, individually. In this
regard, we will exploit the notation RCPLDr and RCPLDy in order to avoid any confusion.

Ve e R": S(x) = {y cR" @.1)
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Let us emphasize that, if not stated otherwise, we will include the constraint function
ho as an inequality constraint when considering S, i.e., we exploit the representation of §
from (4.1) in most of the cases. However, it is also possible to incorporate s as an equality
constraint.

Remark 4.1 We also have the representation

Vx € R": S(x)={y€Rm

hi(x,y) <0 iel
hi(x,y) =0 ieJJU{0} [’

and, in some situations, it might be beneficial to apply the theory of Section 3 to this
representation of S instead of the one from (4.1).

We postulate the following standing assumption throughout the section.
Assumption 4.1 The functions f and hy, ..., h) are continuously differentiable.

Note that by continuity of &1, ..., h,, we already know that gphI is closed. Particularly,
the image sets of I" are closed. By continuity of f, we even know that the image sets of S
are closed.

Finally, we will exploit the following modified version of (A1) in some situations:

(A1’) Foreach x € R”, the functions f(x,-): R” — Rand h;(x,-): R" - R,i € I,
are convex while the functions %; (x, -): R” — R, i € J, are affine.

We note that (A1) is the counterpart of (A1) which addresses the representation of S from
(4.1). In case where one aims to exploit the representation of S from Remark 4.1, the con-
vexity of f(x,-): R™ — R for each x € R”" has to be replaced by the property of this
mapping to be affine.

4.1.1 Continuity Properties of Marginal Functions

In the subsequent lemma, we collect some results regarding the continuity properties of the
function ¢. The proof is stated for the reader’s convenience.

Lemma 4.1 Fix a point x € domI" where (A2) is valid. Then the following assertions hold.

(a) The function ¢ is lower semicontinuous at x.

(b) Assume that there exists y € I'(X) such that T is inner semicontinuous at (X, y) w.r.t.
domT. Then ¢ is continuous at X w.r.t. doml'.

(c) Assume that " possesses the Aubin property at each point from {x} x S(x). Then ¢ is
locally Lipschitz continuous at x.

(d) Assume that there exists y € S(x) such that ' possesses the Aubin property at (X, y)
while S is inner semicontinuous at this point. Then ¢ is locally Lipschitz continuous
atx.

Proof (a) By continuity of the functions hy,...,h, and validity of (A2), we obtain
upper semicontinuity of I" at x. Thus, the desired assertion can be distilled from
[4, Theorem 4.2.1] since f is continuous.

(b) Consulting the proof of [4, Theorem 4.2.1], inner semicontinuity of I at (x, y) is
enough to guarantee that ¢ is upper semicontinuous at x since f is continuous.
Combining this with (a), the desired result follows.
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(c) Due to validity of (A2), the solution mapping S is locally bounded at x as well. Par-
ticularly, S possesses bounded images in a neighborhood of x. Due to x € domI", we
have I'(x) # @ and, thus, S(x) # & by Weierstrass’ theorem. Since I" possesses the
Aubin property at each point from {x} x S(x), I" is inner semicontinuous at each point
(x,y) € gphS$ and, thus, possesses nonempty image sets in a neighborhood of x. Thus,
we deduce that § possesses bounded and nonempty image sets in a neighborhood of x.
Furthermore, ¢ is lower semicontinuous at x by (a). Thus, the statement follows from
[38, Theorem 5.3(ii)].

(d) This follows directly from [38, Theorem 5.3(i)] while observing that ¢ is continuous
at X by inner semicontinuity of S at (x, y) and continuity of f.

O

We would like to mention that statement (d) of Lemma 4.1 holds even true in the absence
of (A2) since the latter has not been used in the proof.

As a corollary of Theorems 3.2 and 3.3 as well as Lemma 4.1, we obtain the following
result as a consequence of the local Lipschitz continuity of the functions &1, ..., h), since
the latter implies that R-regularity of I" at some point of its graph already guarantees validity
of the Aubin property there.

Corollary 4.1 Fix some point x € domI'. Let one of the following additional assumptions
be valid.

(a) Let (A1) and (A2) hold. Furthermore, let RCPLDr hold at each point from {x} x I" (x)
and assume that X is an interior point of domI .

(b) Lety € S(x) be chosen such that S is inner semicontinuous at (x, y) while RCPLDr
holds at this point.

Then ¢ is locally Lipschitz continuous at X.

Let us mention that in the presence of (A1), the validity of MFCQ at one point (x, y) €
gphI' implies that Slater’s constraint qualification is valid for the set I'(x), i.e., there is
some y € R™ satisfying h;(x,y) < O for all i € I and the gradients (Vyh; (X, -))ics
(which, by validity of (A1), do not depend on y) are linearly independent. The latter, how-
ever, guarantees that MFCQ and, thus, RCPLDr hold at each point from {x} x I'(x). As
mentioned earlier, validity of MFCQ at (x, ¥) also ensures that X is an interior point of
domI". Thus, the regularity assumptions in the first statement of Corollary 4.1 are weaker
than postulating validity of MFCQ at one point from {x} x I"(x), and the latter is a classical
assumption in the literature to guarantee local Lipschitz continuity of marginal functions,
see e.g. [31, Theorem 1].

We would like to point out that the assumption on X in the first statement of Corollary 4.1
to be an interior point of domI is, in general, indispensable in order to infer the local
Lipschitz continuity of ¢ at this point since Theorem 3.2 only provides R-regularity, and,
thus, the Aubin property, of I' w.r.t. domI". Observe that the assumptions of the second
statement of Corollary 4.1 already imply that x is an interior point of domsS.

Example 4.1 Let us consider the simple parametric optimization problem

min{y |0 < y < x}.
)

Observing that all involved functions are fully linear, RCPLDr holds at each point of gphI"
in this example. Nevertheless, the associated optimal value function ¢ is discontinuous at
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x := 0 which is a boundary point of domI" = [0, co). However, we note that ¢ is Lipschitz
continuous w.r.t. domI".

It is also possible to obtain Lipschitzian properties of the optimal value function ¢ w.r.t.
domI" without relying on the fundamentals of variational analysis, which were used in [38],
but exploiting the concept of R-regularity directly.

Lemma 4.2 Fix some point x € domI. Let one of the following additional assumptions be
valid.

(a) Let (A2) hold and assume that T is R-regular at each point from {x} x S(x) w.rt.
domT".

(b) Assume that there exists y € S(x) such that U is R-regular at (x, y) w.r.t. domI”" while
S is inner semicontinuous at this point w.r.t. domI.

Then ¢ is locally Lipschitz continuous at X w.r.t. domT .

Proof (a) Dueto x € domI" and validity of (A2), we indeed know S(x) # @. Addition-
ally, the set S(x) is closed, i.e., {x} x S(x) is compact. Thus, we can apply Lemma 2.3
in order to find constants k > 0 and y > 0 as well as an open set O D S(x) such
that (2.1) holds with U := U, (x) x O. Similar as in the proof of statement (c) of
Lemma 4.1, we can ensure S(x) # @ for all x € U, (x) N domI if only y is small
enough. Moreover, due to Lemma 2.2, we know that I is inner semicontinuous at each
point from {x} x S(x) w.r.t. domI". Thus, we can apply statement (b) of Lemma 4.1
in order to see that ¢ is continuous at x w.r.t. domI". Combining this with the local
boundedness of S and the continuity of &1, ..., h,, we obtain that S is upper semi-
continuous at x. Thus, we can even choose y so small that S(x) C O holds for all
x € U, (x) NdomlI. Clearly, I" is upper semicontinuous at X as well which is why
we find an open set O’ O T'(x) which satisfies O’ D O and I'(x) C O’ for all
x € Uy (x)NdomI if only y is sufficiently small. By continuous differentiability of the
functions f and A1, ..., k), these functions are Lipschitz continuous on B, (x) x c10’.
Let Ly >0and Ly, ..., L, > 0 be the associated Lipschitz moduli.

Now, fix x!, x> € U, (¥) N domI". Then we find y!, y? € O such that y! € S(x')
and y% € S(x2). We exploit [11, Proposition 2.4.3] in order to see that y/ is a global
minimizer of that map O’ 3 y fxd,y)+ 2L pdist(y, I'(x/)) eRforj=1,2as
well. Particularly, we obtain

o)) = fd, ¥y < fd, 37 4 2L pdist(p3 T T (), j=1,2
Now, we exploit (2.1) in order to obtain

p(x") < fx',y?) + 2L dist(y?, T(x'))

< FOE YD+ FE YD) = FR YD
+2L i max{0, max{h; (x', y?) |i € I}, max{|h;(x', yH)||i € J}}
< @)+ F YD) = YD)
+2L sk rnax{O, max{h,-(x] , yz) — hi(xz, yz) i el},
max{|h; (x", y?) — hi (%, y)| i € J}}
< o) + Lyllx! = x?| + 2L premax{L; |i € I UJ}|x! — 22|
< o) + Ly(1+2¢ max{L; |i € 1 U J})|Ix" —x2|.
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Changing the roles of the pairs (x!, y!) and (x2, y?) yields the local Lipschitz
continuity of ¢ w.r.t. domI".

(b) The proof can be carried out in a similar way as in (a). The postulated R-regularity of
I" at (x, y) yields the existence of constants k > 0 as well as ¥ > 0 and § > 0 such
that (3.2) holds. By inner semicontinuity of S at (x, ¥) w.r.t. domI", we can choose y
and § so small such that we have

Vx € Uy(x) NdomI':  Usp(y) NSx) # 2.

Furthermore, we note that by continuous differentiability of f and Ay, ..., hp, these
functions are Lipschitz continuous on B, (x) x Bas(y) with some Lipschitz moduli
Ly>0andLy,...,L,>0.

Now, fix x!,x? € U, (x) N domI". The above arguments yield the existence
of y!,y? € Usp(y) such that y! e S(x!) and y?> € S(x?) hold. Exploiting
[11, Proposition 2.4.3], we find

o)) = fx,y)) < FOd, 37 2L pdistP T, T (D) N Bos(5)),  j=1,2.
Dueto y/ € '(x/) N Us/2(y), we even have
dist(y* ™/, D(x/) N Bos(3)) = dist(y* 7/, T'(x’)),  j=1,2,

and, thus, the rest of the proof can be carried out as in statement (a).
O

Let us briefly mention that the first statement of the above lemma may be interpreted
as an adjustment of [6, Theorem 5.4] whose set of assumptions is not complete. Indeed,
in the proof of this theorem, the authors exploit the presence of R-regularity at each point
from {x} x S(x) which is not covered by the assumptions stated there. In [3, Theorem 4.1],
the authors present criteria ensuring directional Lipschitz continuity of ¢. Therefore, they
impose directional R-regularity of the mapping I'. In the non-directional case, their result
essentially recovers Lemma 4.2 while exploiting a different boundedness assumption.

We obtain the following corollary from Theorems 3.2 and 3.3 as well as Lemma 4.2.

Corollary 4.2 Fix some point x € domI'. Let one of the following additional assumptions
be valid.

(a) Let (A1) and (A2) hold. Furthermore, let RCPLDr w.r.t. domI" hold at each point
from {x} x T'(x).

(b) Lety € S(x) be chosen such that S is inner semicontinuous at (x, y) w.r.t. domI” while
RCPLDr w.r.t. domI" holds at this point.

Then ¢ is locally Lipschitz continuous at X w.r.t. domI".
4.1.2 R-Regularity of Solution Mappings

The following theorem provides a sufficient criterion for R-regularity of the solution
mapping S.
Theorem 4.1 Fix a point x € domI'. Then the following assertions hold.

(a) Let (A1) and (A2) hold. Furthermore, let RCPLDs hold at each point from {x} x S (x).
Finally, let ¢ be continuous at x. Then S is R-regular at each point from {x} x S(x).
Moreover, S possesses the Aubin property at all these points.
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(b) Lety € S(x) be chosen such that S is inner semicontinuous at (x, y) while RCPLDg
holds at this point. Then S is R-regular at (x,y). Moreover, S possesses the Aubin
property at this point.

Proof We show both statements separately.

(a) Due to continuity of ¢ at x, we can apply Theorems 3.2 and Remark 3.1 in order to
obtain R-regularity of § at all points from {x} x S(x). Noting that S(x) is nonempty by
validity of (A2), we can fix some point y € S(x). From Lemma 2.2, we infer that S is
inner semicontinuous at (X, y) since x is an interior point of domS by continuity of ¢
at x. Observe that validity of RCPLDy at (x, y) guarantees validity of RCPLDr at this
point. Now, the second statement of Corollary 4.1 ensures local Lipschitz continuity
of ¢ at x. Consequently, locally around all points from {x} x S(x), the variational
description (4.1) of S is given by locally Lipschitz continuous functions. Particularly,
S already possesses the Aubin property at all points from {x} x S(x).

(b) The proof is similar to the one of the first statement. However, we exploit Theorem 3.3
to infer R-regularity of § at (x, y).

O

The subsequently stated examples indicate that the continuity assumption in the first
statement of the above theorem is, unluckily, indispensable in general since it may not
follow from the postulated assumptions.

Example 4.2 Once more, let us investigate the parametric optimization problem from
Example 4.1 which satisfies (A1) and (A2). There, we have

g x € (—00,0), 00 x € (—00,0),

Vx € R: S(x):{{o} XE[0,00), (p(x):{o xE[0,00).

Observing that all data functions used for the modeling of the given parametric optimization
problem are fully linear, RCPLDg holds at each point from gphS, particularly at (x, y) :=
(0, 0). However, ¢ is discontinuous at x, and for xk = —1/k, k € N, we obtain

dist(§, S(xk)) = 00 > k/k = k max{0, § — p(x*), =5, § — x*}

for each ¥ > 0 and each k € N, i.e., S cannot be R-regular at (x, y).

Example 4.3 We consider the parametric optimization problem

min{y;| —1<y1 <1,0=<y <1, xy; —y2 =0}.
y

We see that this problem inherently satisfies (A1’) and (A2). The associated solution
mapping S and the associated marginal function ¢ take the following form:

{(1/x, D} x € (—o0, 1), 1/x x € (—o0, —1),
VxeR: S)=1q{(-1,-x)}xel-10] px) =14 -1 x e[-1,0],
{(05 O)} X € (0’ OO), 0 X € (0, OO)

We fix the reference points x := 0 and y := (—1, 0). Clearly, ¢ is not continuous at x.
One can check that RCPLDy is violated at (x, y) when using the representation of §
from (4.1). However, keeping Remark 4.1 in mind, we may also consider the representation

VxeR: SO ={(Q,y)| —1<y<1L,0<y<lxyi—y=0 y—¢k)=0}
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of S in order to address the proof of Theorem 4.1 since this representation still possesses
the necessary convex structure w.r.t. y. One can easily check that RCPLD holds for this
mapping at (x, y) since the family

((%)-6))

associated with the equality constraints has already constant rank 2 in a neighborhood of
(x, y). However, as observed above, ¢ is not continuous at x, i.e., one cannot use The-
orems 3.2 and Remark 3.1 in order to infer R-regularity of the solution mapping at the
reference point.

Fix some point x € domS. The crucial requirement in Theorem 4.1 clearly is the validity
of RCPLDgy at each or only some point from {x} x S(x). As mentioned earlier, validity
of MFCQ at one point from {x} x ['(x) is already enough to make sure that RCPLD
holds there as well. Let us mention that, by definition of ¢, there is no y € S(x) such that
ho(x,y) < 0 holds. This indicates that MFCQ generally fails to hold when applied to the
variational description (4.1) of S which is discussed here. Particularly, it cannot be used as a
sufficient condition for RCPLDg. More details on this issue can be found in the subsequent
remark.

Remark 4.2 Fix some point (x, y) € gphS. It is well known that this guarantees validity
of the so-called Fritz—John conditions, i.e., we find A, A1, ..., A, € R which do not all
vanish at the same time such that

Ao Vyho(X, ) + 307 A Vyhi (3, 3) = 0,

Vie IU{0}: A; =0,

Viel: )L[hi()f,)_l)zo
holds, see [7, Proposition 3.3.5]. This, however, shows that the constraint qualification
MEFCQ w.r.t. the representation (4.1) of the mapping S cannot hold at (x, y) since the pair
of families

((Vyhi ()E, y))ie{o}ul(f&)s (Vyhi (-iv }_)))iéf)
is positive-linearly dependent. Thus, versions of Theorem 4.1 which exploit MFCQ w.r.t.

S instead of RCPLDg would not be reasonable at all. On the other hand, simple examples
reveal that RCPLDy can hold at (x, y), see Example 4.5 below as well.

The following lemma provides a characterization of RCPLDg via RCPLDr.

Lemma 4.3 Fix (x, y) € gphS. Then the subsequently stated conditions are equivalent.

(a) RCPLDg is valid at (x, y).

(b) RCPLDr isvalid at (x, y) with some neighborhood U of (x, y) and an index set S C J
according to Definition 2.1. Furthermore, for each A € A(x, y) such that the pair of
families

((F5hi G ) ciopon, 5.0 - (Vi G 9),5)
is positive-linearly dependent, the family (Vyhi(x,y))iciojur, &, 5,0Us is linearly
dependent for each (x,y) € U. Above, we used

Vyho(X, ) + 20 AiVyhi(x, 5) =0, }

—— »
A(x,y)-—{ke]R Viel: A >0, Ahi(x, ) =0

@ Springer



198 P. Mehlitz, L.I. Minchenko

as well as

Vie Ax,y): Li(x,y,0):={i € I(x,y) |1 >0}.

Proof The implication (a)==(b) is clear by definition of RCPLDyg. Thus, let us assume that
the conditions in (b) hold. Particularly, due to (¥, y) € gphS and validity of RCPLDr, we
find A(x, y) # . Fix an arbitrary index set K C {0}U[(x, y) such that the pair of families

((Vyhi(E )i (Vi s $ies )

is positive-linearly dependent. In case where K C I (X, 7) holds, the vectors from the family
(Vyhi(x, ¥));cgus are linearly dependent for each (x, y) € U by validity of RCPLDr.

Thus, we assume 0 € K. Then w.l.o.g. we find K C I(x,y) with {0} U K C K as well as
Ai >0(@G €{0}UK)and A; € R (i € §) satisfying

> MVyhi(E,§) =0.
ie{0JUKUS

Division by Aq yields

Vyho(E, ) + Y (ki/*0)Vyhi(X, 5) = 0.
ieKUS

Defining A € A(X, 7) by

. L5 Xi/Ai € KUS,
Viell,....pl: A '_{O otherwise,

we find K = I (x, y, 5»). Thus, the family (Vyh;(x, y))icjojukus is linearly dependent for
each (x,y) e U.Dueto {0} UK C K, the family (Vyh;(x, ¥));czus is linearly dependent
as well. Consequently, RCPLDy is valid at (x, y). O

Whenever LICQ holds at (x, y) € gphS w.r.t. the inequality and equality constraints in
I', the criterion from Lemma 4.3 is notably easy to check since the associated Lagrange
multiplier in A(x, y) is uniquely determined while RCPLDr holds trivially. We depict this
with the aid of the subsequently stated example.

Example 4.4 Let us consider the parametric optimization problem

min{(y + D>+ (y2 —x) | y1 = 0, y2 > 0}

For later use, we set hy(x, y) := —y; and ho(x,y) := —yy forallx € Rand y € RZ,
Clearly, the constraint system satisfies LICQ at each feasible point. We easily find S(x) =
{(0, max(x, 0))} for each x € R as well as A(x, y) = {(2, max(—2x, 0))} for each (x, y) €
gphsS.

Consider x > 0. In this case, we find I (x, y,A) = {1} for y € S(x) and the associated
Lagrange multiplier A € A(x, y). While the vectors in

(G575)-(")
2002—-% )7\ 0
are positive-linearly dependent due to y, = X, a slight perturbation of x makes this family

linearly independent which is why RCPLDy fails to hold at (x, y) in this case.
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Now, fix x < 0. Here, we have I (x,y,1) = {1,2} for y € S(x) and the associated
Lagrange multiplier A € A(x, y). Noting that any strict subfamily of

(G525)-(1)-(%))

is linearly independent while any three vectors in R? are linearly dependent, RCPLDy holds
at (x, y) in this case.

The subsequent remark comments on a way which allows a slight generalization of
Theorem 4.1.

Remark 4.3 Let S be R-regular at some point (x, y) € gphS w.r.t. domS. Inspecting the
proof of [6, Theorem 5.1], one only needs local Lipschitz continuity of all data functions at
(x, ¥) w.r.t. the set domS x R™ in order to infer validity of the Aubin property of S at (x, y)
w.r.t. domsS.

Thus, the assertions of Theorem 4.1 remain true if all stated assumptions and assertions
are stated w.r.t domI" since this is enough to ensure local coincidence of domS and domI".
Particularly, relying on the respective second statement of Lemma 4.1 and Corollary 4.2, the
requirement on ¢ to be continuous at X can be removed from the assumptions which need
to be postulated in the counterpart associated with the first statement of Theorem 4.1.

Keeping Lemma 2.2 and Remark 4.3 in mind, the following corollary is a direct
consequence of Theorem 4.1. Indeed, this is not surprising in the light of Corollary 3.1.

Corollary 4.3 Fix a point x € domI'. Let (A1’) and (A2) hold. Furthermore, let RCPLDg
w.r.t. domI" hold at each point from {x} x S(x). Then S is lower semicontinuous at X w.r..
domS§.

4.2 Bilevel Optimization

Let us now consider the bilevel optimization problem

“Ir;in”{F(x, Vi|xeX,yeSk)} (BPP)

where F: R" x R™ — R s a continuously differentiable mapping, X C R”" is a closed set,
and S: R" == R™ is the solution mapping associated with (P(x)). The model (BPP) dates
back to [43] where it has been stated first in the context of economical game theory. The
quotation marks in (BPP) emphasize that this problem is not necessarily well-determined.
Indeed, whenever there is some x € X N domS where S(x) is not a singleton, then the
decision maker in (BPP) cannot determine the associated objective value and, thus, classical
minimization is not applicable. In order to avoid this shortcoming, one often replaces (BPP)
by its so-called optimistic or pessimistic version which are given by

min{g,(x) | x € X} and min{g,(x) | x € X},

respectively, where the functions ¢,, ¢,: R" — R are defined as follows:

Vx e R": gp(x) = irylf{F(x, »ly e S}, @p(x) i=sup{F(x,y)|y € S(x)}.
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This way, the optimistic and pessimistic reformulation of (BPP) reflect a cooperative
behavior and a worst-case scenario between the decision makers in (BPP) and (P(x)),
respectively.

Due to numerous underlying applications, e.g., from finance, chemistry, or logistics,
bilevel optimization is one of the hot topics in mathematical programming. On the other
hand, (BPP) is an inherently difficult problem. Besides the above observation that it might
not be well-defined, it suffers from inherent non-convexity, irregularity, and the implicit
character of its feasible set. That is why numerous publications dealing with the derivation
of problem-tailored optimality conditions, constraint qualifications, and solution algorithms
appeared during the last three decades. We refer the interested reader to the monographs [5,
12, 16] for a detailed introduction to bilevel optimization.

Let us take a look back at the optimistic and pessimistic version of (BPP) first. Under
not too restrictive assumptions, the solution mapping S is upper semicontinuous, and this
property implies lower semicontinuity of ¢,, i.e., in case where X is compact, the optimistic
version of (BPP) is likely to possess a global minimizer. On the other hand, in order to
guarantee lower semicontinuity of ¢,, one has to assume that S is lower semicontinuous
w.r.t. domsS. This is quite a restrictive assumption, but our result from Corollary 4.3 depicts
that it can be valid in particular problem settings. In this regard, the subsequent theorem
follows from our aforementioned result and [12, Theorem 5.3].

Theorem 4.2 Let (A1’) hold. Furthermore, assume that X C domI” holds true and that T’
is locally bounded at each point from X. Additionally, let RCPLDg w.r.t. domI" hold at each
point from gphS N (X x R™). Finally, let X be nonempty and compact. Then there exists a
pessimistic solution of (BPP).

The crucial requirement in the above theorem obviously is the validity of RCPLDg w.r.t.
domI at each point from gphS N (X x R™), see Lemma 4.3 and the subsequent comments
for some discussion. However, let us note that this is inherent for lower level problems of
type

myin{cTy | By < b(x)} 4.2)

where ¢ € R” and B € R®™ are matrices while b: R” — R is a continuous function.
This means that (BPP) with the special lower level problem (4.2) is likely to possess a
pessimistic solution.

Observing that the optimistic and pessimistic version of (BPP) might be interpreted as
a three-level decision process, the derivation of optimality conditions via these models is
quite challenging, see e.g. [17, 18]. In the literature, it is a common approach to consider

min{F(x,y)|x € X, y € S(x)} (BPP)
X,y
instead. This well-defined optimization problem is closely related to the optimistic version
of (BPP), see [17, Proposition 6.9] for details. Furthermore, by definition of the optimal

value function, one can easily check that (BPP’) is fully equivalent to the single-level
optimization problem

min{F(x,y)|x € X, f(x,y) —¢(x) <0, y € I'(x)} (OVR)
x,y
which is commonly referred to as the optimal value reformulation or value function trans-

formation of (BPP'). Although this problem is still quite challenging due to the implicit
character of ¢, the general non-smoothness of ¢, and its inherent irregularity, it has been
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exploited intensively for the derivation of necessary optimality conditions and solution algo-
rithms, see e.g. [13-15, 19, 23, 39, 46, 47] and the references therein. The key idea in all
these papers is to use a partial penalization argument in order to shift the crucial constraint
f(x,y) —@(x) <0 from the feasible set of (OVR) to its objective function. Whenever this
penalization is locally exact, this approach is reasonable in theory and numerical practice.
Following [46], we refer to this property as partial calmness.

Definition 4.1 Let (¥, y) € R"” x R™ be a locally optimal solution of (BPP’). We say that
this program is partially calm at (x, y) if there exist a neighborhood U of (x, y, 0) and
some constant k > 0 such that we have F(x,y) — F(x,y) + «|u| > 0 for each triplet
(x, y,u) € U which satisfies

xeX, f(x,y)—ekx)<u, yel().

Indeed, [46, Proposition 3.3] shows that (BPP') is partially calm at one of its local min-
imizers (X, y) if and only if there is some « > 0 such that (x, ¥) is a local minimizer
of

min{F(x, y) +£(f(x,y) =) |x € X, y € [(x))

for each ¥ > k. Noting that the latter optimization problem may satisfy standard constraint
qualifications, the presence of partial calmness indeed opens a way to the derivation of
necessary optimality conditions for (BPP’) since the potential non-smoothness of ¢ now can
be simply handled with suitable subdifferential constructions from variational analysis.

In [33, Section 3], the authors provide an overview of conditions which are sufficient for
the presence of partial calmness in bilevel optimization. Our particular interest here lies in
a result which can be distilled from [33, Lemmas 3.2 and 3.3].

Proposition 4.1 Let (x,5) € R" x R™ be a local minimizer of (BPP') such that S is R-
regular at (x, y) w.r.t. domS. Furthermore, assume that the sets doml" and domS coincide
locally around x. Then (BPP') is partially calm at (x, ).

We would like to point out that a related result can be found in [6, Theorem 6.1].

As mentioned in [33, Lemma 3.3], the assumptions of Proposition 4.1 actually imply
that the point (x, y) corresponds to a so-called (local) unifomly weak sharp minimum of the
parametric optimization problem (P(x)), and the latter guarantees partial calmness of (BPP’)
at (x, y), see [46, Proposition 5.1] as well. However, while the presence of a uniformly weak
sharp minimum is generally hard to verify by definition, the assumptions of Proposition 4.1
can be established, e.g., using the results of Section 4.1 and, thus, in terms of initial data.

Consequently, we may apply Theorem 4.1 as well as Remark 4.3 in order to infer new
sufficient conditions for the validity of partial calmness.

Theorem 4.3 Let (x, y) € R" x R™ be a local minimizer of (BPP). Additionally, let one
of the following additional conditions hold.

(a) Let (AY’) and (A2) be valid. Furthermore, let RCPLDg w.r.t. domI" hold at each point
from {x} x S(x).

(b) Let S be inner semicontinuous at (x, y) w.r.t. domI" and let RCPLDg w.r.t. domI" hold
at this point.

Then (BPP) is partially calm at (X, y).
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As we already observed above, the crucial assumption RCPLDyg is generally valid for
lower level problems of type (4.2) which is why the local minimizers of the associated
bilevel optimization problem (BPP’) are always partially calm. This observation already has
been made in [33, Theorem 4.1] and [34, Lemma 2.1]. However, we would like to point out
that our result from Theorem 4.3 may address far more general situations as demonstrated
with the aid of the subsequent example.

Example 4.5 Let us consider the bilevel optimization problem
min{(x — 3/4)> + y* |y € S(x)} 4.3)
X,y

where S: R =2 R is the solution mapping of the parametric optimization problem

min{(x +y —2)?|y> —x <0, y > 0}.
1

Some computations show

1% x € (—00,0), 00 x € (—00,0),
. )Wy o xel01], e+ =22 xelo,1],
VreR: SO=10o_xeqal P =1 xe[l,2],
{0} X € [27 OO)? ()C - 2)2 X € [2, OO)

We observe that § is a single-valued and continuous map w.r.t. its domain. Particularly, it is
inner semicontinuous w.r.t. domS at each point of its graph. Furthermore, domS = domI’
holds. Using the above formula for S, one can easily check that (4.3) possesses the uniquely
determined global minimizer (X, y) := (1/4, 1/2) while there is another local minimizer at
(x,y):=(11/8,5/8).

We observe that each subsystem of the family (2(x +y —2), 2y) possesses constant rank
around the reference point (X, y), and this is sufficient for the validity of RCPLDy at (x, y),
i.e., (4.3) is partially calm at this point by Theorem 4.3.

Next, we consider the point (X, y). Here, the set of lower level active constraints is empty
and the gradient of the lower level objective function vanishes but, clearly, does not gener-
ally vanish in a neighborhood of (¥, ¥). Thus, RCPLDy is violated at (X, y), i.e., we cannot
employ Theorem 4.3 in order to infer partial calmness of (4.3) at (X, y). However, one can
easily check that, for each ¥ > 0, (X, y) is not a local minimizer of

min{(x = 3/4)% +y* + k(@ +3 =2 =) [y —x =0,y 2 0)

(note that, locally around (X, ), this is a convex problem) which is why (4.3) is actually not
partially calm at (X, y).

5 Conclusions

In this manuscript, we have shown that the validity of the constraint qualification RCPLD
is sufficient to infer the presence of R-regularity for set-valued mappings of type (1.1). Our
results generalize similar considerations which exploit the constraint qualifications MFCQ
or RCRCQ for that purpose, see [6, 32, 36]. We applied our findings in order to study
nonlinear parametric optimization problems and bilevel optimization problems. First, we
inferred new criteria ensuring Lipschitz continuity of optimal value functions as well as R-
regularity and lower semicontinuity of solution mappings in parametric programming. As
we have seen, a similar analysis w.r.t. the solution mapping is not possible under MFCQ.
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Second, these results were exploited in order to state a criterion for the existence of solutions
in pessimistic bilevel optimization as well as a sufficient condition for the validity of the
partial calmness property in optimistic bilevel optimization. Throughout the manuscript,
simple examples illustrated applicability but also the limits of our findings.
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