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Abstract
In a Hilbert framework H, we study the convergence properties of a Newton-like inertial
dynamical system governed by a general maximally monotone operator A : H → 2H.
When A is equal to the subdifferential of a convex lower semicontinuous proper function,
the dynamic corresponds to the introduction of the Hessian-driven damping in the contin-
uous version of the accelerated gradient method of Nesterov. As a result, the oscillations
are significantly attenuated. According to the technique introduced by Attouch-Peypouquet
(Math. Prog. 2019), the maximally monotone operator is replaced by its Yosida approx-
imation with an appropriate adjustment of the regularization parameter. The introduction
into the dynamic of the Newton-like correction term (corresponding to the Hessian driven
term in the case of convex minimization) provides a well-posed evolution system for which
we will obtain the weak convergence of the generated trajectories towards the zeroes of
A. We also obtain the fast convergence of the velocities towards zero. The results tolerate
the presence of errors, perturbations. Then, we specialize our results to the case where the
operator A is the subdifferential of a convex lower semicontinuous function, and obtain fast
optimization results.
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1 Introduction

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and norm ‖ · ‖. Given a
general maximally monotone operator A : H → 2H, we will study the asymptotic behavior,
as t → +∞, of the second-order in time evolution equation

(DIN-AVD)α,β,λ,e ẍ(t) + α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

) + Aλ(t)(x(t)) = e(t).

The operators JλA : H → H and Aλ : H → H which are defined by

JλA = (I + λA)−1 and Aλ = 1

λ
(I − JλA) ,

are respectively the resolvent of A and the Yosida regularization of A of index λ > 0.
The coefficients α, β are positive damping parameters. The tuning of the time dependent
parameter λ(t) which enters the Yosida regularization of A will play a crucial role in the
asymptotic analysis. The second member e takes account of perturbations, errors. Without
ambiguity, we refer briefly to the dynamic as (DIN-AVD). The terminology reflects the
link of this dynamic with the Dynamic Inertial Newton method and to the Asymptotic Van-
ishing Damping, as explained in the next paragraph. According to the Lipschitz continuity
property of the Yosida approximation, (DIN-AVD) is relevant to the Cauchy-Lipschitz the-
orem, which provides existence and uniqueness of the corresponding Cauchy problem. On
the basis of an appropriate adjustment of the parameters, we will obtain the weak conver-
gence of the generated trajectories towards the zeroes of A, i.e. solutions of the monotone
inclusion

0 ∈ Ax. (1)

This dynamic is the support of a recent study by the authors concerning rapidly converging
algorithms to solve (1) and which make use only of the resolvents of A, see [12]. It is a
difficult problem of fundamental importance in optimization, equilibrium theory, economics
and game theory, partial differential equations, statistics, among other subjects. An in-depth
study of (DIN-AVD) is a key to going further in the analysis of the associated algorithms.
Our study is based on several recent advances in the study of damped inertial dynamics for
solving optimization problems and monotone inclusions. We describe them briefly in the
following paragraphs.

1.1 Inertial Dynamics and Algorithms with Vanishing Damping Coefficient

The use of inertial dynamics to accelerate the gradient method in optimization was first
considered by B. Polyak in [34]. He considered the inertial system with a fixed viscous
damping coefficient γ > 0

(HBF) ẍ(t) + γ ẋ(t) + ∇f (x(t)) = 0,

which, because of its natural mechanical interpretation, is called the Heavy Ball with Fric-
tion method. This system was further developed by Attouch-Goudou-Redont [11] as a tool
to explore the local minima of f . For a strongly convex function f , and γ judiciously
chosen, (HBF) provides convergence at exponential rate of f (x(t)) to minH f . For a gen-
eral convex function f , the asymptotic convergence rate of (HBF) is O( 1

t
) (in the worst

case). This is however not better than the steepest descent. A decisive step to obtain a faster
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asymptotic convergence was taken by Su-Boyd-Candès [36] who considered the case of an
Asymptotic Vanishing Damping coefficient γ (t) = α

t
, that is

(AVD)α ẍ(t) + α

t
ẋ(t) + ∇f (x(t)) = 0.

For a general convex differentiable function f , and α = 3, it provides a continuous version
of the accelerated gradient method of Nesterov [33].1 For α ≥ 3, each trajectory x(·) of
(AVD)α satisfies the asymptotic convergence rate of the values

f (x(t)) − inf
H

f = O
(

1/t2
)

as t → +∞.

As a specific feature, the viscous damping coefficient α
t

vanishes (tends to zero) as time t

goes to infinity, hence the terminology. The case α = 3, which corresponds to Nesterov’s
historical algorithm, is critical. In the case α = 3, the question of the convergence of the
trajectories remains an open problem (except in one dimension where convergence holds
[10]). For α > 3, it has been shown by Attouch-Chbani-Peypouquet-Redont [8] that each
trajectory converges weakly to a minimizer. For α > 3, it is shown in [17] and [32] that the
asymptotic convergence rate of the values is actually o(1/t2). The subcritical case α ≤ 3
has been examined by Apidopoulos-Aujol-Dossal[4] and Attouch-Chbani-Riahi [10], with

the convergence rate of the objective values O
(
t−

2α
3

)
. These rates are optimal, that is, they

can be reached, or approached arbitrarily close. The corresponding inertial algorithms are
in line with the Nesterov accelerated gradient method

{
yk = xk +

(
1 − α

k

)
(xk − xk−1)

xk+1 = yk − s∇f (yk).

They enjoy similar properties to the continuous case. They were first obtained by
Chambolle-Dossal [27], see [6, 8], and [30] for further results, and the extension to
proximal-gradient algorithms for structured optimization.

1.2 Hessian Damping

The following inertial system combines asymptotic vanishing damping with Hessian-driven
damping

ẍ(t) + α

t
ẋ(t) + β∇2f (x(t))ẋ(t) + ∇f (x(t)) = 0.

It was considered by Attouch-Peypouquet-Redont in [18]. At first glance, the presence of
the Hessian may seem to entail numerical difficulties. However, this is not the case as the
Hessian intervenes in the above ODE in the form ∇2f (x(t))ẋ(t), which is nothing but the
derivative with respect to time of ∇f (x(t)). So, the temporal discretization of this dynamic
provides first-order algorithms of the form

{
yk = xk + αk(xk − xk−1) − βk (∇f (xk) − ∇f (xk−1))

xk+1 = yk − s∇f (yk).

As a specific feature, and by comparison with the accelerated gradient method of Nes-
terov, these algorithms contain a correction term which is equal to the difference of the

1 When f is not convex, the convergence of the trajectories generated by (AVD)α is a largely open question.
Recent progress has been made in [24] where the convergence of the trajectories of a system, which can be
considered as a perturbation of (AVD)α , has been obtained in a non-convex setting.
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gradients at two consecutive steps. While preserving the convergence properties of the
Nesterov accelerated method, they provide fast convergence to zero of the gradients, and
reduce the oscillatory aspects. Several recent studies have been devoted to this subject,
see Attouch-Chbani-Fadili-Riahi [7], Boţ-Csetnek-László [25], Kim [29], Lin-Jordan [31],
Shi-Du-Jordan-Su [35].

1.3 Inertial Dynamics and Cocoercive Operators

Let’s come to the transposition of these techniques to the case of maximally monotone
operators. Álvarez-Attouch [2] and Attouch-Maingé [13] studied the equation

ẍ(t) + γ ẋ(t) + A(x(t)) = 0, (2)

when A is a cocoercive 2 (and hence maximally monotone) operator, (see also [23]). Coco-
ercivity plays an important role in the study of (2), not only to ensure the existence of
solutions, but also to analyze their long-term behavior. Assuming that the cocoercivity
parameter λ and the damping coefficient γ satisfy the inequality λγ 2 > 1, they showed that
each trajectory of (2) converges weakly to a zero of A. Since for λ > 0, the operator Aλ

is λ-cocoercive and A−1
λ (0) = A−1(0), we immediately deduce that, under the condition

λγ 2 > 1, given a general maximally monotone operator A, each trajectory of

ẍ(t) + γ ẋ(t) + Aλ(x(t)) = 0

converges weakly to a zero of A. In the quest for faster convergence, the system

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0, t > t0 > 0,

involves a time-dependent regularizing parameter λ(·) satisfying the inequality

λ(t) × α2

t2
> 1, t > t0 > 0,

see Attouch-Peypouquet [16]. Time discretization of this dynamic gives the Relaxed Inertial
Proximal Algorithm

(RIPA)

{
yk = xk + αk(xk − xk−1)

xk+1 = (1 − ρk)yk + ρkJμkA(yk),

whose convergence properties have been analyzed by Attouch-Cabot [5], Attouch-Chbani-
Riahi [9], Attouch-Peypouquet [16].

1.4 Link with Newton-like Methods for Solving Monotone Inclusions

Let us specify the link between our study and Newton’s method for solving (1). To overcome
the ill-posed character of the continuous Newton method for a general maximally monotone
operator A, the following first order evolution system was studied by Attouch-Svaiter [20],

{
v(t) ∈ A(x(t))

γ (t)ẋ(t) + βv̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg-Marquardt method,
which acts as a regularization of the Newton method. Remarkably, under a fairly general

2A : H → H is λ-cocoercive (λ > 0) if for all x, y ∈ H 〈Ay − Ax, y − x〉 ≥ λ‖Ay − Ax‖2.
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assumption on the regularization parameter γ (t), this system is well posed and generates
trajectories that converge weakly to equilibria. Parallel results have been obtained for the
associated proximal algorithms obtained by implicit temporal discretization, see [1, 15, 19].
Formally, this system writes as

γ (t)ẋ(t) + β
d

dt
(A(x(t))) + A(x(t)) = 0.

Thus, (DIN-AVD)α,β can be considered as an inertial and regularized version of this
dynamical system.

1.5 Organization of the Paper

In Section 2, we show the existence and the uniqueness of a strong global solution to the
Cauchy problem associated with (DIN-AVD). In Section 3, based on an appropriate tuning
of the parameters, we study the convergence properties as t → +∞ of the trajectories
generated by (DIN-AVD). Our study takes into account the presence of perturbations, errors.
Section 4 is devoted to numerical experiments. In Section 5, we specialize our study in the
case where the operator A is the subdifferential of a convex lower semicontinuous function.
In this case, we get fast minimization properties. Finally, we present some lines of research
for the future.

2 Existence and Uniqueness Results for (DIN-AVD)

We rely on the first-order equivalent formulation of (DIN-AVD) which is valid when β >

0. It was first considered by Alvarez-Attouch-Bolte-Redont [3] and Attouch-Peypouquet-
Redont [18] in the framework of convex minimization, that is A = ∂f with f convex.
Specifically, in our context, we have the following equivalence, which follows from a simple
differential and algebraic calculation.

Proposition 1 The following are equivalent: (i) ⇐⇒ (ii)

(i) ẍ(t) + α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t)))

) + Aλ(t)(x(t)) = e(t).

(ii)

⎧
⎪⎨

⎪⎩

ẋ(t) + βAλ(t)(x(t)) −
(

1
β − α

t

)
x(t) + 1

βy(t) = 0;

ẏ(t) −
(

1
β − α

t
+ αβ

t2

)
x(t) + 1

βy(t) = −βe(t).

Note that (ii) is different from the Hamiltonian formulation of (i). On the one hand,
the formulation (ii) is written as an evolution system in the product space H × H, which
is governed by the sum of a time dependent maximally monotone operator and a time
dependent continuous linear operator. From this, we will deduce in the following theo-
rem the existence and uniqueness of a strong global solution for the associated Cauchy
problem. This first order equivalent formulation offers many applications. It was used by
Attouch-Maingé-Redont in [14] for the modeling of damped shocks in mechanics, and by
Castera-Bolte-Févotte-Pauwels in deep learning [26].

On the other hand, when one works with (ii), one loses the mechanical interpretation
of the dynamic, and the intuition of the energy notions which are attached to it. So, in the
following sections, to develop a Lyapunov analysis for (DIN-AVD), we will work with the
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initial formulation (i). The analysis of (DIN-AVD) is essentially based on the use of time-
dependent Yosida parameters λ(t). We have gathered in the following lemma some technical
results concerning the properties of the mapping (λ, x) → Aλ(x), which will be useful later
in the proofs.

Lemma 1 Let A : H → 2H be a maximally monotone operator, let γ, ν > 0, and x, y ∈ H.
Then, the following inequalities are satisfied

a) ‖γAγ (x) − νAν(y)‖ ≤ 2‖x − y‖ + |γ − ν|‖Aγ (x)‖.
b) ‖Aγ (x) − Aν(y)‖ ≤ 2

γ
‖x − y‖ + |γ−ν|

γ
(‖Aγ (x)‖ + ‖Aν(y)‖).

c) Consider x : [t0,+∞[→ H a differentiable function. Assume further λ : [t0,+∞[→
]0, +∞[ is a derivable function. Then, for every t ∈ [t0,+∞[ and every z ∈ A−1(0),

(c1)

∥
∥
∥
∥

d

dt
λ(t)Aλ(t)(x(t))

∥
∥
∥
∥ ≤ 2‖ẋ(t)‖ + λ′(t)‖Aλ(t)(x(t))‖.

(c2)

∥
∥
∥
∥

d

dt
Aλ(t)(x(t))

∥
∥
∥
∥ ≤ 2

λ(t)
‖ẋ(t)‖ + 2

|λ′(t)|
λ(t)

‖Aλ(t)(x(t))‖.

(c3)

∥
∥
∥∥

d

dt
λ(t)Aλ(t)(x(t))

∥
∥
∥∥ ≤ 2‖ẋ(t)‖ + |λ′(t)|

λ(t)
‖x(t) − z‖.

Proof a) It follows from the proof of [16, Lemma A.4]. However, for the convenience of
the reader, we are providing full proof. Note that according to [21, Proposition 23.28 (iii)]

‖JγA(x) − JνA(x)‖ ≤ |γ − ν|‖Aγ (x)‖.

Hence,

‖γAγ (x) − νAν(x)‖ = ‖(x − y) − (JγA(x) − JνA(x)‖ ≤ ‖x − y‖ + |γ − ν|‖Aγ (x)‖.

Moreover, by the 1
ν
−Lipschitz continuity of the Yosida approximation Aν , we have

‖νAν(x) − νAν(y)‖ ≤ ‖x − y‖.

Finally,

‖γAγ (x) − νAν(y)‖ = ‖(γAγ (x) − νAν(x)) + (νAν(x) − νAν(y))‖
≤ ‖x − y‖ + |γ − ν|‖Aγ (x)‖ + ‖x − y‖.

b) By using a) we have

‖Aγ (x) − Aν(y)‖ = 1

γ
‖(γAγ (x) − νAν(y)) + (ν − γ )Aν(y)‖

≤ 1

γ
‖γAγ (x) − νAν(y)‖ + |ν − γ |

γ
‖Aν(y)‖

≤ 2

γ
‖x − y‖ + |γ − ν|

γ
(‖Aγ (x)‖ + ‖Aν(y)‖).

(c1) Let h > 0. From a) we have

‖λ(t + h)Aλ(t+h)(x(t + h)) − λ(t)Aλ(t)(x(t))‖ ≤ 2‖x(t + h) − x(t)‖
+ |λ(t + h) − λ(t)|‖Aλ(t+h)(x(t + h))‖.

Dividing by h, and letting h → 0, we get the claim.
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(c2) Let h > 0. From b) we have

‖Aλ(t+h)(x(t + h)) − Aλ(t)(x(t))‖ ≤
2

λ(t+h)
‖x(t + h) − x(t)‖ + |λ(t+h)−λ(t)|

λ(t+h)
(‖Aλ(t+h)(x(t + h))‖ + ‖Aλ(t)(x(t))‖).

Dividing by h and letting h → 0, we get the claim.
(c3) Let z ∈ A−1(0). According to Aλ(t)(z) = 0, and the 1

λ(t)
-Lipschitz continuity of Aλ(t)

we have

‖Aλ(t)(x(t))‖ ≤ 1

λ(t)
‖x(t) − z‖.

Combining this inequality with (c1) gives the claim.

Theorem 1 Suppose that β ≥ 0. Suppose that λ : [t0,+∞[→]0, +∞[ is a measurable
function, and that there exists λ > 0 such that λ(t) ≥ λ for all t ≥ t0. Suppose that
e ∈ L1(t0, T ;H) for all T > t0.
Then, for any (x0, x1) ∈ H×H, there exists a unique strong global solution x : [t0,+∞[→
H of the continuous dynamic (DIN-AVD) which satisfies the Cauchy data x(t0) = x0,
ẋ(t0) = x1.

Proof a) Case β > 0. According to Proposition 1, it is equivalent to solve the first-order

system (ii) with the Cauchy data x(t0) = x0 and y(t0) = y0 := −β
(
x1 +βAλ(t0)(x0)−

(
1
β − α

t0

)
x0

)
. This system writes

Ż(t) + F(t, Z(t)) = 0, Z(t0) = (x0, y0)

where Z(t) = (x(t), y(t)) ∈ H × H and

F(t, (x, y)) =
(

βAλ(t)(x) −
(

1

β
− α

t

)
x + 1

β
y,−

(
1

β
− α

t
+ αβ

t2

)
x + 1

β
y + βe(t)

)
.

According to the Lipschitz continuity property of the Yosida approximation of a max-
imally monotone operator, the existence and uniqueness of a strong global solution
(x, y) : [t0,+∞[→ H×H is relevant of the Cauchy-Lipschitz theorem. Precisely, we
can apply the non-autonomous version of this theorem given in [28, Proposition 6.2.1].
Thus, we obtain a strong solution, that is, t → ẋ(t) is locally absolutely continuous. If,
moreover, we suppose that the functions λ(·) and e(·) are continuous, then the solution
is a classical solution of class C2.

b) Case β = 0. We then get the system

ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = e(t).

In this case, we use the equivalent Hamiltonian formulation
⎧
⎨

⎩

ẋ(t) − y(t) = 0;
ẏ(t) + α

t
y(t) + Aλ(t)(x(t)) − e(t) = 0,

which, thanks to the Lipschitz continuity of Aλ, is relevant of the classical Cauchy-
Lipschitz theorem.
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3 Asymptotic Convergence Properties of (DIN-AVD)

Given α > 1, β ≥ 0 and e ∈ L1
loc(t0, +∞;H), we consider the evolution system

(DIN-AVD) ẍ(t) + α

t
ẋ(t) + β

d

dt

(
Aλ(t)(x(t))

) + Aλ(t)(x(t)) = e(t), t > t0 > 0.

The existence of strong global solutions to this system is guaranteed by Theorem 1. The con-
vergence properties as t → +∞ of the trajectories generated by this system are summarized
in the following theorem.

Theorem 2 Let A : H → 2H be a maximally monotone operator such that S = A−1(0) �=
∅. Consider the evolution equation (DIN-AVD) where the parameters satisfy the following
conditions

α > 1, β ≥ 0, and λ(t) = λt2 with λ >
1

(α − 1)2
.

Assume further that
∫ +∞

t0

t3‖e(t)‖2dt < +∞ and
∫ +∞

t0

t‖e(t)‖dt < +∞.

Then, for any trajectory x : [t0, +∞[→ H of (DIN-AVD) the following properties are
satisfied:

(i) (convergence) x(t) is bounded, and x(t) converges weakly, as t → +∞, to an
element of S.

(ii) (integral estimates)
∫ +∞

t0

t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞ and
∫ +∞

t0

t3‖Aλ(t)(x(t))‖2dt < +∞.

(iii) (pointwise estimates) lim
t→+∞‖ẋ(t)‖ = 0, ‖ẋ(t)‖ = o

(
1

t

)
as t → +∞ and, for all

0 < η < 1, one has

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
,

∥∥∥
∥

d

dt
Aλ(t)(x(t))

∥∥∥
∥ = o

(
1

t2+η

)
as t → +∞.

Proof Lyapunov analysis. Take z ∈ S. For 0 < b < α − 1 consider the energy functional

Eb(t) := 1
2‖b(x(t) − z) + t (ẋ(t) + βAλ(t)(x(t)))‖2 + b(α−1−b)

2 ‖x(t) − z‖2. (3)

Using the classical derivation chain rule and (DIN-AVD), we get

Ėb(t) =
〈
(b + 1 − α)ẋ(t) + (β − t)Aλ(t)(x(t)) + te(t), b(x(t) − z) + t (ẋ(t) + βAλ(t)(x(t)))

〉

+b(α − 1 − b)〈ẋ(t), x(t) − z〉. (4)

After reduction, we obtain

Ėb(t) = b(β − t)
〈
Aλ(t)(x(t)), x(t) − z

〉 + (−t2 + β(b + 2 − α)t)
〈
Aλ(t)(x(t)), ẋ(t)

〉

+ (b + 1 − α)t‖ẋ(t)‖2 + β(β − t)t‖Aλ(t)(x(t))‖2

+ bt〈e(t), x(t) − z〉 + t2〈e(t), ẋ(t)〉 + βt2〈e(t), Aλ(t)(x(t))〉. (5)
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We have for all p1 > 0

bt〈e(t), x(t) − z〉 ≤ bt‖e(t)‖‖x(t) − z‖, (6)

t2〈e(t), ẋ(t)〉 ≤ p1t
3‖e(t)‖2 + t

4p1
‖ẋ(t)‖2, (7)

βt2〈e(t), Aλ(t)(x(t))〉 ≤ β
2

(
t3‖e(t)‖2 + t‖Aλ(t)(x(t))‖2

)
. (8)

Combining (5), (6), (7) and (8), we obtain

Ėb(t) ≤ b(β − t)
〈
Aλ(t)(x(t)), x(t) − z

〉 +
(

b + 1 − α + 1

4p1

)
t‖ẋ(t)‖2

+ (−t2 + β(b + 2 − α)t)
〈
Aλ(t)(x(t)), ẋ(t)

〉 +
(

β(β − t)t + β
2
t

)
‖Aλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t) − z‖ +
(

p1 + β
2

)
t3‖e(t)‖2. (9)

Now, using the fact that Aλ(t) is λ(t) cocoercive, and that z ∈ S, we get, for all t ≥ t1 =
max(t0, β)

b(β − t)
〈
Aλ(t)(x(t)), x(t) − z

〉 ≤ b(β − t)λ(t)‖Aλ(t)(x(t))‖2. (10)

Let us choose b = α − 1

2
> 0. According to the assumption λ > 1

(α−1)2 , we can find ε such

that

0 < ε < α − 1 − 1√
λ

< 2(α − 1 − b), (11)

where the last inequality comes from the choice of b. Further, take p1 = 1

ε
. Then, (9) and

(10) lead to

Ėb(t) + ε

4
t‖ẋ(t)‖2 + ε

2
tλ(t))‖Aλ(t)(x(t))‖2 ≤

(
b + 1 − α + ε

2

)
t‖ẋ(t)‖2

+(−t2 + β(b + 2 − α)t)
〈
Aλ(t)(x(t)), ẋ(t)

〉

+
((

b(β − t) + ε

2
t
)

λ(t) + β(β − t)t + β
2
t

)
‖Aλ(t)(x(t))‖2

+bt‖e(t)‖‖x(t) − z‖ +
(

1

ε
+ β

2

)
t3‖e(t)‖2, (12)

for all t ≥ t1. By (11) we have b + 1 − α + ε
2 < 0. Moreover, still by (11) we have

−b + ε
2 = −α−1

2 + ε
2 < 0. Since λ(t) = λt2 with λ > 0, we deduce that there exists t2 ≥ t1

such that, for all t ≥ t2

(
b(β − t) + ε

2
t
)

λ(t) + β(β − t)t + β
2
t < 0.

According to Lemma 2 (see Appendix), we deduce that the sum

S(t) =
(
b + 1 − α + ε

2

)
t‖ẋ(t)‖2 + (−t2 + β(b + 2 − α)t)

〈
Aλ(t)(x(t)), ẋ(t)

〉

+
((

b(β − t) + ε

2
t
)

λ(t) + β(β − t)t + β
2
t

)
‖Aλ(t)(x(t))‖2
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in the right hand side of (12) is nonpositive whenever

R(t) := (−t2 + β(b + 2 − α)t)2

−4
(
b + 1 − α + ε

2

)
t

((
b(β − t) + ε

2
t
)

λ(t) + β(β − t)t + β
2
t

)
≤ 0.

Taking into account the fact that λ(t) = λt2 we obtain

R(t) =
(

1 + 4
(
b + 1 − α + ε

2

) (
b − ε

2

)
λ
)

t4 + O(t3).

Since ε < α − 1 − 1√
λ

, we get that λ > 1
(α−1−ε)2 . From b = α−1

2 we deduce that

1 + 4
(
b + 1 − α + ε

2

) (
b − ε

2

)
λ = 1 − (α − 1 − ε)2λ < 0.

Consequently, there exists t3 ≥ t2 such that R(t) < 0, for all t ≥ t3. Hence, (12) leads to,
for all t ≥ t3

Ėb(t) + ε

4
t‖ẋ(t)‖2 + ε

2
tλ(t))‖Aλ(t)(x(t))‖2 ≤ bt‖e(t)‖‖x(t) − z‖ +

(
1

ε
+ β

2

)
t3‖e(t)‖2.

(13)

Estimates. By integrating (13) on an interval [t3, t], and by denoting

C0 =
(

1

ε
+ β

2

)∫ +∞

t3

t3‖e(t)‖2dt + Eb(t3) < +∞

we obtain that for all t ≥ t3

Eb(t) + ε

4

∫ t

t3

s‖ẋ(s)‖2ds + ε

2

∫ t

t3

sλ(s)‖Aλ(s)(x(s))‖2ds

≤ C0 + b

∫ t

t3

s‖e(s)‖‖x(s) − z‖ds. (14)

Taking into account the form of the energy functional Eb(t) and the fact that b = α−1
2 , the

latter relation leads to

(α − 1)2

8
‖x(t) − z‖2 ≤ C0 + α − 1

2

∫ t

t3

s‖e(s)‖‖x(s) − z‖ds.

More precisely, we have

1

2
‖x(t) − z‖2 ≤ C1 + 2

α − 1

∫ t

t3

s‖e(s)‖‖x(s) − z‖ds, (15)

where C1 = 4C0
(α−1)2 . Now, applying the Gronwall lemma (see [22, Lemma A.5]) to (15) we

obtain

‖x(t) − z‖ ≤ √
2C1 + 2

α − 1

∫ t

t3

s‖e(s)‖ds.

Therefore, ‖x(t) − z‖ and consequently x(t) are bounded.
Further, the boundedness of ‖x(t) − z‖ and the assumption on e leads to

∫ +∞

t3

s‖e(s)‖‖x(s) − z‖ds < +∞.
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Therefore, (14) becomes

Eb(t) + ε

4

∫ t

t3

s‖ẋ(s)‖2ds + ε

2

∫ t

t3

sλ(s)‖Aλ(s)(x(s))‖2ds ≤ C, (16)

where C = C0 + b
∫ +∞
t3

s‖e(s)‖‖x(s) − z‖ds < +∞.
From this we immediately deduce that

∫ ∞

t0

t‖ẋ(t)‖2dt < +∞, (17)

∫ +∞

t0

t3‖Aλ(t)(x(t))‖2dt < +∞, (18)

sup
t≥t0

‖b(x(t) − z) + t (ẋ(t) + βAλ(t)(x(t)))‖2 < +∞. (19)

Moreover, the 1
λ(t)

Lipschitz continuity of Aλ(t), and z ∈ S leads to

‖Aλ(t)(x(t))‖ = ‖Aλ(t)(x(t)) − Aλ(t)(z)‖ ≤ 1

λ(t)
‖x(t) − z‖.

Taking into account that λ(t) = λt2 and ‖x(t) − z‖ is bounded, we deduce that

‖Aλ(t)(x(t))‖ = O
(

1

t2

)
, as t → +∞. (20)

Further, from the boundedness of the trajectory x(·) and (19) we deduce that

‖ẋ(t)‖ = O
(

1

t

)
, as t → +∞.

In particular, we have limt→+∞ ‖ẋ(t)‖ = 0. According to Lemma 1 we have
∥∥∥
∥

d

dt
λ(t)Aλ(t)(x(t))

∥∥∥
∥ ≤ 2‖ẋ(t)‖ + 2

|λ′(t)|
λ(t)

‖x(t) − z‖ = O
(

1

t

)
, as t → +∞. (21)

Combining the latter relation with (20), we deduce that
∥∥∥
∥λ(t)

d

dt
Aλ(t)(x(t))

∥∥∥
∥ = O

(
1

t

)
, as t → +∞.

Consequently, we have
∥∥∥
∥

d

dt
Aλ(t)(x(t))

∥∥∥
∥ = O

(
1

t3

)
, as t → +∞, (22)

which implies
∥∥∥
∥

d

dt
Aλ(t)(x(t))

∥∥∥
∥ = o

(
1

t2+η

)
, as t → +∞, for all 0 < η < 1.

Let us improve the estimate (20), and show that

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
, as t → +∞.

To this end, we use the techniques of [16]. We have
∣
∣∣∣
d

dt
‖λ(t)Aλ(t)(x(t))‖4

∣
∣∣∣ = 4

∣
∣∣∣

〈
λ(t)Aλ(t)(x(t)),

d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣∣∣ ‖λ(t)Aλ(t)(x(t))‖2.

(23)
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According to (20) and (21) there exists K > 0 such that
∣
∣
∣
∣

〈
λ(t)Aλ(t)(x(t)),

d

dt
(λ(t)Aλ(t)(x(t)))

〉∣∣
∣
∣≤

∥
∥λ(t)Aλ(t)(x(t))

∥∥
∥
∥
∥
∥

d

dt
(λ(t)Aλ(t)(x(t)))

∥
∥
∥
∥≤ K

t
.

Hence, (23) leads to
∣
∣
∣∣
d

dt
‖λ(t)Aλ(t)(x(t))‖4

∣∣
∣
∣ ≤ 4K

t
‖λ(t)Aλ(t)(x(t))‖2. (24)

According to (18) the right hand side of (24) belongs to L1(t0,+∞), which implies

d

dt
‖λ(t)Aλ(t)(x(t))‖4 ∈ L1(t0,+∞).

Therefore
lim

t→+∞ ‖λ(t)Aλ(t)(x(t))‖4 exists.

But then, L := limt→+∞ ‖λ(t)Aλ(t)(x(t))‖2 also exists. Using (18) again, i.e.
∫ +∞

t0

1

t
‖λ(t)Aλ(t)(x(t))‖2dt = λ

∫ +∞

t0

tλ(t)‖Aλ(t)(x(t))‖2dt < +∞,

we deduce that L = 0. Therefore, limt→+∞ ‖λ(t)Aλ(t)(x(t))‖2 = 0, which gives

‖Aλ(t)(x(t))‖ = o

(
1

t2

)
, as t → +∞. (25)

Finally, by using (DIN-AVD) we have

‖ẍ(t)‖2 =
∥∥
∥∥e(t) − α

t
ẋ(t) − β

d

dt
Aλ(t)(x(t)) − Aλ(t)(x(t))

∥∥
∥∥

2

.

According to an elementary convexity inequality, we get

t3‖ẍ(t)‖2 ≤ 4t3‖e(t)‖2 + 4α2t‖ẋ(t)‖2 + 4β2t3
∥∥∥
∥

d

dt
Aλ(t)(x(t))

∥∥∥
∥

2

+ 4t3
∥∥Aλ(t)(x(t))

∥∥2 .

According to
∫ +∞
t0

t3‖e(t)‖2dt < +∞, (17), (22) and (18) we obtain that
∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞. (26)

Let us now prove that ‖ẋ(t)‖ = o
(

1
t

)
, as t → +∞. We have

d

dt
t2‖ẋ(t)‖2 = 2t‖ẋ(t)‖2 + 2t2〈ẍ(t), ẋ(t)〉

2t2〈ẍ(t), ẋ(t)〉 ≤ t3‖ẍ(t)‖2 + t‖ẋ(t)‖2.

Hence,
d

dt
t2‖ẋ(t)‖2 ≤ t3‖ẍ(t)‖2 + 3t‖ẋ(t)‖2.

According to (26) and (17) we have t3‖ẍ(t)‖2 + 3t‖ẋ(t)‖2 ∈ L1(t0,+∞). Therefore, from
[1, Lemma 5.1] there exists limt→+∞ t2‖ẋ(t)‖2 ∈ R. Using (17) again, we have

∫ ∞

t0

1

t
(t2‖ẋ(t)‖2)dt =

∫ ∞

t0

t‖ẋ(t)‖2dt < +∞.
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Therefore, limt→+∞ t2‖ẋ(t)‖2 = 0, and ‖ẋ(t)‖ = o
(

1
t

)
as t → +∞.

The limit. To prove the existence of the weak limit of x(t), we use Opial lemma. Let us
introduce the anchor function hz(t) = 1

2‖x(t) − z‖2. The classical derivation chain rule
gives

ḧz(t) + α

t
ḣz(t) =

〈
ẍ(t) + α

t
ẋ(t), x(t) − z

〉
+ ‖ẋ(t)‖2.

By using (DIN-AVD) we get

β
〈

d

dt
Aλ(t)(x(t)), x(t) − z

〉
=

〈
e(t) − ẍ(t) − α

t
ẋ(t) − Aλ(t)(x(t)), x(t) − z

〉

= 〈
e(t) − Aλ(t)(x(t)), x(t) − z

〉 −
(
ḧz(t) + α

t
ḣz(t)

)
+ ‖ẋ(t)‖2.

Therefore

t ḧz(t) + αḣz(t) + t
〈
Aλ(t)(x(t)), x(t) − z

〉
(27)

= t‖ẋ(t)‖2 + t〈e(t), x(t) − z〉 − βt

〈
d

dt
Aλ(t)(x(t)), x(t) − z

〉
.

By Cauchy-Schwarz inequality

−βt

〈
d

dt
Aλ(t)(x(t)), x(t) − z

〉
≤ βt

∥∥∥
∥

d

dt
Aλ(t)(x(t))

∥∥∥
∥ ‖x(t) − z‖

t〈e(t), x(t) − z〉 ≤ t‖e(t)‖‖x(t) − z‖.

According to (27), we deduce that

t ḧz(t) + αḣz(t) + t
〈
Aλ(t)(x(t)), x(t) − z

〉

≤ t‖ẋ(t)‖2 + βt

∥∥
∥∥

d

dt
Aλ(t)(x(t))

∥∥
∥∥ ‖x(t) − z‖ + t‖e(t)‖‖x(t) − z‖.

According to ‖x(t) − z‖ is bounded, t‖e(t)‖ ∈ L1(t0,+∞), (17) and (22) we have

t‖ẋ(t)‖2 + βt

∥∥
∥∥

d

dt
Aλ(t)(x(t))

∥∥
∥∥ ‖x(t) − z‖ + t‖e(t)‖‖x(t) − z‖ ∈ L1(t0,+∞).

Moreover t → t
〈
Aλ(t)(x(t)), x(t) − z

〉
is a non-negative function. So, we can apply Lemma

A.6 from [16], and obtain that limt→+∞ hz(t) exists. In other words,

lim
t→+∞ ‖x(t) − z‖ exists for all z ∈ S.

To complete the proof via the Opial’s lemma, we need to prove that every weak sequential
cluster point of x(t) belongs to S. To this end, we use the following property of the Yosida
approximation of a maximally monotone operator:

Aλ(x) ∈ A(x − λAλ(x)), for all x ∈ H and λ > 0. (28)

Let tn → +∞ such that x(tn) ⇀ x∗, n → +∞. Since the graph of A is demi-closed, that
is, the graph of A is sequentially closed in the product of the weak topology of H and strong
topology of H, by using (25) we have

0 = lim
n→+∞ Aλ(tn)(x(tn)) ∈ A( lim

n→+∞(x(tn) − λ(tn)Aλ(tn)(x(tn))) = A(x∗).
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Consequently, x(t) converges weakly to an element of S.

4 Some Numerical Experiments

Take A : R2 → R
2, A(x, y) = (−y, x), which is a linear skew symmetric operator. Clearly,

A is a maximally monotone whose single zero is x∗ = (0, 0). Further, A can be identified

with the matrix

(
0 −1
1 0

)
, and an easy computation shows that the Yosida regularization

of A can be identified with the matrix Aλ =
(

λ

1+λ2
−1

1+λ2
1

1+λ2
λ

1+λ2

)

.

As a standing assumption, throughout the following numerical experiments, we take
the coefficients λ(t) of the form λ(t) = λt2, and the perturbation errors of the form

e(t) =
( e1

tp
,
e2

tq

)
, p, q > 2, e1, e2 ∈ R. Further, we consider the starting points u0 =

(1, 1), v0 = (1, 1). Note that this choice of the initial speed vector v0 means that, at the
start, the trajectory tends to move away from the origin. Obviously, a trajectory of (DIN-
AVD) in this case is of the form x(t) = (x1(t), x2(t)). In order to solve the dynamical
system (DIN-AVD) with starting points x(t0) = u0, ẋ(t0) = v0 on an interval [t0, T ], we
use the MATLAB function ode45. To this purpose we rewrite (DIN-AVD) as the first order
system used in Proposition 1, that is,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) =
(

1
β − α

t
− βλt2

1+λ2t4

)
x1(t) + β

1+λ2t4 x2(t) − 1
βy1(t)

ẋ2(t) = − β
1+λ2t4 x1(t) +

(
1
β − α

t
− βλt2

1+λ2t4

)
x2(t) − 1

βy2(t)

ẏ1(t) =
(

1
β − α

t
+ αβ

t2

)
x1(t) − 1

βy1(t) − βe1
tp

ẏ2(t) =
(

1
β − α

t
+ αβ

t2

)
x2(t) − 1

βy2(t) − βe2
tq

(x1(t0), x2(t0), y1(t0), y2(t0)) =(
1, 1, −β2 λt2

0 −1

1+λ2t4
0

− αβ
t0

− β + 1, −β2 λt2
0 +1

1+λ2t4
0

− αβ
t0

− β + 1

)
.

(29)

In the case β = 0, we rewrite (DIN-AVD) as in Theorem 1 (b), that is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = y1(t)

ẋ2(t) = y2(t)

ẏ1(t) = − λt2

1+λ2t4 x1(t) + 1
1+λ2t4 x2(t) − α

t
y1(t) + e1

tp

ẏ2(t) = − 1
1+λ2t4 x1(t) − λt2

1+λ2t4 x2(t) − α
t
y2(t) + e2

tq

(x1(t0), x2(t0), y1(t0), y2(t0) = (1, 1, 1, 1).

(30)
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I. In our first experiment, we are interested in the asymptotic behavior of the
components x1 and x2, obtained by taking different values of the parameters
α, β, λ, e1, e2, p, q. According to Theorem 2 (i), limt→+∞(x1(t), x2(t)) = (0, 0),

under the conditions

α > 1, β ≥ 0, λ >
1

(α − 1)2
,

∫ +∞

t0

t3‖e(t)‖2dt < +∞,

∫ +∞

t0

t‖e(t)‖dt < +∞.

We are interested in the gain that the term β d
dt

(
Aλ(t)(x(t))

)
brings in (DIN-AVD)

(considered with error term or without error term). We consider the following cases
which fit the assumptions of Theorem 2 (recalled just above).

α β λ e1 e2 p q Figure

2.5 0 0.5 0 0 – – Fig. 1a
2.5 0.5 0.5 0 0 – – Fig. 1b
2.5 0 0.5 1 1 3.1 3.1 Fig. 1c
2.5 0.5 0.5 1 1 3.1 3.1 Fig. 1d

The trajectories obtained by solving (29) and (30) with the ode45 function in Matlab on
the interval [0.1, 50] are depicted at Fig. 1a–d, where we represent the component x1(t)

with red and x2(t) with black.

II. In our second experiment, we examine the rapid convergence of the speed towards 0.

According to Theorem 2, we have ‖ẋ(t)‖ = o
(

1
t

)
as t → +∞. So, next to ‖ẋ(t)‖,

we also represent the entity t‖ẋ(t)‖. We solve (29) and (30) with the ode45 function
in Matlab on the interval [0.1, 50] by considering the following instances.

α β λ e1 e2 p q Figure

2.1 0 1 0 0 – – Fig. 2a
2.1 0 1 1 1 3 3 Fig. 2b
2.1 0.25 1 0 0 – – Fig. 2c
2.1 0.75 1 1 1 3 3 Fig. 2d

Note that for these values also, the hypotheses of Theorem 2 are verified, and, therefore,
its conclusions are valid. The results obtained are depicted at Fig. 2a–d, where we represent
t‖ẋ(t)‖ with red and ‖ẋ(t)‖ with black.

A conclusion that these experiment give, is that indeed the term β d
dt

(
Aλ(t)(x(t))

)
in

(DIN-AVD) has an accelerating effect, even in the presence of an error term e.
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t
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0
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Fig. 1 Trajectories of (DIN-AVD) for different instances of the parameters α, β, λ, e
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Fig. 2 Fast convergence of the velocity for different instances of α, β, λ, e

III. In our third experiment, we are interested in the behavior of the error ‖x(t) − x∗‖.
Since the operator A has a single zero at x∗ = (0, 0), according to Theorem 4,
‖x(t)‖ must converge to 0. Our experiment shows the importance of the correction
term β d

dt

(
Aλ(t)(x(t))

)
in (DIN-AVD) as well as the sensitivity of the trajectories with

respect to the error e.

Hence, we solve (29) and (30) with the ode45 function in Matlab on the interval
[0.1, 50] where we take at first the error e(t) ≡ 0 that is e1 = e2 = 0. For the val-
ues β ∈ {0, 0.25, 0.5, 0.75, 1} we consider (α, λ) = (2.5, 0.5) depicted at Fig. 3a and
(α, λ) = (3.1, 0.25) depicted at Fig. 3b, respectively. Obviously, for these values the
hypotheses of Theorem 2 are satisfied, and consequently its conclusions hold.

Consider now e1 = e2 = 1 and p = q = 3, that is e(t) =
(

1
t3 , 1

t3

)
. For the values

β ∈ {0, 0.25, 0.5, 0.75, 1} we consider (α, λ) = (2.5, 0.5) depicted at Fig. 4a and (α, λ) =
(3.1, 1) depicted at Fig. 4b, respectively.

Besides the importance of the correction term (β > 0), these numerical experiments
show that the trajectories of (DIN-AVD) are quite sensitive to the parameters α, β, λ as well
as to the error e(t).

5 The Convex Case

Let us specialize the previous results to the case of convex minimization, and show the
rapid convergence of values. Given a lower semicontinuous convex and proper function
f : H → R ∪ {+∞} such that argmin f �= ∅, we consider the minimization problem

(P) inf
x∈H f (x).

Fermat’s rule states that x is a global minimum of f if and only if

0 ∈ ∂f (x). (31)

0 10 20 30 40 50
t

0

0.5

1

1.5
=0
=0.25
=0.5
=0.75
=1

0 10 20 30 40 50
t

0

0.5

1

1.5
=0
=0.25
=0.5
=0.75
=1

Fig. 3 Comparison of the iteration error ‖x(t) − x∗‖ for different instances of (DIN-AVD) without error
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Fig. 4 Comparison of the iteration error ‖x(t) − x∗‖ for different instances of (DIN-AVD) with error

Therefore, (P) is equivalent to the monotone inclusion problem (1) with A = ∂f . Moreover,
argmin f = (∂f )−1(0). Recall that the convex subdifferential of the function f at a point
x ∈ H is defined by

∂f (x) = {x∗ ∈ H : 〈x∗, y − x〉 ≤ f (y) − f (x), for all y ∈ H}.
The Yosida approximation of ∂f is equal to the gradient of the Moreau envelope of f : for
any λ > 0

(∂f )λ = ∇fλ. (32)

Recall that fλ : H → R is a C1,1 function, which is defined by: for any x ∈ H

fλ(x) = inf
ξ∈H

{
f (ξ) + 1

2λ
‖x − ξ‖2

}
.

Further, the proximal point operator of λf at a point x ∈ H is defined by

proxλf (x) = argminξ∈H
{
f (ξ) + 1

2λ
‖x − ξ‖2

}
.

We deduce at once that minx∈H fλ(x) = minx∈H f (x). In this context, (DIN-AVD) reads
as follows: for t ≥ t0 > 0

(DIN-AVD)-convex ẍ(t) + α

t
ẋ(t) + β

d

dt

(∇fλ(t)(x(t))
) + ∇fλ(t)(x(t)) = e(t),

where α > 1, β ≥ 0 and e ∈ L1
loc(t0,+∞;H).

As a direct consequence of Theorem 2 we have the following result.

Theorem 3 Let f : H → R ∪ {+∞} be a lower semicontinuous convex proper function

such that S = argmin f �= ∅. Assume further that λ(t) = λt2 with λ >
1

(α − 1)2
and

∫ +∞

t0

t3‖e(t)‖2dt < +∞ and
∫ +∞

t0

t‖e(t)‖dt < +∞.

Then, for any trajectory x : [t0,+∞[→ H of (DIN-AVD)-convex the following properties
are satisfied:

(i) (convergence) x(t) is bounded, and x(t) converges weakly, as t → +∞, to an
element of S.
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(ii) (integral estimates)
∫ +∞

t0

t‖ẋ(t)‖2dt < +∞,

∫ +∞

t0

t3‖ẍ(t)‖2dt < +∞ and
∫ +∞

t0

t3‖∇fλ(t)(x(t))‖2dt < +∞.

(iii) (pointwise estimates) limt→+∞ ‖ẋ(t)‖ = 0, ‖ẋ(t)‖ = o
(

1
t

)
as t → +∞

and, for all 0 < η < 1, as t → +∞ we have

‖∇fλ(t)(x(t))‖ = o

(
1

t2

)
,

∥
∥∥
∥

d

dt
∇fλ(t)(x(t))

∥
∥∥
∥ = o

(
1

t2+η

)
.

(iv) (fast convergence of the values) As t → +∞

fλ(t)(x(t)) − min
H

f = o

(
1

t2

)
and f (proxλ(t)f (x(t))) − min

H
f = o

(
1

t2

)
.

In addition, ‖ proxλ(t)f (x(t)) − x(t)‖ → 0 as t → +∞.

Proof (i)-(iii) follow directly from Theorem 2 applied to ∂f and using (32).
(iv) Take x∗ ∈ argmin f . From the gradient inequality, and x(t) bounded, we have

fλ(t)(x(t)) − min
H

f = fλ(t)(x(t)) − fλ(t)(x
∗) ≤ 〈∇fλ(t)(x(t)), x(t) − x∗〉

≤ ‖∇fλ(t)(x(t))‖‖x(t) − x∗‖ ≤ M‖∇fλ(t)(x(t))‖,
where M := supt≥t0

‖x(t) − x∗‖. Combining the above relation with the estimate obtained

in (25)), ‖∇fλ(t)(x(t))‖ = o
(

1
t2

)
as t → +∞, we obtain

fλ(t)(x(t)) − min
H

f = o

(
1

t2

)
as t → +∞. (33)

By definition of fλ(t) and of the proximal mapping, we have

fλ(t)(x(t))−min
H

f = f (proxλ(t)f (x(t)))−min
H

f + 1

2λ(t)
‖x(t)−proxλ(t)f (x(t))‖2. (34)

Combining (33) with (34), we obtain, as t → +∞

f (proxλ(t)f (x(t))) − min
H

f = o

(
1

t2

)
, lim

t→+∞ t2 1

2λ(t)
‖x(t) − proxλ(t)f (x(t))‖2 = 0.

Therefore, limt→+∞ ‖x(t) − proxλ(t)f (x(t))‖ = 0, which completes the proof.

Remark 1 When A = ∂f , f convex, we have additional tools, such as the gradient inequal-
ity. We will show in the following theorem that, in this case, some assumptions can be
weakened.

Theorem 4 Let f : H → R ∪ {+∞} be a lower semicontinuous convex, proper function
such that S = argminH f �= ∅. Assume that the parameters of (DIN-AVD) satisfy

α > 3, β ≥ 0 and λ(t) = λtr , with λ > 0, r ≥ 0.

Suppose that the error terms satisfy the integrability properties
∫ +∞

t0

t3‖e(t)‖2dt < +∞ and
∫ +∞

t0

t‖e(t)‖dt < +∞.
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Then, for any trajectory x : [t0, +∞[→ H of (DIN-AVD)-convex the following properties
are satisfied.

a) In the general case of β ≥ 0, r ≥ 0 we have the following properties:
(pointwise estimates) The trajectory x(t) is bounded, and as t → +∞

fλ(t)(x(t)) − min
H

f = O
(

1

t2

)
.

f (proxλ(t)f (x(t))) − minH f = O
(

1
t2

)
, and ‖x(t) − proxλ(t)f (x(t))‖ =

O
(√

λ(t)
t

)
.

Further we have ‖∇fλ(t)(x(t))‖ = O
(

1
t
√

λ(t)

)
, and ‖ẋ(t)‖ = O

(
1
t

)
.

Whenever r = 2, one has ‖ẋ(t)‖ = o
(

1
t

)
as t → +∞.

(integral estimates)
∫ +∞

t0

t (fλ(t)(x(t))−min
H

f )dt < +∞,

∫ ∞

t0

t‖ẋ(t)‖2dt < +∞,

∫ ∞

t0

tλ(t)‖∇fλ(t)(x(t))‖2dt < +∞ and β
∫ ∞

t0

t2‖∇fλ(t)(x(t))‖2dt < +∞.

Further, if r ≤ 2
∫ +∞

t0

tλ(t)‖ẍ(t)‖2dt < +∞.

b) In the case β = 0 or β > 0 and r > 1 we have the following properties:

fλ(t)(x(t)) − minH f = o
(

1
t2

)
, as t → +∞, f (proxλ(t)f (x(t))) − minH f =

o
(

1
t2

)
,

‖x(t) − proxλ(t)f (x(t))‖ = o
(√

λ(t)
t

)
as t → +∞. Further we have

‖∇fλ(t)(x(t))‖ = o
(

1
t
√

λ(t)

)
as t → +∞. Moreover, ‖ẋ(t)‖ = o

(
1
t

)
as t → +∞.

c) In the case β = 0 and r ∈ [0, 2] or β > 0 and r ∈]1, 2] the trajectory x(t) converges
weakly, as t → +∞, to an element of S.

Proof Lyapunov analysis. Take z ∈ S. Since α > 3 we can take 2 < b < α − 1. In this
particular case, the energy functional (3) becomes

Eb(t) = 1

2
‖b(x(t) − z) + t (ẋ(t) + β∇fλ(t)(x(t)))‖2 + b(α − 1 − b)

2
‖x(t) − z‖2. (35)

Using the same arguments as in the proof of Theorem 2, we obtain (9)), which in this
particular case reads as

Ėb(t) ≤ b(β − t)
〈∇fλ(t)(x(t)), x(t) − z

〉 +
(

b + 1 − α + 1

4p1

)
t‖ẋ(t)‖2

+ (−t2 + β(b + 2 − α)t)
〈∇fλ(t)(x(t)), ẋ(t)

〉 +
(

β(β − t)t + β
2
t

)
‖∇fλ(t)(x(t))‖2

+ bt‖e(t)‖‖x(t) − z‖ +
(

p1 + β
2

)
t3‖e(t)‖2. (36)
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Further we have

(−t2 + β(b + 2 − α)t)
〈∇fλ(t)(x(t)), ẋ(t)

〉 =
d

dt

(
(−t2 + β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)

+(2t − β(b + 2 − α))(fλ(t)(x(t)) − min
H

f ). (37)

Take 0 < ε < b − 2. Then there exists t1 ≥ t0 such that b(β − t) + εt < 0 for all t ≥ t1. So,
by the gradient inequality we get, for all t ≥ t1

(b(β − t) + εt)
〈∇fλ(t)(x(t)), x(t) − z

〉 ≤ (b(β − t) + εt)(fλ(t)(x(t)) − min
H

f ). (38)

By adding (37) with (38), we obtain, for all t ≥ t1

b(β − t)
〈∇fλ(t)(x(t)), x(t) − z

〉 + (−t2 + β(b + 2 − α)t)
〈∇fλ(t)(x(t)), ẋ(t)

〉

≤ d

dt

(
(−t2 + β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)

+(b(β − t) + εt + 2t − β(b + 2 − α))(fλ(t)(x(t)) − min
H

f )

−εt
〈∇fλ(t)(x(t)), x(t) − z

〉
. (39)

Combining (36) and (39) we get, for all t ≥ t1

Ėb(t) + d

dt

(
(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)
+ εt

〈∇fλ(t)(x(t)), x(t) − z
〉

≤ ((−b + ε + 2)t − β(2 − α))(fλ(t)(x(t)) − min
H

f )

+
(

b + 1 − α + 1

4p1

)
t‖ẋ(t)‖2 +

(
β(β − t)t + β

2
t

)
‖∇fλ(t)(x(t))‖2

+bt‖e(t)‖‖x(t) − z‖ +
(

p1 + β
2

)
t3‖e(t)‖2. (40)

By using the cocoerciveness of ∇fλ(t) and the gradient inequality, we obtain

εt
〈∇fλ(t)(x(t)), x(t) − z

〉 ≥ ε

2
tλ(t)‖∇fλ(t)(x(t))‖2 + ε

2
t (fλ(t)(x(t)) − min

H
f ).

Further, take

ε1 < 2(α − 1 − b), p1 = 1

ε1
, 0 < ε2 < 1.

Then, (40) leads to

Ėb(t) + d

dt

(
(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)

+ε

2
tλ(t)‖∇fλ(t)(x(t))‖2 + ε

2
t (fλ(t)(x(t)) − min

H
f ) + ε1

4
t‖ẋ(t)‖2

+βε2t
2‖∇fλ(t)(x(t))‖2

≤ ((−b + ε + 2)t − β(2 − α))(fλ(t)(x(t)) − min
H

f )

+
(
b + 1 − α + ε1

2

)
t‖ẋ(t)‖2 +

(
β(β − t)t + βε2t

2 + β
2
t

)
‖∇fλ(t)(x(t))‖2

+bt‖e(t)‖‖x(t) − z‖ +
(

1

ε1
+ β

2

)
t3‖e(t)‖2, for all t ≥ t1. (41)
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Now, obviously there exists t2 ≥ t1 such that for all t ≥ t2 one has

t2 − β(b + 2 − α)t > 0,

(−b + ε + 2)t − β(2 − α) ≤ 0

β(β − t)t + βε2t
2 + β

2
t ≤ 0.

Hence, for all t ≥ t2, it holds

Ėb(t) + d

dt

(
(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)
+ ε

2
tλ(t)‖∇fλ(t)(x(t))‖2

+ ε

2
t (fλ(t)(x(t)) − min

H
f ) + ε1

4
t‖ẋ(t)‖2 + βε2t

2‖∇fλ(t)(x(t))‖2 ≤

+ bt‖e(t)‖‖x(t) − z‖ +
(

1

ε1
+ β

2

)
t3‖e(t)‖2. (42)

Estimates. By integrating (42) on an interval [t2, t], and by denoting

C0 =
(

1

ε1
+ β

2

)∫ +∞

t2

t3‖e(t)‖2dt+Eb(t2)+(t2
2 −β(b+2−α)t2)(fλ(t2)(x(t2))−min

H
f )

we obtain that, for all t ≥ t2

Eb(t) +
(

(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min
H

f )

)
+ ε

2

∫ t

t2

sλ(s)‖∇fλ(s)(x(s))‖2ds

+ε

2

∫ t

t2

s(fλ(s)(x(s)) − min
H

f )ds + ε1

4

∫ t

t2

s‖ẋ(s)‖2ds + βε2

∫ t

t2

s2‖∇fλ(s)(x(s))‖2ds

≤ C0 + b

∫ t

t2

s‖e(s)‖‖x(s) − z‖ds. (43)

Taking into account the form of the energy functional Eb(t), (43) leads to

b(α − 1 − b)

2
‖x(t) − z‖2 ≤ C0 + b

∫ t

t2

s‖e(s)‖‖x(s) − z‖ds.

More precisely, we have

1

2
‖x(t) − z‖2 ≤ C1 + 1

α − 1 − b

∫ t

t2

s‖e(s)‖‖x(s) − z‖ds, (44)

where C1 = C0
b(α−1−b)

. Now, applying the Gronwall lemma (see [22, Lemma A.5]) to (44),
we obtain

‖x(t) − z‖ ≤ √
2C1 + 1

α − 1 − b

∫ t

t2

s‖e(s)‖ds.

Therefore, ‖x(t) − z‖ and consequently x(t) are bounded. Further, the boundedness of
‖x(t) − z‖ leads to ∫ +∞

t2

s‖e(s)‖‖x(s) − z‖ds < +∞.

Consequently, (43) becomes

Eb(t) + (
(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − minH f )

) + ε
2

∫ t

t2
sλ(s)‖∇fλ(s)(x(s))‖2ds

+ ε
2

∫ t

t2
s(fλ(s)(x(s)) − minH f )ds + ε1

4

∫ t

t2
s‖ẋ(s)‖2ds

+βε2
∫ t

t2
s2‖∇fλ(s)(x(s))‖2ds ≤ C, (45)
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where C := C0 + b
∫ +∞
t2

s‖e(s)‖‖x(s) − z‖ds < +∞. From (45) we get

supt≥t0
‖b(x(t) − z) + t (ẋ(t) + β∇fλ(t)(x(t)))‖ < +∞ (46)

fλ(t)(x(t)) − minH f = O
(

1
t2

)
, as t → +∞. (47)

∫ +∞
t0

t (fλ(t)(x(t)) − minH f )dt < +∞. (48)
∫ ∞
t0

t‖ẋ(t)‖2dt < +∞. (49)
∫ ∞
t0

tλ(t)‖∇fλ(t)(x(t))‖2dt < +∞. (50)

β
∫ ∞
t0

t2‖∇fλ(t)(x(t))‖2dt < +∞. (51)

Note that (51) provides information only in the case β > 0. Now, (46) gives

‖ẋ(t) + β∇fλ(t)(x(t))‖ = O
(

1

t

)
, as t → +∞. (52)

Further, from (47) and

fλ(t)(x(t)) − min
H

f = f (proxλ(t)f (x(t))) − min
H

f + 1

2λ(t)
‖x(t) − proxλ(t)f (x(t))‖2,

we deduce that, as t → +∞

f (proxλ(t)f (x(t))) − min
H

f = O
(

1

t2

)
, ‖x(t) − proxλ(t)f (x(t))‖ = O

(√
λ(t)

t

)
(53)

Further we have ∇fλ(t) = (∂f )λ(t) = 1
λ(t)

(I − proxλ(t)f ), hence

‖∇fλ(t)(x(t))‖ = O
(

1

t
√

λ(t)

)
as t → +∞. (54)

Combining (52) and (54) we get

‖ẋ(t)‖ = O
(

1

t

)
, as t → +∞. (55)

In particular we have
lim

t→+∞ ‖ẋ(t)‖ = 0.

Now, according to Lemma 1 we have
∥∥∥
∥

d

dt
∇fλ(t)(x(t))

∥∥∥
∥ ≤ 2

λ(t)
‖ẋ(t)‖ + 2

|λ′(t)|
λ(t)

‖∇fλ(t)(x(t))‖
which yields

∥∥∥
∥

d

dt
∇fλ(t)(x(t))

∥∥∥
∥

2

≤ 8

λ2(t)
‖ẋ(t)‖2 + 8

λ′2(t)
λ2(t)

‖∇fλ(t)(x(t))‖2.

Finally, by using (DIN-AVD)-convex, we have

‖ẍ(t)‖2 =
∥∥∥
∥e(t) − α

t
ẋ(t) − β

d

dt
∇fλ(t)(x(t)) − ∇fλ(t)(x(t))

∥∥∥
∥

2

.

Therefore,

tλ(t)‖ẍ(t)‖2 ≤ 4tλ(t)‖e(t)‖2 +
(

4α2λ(t)
t

+ 32β2t
λ(t)

)
‖ẋ(t)‖2

+
(

32β2λ′2(t)t
λ(t)

+ 4tλ(t)
) ∥∥∇fλ(t)(x(t))

∥∥2 .

576 H. Attouch, S. Csaba László



Recall that λ(t) = λtr and assume that r ≤ 2. Then, according to the fact that∫ +∞
t0

t3‖e(t)‖2dt < +∞, (49) and (50) we obtain that
∫ +∞

t0

tλ(t)‖ẍ(t)‖2dt < +∞. (56)

Let us now prove that ‖ẋ(t)‖ = o

(
1

t
1
2 + r

4

)
, as t → +∞. We have

d

dt
t1+ r

2 ‖ẋ(t)‖2 =
(

1 + r

2

)
t

r
2 ‖ẋ(t)‖2 + 2t1+ r

2 〈ẍ(t), ẋ(t)〉
and

2t1+ r
2 〈ẍ(t), ẋ(t)〉 ≤ t1+r‖ẍ(t)‖2 + t‖ẋ(t)‖2.

Hence,
d

dt
t1+ r

2 ‖ẋ(t)‖2 ≤ t1+r‖ẍ(t)‖2 +
((

1 + r

2

)
t

r
2 + t

)
‖ẋ(t)‖2.

According to (56) and (49), we have t1+r‖ẍ(t)‖2 +
((

1 + r
2

)
t

r
2 + t

)
‖ẋ(t)‖2 ∈ L1[t0,+

∞[. Consequently, from [1, Lemma 5.1] we obtain that there exists

lim
t→+∞ t1+ r

2 ‖ẋ(t)‖2 ∈ R.

Now, using (49) again, we have
∫ ∞

t0

1

t
(t1+ r

2 ‖ẋ(t)‖2)dt =
∫ ∞

t0

t
r
2 ‖ẋ(t)‖2dt < +∞,

hence,
lim

t→+∞ t1+ r
2 ‖ẋ(t)‖2 = 0.

Consequently,

‖ẋ(t)‖ = o

(
1

t
1
2 + r

4

)
, as t → +∞.

The limit. To prove the existence of the weak limit of x(t), we use Opial lemma, and we
follow the line of proof of Theorem 2 by considering the same anchor function hz and
taking Aλ(t) = ∇fλ(t).

We obtain

t ḧz(t) + αḣz(t) + t
〈∇fλ(t)(x(t)), x(t) − z

〉

≤ t‖ẋ(t)‖2 + βt

∥
∥∥∥

d

dt
∇fλ(t)(x(t))

∥
∥∥∥ ‖x(t) − z‖ + t‖e(t)‖‖x(t) − z‖.

Now, according to Lemma 1(c2) we have
∥∥
∥∥

d

dt
∇fλ(t)(x(t))

∥∥
∥∥ ≤ 2

λ(t)
‖ẋ(t)‖ + 2

|λ′(t)|
λ(t)

‖∇fλ(t)(x(t))‖.

Therefore,

t ḧz(t) + αḣz(t) + t
〈∇fλ(t)(x(t)), x(t) − z

〉
(57)

≤ t‖ẋ(t)‖2 + t‖e(t)‖‖x(t) − z‖ +
(

2βt
λ(t)

‖ẋ(t)‖ + 2β |λ′(t)|t
λ(t)

‖∇fλ(t)(x(t))‖
)

‖‖x(t) − z‖.
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Now, if β = 0 or β > 0 and r > 1 then, according to the fact that ‖x(t) − z‖ is bounded,
t‖e(t)‖ ∈ L1(t0,+∞), (49), (55) and (54) we have

t‖ẋ(t)‖2+
(

t‖e(t)‖+ 2βt

λ(t)
‖ẋ(t)‖ + 2β

|λ′(t)|t
λ(t)

‖∇fλ(t)(x(t))‖
)

‖‖x(t)−z‖ ∈ L1(t0,+∞).

Moreover t
〈∇fλ(t)(x(t)), x(t) − z

〉
is a non-negative term. So, we can apply Lemma A.6

from [16], and obtain that limt→+∞ hz(t) exists. In other words,

lim
t→+∞ ‖x(t) − z‖ exists for all z ∈ S.

Let us return to the fact that, according to (42), for all t ≥ t2

Ėb(t) + d

dt

(
(t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f )

)
≤ bt‖e(t)‖‖x(t) − z‖

+
(

1
ε1

+ β
2

)
t3‖e(t)‖2.

The right hand side of the latter inequality belongs to L1(t0,+∞). Therefore, according to
[1, Lemma 5.1] we get that there exists

lim
t→+∞ Eb(t) + (t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f ) ∈ R.

Since limt→+∞ ‖x(t) − z‖ exists for all z ∈ S, we obtain that there exists

lim
t→+∞

1

2
‖t (ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f ) ∈ R.

On the other hand, from (48), (49) and (51) we get
∫ +∞
t0

1
t

(
1
2‖t (ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − minH f )

)
dt

≤ ∫ +∞
t0

t‖ẋ(t)‖2dt + ∫ +∞
t0

β2t‖∇fλ(t)(x(t)))‖2dt

+ ∫ +∞
t0

(t − β(b + 2 − α))(fλ(t)(x(t)) − minH f )dt < +∞.

Consequently,

lim
t→+∞

1

2
‖t (ẋ(t) + β∇fλ(t)(x(t)))‖2 + (t2 − β(b + 2 − α)t)(fλ(t)(x(t)) − min

H
f ) = 0,

which shows that, as t → +∞
fλ(t)(x(t)) − min

H
f = o

(
1

t2

)
, and ‖ẋ(t)‖ = o

(
1

t

)
.

From

fλ(t)(x(t)) − min
H

f = f (proxλ(t)f (x(t))) − min
H

f + 1

2λ(t)
‖x(t) − proxλ(t)f (x(t))‖2,

we deduce that, as t → +∞
f (proxλ(t)f (x(t))) − min

H
f = o

(
1

t2

)
, ‖x(t) − proxλ(t)f (x(t))‖ = o

(√
λ(t)

t

)
(58)

Further we have ∇fλ(t) = (∂f )λ(t) = 1
λ(t)

(I − proxλ(t)f ), hence

‖∇fλ(t)(x(t))‖ = o

(
1

t
√

λ(t)

)
as t → +∞. (59)

It remains to show that every weak sequential cluster point of the trajectory x(t) belongs to
argmin f . Let x∗ be a weak sequential cluster point of x(t). Then, there exists a sequence
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tn → +∞, n → +∞ such that x(tn) ⇀ x∗, n → +∞. According to (58), if r ≤ 2, we
have limn→+∞ ‖x(tn) − proxλ(tn)f (x(tn))‖ = 0. Therefore,

proxλ(tn)f (x(tn)) ⇀ x∗, n → +∞.

Since f is lower semicontinuous and convex, it is weakly lower semicontinuous. Combined
with limn→+∞(f (proxλ(tn)f (x(tn))) − minH f ) = 0, it yields

0 = lim inf
n→+∞(f (proxλ(tn)f (x(tn))) − min

H
f ) ≥ f (x∗) − min

H
f .

The latter relation shows that x∗ ∈ argmin f . Consequently, according to Opial lemma, x(t)

converges weakly to an element x̂ ∈ argmin f as t → +∞.

6 Conclusion, Perspective

Recent developments in convex optimization show the importance of the introduction of
the Hessian driven damping in the continuous versions of the Nesterov accelerated gradient
method. It allows to control and attenuate the oscillations, resulting in faster methods. The
extension of these results to general monotone inclusions is an important and non-trivial
question. Our study of the continuous dynamic (DIN-AVD) gives a solid mathematical basis
to the algorithmic results obtained by the authors for these questions, and confirm them.
Dealing with these issues in the context of general maximally monotone operators offers
a wide range of applications. It is a natural idea for further study to specialize this study
in the case of convex-concave saddle value problems. The convergence results are valid in
the presence of perturbations or errors. This is an important step to study other instances.
Among them, the introduction of a Tikhonov regularization term with vanishing coefficient,
in order to asymptotically obtain the solution of minimum norm. It also suggests developing
stochastic versions of (DIN-AVD) and corresponding algorithms in the context of general
maximally monotone operators. To deal with concrete examples, it would be very inter-
esting to develop corresponding splitting methods to solve structured monotone inclusions.
Finally, it would also be interesting to consider the closed loop version of these dynamics
and algorithms where the coefficient λ of the Yosida regularization is taken as a feedback
control of the state or the velocity of the system.

Appendix: Auxiliary results

In the proof of Theorem 2, we use the following straightforward result.

Lemma 2 Let A,B,C ∈ R. The inequality

A‖X‖2 + 2C〈X, Y 〉 + B‖Y‖2 ≥ 0

is satisfied for all X, Y ∈ H, if and only if C2 − AB ≤ 0 and A,B ≥ 0.
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22. Brézis, H.: Opérateurs maximaux monotones dans les espaces de Hilbert et équations d’évolution.
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24. Boţ, R.I., Csetnek, E.R., László, S.C.: A second-order dynamical approach with variable damping to
nonconvex smooth minimization. Appl. Anal. 99(3), 361–378 (2020)
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