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Abstract
The aim of this survey is to present the main important techniques and tools from varia-
tional analysis used for first and second order dynamical systems of implicit type for solving
monotone inclusions and non-smooth optimization problems. The differential equations are
expressed by means of the resolvent (in case of a maximally monotone set valued operator)
or the proximal operator for non-smooth functions. The asymptotic analysis of the trajecto-
ries generated relies on Lyapunov theory, where the appropriate energy functional plays a
decisive role. While the most part of the paper is related to monotone inclusions and convex
optimization problems in the variational case, we present also results for dynamical systems
for solving non-convex optimization problems, where the Kurdyka-Łojasiewicz property is
used.

Keywords Dynamical systems · Lyapunov analysis · Krasnosel’skiı̆–Mann algorithm ·
Monotone inclusions · Resolvent · Proximal operator · Forward-backward algorithm ·
Non-smooth optimization problem · Kurdyka-Łojasiewicz property
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1 Introduction and preliminaries

Dynamical systems approaching monotone inclusions and optimization problems enjoy
much attention since the seventies of the last century (Brézis, Baillon and Bruck, see [25,
52, 53]), not only due to their intrinsic importance in areas like differential equations and
applied functional analysis, but also because they have been recognized as a valuable tool
for discovering and studying numerical algorithms for optimization problems obtained by
time discretization of the continuous dynamics. The dynamic approach to iterative methods
in optimization can furnish deep insights into the expected behavior of the method and the
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techniques used in the continuous case can be adapted to obtain results for the discrete algo-
rithm. For more on the relations between the continuous and discrete dynamics we refer the
reader to [75].

Let us mention that the discretization ẋ(t) ≈ 1
γ
(xn+1 − xn) (with γ > 0) of the gradient

flow
ẋ(t) = −∇g(x(t)),

where g : H → R is a smooth function, leads to the well known steepest descent method
(gradient method)

xn+1 = xn − γ∇g(xn),

used for solving the minimization problem

min
x∈H g(x).

In the case of convex non-smooth optimization problems, the discretization of the differen-
tial inclusion

ẋ(t) ∈ −∂f (x(t))

leads to the subgradient method xn+1 ∈ xn − γ ∂f (xn), or, when we use the discretization
xn+1 − xn ∈ γ ∂f (xn+1), we obtain the proximal point algorithm [79]

xn+1 = (Id +γ ∂f )−1(xn).

Let us proceed and consider continuous implicit-type dynamical systems associated with
monotone inclusions/optimization problems, which are ordinary differential equations for-
mulated via resolvents of maximally monotone operators. In [32], Bolte studied the
convergence of the trajectories of the following dynamical system

ẋ(t) + x(t) = projC
(
x(t) − γ∇g(x(t))

)
(1)

where C is a nonempty, closed and convex subset of H, x0 ∈ H, and projC denotes the
projection operator on the set C. It has been shown in the convex setting that the trajectory
of (1) converges weakly to a minimizer of the optimization problem

inf
x∈C

g(x), (2)

provided the latter is solvable. We refer also to the work of Antipin [5] for further statements
and results concerning (1).

The following generalization of the dynamical system (1) has been considered by Abbas
and Attouch in [1, Section 5.2]:

ẋ(t) + x(t) = proxγf

(
x(t) − γB(x(t))

)
, (3)

where B is a cocoercive operator. According to [1], in case zer(∂f + B) �= ∅, the weak
asymptotical convergence of the orbit x of (3) to an element in zer(∂f + B) �= ∅ is ensured
by choosing the step-size γ in a suitable domain bounded by the parameter of cocoercivity
of the operator B.

Let us also mention that dynamical systems of implicit type have been considered in
the literature also by Attouch and Svaiter in [24], Attouch, Abbas and Svaiter in [2] and
Attouch, Alvarez and Svaiter in [21].

For the minimization of the smooth and convex function g : H → R over the nonempty,
convex and closed set C ⊆ H, a continuous in time second order gradient-projection
approach has been considered in [5, 7], having as starting point the dynamical system

ẍ(t) + γ ẋ(t) + x(t) = projC(x(t) − η∇g(x(t))), (4)
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with constant damping parameter γ > 0 and constant step size η > 0. The system (4)
becomes in case C = H the ”heavy ball method”, sometimes called also ”heavy ball
method with friction”. This nonlinear oscillator with damping is in case H = R

2 a sim-
plified version of the differential system describing the motion of a heavy ball that rolls
over the graph of g and that keep rolling under its own inertia until friction stop it at a
critical point of g (see [17]). Later, (see [13, 86] and the references therein) it was high-
lighted the fact that a vanishing in time damping is more suitable in the context of second
order dynamics, since this will induce fast convergence results in comparison to first order
dynamics.

Second order dynamics provide through discretization numerical schemes with inertial
terms, where the new iterate is computed based on the previous two ones. Taking into
account the history of the iterates makes the asymptotic analysis more involved and may
provide better convergence rates. It is an interesting topic to take into consideration more
than two iterates in order to compute the next one. In case of algorithms we refer the reader
to the recent contribution [56] and to [15] for a third order gradient evolution system. In this
survey we are considering first and second order dynamics.

Finally, motivated by concrete applications where non-convex objects appear, let us say
a few words about this setting. In the context of minimizing a non-convex smooth func-
tion, several first- and second-order gradient type dynamical systems have been investigated
by Łojasiewicz [68], Simon [83], Haraux and Jendoubi [65], Alvarez, Attouch, Bolte and
Redont [4, Section 4], Bolte, Daniilidis and Lewis [33, Section 4], etc. In the aforemen-
tioned papers, the convergence of the trajectories is obtained in the framework of functions
satisfying the Kurdyka-Łojasiewicz property, see Section 4 for details.

1.1 Contents of the Paper

In this manuscript we revisit the most important first and second-order dynamical systems
of implicit type studied in the context of solving monotone inclusions and non-smooth opti-
mization problems (convex and non-convex). The main focus is on the techniques which
are used in the investigation of the asymptotic behaviour of the trajectories generated. Also
the connection to discrete schemes will be also underlined in order to see the algorithmic
impact of the dynamical systems considered. Moreover, the proofs are not in every stage of
this survey complete, but we will always refer to appropriate references when something is
missing. The existence and uniqueness of the trajectory usually follows from the Cauchy-
Lipschitz-Picard Theorem and its variants and will be omitted in the following. However,
the reader will find the corresponding details in the literature mentioned here. Let us also
mention that there are no new results in this survey, apart from Theorem 15, which is a

generalization to the continuous setting of the O
(

1
n

)
rate for objective function values for

prox-gradient schemes with no acceleration (see also ISTA in [29]).
The main challenge in the analysis of the dynamical systems is defining an appropriate

energy functional in order to conduct the investigations in the framework of Lyapunov the-
ory. We start with first order dynamics governed by a nonexpansive operator with the aim
of approaching the set of its fixed points [39]. While at a first look, this seems to be quite
far from monotone inclusions or convex optimization problems, let us underline that this
offers a setting in which also the aforementioned problems can be embedded. In this set-
ting the energy functional is usually expressed by means of the distance of the trajectory to
a solution of the problem under consideration. The continuous version of the Opial Lemma
plays a decisive role on the analysis. As particular cases we mention the dynamical systems

613Continuous Dynamics Related to Monotone Inclusions and Non-Smooth...



of forward-backward type, forward-backward-forward or Douglas-Rachford. The case of
convex optimization problems is also considered.

Afterwards we continue with second-order dynamical systems [38]. These are motivated
by the fact that by time discretization inertial terms are induced in the algorithmic schemes
which are responsible for acceleration (see also the works of Polyak [76], Nesterov [71,
72], Bertsekas [30] in the discrete case). Also in this setting we start with a very general
dynamical system formulated by means of a cocoercive operator and then consider partic-
ular cases for monotone inclusions and convex optimization problems. Relations to other
types of dynamics considered in the literature are also mentioned.

Finally, we consider dynamical systems for non-convex and non-smooth optimization
problems [41]. How to find the appropriate energy functional in this context is not triv-
ial. The approach for proving asymptotic convergence for the trajectory towards a critical
point of the objective function, uses three main ingredients (see [4] for the continuous
case and also [10, 36] for a similar approach in the discrete setting). Namely, we show a
sufficient decrease property along the trajectories of a regularization of the objective func-
tion, the existence of a subgradient lower bound for the trajectories and, finally, we obtain
convergence by making use of the Kurdyka-Łojasiewicz property of the objective function.

1.2 Notations

Let us fix a few notations used throughout the paper. Let N = {0, 1, 2, ...} be the set of
nonnegative integers. Let H be a real Hilbert space with inner product 〈·, ·〉 and associated
norm ‖ · ‖ = √〈·, ·〉.

For readers convenience let us recall some standard notions and results in monotone
operator theory which will be used in the following (see also [28, 37, 84]). For an arbitrary
set-valued operator A : H ⇒ H we denote by Gr A = {(x, u) ∈ H × H : u ∈ Ax} its
graph. We use also the notation zer A = {x ∈ H : 0 ∈ Ax} for the set of zeros of A. We say
that A is monotone, if 〈x −y, u−v〉 ≥ 0 for all (x, u), (y, v) ∈ Gr A. A monotone operator
A is said to be maximally monotone, if there exists no proper monotone extension of the
graph of A on H × H. The resolvent of A, JA : H ⇒ H, is defined by JA = (IdH +A)−1,
where IdH : H → H, IdH(x) = x for all x ∈ H, is the identity operator on H. Moreover,
if A is maximally monotone, then JA : H → H is single-valued and maximally monotone
(see [28, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see
[28, Proposition 23.2])

p ∈ JγAx if and only if (p, γ −1(x − p)) ∈ Gr A. (5)

The operator A is said to be uniformly monotone if there exists an increasing function
φA : [0, +∞) → [0, +∞] that vanishes only at 0, and 〈x − y, u − v〉 ≥ φA (‖x − y‖)
for every (x, u) ∈ Gr A and (y, v) ∈ Gr A. If this property is fulfilled in the special case
φA(t) = γ t2, with γ > 0, , we say that A is γ -strongly monotone. We consider also the
class of cocoercive operators: the single valued mapping B : H → H is γ -cocoercive, if
〈x − y, Bx − By〉 ≥ γ ‖Bx − By‖2 for all x, y ∈ H. Notice that this is nothing else than
B−1 is γ -strongly monotone.

We recall some standard notations and facts in convex analysis. For a proper, convex and
lower semicontinuous function f : H → R ∪ {+∞}, its (convex) subdifferential at x ∈ H
is defined as

∂f (x) = {u ∈ H : f (y) ≥ f (x) + 〈u, y − x〉 ∀y ∈ H}.
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When seen as a set-valued mapping, it is a maximally monotone operator (see [78]) and for
γ > 0, its resolvent is given by Jγ ∂f = proxγf (see [28]), where proxγf : H → H,

proxγf (x) = argmin
y∈H

{
f (y) + 1

2γ
‖y − x‖2

}
, (6)

denotes the proximal point operator of f . The function f is said to be ν-strongly convex,
where ν > 0, if f − (ν/2)‖ · ‖2 is a convex function. Let us mention that if f is ν-strongly
convex, then ∂f is ν-strongly monotone, see [28, Example 22.3(iv)].

2 First Order Dynamical Systems

Let T : H → H be a nonexpansive mapping (that is ‖T x − Ty‖ ≤ ‖x − y‖ for all
x, y ∈ H), λ : [0, +∞) → [0, 1] be a Lebesgue measurable function and x0 ∈ H. We are
concerned with the following dynamical system:

{
ẋ(t) = λ(t)

(
T (x(t)) − x(t)

)

x(0) = x0.
(7)

As in [2, 24], we consider the following definition of an absolutely continuous function.

Definition 1 (see, for instance, [2, 24]) A function f : [0, b] → H (where b > 0) is said
to be absolutely continuous if one of the following equivalent properties holds:

(i) there exists an integrable function g : [0, b] → H such that

f (t) = f (0) +
∫ t

0
g(s)ds ∀t ∈ [0, b];

(ii) f is continuous and its distributional derivative is Lebesgue integrable on [0, b];
(iii) for every ε > 0, there exists η > 0 such that for any finite family of intervals Ik =

(ak, bk) ⊆ [a, b] we have:
(

Ik ∩ Ij = ∅ and
∑

k

|bk − ak| < η

)

=⇒
∑

k

‖f (bk) − f (ak)‖ < ε.

Remark 1 (a) It follows from the definition that an absolutely continuous function is dif-
ferentiable almost everywhere, its derivative coincides with its distributional derivative
almost everywhere and one can recover the function from its derivative f ′ = g by the
integration formula (i).

(b) If f : [0, b] → H (where b > 0) is absolutely continuous and B : H → H
is L-Lipschitz continuous (where L ≥ 0), then the function h = B ◦ f is abso-
lutely continuous. This can be easily verified by considering the characterization in
Definition 1(iii). Moreover, h is almost everywhere differentiable and the inequality
‖h′(·)‖ ≤ L‖f ′(·)‖ holds almost everywhere.

We say that f : [0, +∞] → H is locally absolutely continuous if it is absolutely
continuous on every compact interval [0, b], with b > 0.

Definition 2 We say that x : [0, +∞) → H is a strong global solution of (7) if the
following properties are satisfied:
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(i) x : [0, +∞) → H is locally absolutely continuous;
(ii) ẋ(t) = λ(t)

(
T (x(t)) − x(t)

)
for all t ∈ [0, +∞);

(iii) x(0) = x0.

The existence and uniqueness of strong global solutions of (7) is a consequence
of the Cauchy-Lipschitz theorem for absolutely continues trajectories (see for example
[64, Proposition 6.2.1], [85, Theorem 54]).

In order to proceed with the asymptotic analysis, we need the following preparatory
results.

Lemma 2 ([2, Lemma 5.1]) Suppose that F : [0, +∞) → R is locally absolutely continu-
ous and bounded from below and that there exists G ∈ L1([0,+∞)) such that for almost
every t ∈ [0, +∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F(t) ∈ R.

Lemma 3 ([2, Lemma 5.2]) If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0, +∞) → [0, +∞) is
locally absolutely continuous, F ∈ Lp([0,+∞)), G : [0,+∞) → R, G ∈ Lr([0,+∞))

and for almost all t

d

dt
F (t) ≤ G(t),

then limt→+∞ F(t) = 0.

The next result which we recall here is the continuous version of the Opial Lemma (see
for example [2, Lemma 5.3], [1, Lemma 1.10]).

Lemma 4 Let S ⊆ H be a nonempty set and x : [0,+∞) → H a given map. Assume that

(i) for every z ∈ S, limt→+∞ ‖x(t) − z‖ exists;
(ii) every weak sequential cluster point of the map x belongs to S.

Then there exists x∞ ∈ S such that w − limt→+∞ x(t) = x∞.

Theorem 5 Let T : H → H be a nonexpansive mapping such that Fix T �= ∅,
λ : [0, +∞) → [0, 1] a Lebesgue measurable function and x0 ∈ H. Suppose that either

∫ +∞

0
λ(t)(1 − λ(t))dt = +∞ or inf

t≥0
λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of (7). Then the following
statements are true:

(i) the trajectory x is bounded and
∫ +∞

0 ‖ẋ(t)‖2dt < +∞;
(ii) limt→+∞(T (x(t)) − x(t)) = 0;

(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in Fix T , as t → +∞.
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Proof We rely on Lyapunov analysis combined with the Opial Lemma. We take an arbitrary
y ∈ Fix T . From the nonexpansiveness of T and [28, Corollary 2.14] we obtain:

d

dt
‖x(t)−y‖2 = 2 〈ẋ(t), x(t) − y〉 = ‖ẋ(t) + x(t) − y‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2

= ‖λ(t)(T (x(t)) − y) + (1 − λ(t))(x(t)) − y)‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2

= λ(t)‖T (x(t)) − y‖2 + (1 − λ(t))‖x(t) − y‖2

−λ(t)(1 − λ(t))‖T (x(t)) − x(t)‖2 − ‖x(t) − y‖2 − ‖ẋ(t)‖2

≤ −λ(t)(1 − λ(t))‖T (x(t)) − x(t)‖2 − ‖ẋ(t)‖2.

Hence for all t ≥ 0 we have that

d

dt
‖x(t) − y‖2 + λ(t)(1 − λ(t))‖T (x(t)) − x(t)‖2 + ‖ẋ(t)‖2 ≤ 0. (8)

Since λ(t) ∈ [0, 1] for all t ≥ 0, from (8) it follows that t �→ ‖x(t) − y‖ is decreasing,
hence limt→+∞ ‖x(t) − y‖ exists. From here we obtain the boundedness of the trajectory
and by integrating (8) we deduce also that

∫ +∞
0 ‖ẋ(t)‖2dt < +∞ and

∫ +∞

0
λ(t)(1 − λ(t))‖T (x(t)) − x(t)‖2dt < +∞, (9)

thus (i) holds. Since y ∈ Fix T has been chosen arbitrary, the first assumption in the
continuous version of Opial Lemma is fulfilled.

We show in the following that limt→+∞ ‖T (x(t)) − x(t)‖ exists and it is a real number.
This is immediate if we show that the function t �→ 1

2‖T (x(t)) − x(t)‖2 is decreasing.
According to Remark 1(b), the function t �→ T (x(t)) is almost everywhere differentiable
and ‖ d

dt
T (x(t))‖ ≤ ‖ẋ(t)‖ holds for almost all t ≥ 0. Moreover, by the first equation of (7)

we have

d

dt

(
1

2
‖T (x(t)) − x(t)‖2

)
=

〈
d

dt
T (x(t)) − ẋ(t), T (x(t)) − x(t)

〉

= −〈ẋ(t), T (x(t)) − x(t)〉 +
〈

d

dt
T (x(t)), T (x(t)) − x(t)

〉

= −λ(t)‖T (x(t)) − x(t)‖2 +
〈

d

dt
T (x(t)), T (x(t)) − x(t)

〉

≤ −λ(t)‖T (x(t)) − x(t)‖2 + ‖ẋ(t)‖ · ‖T (x(t)) − x(t)‖ = 0,

hence limt→+∞ ‖T (x(t)) − x(t)‖ exists and is a real number.

(a) Firstly, let us assume that
∫ +∞

0 λ(t)(1 − λ(t))dt = +∞. This immediately implies
by (9) that limt→+∞(T (x(t)) − x(t)) = 0, thus (ii) holds. Taking into account that
λ is bounded, from (7) and (ii) we deduce (iii). For the last property of the theorem
we need to verify the second assumption of the Opial Lemma. Let x ∈ H be a weak
sequential cluster point of x, that is, there exists a sequence tn → +∞ (as n → ∞)
such that (x(tn))n∈N converges weakly to x. Applying the demiclosedness principle
[28, Corollary 4.18] and (ii) we obtain x ∈ Fix T and the conclusion follows.

(b) We suppose now that inft≥0 λ(t) > 0. From the first relation of (7) and (i) we easily
deduce that T x − x ∈ L2([0, ∞),H), hence the function t �→ 1

2‖T (x(t)) − x(t)‖2

belongs to L1([0,∞)). Since d
dt

(
1
2‖T (x(t)) − x(t)‖2

)
≤ 0 for almost all t ≥ 0, we
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obtain by applying Lemma 3 that limt→∞ ‖T (x(t)) − x(t)‖2 = 0, thus (ii) holds. The
rest of the proof can be done in the lines of case (a) considered above.

Remark 6 We refer the reader to [60] for a recent contribution concerning convergence
rates of the trajectories generated by (7) in case the operator T satisfies some regularity
assumptions, like boundedly linear/Hölder regularity.

Remark 7 The explicit discretization of (7) with respect to the time variable t , with step size
hn > 0, yields for an initial point x0 the following iterative scheme:

xn+1 = xn + hnλn(T xn − xn) ∀n ≥ 0.

By taking hn = 1 this becomes

xn+1 = xn + λn(T xn − xn) ∀n ≥ 0, (10)

which is the classical Krasnosel’skiı̆–Mann algorithm for finding the set of fixed points of
the nonexpansive operator T (see [28, Theorem 5.14]). Let us mention that the convergence
of (10) is guaranteed under the condition

∑
n∈N λn(1 − λn) = +∞. Notice that in case

λn = 1 for all n ∈ N and for an initial point x0 different from 0, the convergence of (10) can
fail, as it happens for instance for the operator T = − Id. In contrast to this, as pointed out
in Theorem 5, the dynamical system (7) has a strong global solution and the convergence of
the trajectory is guaranteed also in case λ(t) = 1 for all t ≥ 0.

Remark 8 The conclusions of Theorem 5 remain valid for the class of averaged operators.
Let α ∈ (0, 1) be fixed. We say that R : H → H is α-averaged if there exists a nonex-
pansive operator T : H → H such that R = (1 − α) Id +αT . In this case we consider
λ : [0, +∞) → [0, 1/α] and the condition

∫ +∞
0 λ(t)(1 − λ(t))dt = +∞ is replaced by

∫ +∞
0 λ(t)(1 − αλ(t))dt = +∞.

Remark 9 Relying on time rescaling arguments and using the link with a dynamical system
governed by a cocoercive operator, it has been shown in [39, Section 4] that the conclusion
of the theorem remains valid under the condition

∫ +∞
0 λ(t)dt = +∞, which is weaker than

the ones considered above. Also the specific upper bound for λ is not needed anymore. Our
option to present the results in this manner is motivated by the link with the discrete case and
the fact that for the convergence rates in Theorem 10 the upper bound will be used again.

In the following we investigate the convergence rate of the trajectories of the dynamical
system (7). This will be done in terms of the fixed point residual function t �→ ‖T (x(t)) −
x(t)‖ and of t �→ ‖ẋ(t)‖. Notice that convergence rates for the discrete iteratively generated
algorithm (10) have been investigated in [59, 62, 67].

Theorem 10 Let T : H → H be a nonexpansive mapping such that Fix T �= ∅, λ :
[0, +∞) → (0, 1) a Lebesgue measurable function and x0 ∈ H. Suppose that

0 < inf
t≥0

λ(t) ≤ sup
t≥0

λ(t) < 1.

Let x : [0, +∞) → H be the unique strong global solution of (7). Then for all t ≥ 0 we
have

t‖ẋ(t)‖2 ≤ t‖T (x(t)) − x(t)‖2 ≤ 2

τ

∫ t

t/2
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds,

618 E.R. Csetnek



where τ = inft≥0 λ(t)(1 − λ(t)) > 0 and limt→+∞
∫ t

t/2 λ(s)(1 − λ(s))‖T (x(s)) −
x(s)‖2ds = 0.

Proof Define the function f : [0,+∞) → [0, +∞),

f (t) =
∫ t

0
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds.

According to (9) we have that limt→+∞ f (t) ∈ R.
Since t �→ 1

2‖T (x(t)) − x(t)‖2 is decreasing (see the proof of Theorem 5), we have for
all t ≥ 0 :

‖T (x(t)) − x(t)‖2
∫ t

t/2
λ(s)(1 − λ(s))ds ≤ ∫ t

t/2 λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds

= f (t) − f (t/2).

Taking into account the definition of τ , we easily derive

τ

2
t‖T (x(t)) − x(t)‖2 ≤

∫ t

t/2
λ(s)(1 − λ(s))‖T (x(s)) − x(s)‖2ds,

and the conclusion follows by using again (7).

In the following we investigate a continuous version of the forward-backward algorithm.
Let A : H ⇒ H be a maximally monotone operator, β > 0 and B : H → H be β-
cocoercive. Consider the dynamical system

{
ẋ(t) = λ(t)

[
JγA

(
x(t) − γB(x(t))

)
− x(t)

]

x(0) = x0.
(11)

It is immediate that (11) can be written in the form (7) for T = JγA ◦ (Id −γB). According
to [28, Corollary 23.8 and Remark 4.24(iii)], JγA is 1/2-cocoercive. Moreover, by [28,
Proposition 4.33], Id −γB is γ /(2β)-averaged. Combining this with [74, Theorem 3(b)],
we derive that R is 1/δ-averaged, where δ := 4β−γ

2β . In the next theorem, the statements
(i)-(iv) follow from Remark 8 by noticing that Fix T = zer(A + B), see [28, Proposition
25.1(iv)]. For (v) and (vi) we refer to [39, Theorem 12].

Theorem 11 Let A : H ⇒ H be a maximally monotone operator, β > 0 and B : H → H
be β-cocoercive such that zer(A + B) �= ∅. Let γ ∈ (0, 2β) and set δ = 4β−γ

2β . Let λ :
[0, +∞) → [0, δ] be a Lebesgue measurable function and x0 ∈ H. Suppose that either

∫ +∞

0
λ(t)(δ − λ(t))dt = +∞ or inf

t≥0
λ(t) > 0.

Let x : [0,+∞) → H be the unique strong global solution of (11). Then the following
statements are true:

(i) the trajectory x is bounded and
∫ +∞

0 ‖ẋ(t)‖2dt < +∞;

(ii) limt→+∞
[
JγA

(
x(t) − γB(x(t))

)
− x(t)

]
= 0;

(iii) limt→+∞ ẋ(t) = 0;
(iv) x(t) converges weakly to a point in zer(A + B), as t → +∞.

Suppose that inft≥0 λ(t) > 0. Then the following hold:
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(v) if y ∈ zer(A + B), then limt→+∞ B(x(t)) = By and B is constant on zer(A + B);
(vi) if A or B is uniformly monotone, then x(t) converges strongly to the unique point in

zer(A + B), as t → +∞.

Remark 12 (i) The explicit discretization of (11) with respect to the time variable t , with
step size hn > 0 and initial point x0, yields the following iterative scheme:

xn+1 − xn

hn

= λn

[
JγA

(
xn − γBxn

)
− xn

]
∀n ≥ 0.

For hn = 1 this becomes

xn+1 = xn + λn

[
JγA

(
xn − γBxn

)
− xn

]
∀n ≥ 0, (12)

which is the classical forward-backward algorithm for finding the set of zeros of A+B

(see [28, Theorem 25.8]). Let us mention that the convergence of (12) is guaranteed
under the condition

∑
n∈N λn(δ − λn) = +∞.

(ii) Let us notice that in case A + B is strongly monotone, then rate of the convergence
in (vi) is exponential, see [40, Theorem 1].

(iii) Notice that strong convergence of the trajectory can be induced by Tikhonov
regularization. We refer the reader to [50] where the dynamics

{
ẋ(t) = λ(t)

[
JγA

(
x(t) − γB(x(t)) + ε(t)x(t)

)
− x(t)

]

x(0) = x0
(13)

has been investigated under appropriate conditions imposed on the Tikhonov regular-
ization in order to generate strong convergence of the trajectory towards the minimal
norm solution. Notice that (13) already appears in [32, Section 5] in case λ(t) = 1,
A is the normal cone to a nonempty, closed convex set C ⊆ H (that is, JγA is the
projector operator onto C) and B is the gradient of a convex and smooth function.

Remark 13 Let us mention that in case A = ∂f , where f : H → R ∪ {+∞} is a proper,
convex and lower semicontinuous function defined on a real Hilbert space H, and for λ(t) =
1 for all t ≥ 0, the dynamical system (11) has been studied in [1]. Notice that the weak
convergence is obtained in [1, Theorem 5.2] for a constant step-size γ ∈ (0, 4β).

Remark 14 In Theorem 11 above related to the dynamical system (11), the cocoercivity
of the operator B plays an important role. Now let us stress the fact that in applications
arising from game theory for example, the operator (x, y) → (∇xφ(x, y),−∇yφ(x, y))

is not cocoercive (even in the bilinear case when φ(x, y) = 〈x, Ky〉 with K a linear and
continuous operator). Under further conditions imposed on φ : H × G → R (G is another
real Hilbert space), like convexity in x, concavity in y and some smoothness conditions, this
operator is monotone and Lipschitz. Hence the desire to consider dynamical systems and
numerical schemes also in this case is well motivated.

With respect to the case when B is monotone and Lipschitz, let us mention two types
of dynamics considered in the literature. First, a dynamical system of forward-backward-
forward-type

⎧
⎪⎨

⎪⎩

y(t) = JγA(x(t) − γB(x(t)))

ẋ(t) + x(t) = y(t) + λ [B(x(t)) − B(y(t))]

x(0) = x0,

(14)
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introduced and investigated in [26]. The time discretization of this dynamics leads to the
well-known Tseng algorithm [88]

{
yn = JγA(xn − γB(xn))

xn+1 = yn + λ [B(xn) − B(yn)] ,
(15)

which plays an important role also in primal-dual type algorithms for highly structured
monotone inclusion/optimization problems, see for example [57]. Let us also mention that
the dynamics (14) and several discretizations have been considered in the context of pseudo-
monotone variational inequalities, see [49].

Second, the dynamical system
⎧
⎪⎨

⎪⎩

ẋ(t) + x(t) = JγA (x(t) − y(t)) − ẏ(t)

y(t) = γB(x(t))

x(0) = x0,

(16)

has been investigated in [61]. By using the notation z(t) = x(t) + y(t), it can be shown that
the dynamics (16) is equivalent to

ż(t) + z(t) =
(

Id +RγARγB

2

)
z(t), (17)

where RγA = 2JγA − Id is the reflected resolvent of A. Notice that this is a continuous ver-
sion of the Douglas-Rachford algorithm, see [28]. Now, (17) can be written in the language
of (7), since the reflected resolvent is a nonexpansive mapping. Further, let us mention that
time discretization of (16) leads to the numerical scheme

xn+1 = JγA

(
xn − γB(xn)

) − γ
(
B(xn) − B(xn−1)

)
, (18)

which compared to Tseng’s algorithm (15) has the advantage that in each iteration it requires
only one forward evaluation of the single valued operator B (see also [69] for another
numerical scheme with this property). Finally, we mention also [77] for continuous in time
dynamics and numerical schemes for monotone inclusion problems involving monotone
and Lipschitz operators.

The results presented in this section can be specialized in the context of the convex
optimization problem:

min
x∈H{f (x) + g(x)} (19)

where f : H → R ∪ {+∞} is a proper, convex and lower semicontinuous function, β >

0 and g : H → R is a convex and (Fréchet) differentiable function with 1/β-Lipschitz
continuous gradient (which implies that ∇g is β-cocoercive, due to the celebrated Baillon-
Haddad Theorem, see [28, Corollary 8.16]). Notice that

argmin
x∈H

{f (x) + g(x)} = zer(∂f + ∇g)

and the system (11) becomes
{

ẋ(t) = λ(t)
[
proxγf

(
x(t) − γ∇g(x(t))

)
− x(t)

]

x(0) = x0.
(20)
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Let us underline the remarkable result that in case λ(t) = 1, the trajectory of (20) con-
verges weakly to a solution of (19) with no further restriction on the positive step size γ .
This has been proved in [1, Theorem 5.2] by using the energy functional

E(t, x∗) = 1

2γ
‖x(t) − x∗‖2 + g(x(t)) − g(x∗) − 〈∇g(x∗), x(t) − x∗〉, (21)

where x∗ is a solution of (19).

For the prox-gradient scheme (see ISTA in [29]) it is known that we have the rate O
(

1
n

)

for the functions values along the generated iterates. The following theorem can be seen as
the continuous counterpart of this result.

Theorem 15 In the above setting, we consider λ(t) = 1 and γ
β (3 + γ

β ) ≤ 1. For x0 ∈ H,
let x(·) : [0, +∞) → H be the unique strong global solution of (20). Then for all T > 0
the following holds

0 ≤ (f + g)
(
ẋ(T ) + x(T )

) − (f + g)(x∗) + 1

2γ
‖ẋ(T )‖2 ≤ 1

2γ T
‖x0 − x∗‖2 (22)

where x∗ is a solution of (19).

Proof From the characterization of the proximal operator we have

− 1

γ
ẋ(t) − ∇g(x(t)) ∈ ∂f (ẋ(t) + x(t)), (23)

The convexity of f yields

f (x∗) ≥ f
(
ẋ(t) + x(t)

) +
〈
− 1

γ
ẋ(t) − ∇g(x(t)), x∗ − ẋ(t) − x(t)

〉
. (24)

Further, by using the convexity of g and the Descent Lemma (see [72, Lemma 1.2.3]) we
derive

g(x∗) ≥ g(x(t)) + 〈∇g(x(t)), x∗ − x(t)〉
≥ g

(
ẋ(t) + x(t)

) − 〈∇g(x(t)), ẋ(t)〉 − 1

2β
‖ẋ(t)‖2 + 〈∇g(x(t)), x∗ − x(t)〉

= g
(
ẋ(t) + x(t)

) + 〈∇g(x(t)), x∗ − ẋ(t) − x(t)〉 − 1

2β
‖ẋ(t)‖2 (25)

Combining (24) and (25) we obtain

(f + g)(x∗) ≥ (f + g)
(
ẋ(t) + x(t)

) − 1
γ
〈ẋ(t), x∗ − ẋ(t) − x(t)〉 − 1

2β‖ẋ(t)‖2

= (f + g)
(
ẋ(t) + x(t)

) + 2− γ
β

2γ
‖ẋ(t)‖2 + 1

2γ
d
dt

(‖x(t) − x∗‖2
)

≥ (f + g)
(
ẋ(t) + x(t)

) + 1
2γ

‖ẋ(t)‖2 + 1
2γ

d
dt

(‖x(t) − x∗‖2
)

. (26)

Let us fix an arbitrary T > 0. By integration, we derive from (26)

1

2γ
‖x(T ) − x∗‖2 +

∫ T

0

[
(f + g)

(
ẋ(t) + x(t)

) − (f + g)(x∗) + 1

2γ
‖ẋ(t)‖2

]
dt

≤ 1

2γ
‖x0 − x∗‖2. (27)
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We notice that due to (20), we have ẋ(t) = M
(
x(t)

)
where M : H → H, M =

proxγf ◦(Id −γ∇g) − Id is a (2 + γ
β )-Lipschitz continuous operator. Hence, ẋ is locally

absolutely continuous and (see Remark 1(b)) ẍ exists and for almost every t ≥ 0 one has

‖ẍ(t)‖ ≤
(

2 + γ

β

)
‖ẋ(t)‖. (28)

Due to the continuity properties on [0, T ] of the trajectory, one has

ẋ + x ∈ L2([0, T ];H),

− 1

γ
ẋ − ∇g(x) ∈ L2([0, T ];H)

ẍ + ẋ ∈ L2([0, T ];H).

From (23) and [52, Lemme 4, p. 73] (see also [16, Lemma 3.2]) we obtain that the function
t �→ f

(
ẋ(t) + x(t)

)
is absolutely continuous and

d

dt
f

(
ẋ(t) + x(t)

) =
〈
− 1

γ
ẋ(t) − ∇g(x(t)), ẍ(t) + ẋ(t)

〉
.

Moreover, it holds

d

dt
g
(
ẋ(t) + x(t)

) = 〈∇g
(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉
.

Summing up the last two equalities we derive

d

dt
(f + g)

(
ẋ(t) + x(t)

) =
〈
− 1

γ
ẋ(t) − ∇g(x(t)) + ∇g

(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉

= − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2

+ 〈∇g
(
ẋ(t) + x(t)

) − ∇g(x(t)), ẍ(t) + ẋ(t)
〉

≤ − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2

+ 1

β
‖ẋ(t)‖ · ‖ẍ(t) + ẋ(t)‖ (29)

≤ − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2 + 1

β
(3 + γ

β
)‖ẋ(t)‖2 (30)

= − 1

2γ

d

dt

(‖ẋ(t)‖2) −
[

1

γ
− 1

β
(3 + γ

β
)

]
‖ẋ(t)‖2,

where in (29) we used the Lipschitz continuity of ∇g and in (30) the inequality (28).
Altogether, we conclude that for almost every t ≥ 0 we have

d

dt

[
(f + g)

(
ẋ(t) + x(t)

) + 1

2γ
‖ẋ(t)‖2

]
+

[
1

γ
− 1

β
(3 + γ

β
)

]
‖ẋ(t)‖2 ≤ 0. (31)

Due to the condition imposed on the step size, we get that

d

dt

[
(f + g)

(
ẋ(t) + x(t)

) + 1

2γ
‖ẋ(t)‖2

]
≤ 0,
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hence the function t �→ (f + g)
(
ẋ(t) + x(t)

) − (f + g)(x∗) + 1
2γ

‖ẋ(t)‖2 is nonincreasing.
This together with (27) yields the inequality

1

2γ
‖x(T ) − x∗‖2 + T

[
(f + g)

(
ẋ(T ) + x(T )

) − (f + g)(x∗) + 1

2γ
‖ẋ(T )‖2

]

≤ 1

2γ
‖x0 − x∗‖2

and the proof is complete.

Remark 16 Let us mention now a recent contribution related to structured optimization
problems. For H and G real Hilbert spaces, we consider the convex minimization problem

min
x∈H f (x) + h(x) + g(Ax), (32)

where f : H −→ R ∪ {+∞} and g : G −→ R ∪ {+∞} are proper, convex and lower
semicontinuous functions, h : H −→ R is a convex and Fréchet differentiable function
with Lipschitz continuous gradient and A : H −→ G is a continuous linear operator.

Due to the presence of the composition with a linear operator, dual variables appear
both when writing the Fenchel dual problem and also in primal-dual numerical schemes
existing in the literature for solving highly structured optimization problems. The following
dynamical system introduced in [47] can be seen as a continuous version of the mentioned
numerical schemes for solving (32):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t)+x(t) ∈ (∂f +cA∗A+M1(t))
−1 (M1(t)x(t)+cA∗z(t)−A∗y(t)−∇h(x(t)))

ż(t) + z(t) ∈ (∂g + cI + M2(t))
−1 (M2(t)z(t) + cA(γ ẋ(t) + x(t)) + y(t))

ẏ(t) = cA(x(t) + ẋ(t)) − c(z(t) + ż(t))

x(0) = x0 ∈ H, z(0) = z0 ∈ G, y(0) = y0 ∈ G,

(33)

where c > 0, γ ∈ [0, 1], A∗ : G −→ H is the adjoint operator and M1 : [0,+∞) −→
S+(H) and M2 : [0,+∞) −→ S+(G) (which means that for all t ≥ 0, M1(t) : H → H is
linear, continuous, self-adjoint and positive semidefinite).

Let us stress the fact that the analysis of the dynamical system (33) is involved. It needs
more technical results in order to show that the system is well-posed. Moreover, the asymp-
totic analysis requires deep machinery in order to derive an appropriate energy functional.
We invite the reader to consult [47] for all these details, just mentioning that under appro-
priate hypotheses, (x(t), z(t), y(t)) converges weakly to a saddle point of the Lagrangian l,
defined as l : H × G × G −→ R, l(x, z, y) = f (x) + h(x) + g(z) + 〈y,Ax − z〉 .

There are not too many works in the literature devoted to the solving of optimization
problems involving compositions with linear operators by means of continuous in time
dynamics. Let us also mention a recent contribution of Attouch [6], where a different
dynamical system is proposed in [6, Section 2.2] for solving block-structured optimization
problems with linear constraint. We mention also [31], where a dynamical system attached
to a more involved optimization problem is investigated and which is a continuous counter-
part of the proximal alternating minimization algorithm AMA (see also the work of Tseng
on AMA [87]).
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The dynamics (33) provides through explicit time discretization a numerical algorithm
which is a combination of the linearized proximal method of multipliers and the proximal
ADMM algorithm.

Indeed, by writing the inclusion in an equivalent form and using the explicit discretization
of with respect to the time variable t and constant step hk ≡ 1 yields the iterative scheme
(see [47, Remark 1])

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xn+1 ∈ argmin
x∈H

(
f (x)+〈x−xn, ∇h(xn)〉+ c

2

∥∥Ax−zn+ yn

c

∥∥2+ 1
2‖x−xn‖2

Mn
1

)

zn+1 ∈ argmin
z∈G

(
g(z)+ c

2

∥∥A(γ xn+1+(1 − γ )xn)−z+ yn

c

∥∥2+ 1
2‖z−zn‖2

Mn
2

)

yn+1 = yn + c(Axn+1 − zn+1)

(34)

where (Mn
1 )n≥0 and (Mn

2 )n≥0 are two operator sequences in S+(H) and S+(G), respectively.
The algorithm (34) is a combination of the linearized proximal method of multipliers and

the proximal ADMM algorithm.
Indeed, in the case when γ = 1, (34) becomes the proximal ADMM algorithm with

variable metrics from [27] (see, also, [42]). If, in addition, h = 0 and the operator sequences
(Mk

1 )k≥0 and (Mk
2 )k≥0 are constant, then (34) becomes the proximal ADMM algorithm

investigated in [81, Section 3.2] (see, also, [63]). It is known that the proximal ADMM
algorithm can be seen as a generalization of the full splitting primal-dual algorithms of
Chambolle-Pock (see [54]) and Condat-Vu (see [58, 89] and [43, 44]).

On the other hand, in the case when γ = 0, (34) becomes an extension of the linearized
proximal method of multipliers of Chen-Teboulle (see [55], [81, Algorithm 1]).

A particular choice for the linear maps M1 and M2 transforms (33) into a dynamical
system of primal-dual type formulated in the spirit of the full splitting paradigm. For every
t ∈ [0, +∞), define

M1(t) = 1

τ(t)
I − cA∗A and M2(t) = 0,

where τ(t) > 0 is such that cτ(t)‖A‖2 ≤ 1.
In this particular setting, the dynamical system (33) can be equivalently written as (see

[47, Remark 2])

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t)+x(t)=proxτ(t)f

(
(I −cτ(t)A∗A)x(t)+cτ(t)A∗z(t)−τ(t)A∗y(t)−τ(t)∇h(x(t))

)

ẏ(t) + y(t) + c(γ − 1)Aẋ(t) = proxcg∗
(
cA(γ ẋ(t) + x(t)) + y(t)

)

ẏ(t) = cA(x(t) + ẋ(t)) − c(z(t) + ż(t))

x(0) = x0 ∈ H, z(0) = z0 ∈ G, y(0) = y0 ∈ G,

(35)
where g∗ : G → R∪ {+∞} is the Fenchel conjugate of the proper, convex and lower semi-
continuous function g. Let us also mention that when h = 0 and γ = 1 the discretization of
the dynamical system (35) leads to the primal-dual algorithm proposed by Chambolle and
Pock in [54].
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3 Second Order Dynamical Systems

As in the previous section, we start with a general dynamical system which will be con-
sidered then in several special instances, including the link to optimization problems as
well:

{
ẍ(t) + γ (t)ẋ(t) + λ(t)B(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(36)

where u0, v0 ∈ H, B : H → H is a β-cocoercive operator, λ : [0,+∞) → [0, +∞)

is a relaxation function in time and γ : [0,+∞) → [0,+∞) is a continuous damping
parameter.

The existence and uniqueness of the trajectory follows (under appropriate conditions
imposed on the parameters) from the Cauchy-Lipschitz-Picard Theorem by writing (36) as
a first order dynamical system in a product space (see [38, Theorem 4]).

In order to prove the convergence of the trajectories of (36), we make the following
assumptions on the relaxation function λ and the damping parameter γ , respectively:

(A1) λ, γ : [0, +∞) → (0,+∞) are locally absolutely continuous and there exists θ > 0
such that for almost every t ∈ [0, +∞) we have

γ̇ (t) ≤ 0 ≤ λ̇(t) and
γ 2(t)

λ(t)
≥ 1 + θ

β
. (37)

Due to Definition 1 and Remark 1(a), λ̇(t), γ̇ (t) exists for almost every t ≥ 0 and λ̇, γ̇

are Lebesgue integrable on each interval [0, b] for 0 < b < +∞. This combined with
γ̇ (t) ≤ 0 ≤ λ̇(t) and the fact that λ, γ take only positive values yield the existence of a
positive lower bound λ for λ and of a positive upper bound γ for γ . Furthermore, the second
assumption in (37) provides also a positive upper bound λ for λ and a positive lower bound
γ for γ .

We would also like to point out that under the conditions considered in (A1) the global
version of the Cauchy-Lipschitz-Picard Theorem allows us to conclude that, for u0, v0 ∈ H,
there exists a unique trajectory x : [0,+∞) → H which is a C2-function and which
satisfies the first relation in (36) for every t ∈ [0, +∞). The considerations we make in the
following take into account this fact.

Let us also mention that in case γ (t) = γ and λ(t) = λ for every t ∈ [0, +∞), where
γ, λ > 0, the assumption (A1) becomes γ 2β > λ, a condition which has been used in [20]
in relation with the study of the asymptotical convergence of the dynamical system (36).

We state now the convergence result.

Theorem 17 Let B : H → H be a β-cocoercive operator for β > 0 such that zer B :=
{u ∈ H : Bu = 0} �= ∅, λ, γ : [0,+∞) → (0,+∞) be functions fulfilling (A1) and
u0, v0 ∈ H. Let x : [0, +∞) → H be the unique strong global solution of (36). Then the
following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ, Bx ∈ L2([0, +∞);H);
(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞ B(x(t) = 0;

(iii) x(t) converges weakly to an element in zer B as t → +∞.

Proof (i) Take an arbitrary x∗ ∈ zer B and consider for every t ∈ [0,+∞) the function
h(t) = 1

2‖x(t) − x∗‖2. We have ḣ(t) = 〈x(t) − x∗, ẋ(t)〉 and ḧ(t) = ‖ẋ(t)‖2 +
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〈x(t) − x∗, ẍ(t)〉 for every t ∈ [0, +∞). Taking into account (36), we get for every
t ∈ [0, +∞)

ḧ(t) + γ (t)ḣ(t) + λ(t)
〈
x(t) − x∗, B(x(t))

〉 = ‖ẋ(t)‖2. (38)

The cocoercivity of B and the fact that Bx∗ = 0 yields for every t ∈ [0, +∞)

ḧ(t) + γ (t)ḣ(t) + βλ(t)‖B(x(t))‖2 ≤ ‖ẋ(t)‖2.

Taking again into account (36) one obtains for every t ∈ [0,+∞)

ḧ(t) + γ (t)ḣ(t) + β
λ(t)

‖ẍ(t) + γ (t)ẋ(t)‖2 ≤ ‖ẋ(t)‖2

or, equivalently,

ḧ(t) + γ (t)ḣ(t) + βγ (t)

λ(t)

d

dt

(‖ẋ(t)‖2) +
(

βγ 2(t)

λ(t)
− 1

)
||ẋ(t)||2 + β

λ(t)
||ẍ(t)||2 ≤ 0.

Combining this inequality with

γ (t)

λ(t)

d

dt

(‖ẋ(t)‖2) = d

dt

(
γ (t)

λ(t)
‖ẋ(t)‖2

)
− γ̇ (t)λ(t) − γ (t)λ̇(t)

λ2(t)
‖ẋ(t)‖2 (39)

and

γ (t)ḣ(t) = d

dt
(γ h)(t) − γ̇ (t)h(t) ≥ d

dt
(γ h)(t), (40)

it yields for every t ∈ [0, +∞)

ḧ(t) + d
dt

(γ h)(t) +
β d

dt

(
γ (t)
λ(t)

‖ẋ(t)‖2
)

+
(

βγ 2(t)
λ(t)

+ β−γ̇ (t)λ(t)+γ (t)λ̇(t)

λ2(t)
− 1

)
||ẋ(t)||2 + β

λ(t)
||ẍ(t)||2 ≤ 0.

Now, assumption (A1) delivers for almost every t ∈ [0, +∞) the inequality

ḧ(t) + d

dt
(γ h)(t) + β

d

dt

(
γ (t)

λ(t)
‖ẋ(t)‖2

)
+ θ ||ẋ(t)||2 + βλ

−1‖ẍ(t)||2 ≤ 0. (41)

This implies that the function t �→ ḣ(t) + γ (t)h(t) + β γ (t)
λ(t)

‖ẋ(t)‖2, which is locally abso-
lutely continuous, is monotonically decreasing. Hence there exists a real number M such
that for every t ∈ [0, +∞)

ḣ(t) + γ (t)h(t) + β
γ (t)

λ(t)
‖ẋ(t)‖2 ≤ M, (42)

which yields that for every t ∈ [0, +∞)

ḣ(t) + γ h(t) ≤ M .

By multiplying this inequality with exp(γ t) and then integrating from 0 to T , where T > 0,
one easily obtains

h(T ) ≤ h(0) exp(−γ T ) + M

γ
(1 − exp(−γ T )),

thus

h is bounded (43)
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and, consequently,

the trajectory x is bounded. (44)

On the other hand, from (42), it follows that for every t ∈ [0, +∞)

ḣ(t) + βγ λ
−1‖ẋ(t)‖2 ≤ M,

hence
〈
x(t) − x∗, ẋ(t)

〉 + βγ λ
−1‖ẋ(t)‖2 ≤ M .

This inequality in combination with (44) yields

ẋ is bounded, (45)

which further implies that

ḣ is bounded. (46)

Integrating the inequality (41) we obtain that there exists a real number N ∈ R such that
for every t ∈ [0,+∞)

ḣ(t) + γ (t)h(t) + β
γ (t)

λ(t)
‖ẋ(t)‖2 + θ

∫ t

0
||ẋ(s)||2ds + βλ

−1
∫ t

0
||ẍ(s)||2ds ≤ N .

From here, via (46), we conclude that ẋ(·), ẍ(·) ∈ L2([0,+∞);H). Finally, from (36) and
(A1) we deduce Bx ∈ L2([0,+∞);H) and the proof of (i) is complete.

(ii) For every t ∈ [0,+∞) it holds

d

dt

(
1

2
‖ẋ(t)‖2

)
= 〈ẋ(t), ẍ(t)〉 ≤ 1

2
‖ẋ(t)‖2 + 1

2
‖ẍ(t)‖2

and Lemma 3 together with (i) lead to limt→+∞ ẋ(t) = 0.

Further, by taking into consideration Remark 1(b), for every t ∈ [0,+∞) we have

d

dt

(
1

2
‖B(x(t))‖2

)
=

〈
B(x(t)),

d

dt
(Bx(t))

〉
≤ 1

2
‖B(x(t))‖2 + 1

2β2
‖ẋ(t)‖2.

By using again Lemma 3 and (i) we get limt→+∞ B(x(t)) = 0, while the fact that
limt→+∞ ẍ(t) = 0 follows from (36) and (A2).

(iii) We are going to prove that both assumptions in Opial Lemma are fulfilled. The first
one concerns the existence of limt→+∞ ‖x(t) − x∗‖. As seen in the proof of part (i),
the function t �→ ḣ(t) + γ (t)h(t) + β γ (t)

λ(t)
‖ẋ(t)‖2 is monotonically decreasing, thus

from (i), (ii) and (A1) we deduce that limt→+∞ γ (t)h(t) exists and it is a real number.
By taking also into account that ∃ limt→+∞ γ (t) ∈ (0,∞), we obtain the existence
of limt→+∞ ‖x(t) − x∗‖.

We come now to the second assumption of the Opial Lemma. Let x be a weak sequential
cluster point of x, that is, there exists a sequence tn → +∞ (as n → +∞) such that
(x(tn))n∈N converges weakly to x. Since B is a maximally monotone operator (see for
instance [28, Example 20.28]), its graph is sequentially closed with respect to the weak-
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strong topology of the product space H × H. By using also that limn→+∞ B(x(tn)) = 0,
we conclude that Bx = 0, hence x ∈ zer B and the proof is complete.

A standard choice of a cocoercive operator defined on a real Hilbert spaces is B = Id −T ,
where T : H → H is a nonexpansive operator. As it easily follows from the nonexpan-
siveness of T , B is in this case 1/2-cocoercive. For this particular operator B the dynamical
system (36) becomes

{
ẍ(t) + γ (t)ẋ(t) + λ(t)

(
x(t) − T (x(t))

) = 0
x(0) = u0, ẋ(0) = v0.

(47)

Theorem 17 gives rise to a corresponding result where the trajectory converges weakly

to a fixed point of T , where in (A1) we use the condition γ 2(t)
λ(t)

≥ 2(1 + θ).

Remark 18 (i) The analysis can be further extended to the situation when T in (47) is
an α-averaged operator (with 0 < α < 1). In this case we use in (A1) the condition
γ 2(t)
λ(t)

≥ 2α(1 + θ).
(ii) In the particular case when γ (t) = γ > 0 for all t ≥ 0 and λ(t) = 1 for all

t ∈ [0, +∞) the dynamical system (47) has been studied in [7, Theorem 3.2] under
the condition γ 2 > 2, which is covered by the theory presented above. We would
also like to notice that in [3] an anisotropic damping has been considered in the con-
text of approaching the minimization of a smooth convex function via second order
dynamical systems.

Let us turn now our attention to monotone inclusions and consider the dynamics:
{

ẍ(t) + γ (t)ẋ(t) + λ(t)
[
x(t) − JηA

(
x(t) − ηB(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(48)

Further, in (A1) we use γ 2(t)
λ(t)

≥ 2(1+θ)
δ

, where δ := 4β−η

2β .
The statements (i)-(iii) in the next result follow from Remark 18(ii) by taking into

account that under the hypotheses, T = JηA ◦ (Id −ηB) is 1/δ-averaged, see also the com-
ments before Theorem 11. For (iv) and (v) we invite the reader to consult [38, Theorem 12].
Moreover, under appropriate hypotheses, the rate of convergence in (v) is exponential, see
[40, Theorem 7].

Theorem 19 Let A : H ⇒ H be a maximally monotone operator and B : H → H be a β-

cocoercive operator for β > 0 such that zer(A+B) �= ∅. Let η ∈ (0, 2β) and set δ := 4β−η

2β .
Let λ, γ : [0, +∞) → (0,+∞) be functions fulfilling (A1) as mentioned right after (48),
u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of (48). Then the
following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id −JηA ◦ (Id −ηB)
)
x ∈ L2([0, +∞);H);

(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞
(

Id −JηA ◦ (Id −ηB)
)
(x(t)) = 0;

(iii) x(t) converges weakly to a point in zer(A + B) as t → +∞;
(iv) if x∗ ∈ zer(A+B), then B(x(·))−Bx∗ ∈ L2([0,+∞);H), limt→+∞ B(x(t)) = Bx∗

and B is constant on zer(A + B);
(v) if A or B is uniformly monotone, then x(t) converges strongly to the unique point in

zer(A + B) as t → +∞.
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Remark 20 For second order dynamical systems with vanishing damping we refer the reader
to [22] where the following differential equation is investigated

{
ẍ(t) + α

t
ẋ(t) + Aλ(t)(x(t)) = 0

x(0) = u0, ẋ(0) = v0,
(49)

Aλ(t) : H → H being the Yosida regularization of A, defined by Aλ(t) = 1
λ(t)

(Id −Jλ(t)A).
Convergence of the trajectory towards a zero of the maximally monotone operator A : H ⇒
H is reported in [22] together with convergence rates concerning the velocity and the accel-
eration. Let us also mention the recent contribution [19] where a Newton-like correction
term is used:

{
ẍ(t) + α

t
ẋ(t) + β d

dt

(
Aλ(t)(x(t))

) + Aλ(t)(x(t)) = 0
x(0) = u0, ẋ(0) = v0,

(50)

with β > 0. In case of convex potentials, the correction term becomes the Hessian driven
damping which is responsable for attenuation of the oscillations of the trajectories and for
better convergence rates for the gradients along the orbits, see also [12] and [82]. For the
algorithmic consequences of (49) and (50) we invite the reader to consult [22] and [18].

In the remaining of this section we turn our attention to optimization problems of the
form

min
x∈H f (x) + g(x),

see (19) and the setting described there.
In the following statement we approach the minimizers of f + g via the second order

dynamical system
{

ẍ(t) + γ (t)ẋ(t) + λ(t)
[
x(t) − proxηf

(
x(t) − η∇g(x(t))

)]
= 0

x(0) = u0, ẋ(0) = v0.
(51)

Corollary 21 Let f : H → R ∪ {+∞} by a proper, convex and lower semicontinuous
function and g : H → R be a convex and (Fréchet) differentiable function with 1

β -Lipschitz
continuous gradient for β > 0 such that argminx∈H{f (x)+g(x)} �= ∅. Let η ∈ (0, 2β) and

set δ := 4β−η

2β . Let λ, γ : [0, +∞) → (0,+∞) be functions fulfilling (A1) as mentioned
right after (48), u0, v0 ∈ H and x : [0,+∞) → H be the unique strong global solution of
(51). Then the following statements are true:

(i) the trajectory x is bounded and ẋ, ẍ,
(

Id − proxηf ◦(Id −η∇g)
)
x ∈ L2([0,+∞);

H);
(ii) limt→+∞ ẋ(t) = limt→+∞ ẍ(t) = limt→+∞

(
Id − proxηf ◦(Id −η∇g)

)
(x(t)) = 0;

(iii) x(t) converges weakly to a minimizer of f + g as t → +∞;
(iv) if x∗ is a minimizer of f + g, then ∇g(x(·))−∇g(x∗) ∈ L2([0,+∞);H), limt→+∞

∇g(x(t)) = ∇g(x∗) and ∇g is constant on argminx∈H{f (x) + g(x)};
(v) if f or g is uniformly convex, then x(t) converges strongly to the unique minimizer of

f + g as t → +∞.

Remark 22 Consider again the setting in Remark 18(ii), namely, when γ (t) = γ > 0 for
every t ≥ 0 and λ(t) = 1 for every t ∈ [0, +∞). Furthermore, for C a nonempty, convex,
closed subset of H, let f = δC be the indicator function of C, which is defined as being
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equal to 0 for x ∈ C and to +∞, else. The dynamical system (20) attached in this setting to
the minimization of g over C becomes

{
ẍ(t) + γ ẋ(t) + x(t) − projC

(
x(t) − η∇g(x(t))

) = 0
x(0) = u0, ẋ(0) = v0.

(52)

The asymptotic convergence of the trajectories of (52) has been studied in [7, Theorem 3.1]
under the conditions γ 2 > 2 and 0 < η ≤ 2β. In this case the corresponding assumption
(A1) trivially holds by choosing θ such that 0 < θ ≤ (γ 2 − 2)/2 ≤ (δγ 2 − 2)/2. Thus, in
order to verify the corresponding (A1) in case λ(t) = 1 for every t ∈ [0, +∞) one needs
to equivalently assume that γ 2 > 2/δ. Since δ ≥ 1, this provides a slight improvement
over [7, Theorem 3.1] in what concerns the choice of γ . We refer the reader also to [5] for
an analysis of the convergence rates of trajectories of the dynamical system (52) when g is
endowed with supplementary properties.

Remark 23 By using the energy functional (21), it is possible to go beyond the condition
0 < η ≤ 2β considered in Corollary 21. We refer the reader to [38, Corollary 16] for more
details. Moreover, in [38, Remark 17] it has been pointed out that in case γ (t) = γ > 0
for every t ≥ 0 and λ(t) = 1 for every t ∈ [0,+∞), the only condition imposed on the
parameters is γ 2 >

η
β + 1. In other words, this allows in this particular setting a more

relaxed choice for the parameters, beyond the standard assumptions 0 < η ≤ 2β and γ 2 > 2
considered in [7].

Remark 24 The explicit discretization of (51) with respect to the time variable t , with step
size hn > 0, relaxation variable λn > 0, damping variable γn > 0 and initial points x0 := u0
and x1 := v0 yields the following iterative scheme

xn+1 − 2xn + xn−1

h2
n

+ γn

xn+1 − xn

hn

= λn

[
proxηf

(
xn − η∇g(xn)

)
− xn

]
∀n ≥ 1.

For hn = 1 this becomes

xn+1 =
(

1 − λn

1 + γn

)
xn + λn

1 + γn

proxηf

(
xn −η∇g(xn)

)
+ λn

1 + γn

(xn −xn−1) ∀n ≥ 1,

(53)
which is a relaxed forward-backward algorithm for minimizing f + g with inertial effects.
In order to investigate the convergence properties of the above iterative scheme, it is natural
to assume that (γn)n≥1 is nonincreasing, (λn)n≥1 is nondecreasing, and there exists a lower
bound for (γ 2

n /λn)n≥1. The control of the inertial term by means of the variable parameters
λn and γn could increase the speed of convergence of the algorithm (53). Making use of
the the sequence (λn)n≥1 in (53), one obtains a relaxed forward-backward scheme, where
the relaxation is usually considered in the literature in order to achieve more freedom in
the choice of the parameters involved in the numerical scheme. We refer the reader to [11]
where this fact has been underlined in the context of monotone inclusion problems.

Remark 25 In case f is vanishing and ηλ(t) = 1, the dynamical system (51) becomes
{

ẍ(t) + γ (t)ẋ(t) + ∇g(x(t)) = 0
x(0) = u0, ẋ(0) = v0.

(54)

There is an intensive research in the literature mainly devoted to the vanishing damping of
the form γ (t) = α

t
, with α > 0. This is due to the fact that in case α > 3 this provides
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a fast convergence result in terms of the objective function of order o
(

1
t2

)
. The starting

point of the investigations was the work of Su, Boyd and Candès [86], followed by relevant
contributions of Attouch and his co-workers (see for example [13, 14] and the references
therein). This is related to the accelerated gradient method in the sense of Nesterov

{
yn = xn + n−1

n+α−1 (xn − xn−1)

xn+1 = yn − γ∇g(yn)

where inertial terms by means of iterates accelerate the convergence behaviour of the numer-
ical scheme. Let us mention also the recent contributions [12, 82] where inertial terms
induced by the gradient of g are also considered, which are coming from the discretization
of Hessian driven damping terms, see also [23] and [48].

4 First Order Dynamics for Nonconvex Optimization Problems

In this section we approach the solving of the optimization problem

inf
x∈Rn

[f (x) + g(x)], (55)

where f : R
n → R ∪ {+∞} is a proper, convex, lower semicontinuous function and

g : Rn → R a (possibly nonconvex) Fréchet differentiable function with β-Lipschitz con-
tinuous gradient for β ≥ 0, i.e., ‖∇g(x) − ∇g(y)‖ ≤ β‖x − y‖ ∀x, y ∈ R

n, by associating
to it the implicit dynamical system

{
ẋ(t) + x(t) = proxηf

(
x(t) − η∇g(x(t))

)

x(0) = x0,
(56)

where η > 0 and x0 ∈ R
n is chosen arbitrary (we consider the euclidean space R

n).

Lemma 26 Suppose that f + g is bounded from below and η > 0 fulfills the inequality

ηβ(3 + ηβ) < 1. (57)

For x0 ∈ R
n, let x ∈ C1([0,+∞),Rn) be the unique global solution of (56). Then the

following statements hold:

(a) ẋ ∈ L2([0,+∞);Rn) and limt→+∞ ẋ(t) = 0;
(b) ∃ limt→+∞(f + g)

(
ẋ(t) + x(t)

) ∈ R.

Proof Let us start by noticing that ẋ is locally absolutely continuous, hence ẍ exists and for
almost every t ∈ [0, +∞) one has

‖ẍ(t)‖ ≤ (2 + ηβ)‖ẋ(t)‖. (58)

We fix an arbitrary T > 0. Due to the continuity properties of the trajectory on [0, T ],
(28) and the Lipschitz continuity of ∇g, one has

x, ẋ, ẍ,∇g(x) ∈ L2([0, T ];Rn).

Further, from the characterization of the proximal point operator we have

− 1

η
ẋ(t) − ∇g(x(t)) ∈ ∂f (ẋ(t) + x(t)) ∀t ∈ [0, +∞). (59)
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Like in the proof of Theorem 15 we obtain

d

dt
f

(
ẋ(t) + x(t)

) =
〈
−1

η
ẋ(t) − ∇g(x(t)), ẍ(t) + ẋ(t)

〉
,

d

dt
g
(
ẋ(t) + x(t)

) = 〈∇g
(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉

and for almost every t ∈ [0, T ] we have

d

dt

[
(f + g)

(
ẋ(t) + x(t)

) + 1

2η
‖ẋ(t)‖2

]
+

[
1

η
− β(3 + ηβ)

]
‖ẋ(t)‖2 ≤ 0. (60)

By integration we get

(f + g)
(
ẋ(T ) + x(T )

) + 1

2η
‖ẋ(T )‖2 +

[
1

η
− β(3 + ηβ)

] ∫ T

0
‖ẋ(t)‖2dt ≤

(f + g)
(
ẋ(0) + x0

) + 1

2η
‖ẋ(0)‖2. (61)

By using (57) and the fact that f +g is bounded from below and by taking into account that
T > 0 has been arbitrarily chosen, we obtain

ẋ ∈ L2([0,+∞);Rn). (62)

Due to (58), this further implies

ẍ ∈ L2([0,+∞);Rn). (63)

Furthermore, for almost every t ∈ [0, +∞) we have

d

dt

(‖ẋ(t)‖2) = 2〈ẋ(t), ẍ(t)〉 ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2.

By applying Lemma 3, it follows that limt→+∞ ẋ(t) = 0 and the proof of (a) is complete.
From (60), (57) and by using that T > 0 has been arbitrarily chosen, we get

d

dt

[
(f + g)

(
ẋ(t) + x(t)

) + 1

2η
‖ẋ(t)‖2

]
≤ 0

for almost every t ∈ [0,+∞). From Lemma 2 it follows that

lim
t→+∞

[
(f + g)

(
ẋ(t) + x(t)

) + 1

2η
‖ẋ(t)‖2

]

exists and it is a real number, hence from limt→+∞ ẋ(t) = 0 the conclusion follows.

For the following generalized subdifferential notions and their basic properties we refer
to [70, 80]. Let h : Rn → R ∪ {+∞} be a proper and lower semicontinuous function. If
x ∈ dom h, we consider the Fréchet (viscosity) subdifferential of h at x as the set

∂̂h(x) =
{
v ∈ R

n : lim inf
y→x

h(y) − h(x) − 〈v, y − x〉
‖y − x‖ ≥ 0

}
.

For x /∈ dom h we set ∂̂h(x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom h by

∂Lh(x) = {v ∈ R
n : ∃xk → x, h(xk) → h(x) and ∃vk ∈ ∂̂h(xk), vk → v as k → +∞},

while for x /∈ dom h, one takes ∂Lh(x) := ∅. Therefore ∂̂h(x) ⊆ ∂Lh(x) for each x ∈ R
n.
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Notice that in case h is convex, these subdifferential notions coincide with the convex
subdifferential, thus ∂̂h(x) = ∂Lh(x) = {v ∈ R

n : h(y) ≥ h(x) + 〈v, y − x〉 ∀y ∈ R
n} for

all x ∈ R
n.

The graph of the limiting subdifferential fulfills the following closedness criterion: if
(xk)k∈N and (vk)k∈N are sequences in R

n such that vk ∈ ∂Lh(xk) for all k ∈ N, (xk, vk) →
(x, v) and h(xk) → h(x) as k → +∞, then v ∈ ∂Lh(x).

The Fermat rule reads in this nonsmooth setting as follows: if x ∈ R
n is a local minimizer

of h, then 0 ∈ ∂Lh(x). We denote by

crit(h) = {x ∈ R
n : 0 ∈ ∂Lh(x)}

the set of (limiting)-critical points of h.
We define the limit set of the trajectory x as

ω(x) = {x ∈ R
n : ∃tk → +∞ such that x(tk) → x as k → +∞}.

Lemma 27 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(57). For x0 ∈ R

n, let x ∈ C1([0, +∞),Rn) be the unique global solution of (56). Then

ω(x) ⊆ crit(f + g).

Proof Let x ∈ ω(x) and tk → +∞ be such that x(tk) → x as k → +∞. From the
characterization of the prox operator we have

− 1

η
ẋ(tk) − ∇g(x(tk)) + ∇g

(
ẋ(tk) + x(tk)

) ∈ ∂f
(
ẋ(tk) + x(tk)

) + ∇g
(
ẋ(tk) + x(tk)

)

= ∂L(f + g)
(
ẋ(tk) + x(tk)

) ∀k ∈ N.(64)

Lemma 26(a) and the Lipschitz continuity of ∇g ensure that

− 1

η
ẋ(tk) − ∇g(x(tk)) + ∇g

(
ẋ(tk) + x(tk)

) → 0 as k → +∞ (65)

and
ẋ(tk) + x(tk) → x as k → +∞. (66)

We claim that
lim

k→+∞(f + g)
(
ẋ(tk) + x(tk)

) = (f + g)(x). (67)

Due to the lower semicontinuity of f it holds

lim inf
k→+∞ f

(
ẋ(tk) + x(tk)

) ≥ f (x). (68)

Further, since

ẋ(tk) + x(tk) = argmin
u∈Rn

[
f (u) + 1

2η

∥∥u − (
x(tk) − η∇g(x(tk))

)∥∥2
]

= argmin
u∈Rn

[
f (u) + 1

2η
‖u − x(tk)‖2 + 〈u − x(tk),∇g(x(tk))〉

]

we have the inequality

f
(
ẋ(tk) + x(tk)

) + 1

2η
‖ẋ(tk)‖2 + 〈ẋ(tk),∇g(x(tk))〉

≤ f (x) + 1

2η
‖x − x(tk)‖2 + 〈x − x(tk),∇g(x(tk))〉 ∀k ∈ N.
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Taking the limit as k → +∞ we derive by using again Lemma 26(a) that

lim sup
k→+∞

f
(
ẋ(tk) + x(tk)

) ≤ f (x),

which combined with (68) implies

lim
k→+∞ f

(
ẋ(tk) + x(tk)

) = f (x).

By using (66) and the continuity of g we conclude that (67) is true.
Altogether, from (64), (65), (66) and (67) and the closedness criteria of the limiting

subdifferential we obtain 0 ∈ ∂L(f + g)(x) and the proof is complete.

Lemma 28 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(57). For x0 ∈ R

n, let x ∈ C1([0,+∞),Rn) be the unique global solution of (56) and
consider the function

H : Rn × R
n → R ∪ {+∞}, H(u, v) = (f + g)(u) + 1

2η
‖u − v‖2.

Then the following statements are true:

(H1) for almost every t ∈ [0, +∞) it holds

d

dt
H

(
ẋ(t) + x(t), x(t)

) ≤ −
[

1

η
− (3 + ηβ)β

]
‖ẋ(t)‖2 ≤ 0

and
∃ lim

t→+∞ H
(
ẋ(t) + x(t), x(t)

) ∈ R;
(H2) for every t ∈ [0, +∞) it holds

z(t) :=
(

−∇g(x(t)) + ∇g
(
ẋ(t) + x(t)

)
, −1

η
ẋ(t)

)
∈ ∂LH

(
ẋ(t) + x(t), x(t)

)

and

‖z(t)‖ ≤
(

β + 1

η

)
‖ẋ(t)‖;

(H3) for x ∈ ω(x) and tk → +∞ such that x(tk) → x as k → +∞, we have H
(
ẋ(tk) +

x(tk), x(tk)
) → H(x, x) as k → +∞.

Proof (H1) follows from Lemma 26. The first statement in (H2) follows from the
characterization of the proximal operator and the relation

∂LH(u, v) = (
∂L(f + g)(u) + η−1(u − v)

) × {η−1(v − u)} ∀(u, v) ∈ R
n × R

n, (69)

while the second one is a consequence of the Lipschitz continuity of ∇g. Finally, (H3) has
been shown as intermediate step in the proof of Lemma 27.

Lemma 29 Assume that the hypotheses of Lemma 28 hold. Suppose that x is bounded. Then
the following statements are true:

(a) ω(ẋ + x, x) ⊆ crit(H) = {(u, u) ∈ R
n × R

n : u ∈ crit(f + g)};
(b) limt→+∞ dist

((
ẋ(t) + x(t), x(t)

)
, ω

(
ẋ + x, x

)) = 0;

(c) ω
(
ẋ + x, x

)
is nonempty, compact and connected;

(d) H is finite and constant on ω
(
ẋ + x, x

)
.
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Proof (a), (b) and (d) are direct consequences Lemma 26, Lemma 27 and Lemma 28.
Finally, (c) is a classical result from [64]. We also refer the reader to the proof of Theorem

4.1 in [4], where it is shown that the properties of ω(x) of being nonempty, compact and
connected are generic for bounded trajectories fulfilling limt→+∞ ẋ(t) = 0.

Remark 30 Suppose that η > 0 fulfills the inequality (57) and f + g is coercive, that is

lim‖u‖→+∞(f + g)(u) = +∞.

For x0 ∈ R
n, let x ∈ C1([0,+∞),Rn) be the unique global solution of (56). Then f + g is

bounded from below and x is bounded.
Indeed, since f + g is a proper, lower semicontinuous and coercive function, it follows

that infu∈Rn [f (u) + g(u)] is finite and the infimum is attained. Hence f + g is bounded
from below. On the other hand, from (61) it follows

(f + g)
(
ẋ(T ) + x(T )

) ≤ (f + g)
(
ẋ(T ) + x(T )

) + 1

2η
‖ẋ(T )‖2

≤ (f + g)
(
ẋ(0) + x0)

) + 1

2η
‖ẋ(0)‖2 ∀T ≥ 0.

Since the lower level sets of f +g are bounded, the above inequality yields the boundedness
of ẋ + x, which combined with limt→+∞ ẋ(t) = 0 delivers the boundedness of x.

The class of functions satisfying the Kurdyka-Łojasiewicz property plays a crucial role in
the asymptotic analysis of the dynamical system (56). For η ∈ (0,+∞], we denote by �η

the class of concave and continuous functions ϕ : [0, η) → [0, +∞) such that ϕ(0) = 0, ϕ

is continuously differentiable on (0, η), continuous at 0 and ϕ′(s) > 0 for all s ∈ (0, η). In
the following definition (see [9, 36]) we use also the distance function to a set, defined for
A ⊆ R

n as dist(x,A) = infy∈A ‖x − y‖ for all x ∈ R
n.

Definition 3 (Kurdyka-Łojasiewicz property) Let h : Rn → R ∪ {+∞} be a proper and
lower semicontinuous function. We say that h satisfies the Kurdyka-Łojasiewicz (KL) prop-
erty at x ∈ dom ∂Lh = {x ∈ R

n : ∂Lh(x) �= ∅}, if there exist η ∈ (0,+∞], a neighborhood
U of x and a function ϕ ∈ �η such that for all x in the intersection

U ∩ {x ∈ R
n : h(x) < h(x) < h(x) + η}

the following inequality holds

ϕ′(h(x) − h(x)) dist(0, ∂Lh(x)) ≥ 1.

If h satisfies the KL property at each point in dom ∂h, then h is called KL function.

The origins of this notion go back to the pioneering work of Łojasiewicz [68], where it
is proved that for a real-analytic function h : Rn → R and a critical point x ∈ R

n (that
is ∇h(x) = 0), there exists θ ∈ [1/2, 1) such that the function |h − h(x)|θ‖∇h‖−1 is
bounded around x. This corresponds to the situation when ϕ(s) = Cs1−θ , where C > 0. The
result of Łojasiewicz allows the interpretation of the KL property as a re-parametrization
of the function values in order to avoid flatness around the critical points. Kurdyka [66]
extended this property to differentiable functions definable in o-minimal structures. Further
extensions to the non-smooth setting can be found in [9, 33–35].
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One of the remarkable properties of the KL functions is their ubiquity in applications
(see [36]). To the class of KL functions belong semi-algebraic, real sub-analytic, semicon-
vex, uniformly convex and convex functions satisfying a growth condition. We refer the
reader to [8–10, 33–36] and the references therein for more on KL functions and illustrating
examples.

We come now to the main result of this section.

Theorem 31 Suppose that f + g is bounded from below and η > 0 fulfills the inequality
(57). For x0 ∈ R

n, let x ∈ C1([0,+∞),Rn) be the unique global solution of (56) and
consider the function

H : Rn × R
n → R ∪ {+∞}, H(u, v) = (f + g)(u) + 1

2η
‖u − v‖2.

Suppose that x is bounded and H is a KL function. Then the following statements are true:

(a) ẋ ∈ L1([0,+∞);Rn);
(b) there exists x ∈ crit(f + g) such that limt→+∞ x(t) = x.

Proof According to Lemma 29, we can choose an element x ∈ crit(f +g) such that (x, x) ∈
ω(ẋ + x, x). According to Lemma 28, it follows that

lim
t→+∞ H

(
ẋ(t) + x(t), x(t)

) = H(x, x).

We treat the following two cases separately.

I. There exists t ≥ 0 such that

H
(
ẋ(t) + x(t), x(t)

) = H(x, x).

Since from Lemma 28(H1) we have

d

dt
H

(
ẋ(t) + x(t), x(t)

) ≤ 0 ∀t ∈ [0,+∞),

we obtain for every t ≥ t that

H
(
ẋ(t) + x(t), x(t)

) ≤ H
(
ẋ(t) + x(t), x(t)

) = H(x, x).

Thus H
(
ẋ(t) + x(t), x(t)

) = H(x, x) for every t ≥ t . This yields by Lemma 28(H1)
that ẋ(t) = 0 for almost every t ∈ [t,+∞), hence x is constant on [t,+∞) and the
conclusion follows.

II. For every t ≥ 0 it holds H
(
ẋ(t) + x(t), x(t)

)
> H(x, x). Take � = ω(ẋ + x, x).

In virtue of Lemma 29(c) and (d) and since H is a KL function, there exist positive
numbers ε and η and a concave function ϕ ∈ �η such that for all

(x, y) ∈ {(u, v) ∈ R
n × R

n : dist((u, v),�) < ε}
∩{(u, v) ∈ R

n × R
n : H(x, x) < H(u, v) < H(x, x) + η} (70)

one has

ϕ′(H(x, y) − H(x, x)) dist((0, 0), ∂LH(x, y)) ≥ 1. (71)

Let t1 ≥ 0 be such that H
(
ẋ(t) + x(t), x(t)

)
< H(x, x) + η for all t ≥ t1. Since

limt→+∞ dist
((

ẋ(t) + x(t), x(t)
)
, �

)
= 0, there exists t2 ≥ 0 such that dist

((
ẋ(t) +
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x(t), x(t)
)
, �

)
< ε for all t ≥ t2. Hence for all t ≥ T := max{t1, t2},

(
ẋ(t) + x(t), x(t)

)

belongs to the intersection in (70). Thus, according to (71), for every t ≥ T we have

ϕ′(H
(
ẋ(t) + x(t), x(t)

) − H(x, x)
)

dist
(
(0, 0), ∂LH

(
ẋ(t) + x(t), x(t)

)) ≥ 1. (72)

By applying Lemma 28(H2) we obtain for almost every t ∈ [T , +∞)

(β + η−1)‖ẋ(t)‖ϕ′(H
(
ẋ(t) + x(t), x(t)

) − H(x, x)
)

≥ 1. (73)

From here, by using Lemma 28(H1) and that ϕ′ > 0 and

d

dt
ϕ
(
H

(
ẋ(t) + x(t), x(t)

) − H(x, x)
)

=

ϕ′(H
(
ẋ(t) + x(t), x(t)

) − H(x, x)
) d

dt
H

(
ẋ(t) + x(t), x(t)

)
,

we deduce that for almost every t ∈ [T , +∞) it holds

d

dt
ϕ
(
H

(
ẋ(t)+x(t), x(t)

)−H(x, x)
)

≤ −
(

β + η−1
)−1

[
1

η
− (3 + ηβ)β

]
‖ẋ(t)‖. (74)

Since ϕ is bounded from below, by taking into account (57), it follows ẋ ∈ L1([0,+∞);
R

n). From here we obtain that limt→+∞ x(t) exists and this closes the proof.

Since the class of semi-algebraic functions is closed under addition (see for example
[36]) and (u, v) �→ c‖u − v‖2 is semi-algebraic for c > 0, we can state the above result in
case f + g is semi-algebraic.

Remark 32 The construction of the function H , which we used in the above arguments in
order to derive a descent property, has been inspired by the decrease property obtained in
(60). Similar regularizations of the objective function of (55) have been considered also
in [45, 73], in the context of the investigation of non-relaxed forward-backward methods
involving inertial and memory effects in the nonconvex setting.

Remark 33 (i) We invite the reader to consult [41, Section 3.2] for results concerning
convergence rates of the trajectory, which are expressed by means of the Łojasiewicz
exponent.

(ii) The optimization problem (55) can be approached in this non-convex setting also by a
second order dynamical system of implicit-type

{
ẍ(t) + γ ẋ(t) + x(t) = proxηf

(
x(t) − η∇g(x(t))

)

x(0) = u0, ẋ(0) = v0,
(75)

where u0, v0 ∈ R
n and γ, η ∈ (0,+∞). A similar analysis can be carried out for this

dynamics too, see [46].

(iii) Finally, let us mention a recent contribution [51] related to a dynamical system
proposed and investigated in connection with block-structured optimization problems

inf
(x,y)∈Rn×Rm

[f (x) + g(y) + H(x, y)], (76)

where f, g are proper, lower-semicontinuous and H satisfies certain smoothness con-
ditions. The dynamics considered in [51] can be seen as a continuous counter-part of
the PALM method introduced in [36].

638 E.R. Csetnek



Acknowledgments The author is thankful to the handling editor and two reviewers for their comments
which improved the presentation of the manuscript.

Funding Information Open access funding provided by University of Vienna.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.0/.

References

1. Abbas, B., Attouch, H.: Dynamical systems and forward-backward algorithms associated with the sum
of a convex subdifferential and a monotone cocoercive operator. Optimization 64(10), 2223–2252 (2015)

2. Abbas, B., Attouch, H., Svaiter, B.F.: Newton-like dynamics and forward-backward methods for
structured monotone inclusions in Hilbert spaces. J. Optim. Theory Appl. 161(2), 331–360 (2014)

3. Alvarez, F.: On the minimizing property of a second order dissipative system in Hilbert spaces. SIAM J.
Control. Optim. 38(4), 1102–1119 (2000)

4. Alvarez, F., Attouch, H., Bolte, J., Redont, P.: A second-order gradient-like dissipative dynamical system
with Hessian driven damping. Application to optimization and mechanics. J. Math. Pures Appl. (9) 81(8),
747–779 (2002)

5. Antipin, A.S.: Minimization of convex functions on convex sets by means of differential equations.
(Russian) Differ. Uravnen. 30(9), 1475–1486 (1994). translation in Differential Equations 30(9), 1365–
1375 (1994)

6. Attouch, H.: Fast inertial proximal ADMM algorithms for convex structured optimization with linear
constraint, https://hal.archives-ouvertes.fr/hal-02501604, hal-02501604 (2020)

7. Attouch, H., Alvarez, F.: The Heavy Ball with Friction Dynamical System for Convex Constrained Min-
imization Problems. In: Optimization (Namur, 1998), Lecture Notes in Economics and Mathematical
Systems, vol. 481, pp. 25–35. Springer, Berlin (2000)

8. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving
analytic features. Math. Programm. 116(1-2) Series B, 5–16 (2009)

9. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection meth-
ods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper.
Res. 35(2), 438–457 (2010)

10. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-algebraic and tame prob-
lems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math.
Programm. 137(1-2) Series A, 91–129 (2013)

11. Attouch, H., Cabot, A.: Convergence of a relaxed inertial forward-backward algorithm for structured
monotone inclusions. Appl. Math. Optim. 80(3), 547—598 (2019)

12. Attouch, H., Chbani, Z., Fadili, J., Riahi, H.: First-order optimization algorithms via inertial systems
with Hessian driven damping. arXiv:1907.10536v1 (2019)

13. Attouch, H., Chbani, Z., Peypouquet, J., Redont, P.: Fast convergence of inertial dynamics and algorithms
with asymptotic vanishing viscosity. Mathematical Programming 168(1-2), Ser B, 123–175 (2018)

14. Attouch, H., Chbani, Z., Riahi, H.: Rate of convergence of the Nesterov accelerated gradient method in
the subcritical case α ≤ 3. ESAIM: Control Optim Calc. Var., 25 (2019)

15. Attouch, H., Chbani, Z., Riahi, H.: Fast convex optimization via a third-order in time evolution equation,
Optimization, online first

16. Attouch, H., Czarnecki, M.-O.: Asymptotic behavior of coupled dynamical systems with multiscale
aspects. J. Differ. Equ. 248(6), 1315–1344 (2010)

17. Attouch, H., Goudou, X., Redont, P.: The heavy ball with friction method. I. The continuous dynamical
system: global exploration of the local minima of a real-valued function by asymptotic analysis of a
dissipative dynamical system. Commun. Contemp. Math. 2(1), 1–34 (2000)

639Continuous Dynamics Related to Monotone Inclusions and Non-Smooth...

http://creativecommonshorg/licenses/by/4.0/
https://hal.archives-ouvertes.fr/hal-02501604
http://arxiv.org/abs/1907.10536v1
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51. Boţ, R.I., Kanzler, L.: A forward-backward dynamical approach for nonsmooth problems with block
structure coupled by a smooth function, arXiv:2001.10051 (2020)
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Dérivées Partielles, Éditions du Centre National de la Recherche Scientifique, Paris, pp. 87–89 (1963)

69. Malitsky, Y., Tam, M.K.: A Forward-Backward splitting method for monotone inclusions without
cocoercivity. SIAM J. Optim. 30(2), 1451–1472 (2020)

70. Mordukhovich, B.: Variational Analysis and Generalized Differentiation I: Basic Theory II: Applica-
tions, Springer, Berlin (2006)

71. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence
o(1/k2). Doklady AN SSSR (transl. Sov. Math. Docl.) 269, 543–547 (1983)

72. Nesterov, Y.: Introductory Lectures on Convex Optimization: a Basic Course. Kluwer Academic
Publishers, Dordrecht (2004)

73. Ochs, P., Chen, Y., Brox, T., Pock, T.: Ipiano: Inertial proximal algorithm for non-convex optimization.
SIAM J. Imaging Sci. 7(2), 1388–1419 (2014)

74. Ogura, N., Yamada, I.: Non-strictly convex minimization over the fixed point set of an asymptotically
shrinking nonexpansive mapping. Numer. Funct. Anal. Optim. 23(1-2), 113–137 (2002)

641Continuous Dynamics Related to Monotone Inclusions and Non-Smooth...

http://arxiv.org/abs/1905.08290
http://arxiv.org/abs/1911.04758
http://arxiv.org/abs/2001.10051
http://arxiv.org/abs/2004.00818


75. Peypouquet, J., Sorin, S.: Evolution equations for maximal monotone operators: asymptotic analysis in
continuous and discrete time. J. Convex Anal. 17(3-4), 1113–1163 (2010)

76. Polyak, B.T.: Introduction to Optimization, (Translated from the Russian) Translations Series in
Mathematics and Engineering. Optimization Software, Inc., Publications Division, New York (1987)

77. Rieger, J., Tam, M.K.: Backward-Forward-Reflected-Backward Splitting for three operator monotone
inclusions. Applied Mathematics and Computation, 381 (2020)

78. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33(1), 209–
216 (1970)

79. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control. Optim. 14(5),
877–898 (1976)

80. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis Fundamental Principles of Mathematical Sciences,
vol. 317. Springer, Berlin (1998)

81. Shefi, R., Teboulle, M.: Rate of convergence analysis of decomposition methods based on the proximal
method of multipliers for convex optimization. SIAM J. Optim. 24(1), 269–297 (2014)

82. Shi, B., Du, S.S., Su, W.J., Jordan, M.I.: Acceleration via symplectic discretization of high-resolution
differential equations. arXiv:1902.03694v2 (2019)

83. Simon, L.: Asymptotics for a class of nonlinear evolution equations, with applications to geometric
problems. Ann. Math. (2) 118, 525–571 (1983)

84. Simons, S.: From Hahn-Banach to Monotonicity. Springer, Berlin (2008)
85. Sontag, E.D.: Mathematical control theory. Deterministic finite-dimensional systems, 2nd Edn, vol. 6.

Texts in Applied Mathematics. Springer, New York (1998)
86. Su, W., Boyd, S., Candès, E.J.: A differential equation for modeling Nesterov’s accelerated gradient

method: theory and insights. J. Mach. Learn. Res. 17(153), 1–43 (2016)
87. Tseng, P.: Applications of a splitting algorithm to decomposition in convex programming and variational

inequalities. SIAM J. Control. Optim. 29(1), 119–138 (1991)
88. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J.

Control. Optim. 38, 431–446 (2000)
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