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Abstract
The paper addresses continuous-time nonlinear programming problems with equality and
inequality constraints. First and second order necessary optimality conditions are obtained
under a constant rank type constraint qualification. The first order necessary conditions are
of Karush-Kuhn-Tucker type.

Keywords Nonlinear programming · Continuous-time programming · Necessary
optimality conditions · Constraint qualifications · Constant rank condition

Mathematics Subject Classification (2010) 90C30 · 90C46

1 Introduction

The beginnings of continuous-time programming date from 1953 when Bellman studied
in his article the so-called “bottleneck processes”. He considered a certain dynamic gen-
eralization of an ordinary linear programming problem. See Bellman [7]. Since then, this
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class of problems has received important attention from the scientific community. Rigorous
mathematical treatment has been given to it and the theory has been developed to include
optimality conditions and duality in linear and nonlinear cases. See, for example, Farr and
Hanson [11], Hanson and Mond [12], Levinson [14], Tyndall [30] and Zangwill [37].

Necessary optimality conditions of the Karush-Kuhn-Tucker (KKT) type were given, for
instance, in Abrham and Buie [1], Brandão et al. [8], Hanson and Mond [12], Reiland and
Hanson [27], Reiland [26] and Zalmai [35].

Sufficient optimality conditions can be found in Farr and Hanson [11], de Oliveira and
Rojas-Medar [20, 21], de Oliveira et al. [22], Rojas-Medar et al. [28] and Zalmai [36],
among others.

Numerical methods for solving this kind of problems were presented, for example, in
Andreani et al. [3], Pullan [25], Weiss [31], Wen et al. [32] and Wu [33].

The Generalized Gordan’s Transposition Theorem given in [34] was used in the proof
of various results in some of the works cited above, such as [8], [20–22] and [35, 36].
It should be mentioned that the validity of such a theorem was questioned in [6], so that
the proof of some results in the previously mentioned papers are not valid. Nevertheless,
they are validated by changing Gordan’s Theorem by another transposition theorem, the
alternative theorem given in [6], for example. New assumptions may be necessary, however,
since the alternative theorem provided in [6] is valid under a regularity condition along with
a solvability assumption while such assumptions were absent in Gordan’s Theorem in [34].

In this paper, a continuous-time nonlinear programming problem with equality and
inequality constraints is considered. First and second order necessary optimality conditions
are obtained under a constant rank constraint qualification. It is worth mentioning that the
treating of equality constrained problems is not common in the literature for continuous-
time programming. A fundamental tool in order to deal with equality constraints is a
uniform implicit function theorem, given in de Pinho and Vinter [24]. Second order con-
ditions are also not common in the literature for continuous-time programming. The first
order necessary conditions are of Karush-Kuhn-Tucker type and are obtained under, as far as
we know, the weakest assumptions when compared to other studies in the literature. More-
over, we show that the constant rank constraint qualification is a second order constraint
qualification, generalizing a result in Andreani et al. [2] for the continuous-time context.

Generally speaking, KKT type optimality conditions are obtained in an optimization
problem by means of a regularity (or constraint qualification) condition. In the specific
case of continuous-time problems, Reiland [26] used a Zangwill type condition and Zalmai
[36] made use of a Slater condition, for instance. Till recently, some classical constraint
qualifications from mathematical programming, such as linear independence, Mangasarian-
Fromovitz and constant rank conditions, had not been studied in the continuous-time
context. In Monte and de Oliveira [17, 18], the authors established KKT conditions under a
linear independence constraint qualification and under a Mangasarian-Fromovitz constraint
qualification, respectively. Here we propose a constant rank condition.

It is important to emphasize that the constraint qualifications encountered, for example,
in Reiland [26] or Zalmai [35] may be difficult to verify (even for finite dimensions) while
the constant rank condition proposed here is less restrictive. In general, problems with linear
constraints and problems in which the Jacobian constraint matrix has full rank satisfy such a
condition. Furthermore, in [26], in addition to the Zangwill type condition, to apply a gener-
alized Farkas’ lemma [10], Reiland had assumed that the kernel of a given operator (between
infinite dimensional spaces) has finite dimensions and the image of the same operator is a
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closed subspace. A Slater regularity condition was also required. In [35], Zalmai made use
of the Generalized Gordan’s Theorem (see comments above). The constraint qualification
given in Monte and de Oliveira [17] is a full rank type condition, so that it is stronger than
the constant rank condition proposed here. The Mangasarian-Fromovitz constraint qualifi-
cation, which was extended to the continuous-time context in Monte and de Oliveira [18], is
known to be neither stronger nor weaker than the constant rank one. Nevertheless, in [18],
to apply the alternative theorem given in [6], an extra regularity condition is assumed along
with the Mangasarian-Fromovitz constraint qualification. Therefore, the necessary optimal-
ity conditions furnished here are obtained under, to the best of our knowledge, the weakest
assumptions known at the present time.

Zalmai pointed out in [35, 36] that continuous-time programming subsumes some spe-
cial instances of constrained variational and optimal control problems. On the other hand,
every continuous-time programming problem can be seen as an optimal control problem in
which there is no state variable, the dynamics are absent and the constraints on the con-
trol are given in the functional form. Therefore, optimality conditions for continuous-time
programming can be obtained from those for optimal control. For example, necessary opti-
mality conditions of first and second order can be found in Arutyunov and Vereshchagina
[5]. The optimality conditions furnished in [5] are derived by assuming that the functional
constraints on the control variable either obey a regularity condition of full rank type or
are affine. This assumption is, then, stronger than the constant rank constraint qualification
presented in this work. As far as we know, there are no necessary optimality conditions for
optimal control problems (or continuous-time problems) using the constant rank constraint
qualification in the literature.

Recently, new constraint qualifications have appeared in optimal control theory. Con-
sidering a non-smooth optimal control problem of an implicit system and its particular
cases, Clarke and Pinho [9] obtained necessary optimality conditions using the calibrated
constraint qualification. Li and Ye [15] proposed the so-called weak basic constraint qual-
ification and obtained necessary optimality conditions for non-smooth optimal control
problems with mixed state and control constraints (in the autonomous case). An additional
assumption is imposed, namely, the calmness of a certain perturbed constraint mapping.
Although the calibrated constraint qualification can be applied in the non-autonomous case,
it is stronger than the weak basic constraint qualification plus the calmness. In Li and
Ye [16], the authors used the weak basic constraint qualification along with the calmness
and derived necessary optimality conditions for optimal control problems with implicit
and semi-explicit control systems (in which the dynamic system is autonomous). In that
paper, various scenarios are presented where the weak basic constraint qualification plus the
calmness are satisfied; for example when the constant rank and the weak basic constraint
qualifications are both valid. Nevertheless, it is not possible to consider the weak basic
constraint qualification when there is no state variable and the dynamics are absent. Then,
the results in [15, 16] cannot be applied to the continuous-time problems considered here.
Regarding the calibrated constraint qualification, even though it is one of the most general
ones in the non-smooth setting, it is equivalent to the full rank condition in the smooth case.

The paper is organized as follows. Some preliminaries are given in Section 2. In
Section 3, three important technical lemmas are proved. These lemmas will be used in later
sections. The main results are contained in the last two sections: Section 4 is devoted to
problems with equality constraints only and Section 5 to the general case. Moreover, some
illustrative examples are given in Sections 4 and 5.
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2 Preliminaries

The paper deals with the continuous-time nonlinear programming problem posed as

maximize P(z) =
∫ T

0
φ(z(t), t) dt

subject to h(z(t), t) = 0 a.e. t ∈ [0, T ],
g(z(t), t) ≥ 0 a.e. t ∈ [0, T ],
z ∈ L∞([0, T ];Rn),

(CTP)

where φ : Rn × [0, T ] → R, h : Rn × [0, T ] → R
p , g : Rn × [0, T ] → R

m are given
functions.

Set the index sets as I = {1, . . . , p} and J = {1, . . . , m}. All vectors are column vectors.
A prime denotes transposition. All integrals are in the Lebesgue sense. Inequality signs
between vectors should be read component-wise.

The feasible set of problem (CTP) is denoted by

� = {z ∈ L∞([0, T ];Rn) : h(z(t), t) = 0, g(z(t), t) ≥ 0 a.e. t ∈ [0, T ]}.
A feasible solution z̄ ∈ � is said to be a local optimal solution for (CTP) if there exists

ε > 0 such that P(z̄) ≥ P(z) for all z ∈ � satisfying z(t) ∈ z̄(t) + εB̄ a.e. t ∈ [0, T ],
where B̄ denotes the closed unit ball with center at the origin in R

n.
Given ε > 0 and a reference solution z̄ ∈ �, consider the following hypotheses:

(H1) φ(z, ·) is measurable for each z; φ(·, t) is twice continuously differentiable on z̄(t)+
εB̄ a.e. t ∈ [0, T ]; there exists Kφ > 0 such that

‖∇φ(z̄(t), t)‖ ≤ Kφ a.e. t ∈ [0, T ];
(H2) h(z, ·) and g(z, ·) are measurable for each z; h(·, t) and g(·, t) are twice continu-

ously differentiable on z̄(t) + εB̄ a.e. t ∈ [0, T ]; g(z̄(·), ·) is essentially bounded in
[0, T ];

(H3) There exists an increasing function θ : (0,∞) → (0,∞), θ(s) ↓ 0 as s ↓ 0, such
that for all z̃, z ∈ z̄(t) + εB̄,

‖∇(h, g)(z̃, t) − ∇(h, g)(z, t)‖ ≤ θ(‖z̃ − z‖) a.e. t ∈ [0, T ];
There exists K0 > 0 such that

‖∇(h, g)(z̄(t), t)‖ ≤ K0 a.e. t ∈ [0, T ].
Later in Section 4, the following auxiliary result about necessary optimality conditions

for the unconstrained continuous-time problem will be needed, namely,

maximize P(z) =
∫ T

0
φ(z(t), t) dt

subject to z ∈ L∞([0, T ];Rn).
(UP)

Proposition 1 Let z̄ be a local optimal solution of (UP) and assume that (H1) is valid.
Then,

∇φ(z̄(t), t) = 0 a.e. t ∈ [0, T ]
and ∫ T

0
γ (t)′∇2φ(z̄(t), t)γ (t) dt ≤ 0 ∀γ ∈ L∞([0, T ];Rn).
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Proof The proof is standard from calculus in Banach spaces, based on Taylor expansions
of the functional P by means of the Fréchet derivative. It can be found in Monte and de
Oliveira [17].

Let {Fa : R
n → R

n}a∈A be a family of maps parameterized by points a in a subset
A ⊂ R

k . If ∇Fa is nonsingular at some point x0 for all a ∈ A, one knows from the classic
inverse mapping theorem that, for each a, there exists some neighborhood of x0 in which
Fa is smoothly invertible. The following uniform inverse mapping theorem (de Pinho and
Vinter [24], Proposition 4.1) gives conditions under which the same neighbourhood of x0
can be chosen for all a ∈ A. Its corollary, the uniform implicit function theorem (de Pinho
and Vinter [24], Corollary 4.2), will play a fundamental role here in the proof of the results
in Sections 4 and 5. The theorem itself will be used in the proof of an important technical
lemma in the next section.

Theorem 1 (Uniform Inverse Mapping) Consider a set A ⊂ R
k , a number α > 0, n-

vectors x0 and y0, and a family of functions {Fa : Rn → R
n}a∈A satisfying y0 = Fa(x0)

for all a ∈ A. It is assumed that:

(i) Fa is continuously differentiable on x0 + αB for all a ∈ A;
(ii) there exists a monotone increasing function θ : (0,∞) → (0,∞), with θ(s) ↓ 0 as

s ↓ 0, such that

‖∇Fa(x) − ∇Fa(x̃)‖ ≤ θ(‖x − x̃‖) ∀x, x̃ ∈ x0 + αB, a ∈ A;
(iii) ∇Fa(x0) is nonsingular for each a ∈ A and there exists c > 0 such that

‖[∇Fa(x0)]−1‖ ≤ c ∀a ∈ A.

Then there exist numbers ε ∈ (0, α) and δ > 0, and a family of continuously differentiable
functions {Ga : y0 + δB → x0 + αB}a∈A which are Lipschitz continuous with a common
Lipschitz constant K such that

Fa(Ga(y)) = y ∀y ∈ y0 + δB, a ∈ A,

Ga(Fa(x)) = x ∀x ∈ x0 + εB, a ∈ A.

The numbers ε and δ depend only on α, θ(·) and c. Furthermore, if A is a Borel set and
a → Fa(x) is Borel measurable for each x ∈ x0+αB, then a → Ga(y) is Borel measurable
for each y ∈ y0 + δB.

Corollary 1 (Uniform Implicit Function Theorem) Consider a set A ⊂ R
k , a number

α > 0, a family of functions {ψa : Rm × R
n → R

n}a∈A, and a point (u0, v0) ∈ R
m × R

n

such that ψa(u0, v0) = 0 for all a ∈ A. Assume that:

(i) ψa is continuously differentiable on (u0, v0) + αB for all a ∈ A;
(ii) there exists a monotone increasing function θ : (0,∞) → (0,∞), with θ(s) ↓ 0 as

s ↓ 0, such that

‖∇ψa(ũ, ṽ) − ∇ψa(u, v)‖ ≤ θ(‖(ũ, ṽ) − (u, v)‖)
for all a ∈ A, (ũ, ṽ), (u, v) ∈ (u0, v0) + αB;

(iii) ∇vψa(u0, v0) is nonsingular for each a ∈ A and there exists c > 0 such that

‖[∇vψa(u0, v0)]−1‖ ≤ c ∀a ∈ A.
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Then there exist δ ≥ 0 and a family of continuously differentiable functions {φa : u0+δB →
v0 +αB}a∈A which are Lipschitz continuous with a common Lipschitz constant K such that

v0 = φa(u0) ∀a ∈ A,

ψa(u, φa(u)) = 0 ∀u ∈ u0 + δB, a ∈ A,

∇uφa(u0) = −[∇vψa(u0, v0)]−1∇uψa(u0, v0) ∀a ∈ A.

The numbers δ and k depend only on θ(·), c and α. Furthermore, if A is a Borel set and
a → ψa(u, v) is a measurable Borel function for each (u, v) ∈ (u0, v0) + αB, then a →
φa(u) is a measurable Borel function for each u ∈ u0 + δB.

Remark 1 If it is assumed that ψa is twice continuously differentiable on (u0, v0)+αB, by
analyzing the proof provided by de Pinho and Vinter [24] one can deduce that φa is twice
continuously differentiable as well.

3 Technical Lemmas

In this section, some auxiliary results are given and proved. They will be used to establish
the main results.

Lemma 1 Consider a subset A ⊂ R
k and a family of p × p matrices given by {Ma}a∈A. If

there exists K,L > 0 such that

det(Ma) ≥ K and ‖Ma‖ ≤ L

for all a ∈ A, then

‖[Ma]−1‖ ≤ C ∀a ∈ A,

for some C > 0.

Proof The proof which is based on the singular value decomposition is straightforward. It
can be found in Monte and de Oliveira [17].

Next we have some lemmas which are continuous-time versions of Lemmas 1 and 2 in
Andreani et al. [4]. They are a consequence of the uniform inverse mapping theorem.

Lemma 2 Consider a set A ⊂ R
k , a number α > 0, n-vectors x0 and y0, and a family of

functions {Fa = (f a
1 , . . . , f a

n ) : Rn → R
n}a∈A satisfying y0 = Fa(x0) for all a ∈ A and

all the assumptions of Theorem 1. Let {f a : Rn → R}a∈A be a second family of functions
which are continuously differentiable on x0 + αB for all a ∈ A. Assume that, for each
a ∈ A, ∇f a(x) is a linear combination of ∇f a

1 (x), . . . ,∇f a
r (x) for all x ∈ x0 + αB, for

some integer 0 < r ≤ n. Then there exists δ > 0 such that ϕa : y0 + δB → R given by

ϕa(u) = f a(F−1
a (u)), a ∈ A, (1)

satisfies

∂ϕa

∂uj

(u) = 0 ∀u ∈ y0 + δB, j = r + 1, . . . , n, a ∈ A. (2)
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Proof By Theorem 1, there exist 0 < ε < α and δ > 0 and a family of continuously
differentiable functions {Ga = F−1

a : y0 + δB → x0 + εB}a∈A such that, if F−1
a (u) =

(ga
1 (u), . . . , ga

n(u)), then

u = (Fa ◦ F−1
a )(u) = Fa(g

a
1 (u), . . . , ga

n(u))

= (f a
1 (ga

1 (u), . . . , ga
n(u)), . . . , f a

n (ga
1 (u), . . . , ga

n(u))),

so that
f a

q (ga
1 (u), . . . , ga

n(u)) = uq, q = 1, . . . , n, a ∈ A. (3)

Using the chain rule in (1), one has, for u ∈ y0 + δB,

∂ϕa

∂uj

(u) =
n∑

i=1

∂f a

∂xi

(F−1
a (u))

∂ga
i

∂uj

(u), j = 1, . . . , n, a ∈ A. (4)

By hypothesis, for each x ∈ x0 + αB and a ∈ A, there exist scalars λa
1(x), . . . , λa

r (x) such
that

∇f a(x) =
r∑

q=1

λa
q(x)∇f a

q (x).

So,
∂f a

∂xi

(x) =
r∑

q=1

λa
q(x)

∂f a
q

∂xi

(x), x ∈ x0 + αB, i = 1, . . . , n, a ∈ A. (5)

Replacing (5) in (4), one gets

∂ϕa

∂uj

(u) =
n∑

i=1

⎡
⎣ r∑

q=1

λa
q(F−1(u))

∂f a
q

∂xi

(F−1(u))

⎤
⎦ ∂ga

i

∂uj

(u)

=
r∑

q=1

λa
q(F−1(u))

[
n∑

i=1

∂f a
q

∂xi

(F−1(u))
∂ga

i

∂uj

(u)

]
.

For q ∈ {1, . . . , r} and j ∈ {r + 1, . . . , n}, by (3), one has

0 = ∂

∂uj

uq = ∂

∂uj

(
f a

q (ga
1 (u), . . . , ga

n(u))
)

=
n∑

i=1

∂f a
q

∂xi

(F−1(u))
∂ga

i

∂uj

(u).

Therefore, one concludes that

∂ϕa

∂uj

(u) = 0, j = r + 1, . . . , n, a ∈ A.

Lemma 3 Consider a set A ⊂ R
k , a number α > 0, n-vectors x0 and y0, and a family of

functions {F̃a = (f a
1 , . . . , f a

r ) : Rn → R
r }a∈A, 0 < r ≤ n, satisfying F̃a(x0) = z0 for all

a ∈ A, where y0 = (z0, w0) ∈ R
r × R

n−r . Suppose that the following conditions hold:

(a) F̃a is continuously differentiable on x0 + αB for all a ∈ A;
(b) There exists θ : (0,∞) → (0,∞), θ(s) ↓ 0 when s ↓ 0, such that

‖∇F̃a(x) − ∇F̃a(x̄)‖ ≤ θ(‖x − x̄‖),
for all x, x̄ ∈ x0 + αB, a ∈ A; there exists K̃ > 0 such that

‖∇F̃a(x0)‖ ≤ K̃, a ∈ A;
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(c) There exists K > 0 such that

det{[∇F̃a(x0)][∇F̃a(x0)]′} ≥ K, a ∈ A.

Then there exists a family of continuously differentiable functions {F̂a : Rn → R
n−r }a∈A

such that Fa = (F̃a, F̂a) satisfies (i) Fa(x0) = y0 for all a ∈ A; and (ii) all assumptions of
Theorem 1.

Proof For each a ∈ A, let Ma be a matrix whose columns form an orthonormal basis for
the orthogonal complement to the subspace generated by the rows of ∇F̃a(x0).

For each a ∈ A, define F̂a : Rn → R
n−r and Fa : Rn → R

n respectively as

F̂a(x) = Ma
′(x − x0) + w0 and Fa(x) = (F̃a(x), F̂a(x)).

Then,
Fa(x0) = (F̃a(x0), F̂a(x0)) = (z0, w0) = y0, a ∈ A,

and
∇Fa(x)′ = [∇F̃a(x)′ ∇F̂a(x)′] = [∇F̃a(x)′ Ma] ∀x, a ∈ A.

Moreover,

(i) From assumption (a) and the definition of F̂a , it follows that Fa is continuously
differentiable on x0 + αB for all a ∈ A;

(ii) From (b), for x, x̄ ∈ x0 + αB one has

‖∇Fa(x) − ∇Fa(x̄)‖ = ‖∇F̃a(x) − F̃a(x̄)‖ ≤ θ(‖x − x̄‖),
where θ : (0,∞) → (0,∞), θ(s) ↓ 0 when s ↓ 0;

(iii) By construction, ‖∇F̂a(x0)‖ = ‖Ma
′‖ = 1. Thence,

‖∇Fa(x0)‖ =
∥∥∥∥
[ ∇F̃a(x0)

Ma
′

]∥∥∥∥ ≤
√

‖∇F̃a(x0)‖2 + ‖Ma
′‖2 ≤

√
K̃2 + 1.

Also by construction,

det([∇Fa(x0)][∇Fa(x0)]′) = det([∇F̃a(x0)][∇F̃a(x0)]′) ≥ K, a ∈ A,

implying that det(∇Fa(x0)) ≥ √
K > 0, a ∈ A. Therefore, ∇Fa(x0) is nonsingular.

It follows, by Lemma 1, that there exists M > 0 such that

‖[∇Fa(x0)]−1‖ ≤ M, a ∈ A.

Thus, the family {Fa}a∈A satisfies all the assumptions of Theorem 1.

Lemma 4 Consider a setA ⊂ R
k , a number α > 0, n-vectors x0 and y0 ∈ R

n, and families
of functions {f a : Rn → R}a∈A and {F̃a = (f a

1 , . . . , f a
r ) : Rn → R}a∈A, 0 < r ≤ n,

satisfying F̃a(x0) = z0 for all a ∈ A, where y0 = (z0, w0) ∈ R
r × R

n−r . Assume that
f a is continuously differentiable on x0 + αB for all a ∈ A, and that {F̃a}a∈A satisfies
assumptions (a)-(c) of Lemma 3. In addition, assume that ∇f a(x) is a linear combination
of ∇f a

1 (x), . . . ,∇f a
r (x) for all a ∈ A and all x ∈ x0 + αB. Specifically, for x = x0,

∇f a(x0) =
r∑

i=1

λa
i ∇f a

i (x0), a ∈ A.

Then there exist σ, ρ > 0 and a family of continuously differentiable functions {χa : z0 +
ρB → R}a∈A such that for all x ∈ x0 + σB and each a ∈ A,

(f a
1 (x), . . . , f a

r (x)) = F̃a(x) ∈ z0 + ρB
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and

f a(x) = χa(F̃a(x)) = χa(f a
1 (x), . . . , f a

r (x)).

The numbers σ and ρ depend only on α, θ and K̃,K . Furthermore,

∂χa

∂ui

(F̃a(x0)) = λa
i , i = 1, . . . , r, a ∈ A.

Proof By Lemma 3, for each a ∈ A, one can define n − r functions f a
r+1, . . . , f

a
n in

such a way that Fa = (F̃a, F̂a) = (f a
1 , . . . , f a

r , f a
r+1, . . . , f

a
n ) satisfies the hypotheses of

Lemma 2. Then, by (2), the function ϕa as defined in (1) does not depend on the variables
ur+1, . . . , un, for all a ∈ A. Provided f a

1 , . . . , f a
n are continuous for all a ∈ A, there exist

open balls x0 + σB ⊂ x0 + αB and (z0 + ρ1B) × (w0 + ρ2B) ⊂ (z0, w0) + δB = y0 + δB

such that

(f a
1 (x), . . . , f a

r (x)) = F̃a(x) ∈ z0 + ρ1B ∀x ∈ x0 + σB. (6)

For each a ∈ A, define χa : z0 + ρ1B → R as

χa(u) = ϕa(u, F̂a(x0)) = ϕa(u1, . . . , ur , f
a
r+1(x0), . . . , f

a
n (x0)).

Clearly, χa is continuously differentiable for all a ∈ A. Putting ρ = ρ1, using (6) and
(1)–(2), one has for all x ∈ x0 + σB and each a ∈ A that

(f a
1 (x), . . . , f a

r (x)) = F̃a(x) ∈ z0 + ρB

and

χa(F̃a(x)) = χa(f a
1 (x), . . . , f a

r (x))

= ϕa(f a
1 (x), . . . , f a

r (x), f a
r+1(x0), . . . , f

a
n (x0))

= ϕa(f a
1 (x), . . . , f a

r (x), f a
r+1(x), . . . , f a

n (x))

= ϕa(Fa(x)) = f a(x).

From f a(x) = χa(F̃a(x)) = χa(f a
1 (x), . . . , f a

r (x)) one gets

∇f a(x) =
r∑

i=1

∂χa

∂ui

(F̃a(x))∇f a
i (x), x ∈ x0 + σB.

On the other hand,

∇f a(x0) =
r∑

i=1

λa
i ∇f a

i (x0), a ∈ A,

and, by assumption (c), ∇f a
1 (x0), . . . ,∇f a

r (x0) are linearly independent for all a ∈ A. It
follows that

∂χa

∂uj

(F̃a(x0)) = λa
j , j = 1, . . . , r, a ∈ A.
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4 Optimality Conditions for Problems with Equality Constraints

In this section, the continuous-time programming problem with equality constraints is
regarded:

maximize P(z) =
∫ T

0
φ(z(t), t) dt

subject to h(z(t), t) = 0 a.e. t ∈ [0, T ],
z ∈ L∞([0, T ],

(PEC)

where φ : Rn × [0, T ] → R and h : Rn × [0, T ] → R
p .

We will establish first and second order necessary optimality conditions for (PEC) under
the following constant rank condition.

Definition 1 The constant rank constraint qualification (CRCQ) for the problems with
equality constraints is said to be satisfied at z̄ ∈ � if there exists ε > 0 such that ∇h(z, t)

has constant rank on z̄(t) + εB a.e. t ∈ [0, T ].

Remark 2 Analogous to the classical constant rank constraint qualification given by Janin
[13], if one assumes that for all I ⊂ {1, . . . , p} the set {∇hi(z, t)}i∈I has constant rank on
z̄(t) + εB a.e. t ∈ [0, T ], then (CRCQ) given in Definition 1 does hold.

Let us assume that (CRCQ) holds at z̄ ∈ �. Then, rank(∇h(z̄(t), t)) = r a.e. t ∈ [0, T ]
for some positive constant r , and it is clear that there exists an index subset, say {i1, . . . , ir },
such that, if

ϒ(t) := [∇hi1(z̄(t), t) · · · ∇hir (z̄(t), t)]′ a.e. t ∈ [0, T ],
then

det{[ϒ(t)][ϒ(t)]′} �= 0 a.e. t ∈ [0, T ]. (7)

Nevertheless, in the proof of the main result in this section, we will apply Lemma 4, and
condition (7) does not allow the application of such a lemma. See condition (c) of the lemma.
We will need to further assume that det{[ϒ(t)][ϒ(t)]′} is uniformly bounded from below
almost everywhere in [0, T ].
(H4) Let z̄ ∈ �. If r = rank(∇h(z̄(t), t)) a.e. t ∈ [0, T ], there exist an index subset, say

{i1, . . . , ir }, and a constant C > 0 such that

det{[ϒ(t)][ϒ(t)]′} ≥ C a.e. t ∈ [0, T ],
where

ϒ(t) = [∇hi1(z̄(t), t) · · · ∇hir (z̄(t), t)]′.
Before we state the KKT type optimality conditions, let us give a simple example.

Example 1 Consider the system{
h1(z(t), t) = tz1(t) + t2z2(t) − t3z3(t) = 0 a.e. t ∈ [0, 1],
h2(z(t), t) = −z1(t) − tz2(t) + t2z3(t) = 0 a.e. t ∈ [0, 1],

and z̄(t) = (0, 0, 0) a.e. t ∈ [0, 1]. Note that

∇h(z(t), t) =
[

t t2 −t3

−1 −t t2

]
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has rank 1 in any open neighborhood of origin in R
3 a.e. t ∈ [0, 1]. By choosing ϒ(t) =

[−1 − t t2] a.e. t ∈ [0, 1], one has det{[ϒ(t)][ϒ(t)]′} ≥ 1 a.e. t ∈ [0, 1]. Thus, both
(CRCQ) and (H4) are satisfied at z̄ ≡ 0.

If h2 is changed to h1/2, then (CRCQ) is valid, but det{[ϒ(t)][ϒ(t)]′} is not uniformly
bounded below on [0, 1] for any choice of ϒ .

Theorem 2 Let z̄ be a local optimal solution of (PEC). Assume that (H1)-(H4) and (CRCQ)
hold. Then, there exists u ∈ L∞([0, T ];Rp) such that

∇φ(z̄(t), t) +
p∑

i=1

ui(t)∇hi(z̄(t), t) = 0 a.e. t ∈ [0, T ] (8)

and ∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

p∑
i=1

ui(t)∇2hi(z̄(t), t)
]
γ (t) dt ≤ 0 ∀γ ∈ N, (9)

where

N = {γ ∈ L∞([0, T ];Rn) : ∇hi(z̄(t), t)
′γ (t) = 0 a.e. t ∈ [0, T ], i ∈ I }.

Proof Let z̄ be a local optimal solution of (PEC) on z̄(t) + εB̄ a.e. in [0, T ].
Let A0 be the largest subset of [0, T ] in which conditions (H1)-(H4) and (CRCQ) do not

hold for every t ∈ A0. Provided A0 has Lebesgue measure zero, it follows that there exists a
Borel set A1 (being the intersection of a countable family of open sets) with A0 ⊂ A1 such
that A1 \ A0 is of measure zero (see Rudin [29]). Set A = [0, T ] \ A1.

The proof is divided in several steps.

STEP 1: (Discarding redundant constraints) Let i0 ∈ {1, . . . , p} \ {i1, . . . , ir }. In Lemma
4, let us identify t with a, ε with α, x0 = y0 = 0, and

f t (x) = hi0(z̄(t) + x, t),

f t
j (x) = hij (z̄(t) + x, t), j = 1, . . . , r .

It is clear from (H2)-(H4) and (CRCQ) that f t is continuously differentiable on εB for
all t ∈ A, and that F̃t = (f t

1 , . . . , f t
r ) satisfy the assumptions of Lemma 3, t ∈ A. It

is easy to see from (H4) that ∇f t (x) = ∇hi0(z̄(t) + x, t) is a linear combination of
∇f t

1 (x) = ∇hi1(z̄(t) + x, t), . . . ,∇f t
r (x) = ∇hir (z̄(t) + x, t) for all x ∈ εB, t ∈ A. It

follows from Lemma 4 that there exist σ, ρ and χt : ρB → R such that for all x ∈ σB,

(hi1(z̄(t) + x, t), . . . , hir (z̄(t) + x, t)) ∈ ρB, t ∈ A,

and

hi0(z̄(t) + x, t) = χt (hi1(z̄(t) + x, t), . . . , hir (z̄(t) + x, t), t), t ∈ A. (10)

STEP 2: (Equality constraints encompassed by an implicit function) Define μ : R
n ×

R
r × [0, T ] → R

r as

μ(ξ, η, t) = H(z̄(t) + ξ + ϒ(t)′η, t),

where H = (hi1 , . . . , hir ). In Corollary 1, identify t with a, (ξ, η) with (u, v), (u0, v0) =
(0, 0), and μ(·, ·, t) with ψa(·, ·). One has that

μ(0, 0, t) = H(z̄(t), t) = (hi1(z̄(t), t), . . . , hir (z̄(t), t)) = (0, . . . , 0) ∀t ∈ A.
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Note that, by (H3),

‖ϒ(t)′‖ = ‖[∇hi1(z̄(t), t) · · · ∇hir (z̄(t), t)]‖
≤ ‖[∇h1(z̄(t), t) · · · ∇hp(z̄(t), t))]‖ ≤ K0 a.e. t ∈ [0, T ]. (11)

Let α = min{ ε
2 , ε

2K0
} and (ξ, η) ∈ (0, 0) + αB. So,

‖z̄(t) + ξ + ϒ(t)′η − z̄(t)‖ = ‖ξ + ϒ(t)′η‖ ≤ ‖ξ‖ + ‖ϒ(t)′‖‖η‖ ≤ ε

for almost every t ∈ [0, T ]. By (H2), μ(·, ·, t) is continuously differentiable on (0, 0) +
αB, for all t ∈ A, so that assumption (i) in Corollary 1 is valid. Now checking (ii), let
(ξ̃ , η̃), (ξ, η) ∈ (0, 0) + αB. One has that

∇μ(ξ, η, t) = [∇H(z̄(t) + ξ + ϒ(t)′η, t) ∇H(z̄(t) + ξ + ϒ(t)′η, t)ϒ(t)′]
and

∇μ(ξ̃ , η̃, t) − ∇μ(ξ, η, t)

= [∇H(z̄(t) + ξ̃ + ϒ(t)′η̃, t) − ∇H(z̄(t) + ξ + ϒ(t)′η, t)][In ϒ(t)′],
where In denotes the identity matrix of order n. Then, by (H3) and (11)

‖∇μ(ξ̃ , η̃, t) − ∇μ(ξ, η, t)‖
≤ ‖[∇H(z̄(t) + ξ̃ + ϒ(t)′η̃, t) − ∇H(z̄(t) + ξ + ϒ(t)′η, t)]‖‖[In ϒ(t)′]‖
≤ ‖∇h(z̄(t) + ξ̃ + ϒ(t)′η̃, t) − ∇h(z̄(t) + ξ + ϒ(t)′η, t)‖‖[In ϒ(t)′]‖
≤ θ(‖(ξ̃ − ξ) + ϒ(t)′(η̃ − η)‖)(1 + K0)

≤ θ(‖(ξ̃ − ξ)‖ + K0‖(η̃ − η)‖)(1 + K0)

≤ θ(‖(ξ̃ − ξ, η̃ − η)‖ + K0‖(ξ̃ − ξ, η̃ − η)‖)(1 + K0) = θ̃ (‖(ξ̃ , η̃) − (ξ, η)‖),
where θ̃ : (0,∞) → (0,∞) is given by

θ̃ (s) = (1 + K0)θ(s + K0s).

It is easy to see that θ̃ is monotone increasing and θ̃ (s) ↓ 0 as s ↓ 0. Therefore,
assumption (ii) in Corollary 1 is satisfied. Finally, checking (iii), since

∇ημ(0, 0, t) = ∇H(z̄(t), t)ϒ(t)′ = ϒ(t)ϒ(t)′,
it follows from (H4) that ∇ημ(0, 0, t) is nonsingular for all t ∈ A. By (11),
‖ϒ(t)ϒ(t)′‖ ≤ K2

0 a.e. t ∈ [0, T ]. Thus, by using (H4), from Lemma 1, there exists
M > 0 such that

‖[∇ημ(0, 0, t)]−1‖ = ‖[ϒ(t)ϒ(t)′]−1‖ ≤ M a.e. t ∈ [0, T ].
By Corollary 1, there exist δ ≥ 0 and an implicit map d : δB × [0, T ] → αB such that
d(ξ, ·) is measurable for fixed ξ , d(·, t) is Lipschitz continuous for every t ∈ A with a
common Lipschitz constant, d(·, t) is continuously differentiable for every t ∈ A,

d(0, t) = 0, t ∈ A, (12)

μ(ξ, d(ξ, t), t) = 0, ξ ∈ δB, t ∈ A, (13)

∇d(0, t) = −[ϒ(t)ϒ(t)′]−1ϒ(t), t ∈ A. (14)

Let us choose δ1 > 0 and α1 satisfying

δ1 < min{δ, ε/2}, α1 < min{α, ε/2}, δ1 + K0α1 < min{σ, ε}. (15)

In the following steps, without loss of generality, we consider the implicit function d :
δ1B × [0, T ] → α1B.
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STEP 3: (Auxiliary problem) Consider the auxiliary problem below:

maximize P̃ (z) =
∫ T

0
ϕ(z(t), t) dt

subject to z ∈ L∞([0, T ];Rn),

(AP)

where ϕ : Rn × [0, T ] → R is defined as ϕ(z, t) = φ(z + ϒ(t)′d(z − z̄(t), t), t). The
local optimal solution of (PEC) is also a local optimal solution of (AP). Indeed, it is clear
that z̄ is a feasible solution of (AP). Suppose that there exists z̃ ∈ L∞([0, T ];Rn) such
that z̃(t) ∈ z̄(t)+ δ2B, 0 < δ2 < δ1, and P̃ (z̃) > P̃ (z̄). Let ẑ ∈ L∞([0, T ];Rn) given by

ẑ(t) = z̃(t) + ϒ(t)′d(z̃(t) − z̄(t), t) a.e. t ∈ [0, T ].
Using (11) and (15), one has that

‖ẑ(t) − z̄(t)‖ ≤ ‖z̃(t) − z̄(t)‖ + ‖ϒ(t)′‖‖d(z̃(t) − z̄(t), t)‖ < δ1 + K0α1 < ε

and then ẑ(t) ∈ z̄(t) + εB a.e. t ∈ [0, T ]. As z̃(t) − z̄(t) ∈ δ1B, by (13),

μ(z̃(t) − z̄(t), d(z̃(t) − z̄(t), t), t) = 0 ⇒ H(z̃(t) + ϒ(t)′d(z̃(t) − z̄(t), t), t) = 0

so that

hij (ẑ(t), t) = 0, a.e. t ∈ [0, T ], j = 1, . . . , r .

For any i0 ∈ {1, . . . , p} \ {i1, . . . , ir }, by (10),

hi0(ẑ(t), t) = χt (hi1(ẑ(t), t), . . . , hir (ẑ(t), t)) = χt (0, . . . , 0)

= χt (hi1(z̄(t), t), . . . , hir (z̄(t), t)) = hi0(z̄(t), t) = 0

for almost every t ∈ [0, T ]. Thereby, ẑ is feasible for (PEC) and, by definition of P̃ and
(12),

P(ẑ) = P̃ (z̃) > P̃ (z̄) = P(z̄),

which contradicts the fact that z̄ is a local optimal solution for (PEC).
STEP 4: (First order necessary optimality conditions) By Proposition 1,

0 = ∇ϕ(z̄(t), t) = [In + ∇d(0, t)′ϒ(t)]∇φ(z̄(t) + ϒ(t)′d(0, t), t)

for almost every t ∈ [0, T ]. By (12) and (14),

0 = ∇φ(z̄(t), t) + ∇d(0, t)′ϒ(t)∇φ(z̄(t), t)

= ∇φ(z̄(t), t) + ϒ(t)′[ϒ(t)ϒ(t)′]−1ϒ(t)∇φ(z̄(t), t)

= ∇φ(z̄(t), t) +
r∑

j=1

uj (t)∇hij (z̄(t), t) = 0 a.e. t ∈ [0, T ], (16)

where u ∈ L∞([0, T ];Rr ) is given by

u(t) = −[ϒ(t)ϒ(t)′]−1ϒ(t)∇φ(z̄(t), t) a.e. t ∈ [0, T ]. (17)

Taking ui ≡ 0 for i ∈ {1, . . . , p} \ {i1, . . . , ir }, one obtains (8).
STEP 5: (Second order necessary optimality conditions) By Proposition 1, one knows

that ∫ T

0
γ (t)′∇2ϕ(z̄(t), t)γ (t) dt ≤ 0 ∀γ ∈ L∞([0, T ];Rn).
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From the definition of ϕ in Step 3, one has that

∇2ϕ(z̄(t), t) = [In + ∇d(0, t)′ϒ(t)]∇2φ(z̄(t), t)

+∇d(0, t)′ϒ(t)[In + ∇d(0, t)′ϒ(t)]∇2φ(z̄(t), t)

+
r∑

j=1

∇hij (z̄(t), t)
′∇φ(z̄(t), t)∇2dj (0, t) a.e. t ∈ [0, T ].

From (14), one sees that, given γ ∈ N ,

γ (t)′∇d(0, t)′ = −γ (t)′ϒ(t)′[ϒ(t)ϒ(t)′]−1 = 0 a.e. t ∈ [0, T ].

Hence, for γ ∈ N ,

∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

r∑
j=1

∇hij (z̄(t), t)
′∇φ(z̄(t), t)∇2dj (0, t)

]
γ (t) dt ≤ 0. (18)

On the other hand, deriving the expression in (13) twice with respect to ξ and then
evaluating at ξ = 0, one gets, for j = 1 . . . , r , that

0 = [In + ∇d(0, t)′ϒ(t)]∇2hij (z̄(t), t)

+∇d(0, t)′ϒ(t)[In + ∇d(0, t)′ϒ(t)]∇2hij (z̄(t), t)

+
r∑

l=1

∇hil (z̄(t), t)
′∇hij (z̄(t), t)∇2dl(0, t) a.e. t ∈ [0, T ].

Thus, for γ ∈ N ,

0 =
∫ T

0
γ (t)′

r∑
j=1

uj (t)∇2hij (z̄(t), t)γ (t) dt

+
∫ T

0
γ (t)′

r∑
j=1

r∑
l=1

uj (t)∇hil (z̄(t), t)
′∇hij (z̄(t), t)∇2dl(0, t)γ (t) dt . (19)
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Adding (18) and (19), and using (16), one obtains

0 ≥
∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

r∑
l=1

∇hil (z̄(t), t)
′∇φ(z̄(t), t)∇2dj (0, t)

]
γ (t) dt

+
∫ T

0
γ (t)′

r∑
j=1

uj (t)∇2hij (z̄(t), t)γ (t) dt

+
∫ T

0
γ (t)′

r∑
j=1

r∑
l=1

uj (t)∇hil (z̄(t), t)
′∇hij (z̄(t), t)∇2dl(0, t)γ (t) dt

=
∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

r∑
j=1

uj (t)∇2hij (z̄(t), t)
]
γ (t) dt

+
∫ T

0
γ (t)′

r∑
l=1

∇hil (z̄(t), t)
′

[
∇φ(z̄(t), t) +

r∑
j=1

uj (t)∇hij (z̄(t), t)
]
∇2dl(0, t)γ (t) dt

=
∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

r∑
j=1

uj (t)∇2hij (z̄(t), t)
]
γ (t) dt

for all γ ∈ N , so that (9) is verified.

Remark 3 In the proof of Theorem 2, Equation (17) uniquely determines the multipliers
uj in terms of the data of the problem. However, they depend on the matrix ϒ . Observe in
(H4) that the choice of ϒ may not be unique. Indeed, since rank(∇h(z̄(t), t)) = r , there are
up to C(p, r) ways to pick r linearly independent rows of ∇h(z̄(t), t). Therefore, the set of
multipliers for which KKT conditions are valid for (PEC) under the constant rank condition
may not be a singleton. When there are several matrices ϒ so that (H4) is satisfied, an
interesting way to select one of them is choosing the one in such a way the multipliers have
minimum norm.

Remark 4 Apart from Step 1, the proof of Theorem 2 is strongly inspired by techniques in
de Pinho and Ilchmann [23].

5 Optimality Conditions for Problems with Equality and Inequality
Constraints

The continuous-time problem with equality and inequality constraints (CTP) is studied here.
Optimality conditions are obtained under the constant condition stated below.

Definition 2 The constant rank constraint qualification (CRCQ) for the problem (CTP) is
said to be satisfied at z̄ ∈ � if there exists ε > 0 such that the matrix

M(z, w, t) =
[ ∇h(z, t) 0

∇g(z, t) diag{−2wj }mj=1

]
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has constant rank on (z̄(t), w̄(t)) + εB a.e. t ∈ [0, T ], where w̄j (t) = √
gj (z̄(t), t) a.e. in

[0, T ], j ∈ J .

Also, we will need assumption (H5) below.

(H5) Let z̄ ∈ � and consider w̄ and M given as in Definition 2. If r =
rank(M(z̄(t), w̄(t), t)) a.e. t ∈ [0, T ], there exist an index subset, say {i1, . . . , ir },
and a constant C > 0 such that

det{ϒ(t)ϒ(t)′} ≥ C a.e. t ∈ [0, T ],
where ϒ(t) is the matrix obtained after removing from M(z̄(t), w̄(t), t) the rows of
index i /∈ {i1, . . . , ir }.

A full rank assumption on M(z̄(t), w̄(t), t) implies the validity of (CRCQ) and (H5), see
Proposition 2. Next we show an illustrative example, where (CRCQ) and (H5) are satisfied
but the full rank condition does not hold.

Example 2 Consider the system
⎧⎨
⎩

tz1(t) + t2z2(t) − t3z3(t) + 3t4 = 0 a.e. t ∈ [0, 1],
−z1(t) − tz2(t) + t2z3(t) − 3t3 = 0 a.e. t ∈ [0, 1],
z1(t)z2(t) + z3(t) − 3t ≥ 0 a.e. t ∈ [0, 1],

and z̄(t) = (0, 0, 3t) a.e. in [0, 1]. One has that w̄(t) = 0 a.e. [0, 1] and

M(z, w, t) =
⎡
⎣ t t2 −t3 0

−1 −t t2 0
z2 z1 1 −2w

⎤
⎦ a.e. t ∈ [0, 1].

Then, rank(M(z, w, t)) = 2 for (z, w) in (z̄(t), w̄(t)) + B a.e. t ∈ [0, 1]. Indeed, it is
easy to see that rank(M(z, w, t)) ≤ 2 a.e. t ∈ [0, 1] for all (z, w). If w �= 0, it is clear
that rank(M(z, w, t)) = 2 a.e. t ∈ [0, 1]. If w = 0, assume that rank(M(z, w, t)) = 1 in
A ⊂ [0, 1], where A has positive measure. After some simple calculations one sees that
z1 = −1/t and z2 = −1/t2, so that (z, w) /∈ (z̄, w̄) + B a.e. t ∈ A, since |z1| = 1/t ≥ 1
and |z2| = 1/t2 ≥ 1 a.e. t ∈ A ⊂ [0, 1]. By choosing i1 = 2 and i2 = 3,

ϒ(t) =
[−1 −t t2 0

0 0 1 0

]
a.e. t ∈ [0, 1]

and det{ϒ(t)ϒ(t)′} = 1 + t2 ≥ 1 a.e. t ∈ [0, 1]. Therefore, both (CRCQ) and (H5) are
satisfied at z̄. Note that M(z̄(t), w̄(t), t) is not a full rank matrix.

Theorem 3 Let z̄ be local optimal solution of (CTP). Suppose that the assumptions (H1)-
(H3), (H5) and (CRCQ) are satisfied. Then, there exist u ∈ L∞([0, T ];Rp) and v ∈
L∞([0, T ];Rm) such that

∇φ(z̄(t), t) +
p∑

i=1

ui(t)∇hi(z̄(t), t) +
m∑

j=1

vj (t)∇gj (z̄(t), t) = 0, (20)

vj (t) ≥ 0, j ∈ J, (21)

vj (t)gj (z̄(t), t) = 0, j ∈ J, (22)
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for almost every t ∈ [0, T ], and
∫ T

0
γ (t)′

[
∇2φ(z̄(t), t) +

p∑
i=1

ui(t)∇2hi(z̄(t), t)

+
m∑

j=1

vj (t)∇2gj (z̄(t), t)
]
γ (t) dt ≤ 0, (23)

for all γ ∈ N , where

N = {γ ∈ L∞([0, T ];Rn) : ∇hi(z̄(t), t)
′γ (t) = 0 a.e. t ∈ [0, T ], i ∈ I,

∇gj (z̄(t), t)
′γ (t) = 0 a.e. t ∈ [0, T ], j ∈ Ia(t)}

and
Ia(t) = {j ∈ J : gj (z̄(t), t) = 0} a.e. t ∈ [0, T ].

Proof We will proceed in several steps.

STEP 1: (Auxiliary problem) Consider the following auxiliary problem

maximize P̃ (z, w) =
∫ T

0
φ(z(t), t) dt

subject to h(z(t), t) = 0 a.e. t ∈ [0, T ],
g(z(t), t) − diag{w(t)}w(t) = 0 a.e. t ∈ [0, T ],
z ∈ L∞([0, T ];Rn), w ∈ L∞([0, T ];Rm).

(AUX)

Let z̄ ∈ � be an optimal solution of (CTP) on z̄(t)+εB̄ and let w̄j (t) = √
gj (z̄(t), t) a.e.

t ∈ [0, T ], j ∈ J . Then (z̄, w̄) is an optimal solution for (AUX). Indeed, it is clear that
z̄ is feasible for (AUX). Let 0 < ε̄ < ε and suppose that there exists a feasible solution
(z̃, w̃) of (AUX) with (z̃(t), w̃(t)) ∈ (z̄(t), w̄(t)) + ε̄B̄ and P̃ (z̃, w̃) > P̃ (z̄, w̄). Then,
h(z̃(t), t) = 0 a.e. t ∈ [0, T ] and

g(z̃(t), t) = diag{w̃(t)}w̃(t) = (w̃1(t)
2, . . . , w̃m(t)2) ≥ 0 a.e. t ∈ [0, T ].

Therefore, z̃ is feasible point for (CTP) with P(z̃) = P̃ (z̃, w̃) > P̃ (z̄, w̄) = P(z̄). This
is a contradiction.

STEP 2: (Verifying assumptions of Theorem 2) Let b : Rn+m×[0, T ] → R
p+m be given

as
b(z,w, t) = (h(z, t), g(z(t), t) − diag{w}w, t).

Assumptions (H1) and (H2) are immediate for b. Let us check (H3). Take
(z̃, w̃), (z, w) ∈ (z̄(t), w̄(t)) ∈ εB̄. One has, for almost every t ∈ [0, T ], that

∇b(z,w, t) =
[ ∇h(z, t) 0

∇g(z, t) diag{−2w}
]

∀z, w.

So, since (h, g) satisfies (H3),

‖∇b(z̃, w̃, t) − ∇b(z,w, t)‖
≤ ‖∇(h, g)(z̃, t) − ∇(h, g)(z, t)‖ + ‖diag{−2(w̃ − w)}‖
≤ θ(‖z̃ − z‖) + 2‖w̃ − w‖
≤ θ(‖(z̃ − z, w̃ − w)‖) + 2‖(z̃ − z, w̃ − w)‖
= θ̄ (‖(z̃, w̃) − (z, w)‖) a.e. t ∈ [0, T ],
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where θ̄ : (0,∞) → (0,∞) is given by θ̄ (s) = θ(s) + 2s. It is clear that θ̄ is monotone
increasing and θ̄ (s) = θ(s)+2s ↓ 0 as s ↓ 0. Moreover, by (H2), g(z̄(·), ·) is essentially
bounded on [0, T ],

‖∇b(z̄(t), w̄(t), t)‖ ≤ ‖∇(h, g)(z̄(t), t)‖ + ‖diag{−2w̄(t)}‖
≤ K0 + 2‖w̄(t)‖ = K1 a.e. t ∈ [0, T ].

Thus b verifies (H3). Finally, as ∇b(z,w, t) = M(z, w, t) for all (z, w) a.e. t ∈ [0, T ],
directly from (CRCQ) according to Definition 2 and (H5), one sees that the constraints
of (AUX) satisfy (CRCQ) according to Definition 1 and (H4) at (z̄, w̄).

STEP 3: (First order optimality conditions) By Theorem 2, there exists (u, v) ∈
L∞([0, T ];Rp) × L∞([0, T ];Rm) such that, for almost every t ∈ [0, T ],[ ∇φ(z̄(t), t)

0

]
+

[ ∇h(z̄(t), t)′ ∇g(z̄(t), t)′
0 diag{−2w̄(t)}

] [
u(t)

v(t)

]
=

[
0
0

]
.

Then, for almost every t ∈ [0, T ],

∇φ(z̄(t), t) +
p∑

i=1

ui(t)∇hi(z̄(t), t) +
m∑

j=1

vj (t)∇gj (z̄(t), t) = 0

and

w̄j (t)vj (t) = 0, j ∈ J ⇒ gj (z̄(t), t)vj (t) = 0, j ∈ J,

that is, (20) and (22) are proved. (21) will be postponed to Step 5.
STEP 4: (Second order optimality conditions) Let us denote by ej the j -th canonical

vector in R
m. By Theorem 2,

∫ T

0
[γ (t)′ ζ(t)′]

{[ ∇2φ(z̄(t), t) 0
0 0

]
+

p∑
i=1

ui(t)

[ ∇2hi(z̄(t), t) 0
0 0

]

+
m∑

j=1

vj (t)

[ ∇2gj (z̄(t), t) 0
0 diag{−2ej }

]⎫⎬
⎭

[
γ (t)

ζ(t)

]
dt ≤ 0

for all (γ, ζ ) ∈ L∞([0, T ];Rn+m) such that

∇h(z̄(t), t)′γ (t) = 0 a.e. t ∈ [0, T ], i ∈ I, (24)

∇gj (z̄(t), t)
′γ (t) − 2w̄j (t)ζj (t) = 0 a.e. t ∈ [0, T ], j ∈ J . (25)

From the latter inequality, one obtains
∫ T

0

{
γ (t)′

[
∇2φ(z̄(t), t) +

p∑
i=1

ui(t)∇2hi(z̄(t), t)

+
m∑

j=1

vj (t)∇2gj (z̄(t), t)
]
γ (t) − 2

m∑
j=1

vj (t)ζj (t)
2
}

dt ≤ 0 (26)

for all (γ, ζ ) satisfying (24)–(25). Let γ ∈ N and ζj , j ∈ J , be given, for almost every
t ∈ [0, T ], as

ζj (t) =
⎧⎨
⎩

0, j ∈ Ia(t),

∇gj (z̄(t), t)
′γ (t)

2w̄j (t)
, j ∈ J \ Ia(t).
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If ζ = (ζ1, . . . , ζm), note that (γ, ζ ) satisfies (24)–(25) and that vj (t)ζj (t) = 0 a.e.
t ∈ [0, T ], j ∈ J , since, by (22), vj (t) = 0 for j /∈ Ia(t). For this particular choice of
(γ, ζ ), (23) follows directly from (26).

STEP 5: (Nonnegativity of the multipliers associated with the inequality constraints)
Suppose that vl(t) < 0 for all t ∈ D ⊂ [0, T ], where D has positive measure, for some
l ∈ J . By (22), l ∈ Ia(t) for all t ∈ D. Take (γ, ζ ) such that γ (t) ≡ 0, ζj (t) ≡ 0 for
j �= l and

ζl(t) =
{

0, t ∈ [0, T ] \ D,

k, t ∈ D,

where k is an arbitrary constant. Observe that (γ, ζ ) satisfies (24)–(25). From (26), it
follows that ∫

D

vl(t)ζl(t)
2 dt ≥ 0.

But,

vi(t) < 0 and ζl(t) = k �= 0, t ∈ D ⇒
∫

D

vl(t)ζl(t)
2 dt < 0,

which is a contradiction.

Proposition 2 Let z̄ ∈ � and w̄j (t) = √
gj (z̄(t), t) a.e. in [0, T ], j ∈ J . If

det{M(z̄(t), w̄(t), t)M(z̄(t), w̄(t), t)′} ≥ K a.e. t ∈ [0, T ] for some K > 0, then (CRCQ)
and (H5) hold.

Proof By hypothesis M(z̄(t), w̄(t), t) has full rank and it is clear that (H5) holds with
ϒ(t) = M(z̄(t), w̄(t), t) a.e. t ∈ [0, T ]. Moreover, from Step 2 of the proof of Theorem
3, one knows that there exist a monotone increasing function θ̄ : (0,∞) → (0,∞) with
θ̄ (s) ↓ 0 when s ↓ 0 and a positive constant K1 such that

‖M(z̃, w̃, t) − M(z, w, t)‖ ≤ θ̄ (‖(z̃, w̃) − (z, w)‖) (27)

for all (w̃, w̃), (z, w) ∈ (z̄(t), w̄(t)) + εB̄ a.e. t ∈ [0, T ], for some ε > 0, and

‖M(z̄(t), w̄(t), t)‖ ≤ K1 a.e. t ∈ [0, T ]. (28)

By the continuity assumptions on the data and (28), there exists ε1 > 0 such that

‖M(z,w, t)‖ ≤ K2 ∀(z, w) ∈ (z̄(t), w̄(t)) + ε1B̄ a.e. t ∈ [0, T ]. (29)

For almost every t ∈ [0, T ], denote A(t) = M(z̄(t), w̄(t), t)M(z̄(t), w̄(t), t)′ and
A(z,w, t) = M(z, w, t)M(z, w, t)′. By the hypothesis and (28), it follows from Lemma 1
that there exists K3 > 0 such that

‖[A(t)]−1‖ ≤ K3 a.e. t ∈ [0, T ]. (30)

Let K4 = max{K1, K2}. Since θ̄ (s) ↓ 0 when s ↓ 0, let 0 < ε2 < min{ε, ε1} such that

θ̄ (ε2) ≤ 1

4K3K4
. (31)

Let (z, w) ∈ (z̄(t), w̄(t)) + ε2B. From (27)–(31), one has that

‖A(z,w, t) − A(t)‖ = ‖M(z, w, t)M(z, w, t)′ − M(z̄(t), w̄(t), t)M(z̄(t), w̄(t), t)′‖
≤ ‖M(z, w, t) − M(z̄(t), w̄(t), t)‖‖M(z, w, t)′‖

+‖M(z̄(t), w̄(t), t)‖‖M(z,w, t)′ − M(z̄(t), w̄(t), t)′‖
≤ 2K4θ̄ (ε2) ≤ 1

2K3
≤ 1

2‖[A(t)]−1‖ a.e. in [0, T ].
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It is known (see Noble and Daniel [19], for example) that if A and R are matrices such
that A is non-singular and ‖R‖ < ‖A−1‖−1, then A + R is non-singular. It follows that
A(z,w, t) = A(t) + [A(z,w, t) − A(t)] has full (and consequently constant) rank for all
(z, w) ∈ (z̄(t), w̄(t)) + ε2B. Therefore (CRCQ) is satisfied.

Remark 5 Although it was showed that a full rank condition is stronger than the constant
rank condition, condition (CRCQ) given in Definition 2 is, in general, difficult to be verified.
This is due to presence of the diagonal matrix diag{−2wj }mj=1. Clearly, this matrix does not

maintain its rank in a neighbourhood of w̄j (t) = √
gj (z̄(t), t) a.e. in [0, T ], j ∈ J , so that

the whole matrix M(z, w, t) may not have constant rank locally around (z̄(t), w̄(t)) + εB

a.e. t ∈ [0, T ], even when [∇h(z, t)′ ∇g(z, t)′]′ does. We believe that it is possible to
establish Karush-Kuhn-Tucker type optimality conditions for (CTP) when (CRCQ) given
in Definition 2 is replaced by merely a constant rank condition imposed on the gradients of
the equality and active inequality constraints. By means of the technique employed in the
proof of Theorem 3, this is not possible, however. It is going to be a topic of future work to
find a more appropriate approach in which this can be carried out.

Acknowledgements The authors are grateful to Professor Roberto Andreani for pointing out the paper
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