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Abstract
This paper investigates a new general pseudo subregularity model which unifies some
important nonlinear (sub)regularity models studied recently in the literature. Some slope
and abstract coderivative characterizations are established.
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1 Introduction

Over the past decades, mathematical ideas based on the use of advanced techniques of
generalized differentiation have allowed to make significant advances in the study of gen-
eralized equations, that is inclusions governed by set-valued mappings. These inclusions/
generalized equations cover many important problems in various areas of mathematics and
applied sciences such as physics, mechanics, and economics: equations; inequality systems;
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michel.thera@unilim.fr

Extended author information available on the last page of the article.

Set-Valued and Variational Analysis (2020) 28:61–87

Published online: 25 November 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s11228-019-00522-3&domain=pdf
http://orcid.org/0000-0001-9022-6406
mailto: michel.thera@unilim.fr


H. Van Ngai et al.

variational inequalities; complementarity problems; optimal control, and various other top-
ics. Also, due to their importance, as well as from their theoretical point of view and their
broad applicability, variational systems have attracted the interest of many mathematicians.

It is now well known that metric regularity is one of the pillars when studying these
generalized equations. This concept has emerged in the last decades, mainly after the contri-
bution of Borwein [4], even if claimed by Ioffe [17, 18] , “the roots of this concept go back
to a circle of fundamental regularity ideas of classical analysis embodied in such results as
the implicit function theorem, the Banach open mapping theorem, theorems of Lyusternik
and Graves, on the one hand, and the Sard theorem and the Thom-Smale transversality the-
ory, on the other”. Nowadays, this concept is commonly regarded as central for studying
the existence and behavior of solutions of nonlinear equations under small perturbations
of the data. The crucial role of metric regularity in Optimization and Variational Analysis
as well as researcher’s interest in this field can be found in many seminal works includ-
ing for instance [4, 7, 11, 16–19, 29], and references therein. By the time and demand of
use and applications, variants of this property have emerged suitable to practical problems.
Weaker/stronger versions: calmness, (strong) (Hölder) metric sub/regularity, semiregular-
ity or equivalent versions: pseudo Lipschitz, linear openness were studied and have proved
to have an important role in various applications in Mathematics, especially in Variational
Analysis and Optimization [5, 17, 18, 21–23, 29], etc.

As recently proposed by Arutyunov [1], Gfrerer [10], Ngai-Théra [14], Ngai-Tron-Théra
[12], Ngai-Tron-Tinh [26], a new line of research is to build directional models for these
objects. Characterizations of these concepts have been established and successfully applied
to study optimality conditions for mathematical programs, for calculating tangent cones, etc.
This notion of directional regularity is an extension of an earlier notion used by Bonnans
and Shapiro [3] to study sensitivity analysis. Later, Ioffe [15] introduced and investigated an
extension called relative metric regularity which covers many notions of metric regularity
in the literature. In [27] Penot studied this property to establish second-order optimality
conditions.

The paper concerns a new type of directional metric regularity. In this article, motivated
by the works mentioned above, especially those of (co)authors and by Gfrerer, we build a
general new model which formally unifies all (sub)regularity models in the literature; espe-
cially it covers both directional Hölder metric subregularity introduced by Ngai, Tron and
Tinh and metric pseudo subregularity explored by Gfrerer. This property is given in Defini-
tion 3.2. Our aims are to give characterizations of the property. First, we establish a slope
characterization and after that we move to a subdifferential/coderivative or a limit critical
set characterization. Section 2 introduces the mathematical notation and basic definitions.
In Section 3, we present the motivation of this paper and some slope characterizations of
directional pseudo regularity. In the final section, we explore how the use of an abstract
subdifferential may derive to characterizations of metric directional pseudo subregularity in
terms of coderivatives.

2 Preliminaries and Notations

For the convenience of the reader, we include in this section the material concerning set-
valued analysis and variational analysis that will be extensively used throughout the sequel.
We use the monographs of Mordukhovich [24], Ioffe [19], Rockafellar & Wets [29] and
Penot [28] as our desk-copies.
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For our purposes, we are going to work in the framework of real Banach spaces. If X

is such a space, we denote by ‖ · ‖ the associated norm and by d(x,�) the distance from
x ∈ X to the subset � of X, that is, d(x,�) := inf{‖x − y‖ : y ∈ �}. Given X, we
denote the topological dual (continuous dual) by X∗, by ‖ · ‖∗ the dual norm of ‖ · ‖, by
BX = {x ∈ X : ‖x‖ ≤ 1} the closed unit ball, by SX = {x ∈ X : ‖x‖ = 1} the unit sphere,
by B(x, r) the closed ball with center x and radius r , respectively.

By a set-valued mapping (also named by some authors multifunction), we mean a map-
ping T from X into the subsets (possibly empty) of another Banach space Y and we use the
notation T : X ⇒ Y . The graph of T denoted by gph T is the set of those points in X × Y

such that y ∈ T (x), while T −1 : Y ⇒ X , the inverse of T (always defined), is given by
(x, y) ∈ gph T ⇐⇒ (y, x) ∈ gph T −1. We say that T is closed if its graph is closed with
respect to the product topology on X × Y . Given a set K ⊂ X, we use the notation coneK

for the conic hull of K , that is for the set of all conic combinations
∑i=n

i=1 λixi of points of
K where λi ≥ 0 for each index i.

Given an extended real-valued function f : X → R ∪ {+∞}, we use the notation clf to
denote the lower semicontinuous envelope of f defined by clf (x) = lim infu→x f (u)), and
Dom f will refer to the domain of f , that is, the set of those points x ∈ X such that f (x) is
finite. We recall that the convex subdifferential of f at x ∈ Dom f is the set

∂f (x) := {x� ∈ X∗ : 〈x�, y − x〉 ≤ f (y) − f (x) for all y ∈ X},
with the convention that ∂f (x) = ∅, when f (x) = +∞.

For the purpose of this study, we use the concept of slope |∇f |(x) of a function f at
x ∈ Dom f . This is a quantity introduced by De Giovani, Marino & Tosques [6] and defined
by

|∇f |(x) :=
⎧
⎨

⎩

0 if x is a local minimum point of f

lim sup
y→x, y �=x

[f (x) − f (y)]+
‖x − y‖ otherwise.

where the notation a+ means a if a ≥ 0 and 0 if a < 0. For x /∈ Dom f, we set |∇f |(x) =
+∞.

When f is a convex function defined on a Banach space and x is not a minimum point,
then according to Ioffe [16, Poposition 3.8] (see also Azé & Corvelec [2, Proposition 3.2])

|∇f |(x) = sup
y �=x

f (x) − f (y)

‖x − y‖ and |∇f |(x) = d(0, ∂f (x)).

In the following sections, we make use of the notion of abstract subdifferential operator from
X into the subsets of X∗. Such an object, denoted by ∂ , satisfies the following conditions:

(C1) If f : X → R is a convex function which is continuous around x̄ ∈ X and β : R →
R is a continuously differentiable function at t = f (x), then

∂(β ◦ f )(x) ⊆ {β ′(f (x))x� ∈ X∗ : 〈x�, y − x〉 ≤ f (y) − f (x) ∀y ∈ X};
(C2) ∂f (x) = ∂g(x) if f (y) = g(y) for all y in a neighborhood of x;
(C3) Let f1 : X → R∪{+∞} be a lower semicontinuous function and f2, ..., fn : X → R

be Lipschitz functions. If f1 + f2 + ... + fn attains a local minimum at x0, then
for any ε > 0, there exist xi ∈ x0 + εBX, x�

i ∈ ∂fi(xi), i = 1, 2, . . . , n such that
|fi(xi) − fi(x0)| < ε, and ‖x�

1 + x�
2 + ... + x�

n‖ < ε.
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We recall that the indicator function δC of a closed set C in X is the function
defined by δC(x) = 0 when x ∈ C and δC(x) = +∞, otherwise. Given an abstract
subdifferential ∂ , the set N(C, x) := ∂δC(x) is called the normal cone to C at x

associated with ∂ .
(C4) N(C, x) is assumed to be a cone for any closed subset C of X.

Let F : X ⇒ Y and (x̄, ȳ) ∈ gphF . Given an abstract subdifferential ∂ and
normal cone associated with ∂ , the set-valued mapping D∗F(x̄, ȳ) : Y ∗ ⇒ X∗
defined by

D∗F(x̄, ȳ)(y�) = {x� ∈ X∗ : (x�, −y�) ∈ N
(
gphF, (x̄, ȳ)

)}
for all y� ∈ Y ∗,

is called the coderivative of F associated with ∂ .

We assume further that ∂ satisfies a separable property in the following sense:
(C5) If f is a separable function defined on X × Y, that is, f (x, y) := f1(x) + f2(y),

(x, y) ∈ X × Y, where f1 : X → R ∪ {+∞}, f2 : Y → R ∪ {+∞}, then
∂f (x, y) = ∂f1(x) × ∂f2(y), for all (x, y) ∈ X × Y .

It is well known that the proximal subdifferential in Hilbert spaces, the Fréchet subdif-
ferential in Asplund spaces, the viscosity subdifferentials in smooth spaces as well as the
Ioffe and the Clarke-Rockafellar subdifferentials in the setting of general Banach spaces are
subdifferentials verifying the conditions (C1)-(C5).

3 Slope Characterizations of Directional Pseudo Subregularity

For the understanding of the paper, we recall the definitions of metric sub-regularity and
Hölder metric subregularity. We say that a set-valued mapping F : X ⇒ Y between metric
spaces X, Y is metrically subregular at a point (x̄, ȳ) ∈ gphF with constant τ > 0, if there
exists a neighbourhood U of x̄ such that

d(x, F−1(ȳ)) � τd(ȳ, F (x)) for all x ∈ U . (3.1)

If in relation (3.1) we replace d(ȳ, F (x)) by d(ȳ, F (x))γ , with γ > 0, then F is said to
be Hölder metrically subregular at (x̄, ȳ) ∈ gphF with modulus τ and order γ . For such a
situation, (3.1) becomes

d(x, F−1(ȳ)) � τd(ȳ, F (x))γ for all x ∈ U . (3.2)

Throughout the rest of the paper, we assume given Banach spaces X and Yi, (i =
1, · · · , m), as well as a finite family of set-valued mappings with closed graph Ti : X ⇒
Yi, (i = 1, · · · ,m). We note T := (T1, . . . , Tm) : X ⇒ Y1 × · · · × Ym, the set-valued
mapping defined by T (x) := T1(x) × . . . × Tm(x) and we consider γ := (γ1, ..., γm) ∈ R

m

such that γi � 1 for i = 1, ...,m. To begin with, let us first recall the definition of γ -metric
pseudo subregularity (γ -MPSR, for short) w.r.t. a given direction u and order γ .

Definition 3.1 (directional pseudo subregularity,[11]) A set-valued mapping T =
(T1, . . . , Tm) : X ⇒ Y1 × · · · × Ym is said to be (γ1, . . . , γm)-metrically pseudo subregular
(γi � 1) in the direction u at (x̄, ȳ) ∈ gph T with modulus τ > 0 iff there exist ε > 0 and
δ > 0 such that

d
(
x, T −1(ȳ)

)
� τ

m∑

i=1

‖x − x̄‖1−γi d
(
ȳi , Ti(x)

)
(3.3)
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for x �= x̄ in B(x̄, ε) ∩ (x̄ + coneB(u, δ)
)
.

As observed by Gfrerer, when m = 1, γ -metric pseudo subregularity in the direction
u = 0 implies Hölder subregularity of order 1

γ
. Note also that for m = 1, if we choose

T = T1 and γ = γ1, then (3.3) becomes:

d
(
x, T −1(ȳ)

)γ � ‖x − x̄‖γ−1d
(
x, T −1(ȳ)

)
� τd

(
ȳ, T (x)

)
. (3.4)

Hence, if a set-valued mapping T : X ⇒ Y is γ -MPSR at (x̄, ȳ) in the direction u, then
T is directionally Hölder metrically subregular of order γ at (x̄, ȳ) in the direction u as
mentioned in [26].

The new idea in this contribution is to consider a general metric pseudo subregular-
ity model called (γ, h)−pseudo subregularity associated with a given function h :=
(h1, . . . , hm) : X −→ R

m+ and with γ := (γ1, ..., γm) ∈ R
m with γi � 1 for i = 1, ...,m.

To facilitate ease of reading, we shall introduce some useful real-valued functions corre-
sponding to T = (T1, . . . , Tm) : X ⇒ Y1 × · · ·×Ym and γ = (γ1, . . . , γm). For each j, we
define ρTj

(·) = d
(
ȳj , Tj (·)

)
and set

ϕTj
(x) :=

⎧
⎨

⎩

ρTj
(x)

hj (x)
γj −1 if hj (x) > 0,

0 otherwise.

Now let us denote by ϕT the sum ϕT =∑m
j=1 ϕTj

, byψT = clϕT the lower semicontinuous
envelope of ϕT and by S the sublevel set [ψT � 0]. Throughout the rest of the document,
we make use of the following assumption:

(A ) h1, . . . , hm : X −→ R+ are continuous functions and satisfy

hi(x) = 0 =⇒ ρTi
(x) = 0. (3.5)

Definition 3.2 ((γ, h)-metric pseudo subregularity) Let T = (T1, . . . , Tm) : X ⇒ Y1 ×
· · · × Ym be given and let (x̄, ȳ) ∈ gph T . The mapping T is said to be (γ, h)-metrically
pseudo subregular in the direction u at (x̄, ȳ) ∈ gph T for h = (h1, . . . , hm) if there exist
τ > 0, ε > 0 and δ > 0 such that

d
(
x, T −1(ȳ)

)
� τ

∑

1�i�m,hi(x)>0

d
(
ȳi , Ti(x)

)

hi(x)γi−1
(3.6)

for x ∈ B(x̄, ε) ∩ (x̄ + coneB(u, δ)
)
with

∑m
i=1 hi(x) > 0.

For the direction u := 0, we will say briefly that T is (γ, h)−pseudo subregular at (x̄, ȳ)

(that is, the inequality (3.6) is satisfied for all x near x̄). Let us note that when considering
some special mappings h, one recovers the concepts of directional metric subregularity
mentioned above. For instance,

• if we choose the functions hi(x) = ‖x − x̄‖, one gets metric pseudo subregularity;
• if one considers the case m = 1, h1(x) := d(x, T −1(ȳ)) one gets directional Hölder

metric subregularity;
• more generally, let be given m subsets Si, i = 1, ...,m, of T −1

i (ȳ) containing x̄.
In some situations, for suitable sets Si , when the distances d(x, Si) can be com-
puted explicitly, the pseudo-subregularity model with respect to hi(x) := d(x, Si),

i = 1, ...,m. seems to be more convenient than the Hölder metric subregularity one.

Especially, when γi = 1 (i = 1, ...,m), one gets the usual metric subregularity.
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As mentioned in the introduction, formally this pseudo-subregularity model covers all
linear/nonlinear subregularity/error bound models considered in the literature. To see this,
let us consider again a multifunction F : X ⇒ Y between two metric spaces X and Y, and
for given (x̄, ȳ) ∈ gphF, consider the inclusion

S := {x ∈ X : ȳ ∈ F(x)} . (3.7)

By means of a suitable residual function ϕ : X → [0, +∞), that is a function such that

x ∈ S ⇐⇒ ϕ(x) = 0,

an usual subregularity model for F at (x̄, ȳ), called ϕ−subregularity, is defined as the
following error bound property:

d(x, S) ≤ τϕ(x),

for all x near x̄, for some τ > 0. Obviously, ϕ−subregularity can be regarded as pseudo-
subregularity by taking

h(x) := d(ȳ, F (x))

ϕ(x)
, x ∈ X.

Let us give further an example for complementarity problems.

Example 3.1 Consider the complementarity system defined by

S := {x ∈ R
n : q(x) = 0, f (x) ≥ 0, g(x) ≥ 0, 〈f (x), g(x)〉 = 0

}
, (3.8)

where, q : Rn → R
d , f := (f1, ..., fm) : Rn → R

m; g := (g1, ..., gm) : Rn → R
m.

It is well known that a complementarity system like (3.8) covers, as a particular case,
Karush-Kuhn-Tucker (KKT) systems associated to optimization problems, (see, e.g [8, 9,
20]). Given a solution x̄ ∈ S, we say that the complementarity system (3.8) satisfies an
error bound property at x̄, if there is τ > 0 such that for all x near x̄, one has

d(x, S) ≤ τ

(

‖q(x)‖ +
m∑

i=1

|min{fi(x), gi(x)}|
)

. (3.9)

This error bound plays a crucial role in the convergence analysis of some algorithms (e.g,
the Newton-type methods) for solving system (3.8). It is easy to observe that the error bound
property (3.9) is equivalent to the following pseudo-subregularity:

d(x, S) ≤ α

(

‖q(x)‖ +
m∑

i=1

(−fi(x))+ +
m∑

i=1

(−gi(x))+
m∑

i=1

|fi(x)gi(x)|
hi(x)

)

, (3.10)

where, (−fi(x))+ := max{−fi(x), 0}, and hi(x) := |max{fi(x), gi(x)}|, i = 1, ...,m.
In the error bound relation (3.9), the residual term for both the sign constraints and the
complementarity constraint is represented by the function

∑m
i=1 |min{fi(x), gi(x)}|, while

the residual terms in relation (3.10) with respect to the sign constraints and to the comple-
mentarity constraint are separably represented. In some situations, this latter representation
could be more convenient. In particular, regarding the residual term for the complementarity
constraint, the functions min{fi(x), gi(x)} (i = 1, ...,m) are generally less regular than the
ones fi(x), gi(x), e.g, the functions min{fi(x), gi(x)} being not necessarily smooth, even
if fi, , gi are smooth.

Throughout the paper, it is convenient to keep in mind the notation used in [14]:

x
u−→ x̄ is meant to be x → x̄ if u = 0 and x → x̄ and x−x̄

‖x−x̄‖ → u
‖u‖ otherwise, as well.
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The rest of this section will be devoted to establish some characterizations of (γ, h)-
metric pseudo subregularity (Definition 3.2). For such a purpose, the next proposition will
be useful. First of all, we need the following lemma which gives a relation between the sets
S and T −1(ȳ).

Lemma 3.1 Let T : X ⇒ Y be a set-valued mapping. Then, one has S ⊂ T −1(ȳ).
Furthermore, if T has closed graph then S = T −1(ȳ).

Proof The proof is straightforward.

Proposition 3.1 Suppose that a closed mapping T is not (γ, h)-metrically pseudo subregu-
lar in the direction u at (x̄, ȳ) ∈ gph T . Then, for each real sequence τk ↓ 0, of non-negative
numbers, there exists a sequence xk

u−→ x̄ which satisfies for large integers k the following
conditions:

i d(xk, S) > 0;
ii ψT (xk) � τk

1−√
τk

d(xk, S);

iii
∣
∣∇ψT

∣
∣(xk) �

√
τk .

Consequently, one has

lim inf
x

u−→x̄,x �∈S,
ψT (x)/d(x,S)→0

{
|∇ψT |(x)

}
= 0. (3.11)

Proof Let us note from Lemma 3.1 that S = T −1(ȳ) since gph T is closed. According to

the definition of metric pseudo subregularity, we can find a sequence x̃k
u−→ x̄ such that

x̃k �∈ S, τkd
(
x̃k, S

)
>

∑

j=1,...,m
hj (x̃k)>0

d
(
ȳj , Tj (x̃k)

)

hj (x̃k)
γj −1

=
m∑

j=1

ϕTj
(x̃k) � ψT (x̃k). (3.12)

Hence, the lower semicontinuous (lsc for short) function ψT inherits the following property:

0 < ψT (x̃k) < τkd
(
x̃k, S

)
, k = 1, 2, . . . (3.13)

Let εk := ψT (x̃k) > 0 and λk := min
{√

τkd(x̃k, S),
εk

τk

}
> 0. By the Ekeland variational

principle, there exists for each k an element x̂k such that

• ‖x̂k − x̃k‖ � λk;
• ψT (x̃k) − εk

λk
‖x̂k − x̃k‖ � ψT (x̂k);

• the function fk : x ∈ X �−→ ψT (x) + εk

λk
‖x − x̂k‖ attains its global minimum at x̂k .

We are going to establish the following facts:

i x̂k �∈ S, k = 1, 2, . . . ;
ii x̂k

u−→ x̄;
iii ψT (x̂k) � τk

1−√
τk

d(x̂k, S), for k sufficiently large;

iv |∇ψT |(x̂k) �
√

τk , for k sufficiently large.

Assuming that (i) does not hold, one has

τkd
(
x̃k, S

)
� τk‖x̃k − x̂k‖ � τkλk � εk = ψT (x̃k),
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in contradiction with (3.13).
To prove (ii), let us note that λk = o(‖x̃k − x̄‖) by virtue of the inequality

λk � √
τkd
(
x̃k, S

)
� √

τk‖x̃k − x̄‖.
Set μk := ‖x̂k−x̄‖

‖x̃k−x̄‖ . After involving the triangle inequality, one deduces
(

1 − ‖x̂k − x̃k‖
‖x̃k − x̄‖

)

‖x̃k − x̄‖ � ‖x̂k − x̄‖ �
(

1 + ‖x̂k − x̃k‖
‖x̃k − x̄‖

)

‖x̃k − x̄‖.
Recalling that ‖x̂k − x̃k‖ � λk , we conclude that μk → 1 as well as ‖x̂k − x̄‖ → 0. If
u �= 0, then a few straightforward calculations give us

x̂k − x̄

‖x̂k − x̄‖ − u

‖u‖ =
(

1

μk

)(
x̃k − x̄

‖x̃k − x̄‖ − u

‖u‖
)

+
(

1

μk

)
x̂k − x̃k

‖x̃k − x̄‖ +
(

1

μk

− 1

)
u

‖u‖ .
(3.14)

Using (3.14) it yields
∥
∥
∥

x̂k−x̄
‖x̂k−x̄‖ − u

‖u‖
∥
∥
∥→ 0, and therefore, (ii) is proved.

For establishing (iii), we invoke (3.13) and obtain

ψT (x̂k)

d(x̂k, S)
� ψT (x̃k)

d(x̂k, S)
�

τkd
(
x̃k, S

)

d(x̂k, S)
.

Since
|d(x̂k, S) − d(x̃k, S)| � ‖x̂k − x̃k‖ � λk � √

τkd(x̃k, S),

for large k we get

ψT (x̂k)

d(x̂k, S)
�

τkd
(
x̃k, S

)

d
(
x̃k, S

)− √
τkd
(
x̃k, S

) = τk

1 − √
τk

.

Hence, (iii) follows immediately.
In oder to verify (iv), remember that fk(·) attains a minimum at x̂k . As a result, the

inequality

ψT (x) + εk

λk

‖x − x̂k‖ � ψT (x̂k)

holds when x is nearby x̂k . Equivalently,

ψT (x̂k) − ψT (x)

‖x̂k − x‖ � εk

λk

for all x �= x̂k belonging to a neighborhood of x̂k . In summary, we have when k is large
enough

|∇ψT |(x̂k) �
εk

λk

= max

{
ψT (x̃k)√
τkd
(
x̃k, S

) , τk

}

� max
{√

τk, τk

} = √
τk . (3.15)

Letting xk = x̂k , the whole proof is established.

Based on Proposition 3.1, the next theorem offers a sufficient criterion for metric pseudo
subregularity.

Theorem 3.1 Let T , γ , h and ψT be defined as above. Suppose that the condition

lim inf
x

u−→x̄,x �∈S,
ψT (x)/d(x,S)→0

{
|∇ψT | (x)

}
> 0 (3.16)
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is fulfilled. Then, the set-valued mapping T is (γ, h)-metrically pseudo subregular w.r.t. the
direction u at (x̄, ȳ) ∈ gph T .

Proof When (3.16) is valid, the set-valued mapping T must be (γ, h)-metrically pseudo
subregular as a direct consequence of Proposition 3.1.

Corollary 3.1 Under the same assumptions of Theorem 3.1, if now we have

lim inf
x

u−→x̄,x �∈S,
ψT (x)/‖x−x̄‖→0

{
|∇ψT | (x)

}
> 0, (3.17)

then, the set-valued mapping T is (γ, h)-metrically pseudo subregular w.r.t. the direction u

at (x̄, ȳ) ∈ gph T .

Proof Relation (3.17) implies the one in (3.16).

Using Theorem 3.1 and taking hi(x) = ‖x − x̄‖, one obtains a slope characterization of
directional pseudo subregularity of T .

Proposition 3.2 (slope characterization) If

lim inf
x

u−→x̄,x �∈S

‖x−x̄‖−γ ϕTi
(x)→0

∣
∣
∣∇ cl

( m∑

i=1

ρTi
(·)

‖· − x̄‖γi−1

)∣
∣
∣(x) > 0, (3.18)

then T is γ -MPSR in the direction u at (x̄, ȳ).

Similarly, considering the case m = 1, h1(x) := d
(
x, T −1(ȳ)

)
, we derive a characteri-

zation of directional Hölder metric subregularity of T .

Proposition 3.3 (slope characterization) Suppose that the following condition

lim inf
x

u−→x̄,x �∈S,
d(ȳ,T (x))

‖x−x̄‖d(x,T −1(ȳ))γ−1 →0

∣
∣
∣∇ cl

d(ȳ, T (·))
d(·, T −1(ȳ))γ−1

∣
∣
∣(x) > 0 (3.19)

holds. Then T is directional Hölder γ -metric subregular in the direction u at (x̄, ȳ).

In many applications, it is sufficient to focus on the case m = 1. For such a situation,
when applying Theorem 3.1 we have to deal with the slope of the quotient of two functions.
The next lemma will be useful to the computation of the slope of such a function.

Lemma 3.2 Let f, g : X −→ R ∪ {+∞} be lsc extended real-valued functions and let
x ∈ Dom f ∩ Dom g satisfying f (x) � 0 and g(x) > 0. Suppose in addition that g is
continuous at x. Under these assumptions, one has

∣
∣
∣∇
(f

g

)∣
∣
∣(x) � |∇f |(x)

g(x)
− f (x)

g(x)2
|∇g|(x). (3.20)

Proof Let us denote � := f
g
. If x is an isolated point of Dom �, then x is a local minimum

of both � and f , so |∇�|(x) = |∇f |(x) = 0, and the conclusion is trivial. On the contrary,
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we fix a sequence of nonnegative reals (εk) ↓ 0. Then, there is a sequence (δk) ↓ 0 for
which the following property holds true:

‖z − x‖ � δk =⇒ g(x) − g(z) �
(|∇g|(x) + εk

)‖x − z‖. (3.21)

For each k, we may select zk ∈ B(x, δk) \ {x} such that
f (x) − f (zk) �

(|∇f |(x) − εk

)‖x − zk‖. (3.22)

Due to the continuity of g, it is possible to assume g(zk) > 0. We have

�(x) − �(zk)

‖x − zk‖ =
f (x)

g(x)
− f (zk)

g(zk)

‖x − zk‖
= 1

g(zk)
· f (x) − f (zk)

‖x − zk‖ − f (x)

g(x)g(zk)
· g(x) − g(zk)

‖x − zk‖
� 1

g(zk)

(|∇f |(x) − εk

)− f (x)

g(x)g(zk)

(|∇g|(x) + εk

)
.

From the last inequality we derive

lim sup
k→∞

�(x) − �(zk)

‖x − zk‖
� lim sup

k→∞

(
1

g(zk)

(|∇f |(x) − εk

)− f (x)

g(x)g(zk)

(|∇g|(x) + εk

)
)

= 1

g(x)
|∇f |(x) − f (x)

g(x)2
|∇g|(x).

Since |∇�|(x) = lim sup
z→x

�(x) − �(z)

‖x − z‖ , we obtain

|∇�|(x) � lim sup
k→∞

�(x) − �(zk)

‖x − zk‖ � 1

g(x)
|∇f |(x) − f (x)

g(x)2
|∇g|(x).

Invoking Lemma 3.2, we obtain Lemma 3.3 used in the sequel for proving Proposi-
tion 3.4.

Lemma 3.3 Let T : X ⇒ Y be a given set-valued mapping and let (x̄, ȳ) ∈ gph T . Suppose
that h : X −→ R+ is locally Lipschitz around x̄ and that the subsequent condition is valid
as well

lim sup
x

u−→x̄,x �∈S

d(x, S)

h(x)
< +∞ (3.23)

for some u ∈ X. Then,

lim inf
x

u−→x̄,x �∈S,

h(x)1−γ ρT (x)

d(x,S)
→0

∣
∣
∣∇
( cl ρT

hγ−1

)∣
∣
∣(x) � lim inf

x
u−→x̄,x �∈S,

h(x)−γ ρT (x)→0

{ |∇ cl ρT |(x)

h(x)γ−1

}

. (3.24)

Proof Applying Lemma 3.2 with f = cl ρT and g = hγ−1 we deduce

∣
∣
∣∇
( cl ρT

hγ−1

)∣
∣
∣(x) � |∇ cl ρT |(x)

h(x)γ−1
− cl ρT (x)

h(x)γ−1

∣
∣∇(hγ−1

)∣
∣(x)

h(x)γ−1
(3.25)
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for each x �∈ S. According to [13], we have
∣
∣∇(hγ−1)∣∣(x) = (γ − 1)h(x)γ−2

∣
∣∇h

∣
∣(x). (3.26)

But since h is locally Lipschitz, it holds that κ(x) := ∣∣∇h
∣
∣(x) is locally bounded around x̄.

Let us rewrite (3.25) as follows
∣
∣
∣∇
( cl ρT

hγ−1

)∣
∣
∣(x) � |∇ cl ρT |(x)

h(x)γ−1
− (γ − 1)κ(x)

cl ρT (x)

[h(x)]γ
� |∇ cl ρT |(x)

h(x)γ−1
− (γ − 1)κ(x)

ρT (x)

h(x)γ−1d(x, S)
· d(x, S)

h(x)
.

(3.27)

Combining (3.23), (3.25) with (3.27) we infer

lim inf
x

u−→x̄,x �∈S,

h(x)1−γ ρT (x)

d(x,S)
→0

∣
∣
∣∇
( cl ρT

hγ−1

)∣
∣
∣(x) � lim inf

x
u−→x̄,x �∈S,

h(x)1−γ ρT (x)

d(x,S)
→0

|∇ cl ρT |(x)

h(x)γ−1
. (3.28)

Assume that (xk) is a sequence in X such that

xk
u−→ x̄, xk �∈ S,

h(xk)
1−γ ρT (xk)

d(xk, S)
→ 0. (3.29)

By virtue of (3.23), we have

lim sup
k→∞

d(xk, S)

h(xk)
< +∞,

which yields

lim sup
k→∞

{
h(xk)

−γ ρT (xk)
}

= lim sup
k→∞

{
h(xk)

1−γ ρT (xk)

d(xk, S)
· d(xk, S)

h(xk)

}

= 0. (3.30)

As a result, we get

lim inf
k→∞

{ |∇ cl ρT |(xk)

h(xk)γ−1

}

� lim inf
x

u−→x̄,x �∈S,

h(x)−γ ρT (x)→0

{ |∇ cl ρT |(x)

h(x)γ−1

}

. (3.31)

Combining (3.29) with (3.31), it holds that

lim inf
x

u−→x̄,x �∈S,

h(x)1−γ ρT (x)

d(x,S)
→0

|∇ cl ρT |(x)

h(x)γ−1
� lim inf

x
u−→x̄,x �∈S,

h(x)−γ ρT (x)→0

{ |∇ cl ρT |(x)

h(x)γ−1

}

. (3.32)

In summary, (3.28) and (3.32) give us

lim inf
x

u−→x̄,x �∈S,

h(x)1−γ ρT (x)

d(x,S)
→0

∣
∣
∣∇
( cl ρT

hγ−1

)∣
∣
∣(x) � lim inf

x
u−→x̄,x �∈S,

h(x)−γ ρT (x)→0

{ |∇ cl ρT |(x)

h(x)γ−1

}

. (3.33)

This completes the proof of Lemma 3.3.

Based on the previous results, we present a robust version of Theorem 3.1 for the case
m = 1 which might be more comfortable in practice.
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Proposition 3.4 Let T , x̄, ȳ and h satisfy all assumptions of Lemma 3.3. Then, under the
following condition

lim inf
x

u−→x̄,x �∈S,

h(x)−γ ρT (x)→0

|∇ cl ρT |(x)

h(x)γ−1
> 0, (3.34)

the set-valued mapping T is γ -metrically pseudo subregular at x̄ for ȳ in the direction u.

Proof The proof follows by combining Theorem 3.1 with Lemma 3.3.

4 Coderivative Characterization of Directional Metric Pseudo
Subregularity

Theorem 3.1 provides two sufficient conditions ensuring the validity of directional pseudo
subregularity through the slopes corresponding to suitable functions. Gfrerer in his
work [11] dealt with such a property using the notion of coderivatives. In order to study
the directional metric regularity property, the authors of [25], introduced the notion of lim-
iting critical set around a reference point (x̄, ȳ) ∈ gph T . Following a similar trend, we
shall develop an infinitesimal criterion for directional metric pseudo subregularity using the
coderivative associated with an abstract subdifferential ∂ . Hereinafter, we assume that the
abstract subdifferential ∂ satisfies the following quotient fuzzy rule:

(C6): Let f1, f2 : X → R ∪ {+∞} be two locally Lipschitz functions around x0 ∈ X

with f1(x0) ≥ 0, f2(x0) > 0. For any ε > 0 one has

∂

(
f1

f2

)

(x0) ⊆
⋃

x1,x2∈B(x0,ε)

{
f2(x0)∂f1(x1) − f1(x0)∂f2(x2)

f2(x0)2
+ εBX�

}

.

Note that (C6) is valid for all usual subdifferentials used in the literature of variational
analysis.

Proposition 4.1 Let T : X ⇒ Y = Y1 × · · · × Ym be a closed set-valued mapping between
two Banach spaces X and Y and (x̄, ȳ) ∈ gph T . Suppose given functions hi : X −→
R+, (i = 1, · · · ,m), locally Lipschitz around x̄. Let u ∈ X and γ � 1 be given for which
the following condition is fulfilled

lim sup
x

u−→x̄,x �∈S

max
i=1,...,m

d(x, S)

hi(x)
< +∞. (4.35)

If T is not metrically pseudo subregular in the direction u at (x̄, ȳ), then there exist some
real sequence (tk) ↓ 0 together with (uk, vk) ∈ SX×Y , u�

k ∈ X∗ and v�
k ∈ Y ∗ such that

(a). lim
k→∞

∥
∥uk

∥
∥ = 1, lim

k→∞
∥
∥‖u‖uk − u

∥
∥ = 0;

(b). lim
k→∞maxi=1,...,m

{
(tk)

1−γi ‖vki‖
} = 0;

(c). the vector (u�
k,−ṽ�

k) belongs to N
(
gph T , (x̄ + tkuk, ȳ + tkvk)

)
, where ṽ�

k ∈ Y ∗ is
given by ṽ�

ki = hi(x̄ + tkuk)
1−γi v�

ki;

(d). lim
k→∞

{ ∑m
i=1〈v�

ki , hi(x̄ + tkuk)
1−γi vki〉

∥
∥
(
h1(x̄ + tkuk)1−γ1vk1, . . . , hm(x̄ + tkuk)1−γmvkm

)∥
∥

}

= 1;

(e). lim
k→∞‖u�

k‖ = 0, lim
k→∞‖v�

ki‖ = 1.
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Proof For convenience, we assume that the distance on Y is given by

‖y‖Y := ‖y1‖Y1 + · · · + ‖ym‖Ym .

Further, with the aim of simplifying the notation, let us use ‖·‖ to indicate the norm in any

Banach space. By Proposition 3.1, we can find some sequence xk
u−→ x̄ such that

(i) xk �∈ S;

(ii) lim
k→∞

ψT (xk)

d(xk, S)
= 0;

(iii) lim
k→∞

{∣
∣∇ψT

∣
∣(xk)

}
= 0.

Denoting αk := ‖xk − x̄‖ > 0 and assuming ψT (xk) = βkd(xk, S) where (βk) ↓ 0, for
each k, choose some positive parameters σk and ηk satisfying σk = o(ψT (xk)) and ηk < σk .
Making σk and ηk smaller if necessary, we may suppose

• 2ηk + σk < ψT (xk);
• ϕT (z) > ψT (xk) − σk whenever ‖z − xk‖ � ηk .

By (4.35), we have minj=1,...,m
{
hj (xk)} > 0. Let τk := ∣

∣∇ψT

∣
∣(xk), then according to

the definition, xk is a local minimum to the function ψT (·)+(τk +σk)‖·−xk‖. Hence, there
exists 0 < rk � min

j=1,...,m

{
hj (xk)

γj ηk

}
such that

ψT (xk) = min‖x−xk‖�2rk

{
ψT (x) + (τk + σk)‖x − xk‖

}
. (4.36)

By the definition of a lsc envelope, we may select some (x̂k, ŷk) ∈ gph T which fulfills the
two properties below:

‖x̂k − xk‖ � σkrk and
m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1
� ψT (xk) + σkrk . (4.37)

Indeed, since 0 < rk � min
j=1,...,m

{
hj (xk)

γj ηk

}
, hj are continuous and ψT (xk) = clϕT (xk),

we can choose x̂k ∈ X such that ‖x̂k − xk‖ � σkrk and

ϕT (x̂k) � ψT (xk) + σkrk/2. (4.38)

Moreover, there exists ŷk ∈ Tj (x̂k) such that

‖ŷkj − ȳj‖ � d(ȳj , Tj (x̂k)) + σkrk

2
∑m

j=1 hj (x̂k)
−γj +1

.

It follows that

m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1
�

m∑

j=1

d(ȳj , Tj (x̂k))

hj (x̂k)
γj −1

+ σkrk

m∑

j=1

1

hj (x̂k)
γj −1

⎛

⎝2
m∑

j=1

1

hj (x̂k)
γj −1

⎞

⎠

−1

=
m∑

j=1

d(ȳj , Tj (x̂k))

hj (x̂k)
γj −1

+ σkrk/2

= ϕT (x̂k) + σkrk/2.
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From these estimations and (4.38), one obtains that

m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1
� ψT (xk) + σkrk/2 + σkrk/2 = ψT (xk) + σkrk .

Using (4.36), we deduce

m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1
� ψT (x) + (τk + σk)‖x − xk‖ + σkrk

� δgph T (x, y) +
m∑

j=1

‖ȳj − yj‖
hj (x)γj −1

+ (τk + σk)‖x − x̂k‖

+ (τk + σk)‖xk − x̂k‖ + σkrk .

(4.39)

Define an extended real-valued function fk : X × Y −→ R ∪ {+∞} by the formula

fk(x, y) := δgph T (x, y) +
m∑

j=1

‖ȳj − yj‖
hj (x)γj −1

+ (τk + σk)‖x − x̂k‖. (4.40)

Because gph T is closed, the continuity of hj implies that fk is lsc. Observe that

fk(x̂k, ŷk) =∑m
j=1

‖ȳj −ŷkj ‖
hj (x̂k)

γj −1 and that

fk(x̂k, ŷk) � inf‖x−xk‖�2rk
fk(x, y) + εk,

where εk := (τk + σk)‖xk − x̂k‖ + σkrk > 0. Setting λk := rk
√

σk > 0 and applying the
Ekeland variational principle, take (x̃k, ỹk) ∈ X × Y such that

• ‖(x̂k, ŷk) − (x̃k, ỹk)‖ � λk;
• fk(x̂k, ŷk) − εk

λk
‖(x̂k, ŷk) − (x̃k, ỹk)‖ � fk(x̃k, ỹk);

• (x̃k, ỹk) is a minimum to the function (x, y) ∈ X × Y �−→ fk(x, y) + εk

λk
‖(x, y) −

(x̃k, ỹk)‖ subject to the constraint ‖x − xk‖ � 2rk .

The last condition along with the properties (C1) − (C6) of the subdifferential operator
show that, there are some elements x̃i

k, x̃
4
kj ∈ X, ỹi

k ∈ Y , ỹ4
kj ∈ Yj and also x̃i�

k , x̃4�
kj ∈ X∗,

ỹi�
k ∈ Y ∗, ỹ4�

kj ∈ Y �
j which fulfill the following conditions:

i max
{‖x̃k − x̃i

k‖, ‖x̃k − x̃4
kj‖, ‖ỹk − ỹi

k‖, ‖ỹk − ỹ4
kj‖
}
� νk , where the parameter νk is

chosen such that νk � min
{
λk, βk‖ȳ1 − ỹk1‖, . . . , βk‖ȳm − ỹkm‖};

ii (x̃1�
k , ỹ1�

k ) ∈ ∂X×Y δgph T (x̃1
k , ỹ1

k ) = N
(
gph T , (x̃1

k , ỹ1
k )
)
;

iii x̃2�
k ∈ ∂X‖· − x̂k‖(x̃2

k );
iv (x̃3�

k , ỹ3�
k ) ∈ ∂X×Y ‖(·, ·) − (x̃k, ỹk)‖(x̃3

k , ỹ3
k );

v ỹ4�
kj ∈ ∂Yj

‖ȳj − ·‖(ỹ4
kj );

vi x̃4�
kj ∈ ∂X

(
h
1−γj

j

)
(x̃4

kj ) = (1 − γj )hj (x̃
4
kj )

−γj
(
∂Xhj

)
(x̃4

kj );

vii
∥
∥x̃1�

k + (τk + σk)x̃
2�
k + εk

λk
x̃3�
k +∑m

j=1‖ȳj − ỹ4
kj‖x̃4�

kj

∥
∥ � σk;

viii
∥
∥ỹ1�

kj + εk

λk
ỹ3�
kj + hj (x̃

4
kj )

1−γj ỹ4�
kj

∥
∥ � σk .

We shall establish the conclusion of Proposition 4.1 step-by-step through several auxiliary
facts.
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Fact 1 It holds that

lim
k→∞

‖x̂k − xk‖
‖xk − x̄‖ = lim

k→∞
‖x̃i

k − xk‖
‖xk − x̄‖ = lim

k→∞
‖x̃4

kj − xk‖
‖xk − x̄‖ = 0; (4.41a)

lim
k→∞

hj (x̂k)

hj (xk)
= lim

k→∞
hj (x̃

i
k)

hj (xk)
= lim

k→∞
hj (x̃

4
kj )

hj (xk)
= 1; (4.41b)

lim
k→∞

⎧
⎨

⎩

1

ψT (xk)

m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1

⎫
⎬

⎭
= 1; (4.41c)

lim
k→∞

⎧
⎨

⎩

1

ψT (xk)

m∑

j=1

‖ȳj − ỹi
kj‖

hj (x̃
i
k)

γj −1

⎫
⎬

⎭
= 1, i = 1, 2, 3; (4.41d)

lim
k→∞

⎧
⎨

⎩

1

ψT (xk)

m∑

j=1

‖ȳj − ỹ4
kj‖

hj (x̃
4
kj )

γj −1

⎫
⎬

⎭
= 1. (4.41e)

Proof of Fact 1 Firstly, we establish (4.41a). Equality lim
k→∞

‖x̂k−xk‖‖xk−x̄‖ = 0 is trivial due to

the choice of x̂k . Further, since

max
{‖x̃i

k − x̃k‖, ‖x̃4
kj − x̃k‖

}
� λk = o(‖xk − x̄‖),

whereas ‖x̃k − x̂k‖ � λk = o(‖xk − x̄‖), one gets
max

{‖x̃i
k − xk‖, ‖x̃4

kj − xk‖
} = o(‖xk − x̄‖),

which implies (4.41a).
For (4.41b), let us involve the Lipschitz property of each function hj . Indeed, for each

j = 1, 2, . . . , m there is Lj > 0 and rj > 0 for which one has

‖x − x̄‖ � rj , ‖x′ − x̄‖ � rj
‖x − x′‖ � rj

}

=⇒ |hj (x) − hj (x
′)| � Lj‖x − x′‖. (4.42)

Thus, when k is large, it holds that

|hj (x̂k) − hj (xk)| � Lj‖x̂k − xk‖ � Ljσkrk . (4.43)

This allows us to write ∣
∣
∣
hj (x̂k)

hj (xk)
− 1
∣
∣
∣ � Lj

rk

hj (xk)
σk . (4.44)

By interchanging in turn the role between x̂k with x̃kj , x̃i
k and repeating the arguments above,

we deduce

max
{∣
∣
∣
hj (x̃

4
kj )

hj (xk)
− 1
∣
∣
∣,
∣
∣
∣
hj (x̃

i
k)

hj (xk)
− 1
∣
∣
∣
}
� Lj

rk

hj (xk)
(σk + 2

√
σk). (4.45)

Since rk � hj (xk)
γ ηk , (4.41b) follows from (4.44) and (4.45).

In the next step, we prove (4.41c). According to the choice of x̂k , it is possible to derive

hj (x̂k)
1−γj ‖ȳj − ŷkj‖ � hj (x̂k)

1−γj d
(
ȳj , Tj (x̂k)

) = ϕTj
(x̂k).

As a result
m∑

j=1

‖ȳj − ŷkj‖
hj (x̂k)

γj −1
� ϕT (xk) > ψT (xk) − σk .
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Further, we have
∑m

j=1
‖ȳj −ŷkj ‖
hj (x̂k)

γj −1 < ψT (xk) + σkrk by the choice of ŷkj . Thus, the

limit (4.41c) is a direct consequence of the fact that σk = o(ψT (xk)).
Based on (4.41b), we can derive that the proof of (4.41e) is similar to the one of (4.41d).

Thus, it is sufficient to verify (4.41d) only. Indeed, fix an index i ∈ {1, 2, 3}. We infer
from (4.41b) that

lim
k→∞

⎧
⎨

⎩

1

ψT (xk)

m∑

j=1

‖ȳj − ŷkj‖
hj (x̃

i
k)

γj −1

⎫
⎬

⎭
= 1.

According to the choice of ỹi
kj we get

‖ỹi
kj − ŷkj‖ � ‖ỹkj − ŷkj‖ + ‖ỹi

kj − ŷkj‖ � 2λk = 2rk
√

σk,

which yields

‖ỹi
kj − ŷkj‖

ψT (xk)hj (x̃
i
k)

γj −1
� 2

√
σk

rk

ψT (xk)hj (x̃
i
k)

γj −1

� 2
√

σk

h(xk)
γj ηk

ψT (xk)hj (x̃
i
k)

γj −1
.

Recalling that ηk < σk = o(ψT (xk)), we obtain (4.41d) by applying (4.41b).

Fact 2 We have ȳ �∈ T (x̃1
k ).

Let us define

tk := ∥∥(x̃1
k − x̄, ỹ1

k − ȳ
)∥
∥, (4.46a)

uk := (tk)
−1(x̃1

k − x̄), (4.46b)

vki := (tk)
−1(ỹ1

ki − ȳi ), i = 1, . . . , m. (4.46c)

Then the following relations are valid as well

‖(uk, vk)‖ = 1, (4.47a)

lim
k→∞‖uk‖ = 1, (4.47b)

lim
k→∞

∥
∥‖u‖uk − u

∥
∥ = 0, (4.47c)

lim
k→∞

{
(tk)

1−γi ‖vki‖
} = 0. (4.47d)

Proof of Fact 2 Firstly, by the triangle inequality:

‖xk − x̃1
k‖ � ‖xk − x̂k‖ + ‖x̂k − x̃k‖ + ‖x̃k − x̃1

k‖ � σkrk + λk + νk = o(ηk).

Hence, for k large ‖xk − x̃1
k‖ < ηk . Thus, we infer from the choice of ηk that

ϕT (x̃1
k ) > ψT (x̃1

k ) − σk > ηk .

This shows that ȳ �∈ T (x̃1
k ). Particularly, one has x̃1

k �= x̄, which implies tk > 0. Hence, the
elements uk , vki are well-defined. The equality (4.47a) is trivial by the definitions (4.46a)–
(4.46c). To prove (4.47b), we note that ‖x̃1

k − x̄‖ ∼ ‖xk − x̄‖ = αk according to (4.41a). It
follows from the choice of ŷk that (see (4.37))

‖ŷki − ȳi‖ � hi(x̂k)
γi−1(ψT (xk) + σkrk

) = o(αk),
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which allows for writing

‖ỹ1
ki − ȳi‖ � ‖ỹ1

ki − ỹki‖ + ‖ỹki − ŷki‖ + ‖ŷki − ȳi‖
� ‖ỹ1

k − ỹk‖ + ‖ỹk − ŷk‖ + ‖ŷki − ȳi‖
� νk + λk + ‖ŷki − ȳi‖ = o(αk).

Thus, the limit in (4.47b) is obtained directly from (4.46a) and (4.46b).
With the aim of verifying (4.47c), let us define ûk := ‖u‖

‖xk−x̄‖ (xk − x̄) − u. For such a
notation, we have

‖u‖uk − u = (tk)
−1‖u‖(x̃1

k − ū) − u

= ‖uk‖
(
ûk + u

)− u + ‖u‖‖uk‖ x̃1
k − xk

‖xk − x̄‖
= ‖uk‖ûk + (‖uk‖ − 1)u + ‖u‖‖uk‖ x̃1

k − xk

‖xk − x̄‖ .

Observe that xk
u−→ x̄; we get ‖ûk‖ → 0, and hence, (4.47c) follows from (4.47b)

and (4.41a).
Finally, we establish (4.47d). Due to (4.46a), (4.46c) we may write

(tk)
1−γi ‖vki‖ = ‖ỹ1

k − ȳ‖
‖(x̃1

k − x̄, ỹ1
k − ȳ)‖γi

�
‖ỹ1

k − ȳ‖
‖x̃1

k − x̄‖γi

k→∞∼ ‖ỹ1
k − ȳ‖

‖xk − x̄‖γi
.

Recalling the estimation for ‖ỹ1
k − ȳ‖ as above, we find

‖ỹ1
ki − ȳi‖ � νk + λk + ‖ŷki − ȳi‖

� νk + λk + hi(x̂k)
γi−1(ψT (xk) + σkrk

)
.

We know that lim sup
k→∞

hi(xk)

‖xk − x̄‖ < +∞, lim
k→∞

ψT (xk)

d(xk, S)
= 0. Therefore, (4.41a) and (4.41b)

imply lim sup
k→∞

hi(x̂k)
γi−1ψT (xk)

‖xk − x̄‖γi
= 0. Since rk � hi(xk)

γi ηk and λk = o(rk), νk = o(rk),

we conclude that ‖ỹ1
ki − ȳi‖ = o

(‖xk − x̄‖γi
)
. Thus, (4.47d) is thereby proved.

Fact 3 For each i = 1, 2, . . . , m it holds that

lim
k→∞

{
[hi(xk)]γi−1‖ỹ1�

ki ‖
}

= 1. (4.48)

Proof of Fact 3 Invoking (viii), there exists w�
ki ∈ BY ∗

i
such that

σkw
�
ki = ỹ1�

ki + εk

λk

ỹ3�
ki + h(x4

ki)
1−γi ỹ4�

ki .

By virtue of (iv), the sequence (ỹ3�
ki ) is bounded in norm, so

lim
k→∞

∥
∥ỹ1�

ki + h(x4
ki)

1−γi ỹ4�
ki

∥
∥ = 0. (4.49)

By using (4.41b), it follows that hi(x̃
4
ki) > 0 as k is sufficiently large (because of hi(x̃

4
ki) ∼

hi(xk)). This implies ỹ4
ki �= ȳi unless a finite many of indexes k. Taking into account (v) and
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since the function ‖ȳi − ·‖ is convex continuous on Yj , we can say that ỹ4
ki is a minimum of

the function ‖ȳi − ·‖ − 〈ỹ4�
ki , · − ỹ4

ki〉. Thus,
‖ỹ4�

ki ‖ = 1, ‖ȳi − ỹ4
ki‖ = −〈ỹ4�

ki , ȳi − ỹ4
ki〉. (4.50)

The latter permits us to obtain

h(x4
ki)

1−γi − ∥∥ỹ1�
ki + h(x4

ki)
1−γi ỹ4�

ki

∥
∥ � ‖ỹ1�

ki ‖
� h(x4

ki)
1−γi + ∥∥ỹ1�

ki + h(x4
ki)

1−γi ỹ4�
ki

∥
∥ (4.51)

Combining (4.41b), (4.49) with (4.51) we obtain (4.48).

Fact 4 Let us define with respect to each k the elements below:

u�
k := x̃1�

k , (4.52a)

v�
ki := −hi(x̄ + tkuk)

γi−1ỹ1�
ki , (4.52b)

ṽ�
ki := hi(x̄ + tkuk)

1−γi v�
ki . (4.52c)

For such elements, we have

lim
k→∞‖v�

ki‖ = 1, (4.53a)
(
u�

k, −ṽ�
k1, . . . ,−ṽ�

km

) ∈ N
(
gph T , (x̄ + tkuk, ȳ + tkvk)

)
, (4.53b)

lim
k→∞‖u�

k‖ = 0, (4.53c)

lim
k→∞

∑m
i=1

〈
v�
ki , hi(x̄ + tkuk)

1−γi vki

〉

∥
∥
(
h1(x̄ + tkuk)1−γ1vk1, . . . , hm(x̄ + tkuk)1−γmvkm

)∥
∥

= 1. (4.53d)

Proof of Fact 4 The relations (4.53a) is derived from (4.52b) and (4.48), while (4.53b) is
a consequence of (ii). In order to obtain (4.53c), we invoke (iii), (iv), (vi), (vii), (4.41e)
and (4.48). Indeed, thanks to (vii), there is û�

k ∈ BX∗ such that

σkû
�
k = x̃1�

k + (τk + σk)x̃
2�
k + εk

λk

x̃3�
k +

m∑

i=1

(1 − γi)
‖ȳi − ỹ4

ki‖
hi(x̃

4
ki)

γi
ũ�

ki , (4.54)

where ũ�
ki ∈ ∂Xhi(x̃

4
ki) satisfies x̃4�

ki = (1 − γi)hi(x̃
4
ki)

−γi ũ�
ki . According to (4), (4) and by

the Lipschitz property of each function hi , it is possible to check that

lim sup
k→∞

{
max

{
‖x̃2�

k ‖, ‖x̃3�
k ‖, ‖ũ�

k1‖, . . . , ‖ũ�
km‖
}}

< +∞. (4.55)

Denoting γ ∗ = max{γ1, . . . , γm}, (4.54) yields
‖x̃1�

k ‖ � σk‖û�
k‖ + (τk + σk)‖x̃2�

k ‖ + εk

λk

‖x̃3�
k ‖

+ (γ ∗ − 1)

(

max
i=1,...,m

1

hi(x̃
4
ki)

)(

max
i=1,...,m

‖ũ�
ki‖
) m∑

i=1

‖ȳi − ỹ4
ki‖

hi(x̃
4
ki)

γi−1
. (4.56)

Using (4.41b) and observing that lim sup
k→∞

d(xk, S)

hi(xk)
< +∞, we deduce

lim sup
k→∞

d(xk, S)

hi(x̃
4
ki)

< +∞.
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As a result, (4.53c) is obtained under the combination of (4.55), (4.56), (4.41e) and the
assumption that ψT (xk)

d(xk,S)
→ 0.

With the aim of establishing (4.53d), we define some quantities
{

aki := hi(x̄ + tkuk)
1−γi 〈v�

ki , vki〉, ak :=∑m
i=1 aki,

bki := hi(x̄ + tkuk)
1−γi ‖vki‖, bk :=∑m

i=1 bki .

Then, we have {−aki = (tk)
−1〈ỹ1�

ki , ỹ
1
ki − ȳi〉,

bki = (tk)
−1hi(hi(x̃

1
k ))1−γi ‖ỹ1

ki − ȳi‖. (4.57)

Since ỹ1�
ki + εk

λk
ỹ3�
ki + hi(x̃

4
ki)

1−γi ỹ4�
ki = σkw

�
ki (see in the proof of Fact 3), it follows that

−tkhi(x̃
4
ki)

γi−1aki = 〈hi(x̃
4
ki)

γi−1ỹ1�
ki , ỹ

1
ki − ȳi〉 = σkhi(x̃

4
ki)

γi−1〈w̃�
ki , ỹ

1
ki − ȳi〉

− εk

λk

hi(x̃
4
ki)

γi−1〈ỹ3�
ki , ỹ

1
ki − ȳi〉 − 〈ỹ4�

ki , ỹ
1
ki − ȳi〉.

Consequently, we find

tkhi(x̄ + tkuk)
γi−1

{
bki −

[hi(x̃
4
ki)

hi(x̃
1
k )

]γi−1
aki

}

= ‖ȳi − ỹ1
ki‖
{

σkhi(x̃
4
ki)

γi−1 〈w̃�
ki , ỹ

1
ki − ȳi〉

‖ȳi − ỹ1
ki‖

}

− ‖ȳi − ỹ1
ki‖
{

εk

λk

hi(x̃
4
ki)

γi−1 〈ỹ3�
ki , ỹ

1
ki − ȳi〉

‖ȳi − ỹ1
ki‖

}

+ ‖ȳi − ỹ1
ki‖
{

1 − 〈ỹ4�
ki , ỹ

1
ki − ȳi〉

‖ȳi − ỹ1
ki‖

}

. (4.58)

As in the proof of Fact 3 (see (4.50))

‖ỹ4�
ki ‖ = 1, ‖ȳi − ỹ4

ki‖ + 〈ỹ4�
ki , ȳi − ỹ4

ki〉 = 0,

and the latter implies

〈ỹ4�
ki , ỹ

1
ki − ȳi〉 = ‖ȳi − ỹ4

ki‖ + 〈ỹ4�
ki , ỹ

1
ki − ỹ4

ki〉. (4.59)

Moreover, recall that νk � βk‖ȳi − ỹki‖ (cf. (i)). Therefore, from the fact
max{‖ỹ1

ki − ỹki‖, ‖ỹ4
ki − ỹki‖} � νk (by virtue of (i)) one has

lim
k→∞

‖ỹ1
ki − ỹki‖

‖ȳi − ỹki‖ = lim
k→∞

‖ỹ4
ki − ỹki‖

‖ȳi − ỹki‖ = 0, (4.60a)

lim
k→∞

‖ȳi − ỹ1
ki‖

‖ȳi − ỹki‖ = lim
k→∞

‖ȳi − ỹ4
ki‖

‖ȳi − ỹki‖ = 1. (4.60b)

Combining (4.60a) with (4.60b), we obtain

lim sup
k→∞

(
|〈ỹ4�

ki , ỹ
1
ki − ỹ4

ki〉|
‖ȳi − ỹ1

ki‖

)

� lim sup
k→∞

(
‖ỹ4�

ki ‖‖ỹ1
ki − ỹ4

ki‖
‖ȳi − ỹ1

ki‖

)

= 0.

Taking into account the estimation
∣
∣
∣
∣
∣
1 − 〈ỹ4�

ki , ỹ
1
ki − ȳi〉

‖ȳi − ỹ1
ki‖

∣
∣
∣
∣
∣
�
∣
∣
∣
∣
∣
1 − ‖ȳi − ỹ4

ki‖
‖ȳi − ỹki‖

∣
∣
∣
∣
∣
+ |〈ỹ4�

ki , ỹ
1
ki − ỹ4

ki〉|
‖ȳi − ỹ1

ki‖
,
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we find

lim
k→∞

(

1 − 〈ỹ4�
ki , ỹ

1
ki − ȳi〉

‖ȳi − ỹ1
ki‖

)

= 0.

Hence, we can infer from (4.58) that

tkhi(x̄ + tkuk)
γi−1

{
bki −

[hi(x̃
4
ki)

hi(x̃
1
k )

]γi−1
aki

}
= o(‖ȳi − ỹ1

ki‖), (4.61)

which implies

bki −
[hi(x̃

4
ki)

hi(x̃
1
k )

]γi−1
aki = o(bki). (4.62)

Taking the sum over the index i in (4.62), we reach the conclusion

bk −
m∑

i=1

{
[hi(x̃

4
ki)

hi(x̃
1
k )

]γi−1
aki

}

= o(bk). (4.63)

Observing that

lim sup
k→∞

|aki |
bki

= lim sup
k→∞

{

hi(x̃
1
k )γi−1 |〈ỹ1�

ki , ȳi − ỹ1
ki〉|

‖ȳi − ỹ1
ki‖

}

� lim sup
k→∞

{
hi(x̃

1
k )γi−1‖ỹ1�

ki ‖
}

= 1, (4.64)

we deduce

bk − ak = bk −
m∑

i=1

{
[hi(x̃

4
ki)

hi(x̃
1
k )

]γi−1
aki

}

+
m∑

i=1

{{
[hi(x̃

4
ki)

hi(x̃
1
k )

]γi−1 − 1

}

aki

}

= o(bk). (4.65)

This shows that lim
k→∞

(

1 − ak

bk

)

= 0, which is equivalent to (4.53d).

Combining Facts 1, 2, 3, 4 we obtain a full proof for Proposition 4.1.

Definition 4.1 ((γ, h)-limiting critical set) Let T , γ and h as similar as in Definition 3.2
and let (x̄, ȳ) ∈ gph T . For some fixed element u ∈ X, we define the limiting critical set
SCrγ,h T (x̄, ȳ)(u) with respect to T , γ , h and u at the reference point (x̄, ȳ) as follows.
A pair (v, u�) ∈ Y × X∗ lies in SCrγ,h T (x̄, ȳ)(u) if it is possible to find some sequences

(tk) ↓ 0, (vk, u
�
k)

Y×X∗−−−→ (v, u�) and (uk, v
�
k) ∈ SX × SY ∗ which fulfill simultaneously the

following conditions:

i lim
k→∞

∥
∥‖u‖uk − u

∥
∥ = 0;

ii the pair (xk, yk) with xk := x̄ + tkuk , yki := ȳi + (tk)
γi vki is in gph T but ȳ �∈ T (xk);

iii
(
u�

k,−h1(xk)
1−γ1v�

k1, . . . ,−hm(xk)
1−γmv�

km

) ∈ N
(
gph T , (xk, yk)

)
and one has

lim
k→∞

{ ∑m
i=1〈v�

ki , hi(xk)
1−γi (yki − ȳi )〉

∥
∥
(
h1(xk)1−γ1(yk1 − ȳ1), . . . , hm(xk)1−γm(ykm − ȳm)

)∥
∥

}

= 1.

Using this new notion, we are now ready to present the infinitesimal characterization for
the property of (γ, h)-metric pseudo subregularity. The next theorem is in this sense.
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Theorem 4.1 Let T , γ , h and (x̄, ȳ) as in Definition 4.1. Suppose that each function hi is
locally Lipschitz around x̄ and that

lim sup
x→x̄,x �∈S

d(x, S)

hi(x)
< +∞, i = 1, . . . , m. (4.66)

If (0, 0) �∈ SCrγ,h T (x̄, ȳ)(u), then the set-valued mapping T is (γ, h)-metrically pseudo
subregular in the direction u ∈ X at (x̄, ȳ).

Proof The proof is almost based on Proposition 4.1. Assume that the norm in Y ∗ = Y ∗
1 ×

· · · × Y ∗
m coincides with the maximum norm

‖y�‖Y ∗ = ∥∥(y�
1, . . . , y

�
m

)∥
∥

Y ∗ = max
{‖y�

1‖Y ∗
1
, . . . , ‖y�

m‖Y ∗
m

}
.

Suppose on the contrary that T is not (γ, h)-metrically pseudo subregular in the direction
u at (x̄, ȳ). Let tk > 0, (uk, vk) ∈ SX×Y , and (u�

k, v
�
k) ∈ X∗ × Y ∗ be the sequences in the

conclusion of Proposition 4.1. Let us define

xk := x̄ + tkuk, yk := ȳ + tkvk; (4.67)

then it is clear that

(
u�

k,−h1(xk)
1−γ1v�

k1, . . . ,−hm(xk)
1−γmv�

km

) ∈ N
(
gph T , (xk, yk)

)
, (4.68a)

lim
k→∞‖u�

k‖ = 0, lim
k→∞‖v�

ki‖ = 1, (4.68b)

lim
k→∞‖uk‖ = 1, lim

k→∞
∥
∥‖u‖uk − u

∥
∥ = 0, (4.68c)

lim
k→∞

{
(tk)

1−γ1‖vk1‖
} = · · · = lim

k→∞
{
(tk)

1−γm‖vkm‖} = 0, (4.68d)

lim
k→∞

{ ∑m
i=1〈v�

ki , hi(xk)
1−γi vki〉

∥
∥
(
h1(xk)1−γ1vk1, . . . , hm(xk)1−γmvkm

)∥
∥

}

= 1. (4.68e)

Further, as proved in Fact 2, we also have ȳ �∈ T (x̄ + tkuk) = T (xk). Setting

t̂k := ‖uk‖tk, (4.69a)

ûk := ‖uk‖−1uk, v̂ki := (tk)
1−γi ‖uk‖−γi vki , (4.69b)

û�
k := ‖v�

k‖−1u�
k, v̂�

k := ‖v�
k‖−1v�

k, (4.69c)

we obtain

xk = x̄ + t̂k ûk, yki = ȳi + (t̂k)
γi v̂ki , (4.70a)

(
û�

k,−h1(xk)
1−γi v̂�

k1, . . . ,−hm(xk)
1−γm v̂�

km

) ∈ N
(
gph T , (xk, yk)

)
, (4.70b)

‖ûk‖ = 1, ‖v̂�
k‖ = 1, (4.70c)

lim
k→∞‖v̂ki‖ = 0, lim

k→∞‖û�
k‖ = 0. (4.70d)
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On the other hand, combining (4.69c) with (4.68b) and (4.68e), we find

lim
k→∞

{ ∑m
i=1〈v̂�

ki , hi(xk)
1−γi (yki − ȳi )〉

∥
∥
(
h1(xk)1−γ1(yk1 − ȳ1), . . . , hm(xk)1−γm(ykm − ȳm)

)∥
∥

}

= lim
k→∞

{

‖v�
k‖−1

∑m
i=1〈v�

ki , hi(xk)
1−γi vki〉

∥
∥
(
h1(xk)1−γ1vk1, . . . , hm(xk)1−γmvkm

)∥
∥

}

= lim
k→∞

{(

max
i=1,...,m

‖v�
ki‖
)−1 ∑m

i=1〈v�
ki , hi(xk)

1−γi vki〉
∥
∥
(
h1(xk)1−γ1vk1, . . . , hm(xk)1−γmvkm

)∥
∥

}

= 1.

In addition, taking into account the representation

‖u‖ûk − u = ‖uk‖−1 (‖u‖uk − u) +
(
‖uk‖−1 − 1

)
u,

(4.68c) implies lim
k→∞

∥
∥‖u‖ûk − u

∥
∥ = 0. In summary, it follows that (0, 0) belongs to the set

SCrγ,h T (x̄, ȳ)(u), which contradicts the assumption of Theorem 4.1.

Remark 4.1 By letting hi(x) = ‖x − x̄‖, Theorem 4.1 subsumes somewhat studied in [11,
Theorem 1]. Taking m = 1, h1 = d

(
x, T −1(ȳ)

)
, then Theorem 4.1 recovers the results

presented in the works [25, 26].

Note that certain applications concern set-valued mapping having a convex (and closed)
graph. For such situations, the counterpart of Theorem 4.1 might be also fulfilled. The next
result is in this sense.

Proposition 4.2 (Set-valued mapping with convex graph) Suppose that the set-valued map-
ping T : X ⇒ Y has closed convex graph. Fix some given (x̄, ȳ) ∈ gph T and u ∈ X. Let
γ and h be the same as in Theorem 4.1. If T is (γ, h)-metrically pseudo subregular in the
direction u at (x̄, ȳ), then one has (0, 0) �∈ SCrγ,h T (x̄, ȳ)(u).

Proof Replacing T by T̃ (·) := T (· + x̄) − ȳ if necessary, we may assume x̄ = 0 and
ȳ = 0. Let T satisfy all assumptions of Proposition 4.2 but the pair (0, 0) be in the
set SCrγ,h T (0, 0)(u). The definition of SCrγ,h T (0, 0)(u) shows that, there exist a real

sequence sk ↓ 0 together with some sequences (uk, v
�
k) ∈ SX × SY ∗ and (vk, u

�
k)

Y×X∗−−−→
(0, 0) which fulfill the conditions below:

• lim
k→∞

∥
∥‖u‖uk − u

∥
∥ = 0;

• we have yk ∈ T (xk) but 0 = ȳ �∈ T (xk), in which xk = skuk ∈ X and yki = (sk)
γi vki ;

• (
u�

k, −h1(xk)
1−γ1v�

k1, . . . ,−hm(xk)
1−γmv�

km

)
is an element of N

(
gph T , (xk, yk)

)
;

• lim
k→∞

{ ∑m
i=1

〈
v�
ki , hi(xk)

1−γi yki

〉

∥
∥
(
h1(xk)1−γ1yk1, . . . , hm(xk)1−γmykm

)∥
∥

}

= 1.

Let τ , δ and r be positive real parameters such that

d
(
x, T −1(0)

)
� τ

∑

i:hi(x)>0

hi(x)1−γi d
(
0, Ti(x)

)
(4.71)
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whenever x ∈ coneB(u, δ) with 0 < ‖x‖ < r . Since lim
k→∞

∥
∥‖u‖uk − u

∥
∥ = 0, xk will be

in coneB(u, δ) after skipping a few first indexes k. Hence, it is possible to apply (4.71) at
x = xk

d
(
xk, T

−1(0)
)
� τ

m∑

i=1

hi(xk)
1−γi d

(
0, Ti(xk)

)

� τ

m∑

i=1

hi(xk)
1−γi ‖yki‖. (4.72)

Recall that xk �∈ T −1(0). By virtue of (4.72), for some 0 < σk < 1 there exists zk ∈ T −1(0)
which fulfills the inequalities

0 < ‖xk − zk‖ � τ(1 + σk)

m∑

i=1

hi(xk)
1−γi ‖yki‖. (4.73)

Because the set gph T is convex, we may derive from the choice of u�
k and v�

k that

〈u�
k, zk − xk〉 +

m∑

i=1

〈−hi(xk)
1−γi v�

ki ,−yki〉 � 0. (4.74)

As a result, we obtain
∑m

i=1 hi(xk)
1−γi ‖yki‖

‖zk − xk‖
∑m

i=1〈v�
ki , hi(xk)

1−γi yki〉
∥
∥
(
h1(xk)1−γ1yk1, . . . , hm(xk)1−γmykm

)∥
∥

�
〈u�

k, xk − zk〉
‖zk − xk‖ . (4.75)

Combining (4.73) with (4.75), we deduce

1

τ(1 + σk)

∑m
i=1〈v�

ki , hi(xk)
1−γi yki〉

∥
∥
(
h1(xk)1−γ1yk1, . . . , hm(xk)1−γmykm

)∥
∥

�
〈u�

k, xk − zk〉
‖zk − xk‖ � ‖u�

k‖. (4.76)

Passing to the limit w.r.t k in both sides of (4.76), we obtain the following estimate

lim inf
k→∞

{
1

τ(1 + σk)

∑m
i=1〈v�

ki , hi(xk)
1−γi yki〉

∥
∥
(
h1(xk)1−γ1yk1, . . . , hm(xk)1−γmykm

)∥
∥

}

� 0. (4.77)

Since the left-hand side of (4.77) takes a positive value, we reach a contradiction. This
completes our proof.

As arising from many applications, for instance, in generalized equations, we restrict our
consideration to the case m = 1 and T = f + F where f : X −→ Y = Y1 is C1 and
F : X ⇒ Y has a closed and convex graph. Under some robust condition imposed on the
given data f and the abstract subdifferential ∂ , the next proposition has the advantage of
offering a necessary and sufficient condition for (γ, h)-metric pseudo subregularity.
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Proposition 4.3 Let γ = γ1 ∈ [1, 2) and h = h1 : X −→ R be the same as in statement
of Theorem 4.1. Suppose in addition that the Jacobian map ∇f is Lipschitz around x̄ while
the coderivative associated with ∂ obeys the sum rule

D∗(f + F)(x, f (x) + z) = ∇f (x)∗ + D∗F(x, z) (4.78)

for every (x, z) ∈ gphF near (x̄, z̄) ∈ gphF . Then, T = f +F is (γ, h)-metrically pseudo
subregular in the direction u at (x̄, ȳ) ∈ gph T if and only if

(0, 0) �∈ SCrγ,h T (x̄, ȳ)(u).

Proof It is sufficient to prove only the necessary part. Without any loss of generality, we
may assume x̄ = 0, f (x̄) = ȳ = 0. Suppose T is (γ, h)-metrically pseudo subregular
in the direction u at (0, 0). Let κ, δ, ε be positive real numbers under which the following
estimation

d
(
x, T −1(0)

)
� τh(x)1−γ d

(
0, T (x)

)
(4.79)

holds whenever x �= 0 ∈ coneB(u, δ) ∩ εB. If (0, 0) ∈ SCrγ,h T (0, 0)(u), we may select
for each k, some elements sk > 0, uk ∈ SX , vk ∈ Y , u�

k ∈ X∗ and v�
k ∈ SY ∗ such that

(a). the pair (xk, yk) is in gph T with xk = skuk and yk = f (xk) + zk = (sk)
γ vk;

(b). lim
k→∞

∥
∥‖u‖uk − u

∥
∥ = lim

k→∞
∥
∥vk

∥
∥ = lim

k→∞
∥
∥u�

k

∥
∥ = 0;

(c).
(
u�

k, −h(xk)
1−γ v�

k

) ∈ N(gph T , (xk, yk));

(d). lim
k→∞

{〈
v�
k, h(xk)

1−γ yk

〉

∥
∥h(xk)1−γ yk

∥
∥

}

= 1.

In view of (c), one has
h(xk)

γ−1u�
k ∈ D∗T (xk, yk)(v

�
k).

Applying the sum rule formula to T = f + F at (xk, zk), the latter inclusion yields

h(xk)
γ−1u�

k − ∇f (xk)
∗v�

k ∈ D∗F(xk, zk)(v
�
k). (4.80)

According to the definition of a coderivative, and noticing that gphF is closed and convex,
we deduce

〈
h(xk)

γ−1u�
k − ∇f (xk)

∗v�
k, x − xk

〉+ 〈− v�
k, z − zk

〉
� 0 (4.81)

when (x, z) ∈ gphF . Taking (b) into account, we may apply (4.79) with x = xk and get

d
(
xk, T

−1(0)
)
� τh(xk)

1−γ d
(
0, T (xk)

)
� τh(xk)

1−γ ‖yk‖. (4.82)

Recall that S = T −1(0). Let σk > 0 be such that lim sup
k→∞

σk

d(xk, S)
= 0 and let x̂k ∈ S \ {xk}

satisfy

‖xk − x̂k‖ � d(xk, S) + min

{

σk,
1

k2
h(xk)

1−γ ‖yk‖
}

. (4.83)

Substituting x = x̂k and z = −f (x̂k) in (4.81), we get
〈
h(xk)

γ−1u�
k − ∇f (xk)

∗v�
k, x̂k − xk

〉+ 〈− v�
k, −f (x̂k) − zk

〉
� 0. (4.84)

Consequently, after replacing zk by yk − f (xk), (4.84) reads
〈
h(xk)

γ−1u�
k, x̂k − xk

〉+ 〈v�
k, yk

〉

�
〈
v�
k, −f (x̂k) + f (xk) + ∇f (xk)(x̂k − xk)

〉
. (4.85)
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Combining inequalities (4.82), (4.83) and (4.85), yields

h(xk)
γ−1

〈
u�

k, x̂k − xk

〉

‖x̂k − xk‖ + h(xk)
γ−1

(

τ + 1

k2

)−1 〈v�
k, yk

〉

‖yk‖
� 1

‖x̂k − xk‖
〈
v�
k, −f (x̂k) + f (xk) + ∇f (xk)(x̂k − xk)

〉
. (4.86)

Setting ûk := x̂k − xk and applying the Taylor expansion to f gives:

f (x̂k) = f (xk) + ∇f (xk)(ûk) +
∫ 1

0
[∇f (xk + t ûk) − ∇f (xk)](ûk) dt .

From the Lipschitz continuity of the Jacobian ∇f , we have

lim sup
k→∞

supt∈[0,1]
{‖∇f (xk + t ûk) − ∇f (xk)‖

}

‖ûk‖ < +∞,

and therefore, we obtain

lim sup
k→∞

‖f (x̃k) − f (xk) − ∇f (xk)(ûk)‖
‖ûk‖2 < +∞. (4.87)

This leads to the estimation
〈
u�

k, x̂k − xk

〉

‖x̂k − xk‖ +
(

τ + 1

k2

)−1 〈v�
k, yk

〉

‖yk‖
� θkh(xk)

1−γ ‖x̂k − xk‖, (4.88)

in which the real sequence (θk) is bounded. Due to the choice of x̂k , it is possible to write

d
(
xk, S

)
� ‖x̂k − xk‖ � d

(
xk, S

)+ σk,

which permits to deduce that

lim sup
k→∞

‖x̂k − xk‖
h(xk)

= lim sup
k→∞

(‖x̂k − xk‖
d(xk, S)

· d(xk, S)

h(xk)

)

< +∞. (4.89)

Taking into account that ‖u�
k‖ → 0, and passing to the limit as k → ∞ in (4.88), we obtain

that

lim inf
k→∞

{(

τ + 1

k2

)−1 〈v�
k, yk

〉

‖yk‖

}

� 0.

However, the latter relation obviously contradicts (d). Thus, the proof is complete.

Remark 4.2 The conclusion of the preceding proposition is still valid for γ = 2 if we choose
h(x) = ‖x − x̄‖. Indeed, following the proof above, we have

‖yk‖ = (sk)
γ ‖vk‖ = ‖xk‖γ ‖vk‖ = h(xk)

γ ‖vk‖. (4.90)

Reminding (4.82), this yields d(xk, S) = o(h(xk)), and hence, from the choice of x̂k , this
implies

‖x̂k − xk‖ = o(h(xk)). (4.91)

Combining this relation with (4.88), we reach a contradiction as in the previous proof.
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13. Huynh, V.N., Théra, M.: Error bounds in metric spaces and application to the perturbation stability of
metric regularity. SIAM J. Optim. 19(1), 1–20 (2008). https://doi.org/10.1137/060675721
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