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Abstract
This article is devoted to the analysis of necessary and/or sufficient conditions for met-
ric regularity in terms of Demyanov-Rubinov-Polyakova quasidifferentials. We obtain new
necessary and sufficient conditions for the local metric regularity of a multifunction in terms
of quasidifferentials of the distance function to this multifunction. We also propose a new
MFCQ-type constraint qualification for a parametric system of quasidifferentiable equality
and inequality constraints and prove that it ensures the metric regularity of a multifunc-
tion associated with this system. As an application, we utilize our constraint qualification
to strengthen existing optimality conditions for quasidifferentiable programming problems
with equality and inequality constraints. We also prove the independence of the optimal-
ity conditions of the choice of quasidifferentials and present a simple example in which
the optimality conditions in terms of quasidifferentials detect the non-optimality of a given
point, while optimality conditions in terms of various subdifferentials fail to disqualify this
point as non-optimal.
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1 Introduction

Metric regularity plays a very important role in various parts of optimization theory
and numerical analysis, including stability analysis of perturbed optimization problems,
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subdifferential calculus, analysis of optimality conditions etc. [1, 3, 4, 22, 24, 30, 31] Neces-
sary and/or sufficient conditions for metric regularity are usually expressed in terms of va-
rious slopes, subdifferentials and coderivatives [2, 6, 22, 24, 30]. However, if one studies
nonsmooth problems with quasidifferentiable data and wants to utilize quasidifferential cal-
culus [10, 11], these conditions for metric regularity become very inconvenient, since one
has to compute and use subdifferentials/coderivatives and quasidifferentials simultaneously.
In this case it seems more reasonable to apply necessary and/or sufficient conditions for
metric regularity in terms of quasidifferentials. Such conditions were studied by Uderzo in
[36, 37].

One of the main goals of this paper is to improve the main results of [36, 37] and obtain
simple conditions for metric regularity in terms of quasidifferentials. With the use of gen-
eral results on metric regularity [22] we obtain new necessary and sufficient conditions for
the metric regularity of multifunctions in terms of quasidifferentials of the distance function
to this multifunction (see [15] for some results on the quasidifferentiability of this function).
These conditions significantly generalize and improve some results from [36]. For example,
our conditions, unlike the ones in [36], are invariant under the choice of quasidifferentials.
However, both our conditions and the ones in [36, 37] have a significant drawback. Namely,
one must verify the validity of certain inequalities in a neighbourhood of a given point
to apply these conditions. To overcome this issue, we introduce a new MFCQ-type con-
straint qualification for a parametric system of quasidifferentiable equality and inequality
constraint and demonstrate that this constraint qualification guarantees the local metric reg-
ularity of a multifunction associated with this system (see [27] for a discussion of constraint
qualifications for quasidifferentiable optimization problems with inequality constraints).

As an application, we utilize our constraint qualification to obtain new necessary
optimality conditions for quasidifferentiable programming problems with equality and
inequality constraints that strengthen existing optimality conditions for these problems in
terms of quasidifferentials [33–35] (optimality conditions for such problems involving, e.g.
the Demyanov difference of quasidifferentials, can be found in [17]). We prove the inde-
pendence of our optimality conditions of the choice of quasidifferentials (cf. [28, 29]) and
present a simple example in which our optimality conditions detect the non-optimality of a
given point, while optimality conditions in terms of Clarke, Michel-Penot, Jeyakumar-Luc,
Ioffe and Mordukhovich subdifferentials fail to disqualify this point as non-optimal.

The paper is organized as follows. Necessary and sufficient conditions for metric regular-
ity of multifunctions in terms of quasidifferentials are obtained in Section 3. In this section,
we also introduce a newMFCQ-type constraint qualification for parametric systems of qua-
sidifferentiable equalities and inequalities and study its connection with metric regularity.
This constraint qualification is applied to the derivation of new optimality conditions for
quasidifferentiable programming problems in Section 4. Finally, some basic definitions and
facts from quasidifferential calculus are collected in Section 2.

2 Quasidifferentiable Functions

From this point onwards let X be a real Banach space. Its topological dual space is denoted
by X∗, whereas the canonical duality pairing between X and X∗ is denoted by 〈·, ·〉. The
zero vector of a vector space Y is denoted by OY or simply by O when the underline space
is clear from the context.
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Let U ⊂ X be an open set. Recall that a function f : U → R is called Dini (Hadamard)
directionally differentiable at a point x ∈ U , if for any h ∈ X there exists the finite limit

f ′
D(x, h) = lim

α→+0

f (x + αh) − f (x)

α(
f ′

H (x, h) = lim
[α,h′]→[+0,h]

f (x + αh′) − f (x)

α

)

(see [18] for a discussion about the limit in the definition of Hadamard directional deriva-
tive). Clearly, if f is Hadamard directionally differentiable at x, then f ′

H (x, ·) = f ′
D(x, ·).

Therefore, it is natural to refer simply to the directional derivative of f at x and denote it by
f ′(x, ·).

Definition 1 A function f : U → R is called Dini (Hadamard) quasidifferentiable at a
point x ∈ U if f is Dini (Hadamard) directionally differentiable at x, and its directional
derivative can be represented as the difference of two continuous sublinear functions or
equivalently if there exists a a pair Df (x) = [∂f (x), ∂f (x)] of convex weak∗ compact sets
∂f (x), ∂f (x) ⊂ X∗ such that

f ′(x, h) = max
v∗∈∂f (x)

〈v∗, h〉 + min
w∗∈∂f (x)

〈w∗, h〉 ∀h ∈ X. (1)

The pair Df (x) is called a Dini (Hadamard) quasidifferential of f at x, while the sets
∂f (x) and ∂f (x) are called the Dini (Hadamard) subdifferential and superdifferential of f

at x respectively.

Remark 1 Following the usual convention we identify X∗ with X in the case when X is
either a finite dimensional or a Hilbert space. Therefore, in particular, if X = R

n, then a
quasidifferential is a pair of convex compact subsets of Rn, while if X is a Hilbert space,
then a quasidifferential is a pair of weakly compact convex subsets of X.

A calculus of quasidifferentiable functions can be found in [10]. Here we only mention
that any finite DC (difference-of-convex) function is Hadamard quasidifferentiable. Note
also that a quasidifferential of a function f is not unique, since for any quasidifferential
Df (x) of f at x and any weak∗ compact convex set C ⊂ X∗ the pair [∂f (x)+C, ∂f (x)−
C] is a quasidifferential of f at x as well.

In the general case quasidifferential mapping Df (·) might not possess any continuity
properties; however, for many nonsmooth functions appearing in applications it is outer
semicontinuous (o.s.c.). Recall that if a function f is quasidifferentiable in a neighbourhood
U of a point x ∈ X, then a quasidifferential mapping Df (·) defined in this neighbourhood
is said to be o.s.c. at x, if the corresponding multifunctions ∂f : U → X∗ and ∂f : U → X∗
are o.s.c. at x, i.e. for any open sets V1, V2 ⊂ X∗ such that ∂f (x) ⊂ V1 and ∂f (x) ⊂ V2
there exists δ > 0 such that ∂f (x′) ⊂ V1 and ∂f (x′) ⊂ V2 for all x′ ∈ U with ‖x′−x‖ < δ.
As was pointed out in [26], a quasidifferential of a continuously codifferentiable function is
outer semicontinuous (see [10] for the definition of continuously codifferentiable function).
Hence, in particular, the class of functions for which there exists an o.s.c. quasidifferential
mapping is closed under all standard algebraic operations, the pointwise maximum and
minimum of finite families of functions, and the composition with smooth functions, since
the class of continuously codifferentiable functions is closed under all these operations [10,
12, 14]. Furthermore, any DC function has an o.s.c. quasidifferential mapping. Indeed, if
f = f1 − f2, where f1 and f2 are finite closed convex functions, then one can define
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Df (·) = [∂f1(·),−∂f2(·)], where ∂fi(·) is the subdifferential of fi in the sense of convex
analysis. Note that this quasidifferential is correctly defined and o.s.c. due to the fact that the
subdifferential of a finite closed convex function defined on a Banach space is nonempty at
every point (see, e.g. [16, Proposition I.5.2. and Corollary I.2.5]) and outer semicontinuous.

Let us also recall a certain extension of the definition of quasidifferentiability to the case
of vector-valued functions that was utilized in [19, 37].

Definition 2 Let Y be a real Banach space, and U ⊂ X be an open set. A function
F : U → Y is called scalarly quasidifferentible at a point x ∈ U , if F is Dini directionally
differentiable at x, i.e. for any h ∈ X there exists the limit

F ′(x, h) = lim
α→+0

1

α

(
F(x + αh) − F(x)

)
,

and for any y∗ ∈ Y ∗ the function 〈y∗, F ′(x, ·)〉 can be represented as the difference
of continuous sublinear functions, i.e. there exists a pair of convex weak∗ compact sets
∂F (x; y∗), ∂F (x; y∗) ⊂ X∗ such that

〈y∗, F ′(x, h)〉 = max
v∗∈∂F (x;y∗)

〈v∗, h〉 + min
w∗∈∂F (x;y∗)

〈w∗, h〉 ∀v ∈ X.

For any y∗ ∈ Y ∗ the pair DF(x; y∗) = [∂F (x; y∗), ∂F (x; y∗)] is called a scalar
quasidifferential of F at x (corresponding to y∗).

Remark 2 Below, as usual, we use the term “quasidifferential”, instead of “Dini quasidiffer-
ential”. Also, when we say that a function f is quasidifferentiable at a point x, we suppose
that a quasidifferential of f at x is given. Alternatively, one can define a quasidifferential as
an equivalence class and work with these equivalence classes; however, in author’s opinion
this approach leads to somewhat cumbersome formulations of the main results. That is why
we do not adopt it in this article.

3 Metric Regularity of Quasidifferentiable Mappings

In this section we obtain necessary and/or sufficient conditions for the metric regularity of
multifunctions in terms of quasidifferentials. We also introduce an MFCQ-type constraint
qualifications for parametric systems of quasidifferentiable equalities and inequalities and
prove that it ensures the metric regularity of a multifunction associated with this system.

3.1 General Conditions for Metric Regularity

Let (Y, d) be a complete metric space, and F : X ⇒ Y be a set-valued mapping with closed
values, whose graph is denoted by GraphF . For any y ∈ Y , r > 0 and any set C ⊂ Y

denote B(y, r) = {z ∈ Y | d(y, z) ≤ r} and d(y, C) = infz∈C d(y, z). As usual, we put
d(y,∅) = +∞.

Recall that F is called metrically regular near a point (x, y) ∈ GraphF , if there exist
K > 0 and r > 0 such that

d(x, F−1(y)) ≤ Kd(y, F (x)) ∀(x, y) ∈ B(x, r) × B(y, r). (2)

The greatest lower bound of all K for which the inequality above is satisfied with some
r > 0 is called the norm of metric regularity of F near (x, y). For the general theory of
metric regularity see [2, 22, 24].
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At first, our aim is to obtain sufficient conditions for the metric regularity of the
set-valued mapping F in the case when the distance function x → d(y, F (x)) is quasid-
ifferentiable for any (x, y) in a neighbourhood of (x, y). To this end, for any y ∈ Y and
x ∈ X denote ψy(x) = d(y, F (x)), and define

|∇ψy |(x) = lim sup
u→x,ψy(u)→ψy(x)

max{ψy(x) − ψy(u), 0}
‖x − u‖ . (3)

The quantity |∇ψy |(x) is called the strong slope of ψy at x.
Recall that under some natural assumptions on the functions ψy(·) the validity of the

inequality |∇ψy |(x) > K−1 for any (x, y) /∈ GraphF in a neighbourhood of (x, y)

is sufficient for the metric regularity of F near (x, y) with the norm of metric regular-
ity no exceeding K . In the case when Y is a Banach space, the validity of the inequality
|∇ψy |(x) ≥ t−1 for any such (x, y) and for all t > K is also necessary for the metric
regularity of F near (x, y) with the norm of metric regularity no exceeding K (see, e.g.
[22, Theorem 2b]).

In the following theorem we demonstrate how the verification of the inequality
|∇ψy |(x) > K−1 (and, thus, the metric regularity of the multifunction F ) can be sig-
nificantly simplified in the case when the distance functions ψy(·) = d(y, F (·)) are
quasidifferentiable.

Theorem 1 Let for any y ∈ Y the function ψy(·) be lower semicontinuous (l.s.c.), and let
(x, y) ∈ GraphF and K > 0 be given. Suppose that there exists r > 0 such that for any
(x, y) ∈ B(x, r)×B(y, r) with y /∈ F(x) the function ψy(·) is quasidifferentiable at x, and
there exists w∗ ∈ ∂ψy(x) for which

d
(
O, ∂ψy(x) + w∗) >

1

K
. (4)

Then for any (x, y) ∈ B(x, r) × B(y, r) such that Kd(y, F (x)) < r − d(x, x) one has
d(x, F−1(y)) ≤ Kd(y, F (x)), which, in particular, implies that the set-valued mapping F

is metrically regular near (x, y) with the norm of metric regularity not exceeding K .
Moreover, suppose that Y is a Banach space, X is finite dimensional, and for any y ∈ Y

the functions ψy(·) are Hadamard quasidifferentiable on B(x, r) with some r > 0. Then for
the metric regularity of F near (x, y) with the norm of metric regularity not exceeding K it
is necessary and sufficient that for any t > K there exists a neighbourhood U of (x, y) such
that for any (x, y) ∈ U \GraphF there existsw∗ ∈ ∂ψy(x) for which d(O, ∂ψy(x)+w∗) ≥
t−1.

Proof Let us show that under the assumptions of the theorem one has

|∇ψy |(x) > K−1 ∀(x, y) ∈
(
B(x, r) × B(y, r)

)
\ GraphF .

Then applying [22, Theorem 2b] one obtains the desired result.
Indeed, fix (x, y) ∈ B(x, r) × B(y, r) with y /∈ F(x). From (4) it follows that for some

ε > 0 the convex compact subsets B(O, K−1 + ε) and ∂ψy(x) + w∗ of the space X∗
endowed with the weak∗ topology are disjoint. Applying the separation theorem one obtains
that there exists h ∈ X with ‖h‖ = 1 such that

〈v∗, h〉 ≤ 〈x∗, h〉 ∀v∗ ∈ ∂ψy(x) + w∗ ∀x∗ ∈ B(O, K−1 + ε)
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or equivalently 〈v∗, h〉 ≤ −K−1 −ε < −K−1 for any v∗ ∈ ∂ψy(x)+{w∗}. Hence with the
use of the definition of quasidifferential (see (1)) it is easy to check that ψ ′

y(x, h) < K−1.
Therefore there exists a sequence {αn} ⊂ (0,+∞) such that αn → 0 as n → ∞ and

lim
n→∞

ψy(x + αnh) − ψy(x)

αn

< − 1

K
.

Consequently, ψy(x) − ψy(x + αnh) > 0 for any sufficiently large n ∈ N, and

lim sup
n→∞

max{ψy(x) − ψy(x + αnh), 0}
αn

>
1

K
,

which due to (3) yields |∇ψy |(x) > K−1, since ‖h‖ = 1.
Let us now prove the second part of the theorem. Indeed, by [22, Theorem 2b] the multi-

function F is metrically regular near (x, y) with the norm of metric regularity not exceeding
K iff for any t > K there exists a neighbourhood U of (x, y) such that |∇ψy |(x) ≥ t−1 for
any (x, y) ∈ U \ GraphF .

Taking into account the facts that X is finite dimensional and the functions x →
ψy(x) are Hadamard quasidifferentiable, and applying [2, Proposition 2.8] one obtains that
|∇ψy |(x) = −min‖h‖=1 ψ ′

y(x, h). Hence with the use of the explicit expression for the rate
of steepest descent of a quasidifferentiable function (see [10, Section V.3.1]) one gets

|∇ψy |(x) = max
w∗∈∂ψy(x)

min
v∗∈∂ψy(x)+{w∗} ‖v

∗‖, if |∇ψy |(x) > 0.

Consequently, |∇ψy |(x) ≥ t−1 iff d(O, ∂ψy(x) + w∗) ≥ t−1 for some w∗ ∈ ∂ψy(x),
which implies the required result.

Remark 3 Taking into account the definition of quasidifferential (1) it is easy to check that
condition (4) is satisfied for some w∗ ∈ ∂ψy(x) iff there exists h ∈ X with ‖h‖ = 1 such
that ψ ′

y(x, h) < −K−1. Therefore, condition (4) is invariant with respect to the choice of
quasidifferentials of the functions ψy , since the directional derivative ψ ′

y(x, ·) obviously
does not depend on the choice of quasidifferential.

Remark 4 Sufficient conditions for the metric regularity of a continuous single-valued map-
ping F between Banach spaces in terms of quasidifferentials of the functions ψy(x) =
‖y − F(x)‖ were first obtained by Uderzo [36] (see also [37]). However, the conditions in
[36] are more restrictive then the ones stated in the theorem above. Indeed, by [36, Theo-
rem 4.3] for the metric regularity of F near a point (x, F (x)) it is sufficient that there exist
m > 0 and r > 0 such that for any x ∈ B(x, r) and y ∈ B(F(x), r) with y �= F(x) one has

d(O, ∂ψy(x) + w∗) > m ∀w∗ ∈ ∂ψy(x). (5)

It is easy to see that this condition fails to hold true even for the very simple function
F(x1, x2) = |x1| − |x2|, when x = 02 and y = 0 (here X = R

2, Y = R, and 0n is the
zero vector from R

n). Indeed, for x = 02 and any y > 0 a quasidifferential of the function
ψy(x) = |y − F(x)| has the form

∂ψy(02) = co

{(
0
1

)
,

(
0

−1

)}
, ∂ψy(02) = co

{(
1
0

)
,

( −1
0

)}
,

and for w∗ = 02 ∈ ∂ψy(02) one has 02 ∈ ∂ψy(02) + w∗. Thus, condition (5) is not
satisfied. On the other hand, one can check that sufficient conditions from Theorem 1 are
satisfied. Indeed, fix any x ∈ R

2 and y ∈ R such that y �= F(x). Applying standard rules of
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quasidifferential calculus [10, Section III.2] to the function ψy(x) = |y − |x1| + |x2|| one
gets that

∂ψy(x) =
{(

0
Sign(x2)

)}
, ∂ψy(x) =

{( −Sign(x1)
0

)}

in the case y > |x1| − |x2|, and

∂ψy(x) =
{(

Sign(x1)
0

)}
, ∂ψy(x) =

{(
0

−Sign(x2)

)}

in the case y < |x1|− |x2|. Here Sign(t) = sign(t), if t �= 0, and Sign(0) = [−1, 1]. Let the
spaceX = R

2 be equipped with the Euclidean norm. Then we have the following two cases:

1. if y > F(x), then setting w∗ = (− sign(x1), 0)T ∈ ∂ψy(x) in the case x1 �= 0 and
w∗ = (1, 0)T ∈ ∂ψy(x) in the case x1 = 0 one gets that d(02, ∂ψy(x) + w∗) = √

2,
provided x2 �= 0, and d(02, ∂ψy(x) + w∗) = 1, if x2 = 0;

2. if y < F(x), then setting w∗ = (0,− sign(x2))T ∈ ∂ψy(x) in the case x2 �= 0 and
w∗ = (0, 1) ∈ ∂ψy(x) in the case x2 = 0 one obtains that d(02, ∂ψy(x) + w∗) = √

2,
if x1 �= 0, and d(02, ∂ψy(x) + w∗) = 1, if x1 = 0.

Thus, condition (4) is satisfied with any K > 1, and the function F(x) = |x1| − |x2| is
metrically regular near the point (02, 0) by Theorem 1.

Note also that condition (5), unlike (4), depends on the choice of quasidifferential. For
instance, it is not valid for the identity function F(x) = x, which is metrically regular near
any point (here X = Y = R), if one chooses the pair ∂ψy(x) = − sign(y − x) + [−1, 1]
and ∂ψy(x) = [−1, 1], as a quasidifferential of the function ψy(x) = |y − F(x)| = |y − x|
at every point x such that y �= x.

Let us give another simple example illustrating Theorem 1.

Example 1 Let X = Y = R and F(x) = min{x,max{x3, 0}}, i.e. F is single-valued. Let
us check whether this function is metrically regular near the point (0, 0) with the use of
Theorem 1. By definition one has ψy(x) = |y − min{x,max{x3, 0}}|. The function ψy(·)
is quasidifferentiable and locally Lipschitz continuous, which implies that it is Hadamard
quasidifferentiable. Applying standard rules of quasidifferential calculus [10, Section III.2]
one gets that

∂ψy(x) =

⎧⎪⎪⎨
⎪⎪⎩

{−1}, if x /∈ [0, 1],
{−3x2}, if x ∈ (0, 1),
[−3, −1], if x = 1,
[−1, 0], if x = 0

∂ψy(x) = {0} in the case y > F(x),

∂ψy(x) = {0}, ∂ψy(x) =

⎧⎪⎪⎨
⎪⎪⎩

{1}, if x /∈ [0, 1],
{3x2}, if x ∈ (0, 1),
[1, 3], if x = 1,
[0, 1], if x = 0

in the case y < F(x).

Therefore for y = 0 and any x ∈ (0, 1) (note that in this case y �= F(x)) one has
d(0, ∂ψy(x) + w∗) = 3x2 for any w∗ ∈ ∂ψy(x). Choosing sufficiently small x > 0 one
obtains that d(0, ∂ψ0(x) + w∗) < t−1 for any prespecified t > 0 and for all w∗ ∈ ∂ψ0(x).
Thus, by the second part of Theorem 1 one can conclude that F is not metrically regular
near (0, 0). Let us also verify this directly. Indeed, it is easily seen that F−1(y) = y, if
y /∈ [0, 1], and F−1(y) = y1/3, if y ∈ [0, 1]. Applying the definition of metric regular-
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ity (2) with x = 0 one gets that for the function F to be metrically regular near (0, 0) it is
necessary that there exists K > 0 such that

d(0, F−1(y)) = y1/3 ≤ Ky = d(y, F (0))

for any sufficiently small y > 0, which is obviously impossible.

3.2 Parametric Systems of Equalities and Inequalities

In order to verify the metric regularity of a multifunction with the use of Theorem 1, one
must check that condition (4) holds true at every point in a neighbourhood of a given point
(x, y), which is a common drawback of general results on metric regularity (cf. [2, 22]).
However, as in the case of sufficient conditions in terms of various subdifferentials and
coderivatives, in some particular cases one can obtain sufficient conditions for the met-
ric regularity that involve only quasidifferentials of certain functions at the point (x, y)

itself. Our next goal is to obtain such conditions for a set-valued mapping associated with a
parametric system of nonlinear equality and inequality constraints.

Let Y be a real Banach space, P be a metric space of parameters, and let also F : X ×
P → Y and gi : X × P → R, i ∈ I = {1, . . . , m}, be given functions. For any y ∈ Y and
zi ∈ R, i ∈ I , consider the following parametric system

F(x, p) = y, gi(x, p) ≤ zi i ∈ I . (6)

Denote by S(p, y, z) = {x ∈ X | F(x, p) = y, gi(x, p) ≤ zi, i ∈ I } the solution set of
this system, where z = (z1, . . . , zm)T ∈ R

m. We also denote S(p) = S(p,OY , 0m), and
sometimes use the notation Fp(x) = F(x, p).

In the case when the functions F(·, p) and gi(·, p) are continuously Fréchet differen-
tiable, the multifunctionΦp(x) = {F(x, p)}×∏m

i=1[gi(x, p),+∞) associated with system
(6) is metrically regular near a given point if and only if the Mangasarian-Fromovitz con-
strain qualification holds at this point, i.e. the Fréchet derivative DxF(x, p) is a surjective
mapping, and there exists h ∈ X such that DxF(x, p)[h] = O, while Dxgi(x, p)[h] < 0
for any i ∈ I such that gi(x, p) = zi (see, e.g. [6, Corollary 2.1]). Our aim is to extend this
results to the case when the functions F(·, p) and gi(·, p) are only quasidifferentiable.

Being inspired by the results of [37], let us introduce a constraint qualification in
terms of quasidifferentials that ensures the metric regularity of the multifunction associ-
ated with system (6). For the sake of shortness we consider the case y = O and z = 0m

only, since the general case can be easily reduced to this one by replacing F(x, p) with
F(x, p) − y, and gi(x, p) with gi(x, p) − zi . Suppose that the functions gi(·, p), i ∈ I , are
quasidifferentiable at a point x such that x ∈ S(p), and the mapping F(·, p) is scalarly qua-
sidifferentiable at this point, and denote their quasidifferentials at this point by Dxgi(x, p)

and DxF (x, p; y∗), y∗ ∈ Y ∗, respectively. Introduce the sets

[Dxgi(x, p)]+ = ∂xgi(x, p) + ∂xgi(x, p),

[DxF (x, p; y∗)]+ = ∂xF (x, p; y∗) + ∂xF (x, p; y∗).

These sets are sometimes called quasidifferential sums, and they were considered e.g.
in [37]. Note that quasidifferential sums are not invariant with respect to the choice of
the corresponding quasidifferentials. For example, for the function f (x) = |x| both
D1f (0) = [[−1, 1], {0}] and D2f (0) = [[−2, 2], [−1, 1]] are quasidifferentials of f at
x, and [D1f (0)]+ = [−1, 1] �= [−3, 3] = [D2f (0)]+. Thus, all conditions below are not
invariant with respect to the choise of quasidifferentials.
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For any x ∈ X and p ∈ P define I (x, p) = {i ∈ I | gi(x, p) = 0}, and denote
SX = {x ∈ X | ‖x‖ = 1}.

Definition 3 One says that the Mangasarian-Fromovitz constraint qualification in terms of
quasidifferentials (q.d.-MFCQ) holds at (x, p), if

inf
y∗∈SY∗

inf{‖v∗‖ : v∗ ∈ [DxF (x, p; y∗)]+} > 0, (7)

and there exists h ∈ X such that 〈v∗, h〉 = 0 for all v∗ ∈ [DxF (x, p; y∗)]+ and y∗ ∈ Y ∗,
while 〈v∗, h〉 < 0 for all v∗ ∈ [Dxgi(x, p)]+ and i ∈ I (x, p).

Let us point out how q.d.-MFCQ is connected with the standard MFCQ. To this end,
recall that nonempty subsets A1, . . . , As of a linear space E are said to be linearly indepen-
dent (or to have full rank), if the inclusion O ∈ λ1A1 + . . . + λnAn with λi ∈ R is valid
only for λi = 0, i ∈ {1, . . . , s}. Clearly, the sets Ai , i ∈ {1, . . . , s} are linearly independent
iff for any xi ∈ Ai , i ∈ {1, . . . , s}, the vectors x1, . . . , xs are linearly independent.

Proposition 1 Let Y be the space Rl equipped with the Euclidean norm | · |, and F(·) =
(f1(·), . . . , fl(·))T , where the functions fj : X × P → R are quasidifferentiable in x at
(x, p). Then the mapping F(·, p) is scalarly quasidifferentiable at x. Moreover, q.d.-MFCQ
holds at (x, p) iff the sets [Dxfj (x, p)]+, 1 ≤ j ≤ l, are linearly independent, and there
exists h ∈ X such that 〈v∗, h〉 = 0 for all v∗ ∈ [Dxfj (x, p)]+ and 1 ≤ j ≤ l, while
〈v∗, h〉 < 0 for all v∗ ∈ [Dxgi(x, p)]+ and i ∈ I (x, p).

Proof From the fact that the functions fj (·, p) are quasidifferentiable at x it follows that
the mapping F(·, p) is directionally differentiable at this point, and

[F(·, p)]′(x, h) =
(
[f1(·, p)]′(x, h), . . . , [fl(·, p)]′(x, h)

)T

for any h ∈ X. Therefore, for any y∗ = (y1, . . . , yl)
T ∈ R

l one has

〈y∗, [F(·, p)]′(x, h)〉 =
l∑

j=1

yj

(
max

v∗∈∂xfj (x,p)
〈v∗, h〉 + min

w∗∈∂xfj (x,p)

〈w∗, h〉
)
,

which implies that F(·, p) is scalarly quasidifferentiable at x, and for any y∗ one can define

∂xF (x, p; y∗) =
l∑

j=1

(
[yj ]+∂xfj (x, p) − [−yj ]+∂xfj (x, p)

)
,

∂xF (x, p; y∗) =
l∑

j=1

(
[yj ]+∂xfj (x, p) − [−yj ]+∂xfj (x, p)

)
,

where [t]+ = max{t, 0} for any t ∈ R. Hence for any y∗ one has

[DxF (x, p; y∗)]+ =
l∑

j=1

yj [Dxfj (x, p)]+. (8)

Consequently, if (7) holds true, then the sets [Dxfj (x, p)]+, 1 ≤ j ≤ l, are linearly inde-
pendent, since otherwise 0 ∈ [DxF (x, p; y∗)] for y∗ = λ/|λ|, where λ ∈ R

l , λ �= 0l is such
that O ∈ λ1[Dxf1(x, p)]+ + . . . + λl[Dfl(x, p)]+, which is impossible. Conversely, if the
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sets [Dxfj (x, p)]+, 1 ≤ j ≤ l, are linearly independent, then O /∈ [DxF (x, p; y∗)]+ for
any y∗ �= 0l . Applying the separation theorem and the fact that the set [DxF (x, p; y∗)]+
is weak∗ compact one obtains that there exist h ∈ X and δ > 0 such that 〈v∗, h〉 ≥ δ for
all v∗ ∈ [DxF (x, p; y∗)]+. Therefore inf{‖v∗‖ | v∗ ∈ [DxF (x, p; y∗)]+} > 0 for any
y∗ �= 0l . Hence taking into account the facts that this infimum is obviously continuous with
respect to y∗ (see (8)), and the unit sphere in R

l is compact one gets that (7) holds true. It
remains to note that the equivalence between the second conditions from q.d.-MFCQ and
the proposition (the existence of h) follows directly from (8).

Remark 5 With the use of the separation theorem one can easily check that under the
assumptions of the proposition above the vector h from q.d.-MFCQ exists iff

co
{[Dxgi(x, p)]+ | i ∈ I (x, p)

} ∩ cl span
{[Dxfj (x, p)]+ | 1 ≤ j ≤ l

} = ∅, (9)

where the closure is taken in the weak∗ topology. Furthermore, if X is finite dimensional,
then this span is weak∗ closed, and (9) is equivalent to the following condition: for any
v∗
i ∈ [Dxgi(x, p)]+, i ∈ I (x, p), and w∗

k ∈ ⋃
1≤j≤l[Dxfj (x, p)]+, 1 ≤ k ≤ n, where n is

the dimension of X, there exists h ∈ X such that

〈v∗
i , h〉 < 0 ∀i ∈ I (x, p), 〈w∗

k , h〉 = 0 ∀k ∈ {1, . . . , n}. (10)

The implication (9) =⇒ (10) follows from the separation theorem, while the opposite
implication follows from the fact that if the intersection in (9) is not empty, then it is impos-
sible to find h satisfying (10) for those v∗

i and w∗
k that correspond to a vector from the

intersection. Note that condition (10) is, in a sense, a “pointwise” version of the second
condition from q.d.-MFCQ. Let us finally point out that in the case when l = 1 the “linear
independence condition” from q.d.-MFCQ is reduced to O /∈ [Dxf1(x, p)]+.

Likewise the standard Mangasarian-Fromowitz constraint qualification, q.d.-MFCQ can
be used to obtain sufficient conditions for metric regularity. For the sake of simplicity we
consider only the case when the functions F and gi are continuous on X × P , although the
theorem below holds true under weaker assumptions. Note also that in the theorem below,
unlike in the main results of [37], we do not assume that the Banach space Y admits a
Fréchet smooth renorming.

Theorem 2 Suppose that the functions F and gi , i ∈ I , are continuous. Let also a point
(x, p) ∈ X × P be such that x ∈ S(p), and there exist a neighbourhood U of (x, p) such
that

1. for any (x, p) ∈ U the mapping F(·, p) is scalarly quasidifferentiable at x, and the
functions gi(·, p), i ∈ I (x, p), are quasidifferentiable at x;

2. the multifunctions Dxgi(·), i ∈ I (x, p), are o.s.c. at (x, p), while the multifunction
(x, p) �→ [DxF (x, p; y∗)]+ is o.s.c. at (x, p) uniformly with respect to y∗ ∈ SY ∗ , i.e.
for any ε > 0 there exists δ > 0 such that [DxF (x, p; y∗)]+ ⊆ [DxF (x, p; y∗)]+ +
B(O, ε) for all y∗ ∈ SY ∗ and (x, p) ∈ B(x, δ) × B(p, δ);

3. the set D(y) = {[DxF (x, p; y∗)]+ | y∗ ∈ SY ∗ : 〈y∗, y〉 = ‖y‖} is weak∗ closed and
convex for any y ∈ SY .
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Suppose, finally, that q.d.-MFCQ holds at (x, p). Then there exist K > 0, a neighbourhood
V of (x, p), and a neighbourhood W of zero in Y × R

m such that

d(x,S(p, y, z)) ≤ K
(
‖F(x, p) − y‖ +

m∑
i=1

max{gi(x, p) − zi, 0}
)

(11)

for all (x, p) ∈ V and (y, z) ∈ W . Therefore, in particular, the set-valued mapping
Φp : X ⇒ Y × R

m, Φp(x) = {F(x, p)} × ∏m
i=1[gi(x, p),+∞) is metrically regular near

the point (x, (OY , 0m)) with the norm of metric regularity not exceeding K for all p in a
neighbourhood of p.

Proof Let r > 0 be such that B(x, r) × B(p, r) ⊂ U . Our aim is to prove that there
exist r ∈ (0, r) and K > 0 such that for any p ∈ B(p, r) one has |∇ψ(y,z,p)|(x) >

K−1 for all (y, z) ∈ B((OY , 0m), r) and x ∈ B(x, r) such that (y, z) /∈ Φp(x), where
ψ(y,z,p)(x) = d((y, z),Φp(x)), and the space Y ×R

m is equipped with the norm ‖(y, z)‖ =
‖y‖ + ∑m

i=1 |zi |. Then applying [22, Theorem 2b] one obtains that d(x,Φ−1
p (y, z)) ≤

Kd((y, z), Φp(x)) for all x ∈ B(x, r), p ∈ B(p, r), and (y, z) ∈ B((OY , 0m), r) such
that Kd((y, z),Φp(x)) < r − ‖x − x‖, i.e. (11) holds true for all such x, p, y, and z.
With the use of the continuity of the functions F and gi and the fact that x ∈ S(p), i.e.
(OY , 0m) ∈ Φp(x), one can find δ < r such that Kd((y, z),Φp(x)) < r − ‖x − x‖ for all
x ∈ B(x, δ), p ∈ B(p, δ) and (y, z) ∈ B((OY , 0m), δ), which implies that (11) holds true
for all such x, p, y, and z, and the proof is complete.

Before we proceed to the proof of the inequality |∇ψ(y,z,p)|(x) > K−1, let us first
compute the directional derivative of the mapping ‖F(·, p) − y‖. Denote ω(y) = ‖y‖.
Recall that ∂ω(y) = {y∗ ∈ SY ∗ | ‖y‖ = 〈y∗, y〉} for any y �= O, where ∂ω(y) is the
subdifferential of ω at y in the sense of convex analysis. Fix (x, p) ∈ U and y ∈ Y . From
the definition of scalar quasidifferentiability it follows that for any h ∈ X one has

Fp(x + αh) − Fp(x) = αF ′
p(x, h) + o(α) ∀α ≥ 0,

where ‖o(α)‖/α → 0 as α → +0 (recall that Fp(x) = F(x, p)). Hence∣∣∣‖Fp(x + αh) − y‖ − ‖Fp(x) − y‖ − αω′(Fp(x) − y, F ′
p(x, h)

)∣∣∣
=

∣∣∣‖Fp(x) − y + αF ′
p(x, h) + o(α)‖ − ‖Fp(x) − y‖ − αω′(Fp(x) − y, F ′

p(x, h)
)∣∣∣

≤
∣∣∣‖Fp(x) − y + αF ′

p(x, h)‖ − ‖Fp(x) − y‖ − αω′(Fp(x) − y, F ′
p(x, h)

)∣∣∣ + ‖o(α)‖.
Dividing this inequality by α and passing to the limit as α → +0 one gets that the function
‖Fp(·) − y‖ is directionally differentiable at x, and for any h ∈ X and y ∈ Y one has

‖Fp(·) − y‖′(x, h) = ω′(Fp(x) − y, F ′
p(x, h)) = sup

y∗∈∂ω(Fp(x)−y)

〈y∗, F ′
p(x, h)〉

= sup
y∗∈∂ω(Fp(x)−y)

(
max

v∗∈∂xF (x,p;y∗)
〈v∗, h〉 + min

w∗∈∂xF (x,p;y∗)
〈w∗, h〉

)

≤ sup
y∗∈∂ω(Fp(x)−y)

max
v∗∈[DxF (x,p;y∗)]+

〈v∗, h〉, (12)

if F(x, p) �= y, while

‖Fp(·) − y)‖′(x, h) = ‖F ′
p(x, h)‖ ≤ sup

y∗∈SY∗
max

v∗∈[DxF (x,p;y∗)]+
〈v∗, h〉, (13)

in the case F(x, p) = y, since ‖y‖ = supy∗∈SY∗ 〈y∗, y〉.
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Now we can utilize q.d.-MFCQ and the outer semicontinuity of the quasidifferential
mappings to prove the inequality |∇ψ(y,z,p)|(x) > K−1. Let κ > 0 be any number smaller
than the infimum in (7). From Assumption 3, the fact that the set D(y) is convex, and the
separation theorem it follows that for any y ∈ SY there exists hy with ‖hy‖ = 1 such that
〈v∗, hy〉 ≤ −κ for all v∗ ∈ D(y). With the use of the second condition in q.d.-MFCQ
one obtains that 〈v∗, hy + th〉 ≤ −κ for all v∗ ∈ D(y) and t ≥ 0, where the vector h is
from q.d.-MFCQ. Hence applying the fact that the mapping (x, p) �→ [DxF (x, p; y∗)]+ is
o.s.c. at (x, p) uniformly with respect to y∗ ∈ SY ∗ , one gets that for any t ≥ 0 there exists
r1(t) ∈ (0, r) such that for any y ∈ SY one has

〈v∗, hy + th〉 ≤ −κ

2
∀v∗ ∈ [DxF (x, p; y∗)]+ ∀y∗ ∈ ∂‖ · ‖(y) (14)

for all (x, p) ∈ B(x, r1(t)) × B(p, r1(t)). Furthermore, from the second condition in q.d.-
MFCQ and Assumption 2 it follows that for any t ≥ 0 there exists r2(t) ∈ (0, r) such
that

〈v∗, th〉 ≤ κ

4
∀v∗ ∈ [DxF (x, p; y∗)]+ ∀y∗ ∈ Sy∗ (15)

for all (x, p) ∈ B(x, r2(t)) × B(p, r2(t)).
Applying the second condition in q.d.-MFCQ, and the facts that ‖hy‖ = 1 for any y ∈ SY

and the sets [Dxgi(x, p)]+ are obviously weak∗ compact (and thus bounded) one can find
t0 > 0 such that 〈v∗, hy + t0h〉 ≤ −κ for all v∗ ∈ [Dxgi(x, p)]+, i ∈ I (x, p), and
y ∈ SY . Hence with the use of the outer semicontinuity of the mappings Dxgi(·) at (x, p)

one obtains that there exists r3 ∈ (0, r) such that

〈v∗, hy + t0h〉 ≤ −κ

2
∀v∗ ∈ [Dxgi(x, p)]+ ∀i ∈ I (x, p) ∀y ∈ SY . (16)

for all (x, p) ∈ B(x, r3) × B(p, r3). Finally, since gi are continuous, there exist r4 ∈ (0, r)
and ε > 0 such that gi(x, p) < −ε for any (x, p) ∈ B(x, r4) × B(p, r4) and i /∈ I (x, p).

Define r = min{r1(t0), r2(t0), r3, r4, ε/2}, and fix any (x, p) ∈ B(x, r) × B(p, r)

and (y, z) ∈ B((OY , 0m), r) such that (y, z) /∈ Φp(x). Note that gi(x, p) − zi < 0 for
any i /∈ I (x, p), since r ≤ min{r4, ε/2}, which implies that gi(·) − zi < 0 in a neighbour-
hood of (x, p). Hence

d((y, z),Φq(ξ)) = ‖F(ξ, q) − y‖ +
∑

i∈I (x,p)

max{gi(ξ, q) − zi, 0}

for any (ξ, q) in a neighbourhood of (x, p), i.e. the indices i /∈ I (x, p) can be discarded
from consideration. Observe also that

max{gi(·, p) − zi, 0}′(x, h) =
⎧⎨
⎩

[gi(·, p)]′(x, h), if gi(x, p) > zi,

max{[gi(·, p)]′(x, h), 0}, if gi(x, p) = zi,

0, if gi(x, p) < zi,

(17)

and [gi(·, p)]′(x, h) ≤ maxv∗∈[Dxgi (x,p)]+〈v∗, h〉 for any h ∈ X.
If F(x, p) �= y, then with the use of (12), (14), (16), and (17) one obtains that

ψ ′
(y,z,p)(x, η) = ‖F(·, p) − y‖′(x, η) +

∑
i∈I (x,p)

max{gi(·, p) − zi, 0}′(x, η) ≤ −κ

2

where η = hw + t0h and w = (F (x, p) − y)/‖F(x, p) − y‖ (here we used the fact that
∂‖ · ‖(F (x, p) − y) = ∂‖ · ‖(w)). Note that ‖η‖ ≤ 1 + t0‖h‖, since ‖hw‖ = 1.
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On the other hand, if F(x, p) = y, then there exists k ∈ I (x, p) such that gk(x, p) > zk .
Consequently, applying (13), (15), (16), and (17) one gets that

ψ ′
(y,z,p)(x, η) = ‖F(·, p) − y‖′(x, η) + max{gk(·, p) − zk, 0}′(x, η)

+
∑

i∈I (x,p)\{k}
max{gi(·, p) − zi, 0}′(x, η) ≤ κ

4
− κ

2
= −κ

4
,

where η = t0h. Thus, for any (x, p) ∈ B(x, r) × B(p, r) and (y, z) ∈ B((OY , 0m), r) such
that (y, z) /∈ Φp(x) one has

|∇ψ(y,z,p)|(x) ≥ −ψ ′
(y,z,p)

(
x,

η

‖η‖
)

≥ κ

4(1 + t0‖h‖) ,

and the proof is complete.

Remark 6 Let F be as in Proposition 1 and X = R
n. In this case one can reformulate the

sufficient conditions for the metric regularity of the mapping F from the theorem above
in a different way. Namely, let the set ∂xF (x, p) consists of all l × n matrices whose j -th
row is a vector from ∂xfj (x, p). The set ∂xF (x, p) is defined in a similar way. Then the
pair DxF (x, p) = [∂xF (x, p), ∂xF (x, p)] is, in fact, a quasidifferential of the mapping
F(·, p) at x (see [10, Appendix III]). From Theorem 2 it follows that for the mapping
F(·, p) to be metrically regular near (x, F (x, p)) with the norm of metric regularity not
exceeding some K > 0 for all p in a neighbourhood of p it is sufficient that l ≤ n,
and all matrices from the set [DxF (x, p)]+ = ∂xF (x, p) + ∂xF (x, p) have full rank.
Note that a similar condition on the set [DxF (x, p)]+ was introduced by Demyanov in
[7] for the analysis of nonsmooth implicit functions and a nonsmooth Newton method for
codifferentiable vector-valued functions.

Remark 7 It should be noted that in the case when X = R
n and Y = R

l , Theorem 2 is,
in essence, reduced to the sufficient conditions for metric regularity in terms of the Clarke
subdifferential [1, 4]. Indeed, if a function f : X → R is quasidifferentiable at a point x,
then, as it easy to see,

min
v∗∈[Df (x)]+

〈v∗, h〉 ≤ f ′(x, h) ≤ max
v∗∈[Df (x)]+

〈v∗, h〉 ∀h ∈ X,

i.e. the quasidifferential sum [Df (x)]+ is a convexificator of f at x (see [8, 9, 25]). With
the use of the separation theorem and the inequalities above one can easily check that if f

is Gâteaux differentiable at x, then f ′(x) ∈ [Df (x)]+ regardless of the choice of quasidif-
ferential. Consequently, if X = R

n, f is Lipschitz continuous and quasidifferentiable near
x, and a quasidifferential mapping Df is o.s.c. at x, then ∂Clf (x) ⊆ [Df (x)]+, where
∂Clf (x) is the Clarke subdifferential of f at x [5].

With the use of [14, Corollary 2] one can verify that under the assumptions of Theorem 2
the functions F(·, p) and gi(·, p) are Lipschitz continuous near x with the same Lipschitz
constant for all p in a neighbourhood of p, provided F has the same form as in Proposi-
tion 1. Therefore, if X = R

n, then ∂Clgi(·, p)(x) ⊆ [Dxgi(x, p)]+, and the same inclusion
holds true for fj (x, p). Thus, if X = R

n and Y = R
l , then Theorem 2 is a corollary to

the sufficient conditions for metric regularity in terms of the Clarke subdifferential [1, The-
orem 1.1] (see also [4]). On the other hand, if either X or Y is infinite dimensional, then
Theorem 2 does not follow from the main results of [1, 4].

Let us also point out that Theorem 2 can be easily extended to the case when instead of
quasidifferential sums one uses o.s.c. convexificator mappings. However, since the Clarke
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subdifferential is the smallest o.s.c. convexificator mapping, in the finite dimensional case
this result is a corollary to [1, Theorem 1.1] as well.

Let us give an example illustrating Theorem 2 and Remark 6.

Example 2 Let X = Y = R
2 and P = R. Consider the following system of equations:{
max{2x1, x1} − | sin(px2)| = y1,

sin
(
p(x1 + x2)

) + min{x2, 2x2} = y2.
(18)

Define f1(x, p) = max{3x1, x1} − | sin(px2)| and f2(x, p) = sin(p(x1 + x2)) +
min{x2, 2x2}. Let us utilize Theorem 2 to find the values of the parameter p for which
the mapping x �→ F(x, p) = (f1(x, p), f2(x, p))T is metrically regular near the point
(02, 02).

The functions f1(x, p) and f2(x, p) are quasidifferentiable. With the use of basic rules
of quasidifferential calculus [10, Section III.2] one obtains that

∂xf1(x, p) =
⎧⎨
⎩

{(2, 0)T }, if x1 > 0,
co{(1, 0)T , (2, 0)T }, if x1 = 0,
{(1, 0)T }, if x1 < 0,

∂xf1(x, p) =
{(

0
−p cos(px2) Sign

(
sin(px2)

) )}
,

∂xf2(x, p) =
{(

p cos
(
p(x1 + x2)

)
p cos

(
p(x1 + x2)

)
)}

,

∂xf2(x, p) =
⎧⎨
⎩

{(0, 1)T }, if x2 > 0,
co{(0, 1)T , (0, 2)T }, if x2 = 0,
{(0, 2)}, if x2 < 0.

It is readily seen that the quasidifferential mappings (x, p) �→ Dxf1(x, p) and (x, p) �→
Dxf2(x, p) are outer semicontinuous.

Let us verify whether q.d.-MFCQ holds at the point (02, p). Following Remark 6
introduce the quasidifferential DxF (02, p) = [∂xF (02, p), ∂xF (02, p)],

∂xF (02, p) =
{(

t 0
p p

) ∣∣∣∣ t ∈ [1, 2]
}

, ∂xF (O, p) =
{(

0 pt

0 s

) ∣∣∣∣ t ∈ [−1, 1], s ∈ [1, 2]
}

,

of the map x �→ F(x, p) at the point x = 02. The first row of the set ∂xF (02, p)

corresponds to ∂xf1(02, p), while the second row corresponds to ∂xf2(02, p). The set
∂xF (02, p) is defined in the same way.

The quasidifferential sum of the map x �→ F(x, p) at x = 02 has the form

[DxF (02, p)]+ =
{(

t ps

p p + r

) ∣∣∣∣ t ∈ [1, 2], s ∈ [−1, 1], r ∈ [1, 2]
}

Our aim is to find such p ∈ R that all matrices from the set [DxF (02, p)]+ are non-
degenerate. The determinants of the matrices from [DxF (02, p)]+ take values in the
set

co{1, 4} + co{p, 2p} + co{−p2, p2}.
Hence and from the fact that the determinant of

(
1 −p
p p+1

)
∈ [DxF (02, p)]+ is equal to

p2 + p + 1 and positive for all p it follows that detA �= 0 for any A ∈ [DxF (02, p)]+ iff
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the following inequalities hold true:

p2 + 2p + 1 > 0, −p2 + p + 1 > 0, −p2 + 2p + 1 > 0.

Solving these inequalities one obtains that q.d.-MFCQ holds at the point (02, p) iff p ∈
(1 − √

2, (1 + √
5)/2). Consequently, by Theorem 2 one can conclude that for any p ∈

(1 − √
2, (1 + √

5)/2) there exist K > 0 and r > 0 such that

d
(
x, (Fp)−1(y)

) ≤ K‖y − F(x, p)‖
for all x, y ∈ B(02, r) and any p ∈ (p − r, p + r), which in particular implies that for any
such y and p there exists a solution x(y, p) of system (18).

As the following simple example shows q.d.-MFCQ, unlike MFCQ in the smooth case,
is not necessary for the metric regularity of a multifunction associated with a system of
quasidifferentiable equality and inequality constraints.

Example 3 Let X = R
2, Y = R, F(x) = |x1| − |x2|, and suppose that there are no

inequality constraints. Let us check whether q.d.-MFCQ holds at the point x = 02. Indeed,
the function F is quasidifferentiable, and one can define

∂F (x) =
{(

Sign(x1)
0

)}
, ∂F (x) =

{(
0

−Sign(x2)

)}
.

Clearly, the multifunctions ∂F (·) and ∂F (·) are outer semicontinuous. Observe that
[DF(x)]+ = {x ∈ R

2 | max{|x1|, |x2|} ≤ 1}, and q.d.-MFCQ is not satisfied at the ori-
gin, since 02 ∈ [DF(x)]+, despite the fact that the function F is metrically regular near the
point (x, 0) (see Remark 4).

It should be noted that in the finite dimensional case q.d.-MFCQ imposes some implicit
assumptions on the dimension of the space X. For example, if for the system

f1(x, p) = y, g1(x, p) ≤ 0

the quasidifferential sum [Dxf1(x, p)]+ contains at least two linearly independent vectors,
then dim(span[Dxf1(x, p)]+) ≥ 2 and for q.d.-MFCQ to hold true at (x, p) it is necessary
that dimX ≥ 3 (see Remark 5). The following example highlights this drawback of
q.d.-MFCQ.

Example 4 Let X = R
2, Y = R, and m = 1. Consider the following system:

f (x) = |x1| − x2 = y, g(x) = x1 ≤ z.

Our aim is to check whether the multifunction Φ(x) = {f (x)} × [g(x),+∞) associated
with this system is metrically regular near the point (x, (0, 0)) with x = 02.

Both functions f and g are obviously quasidifferentiable. One can define

∂f (x) =
{(

Sign(x1)
−1

)}
, ∂f (x) = {02},

∂g(x) =
{(

1
0

)}
, ∂g(x) = {02}.

Clearly, the mappings Df (·) and Dg(·) are outer semicontinuous. Observe that

[Df (x)]+ = co

{(
1
−1

)
,

( −1
−1

)}
, [Dg(x)]+ =

{(
1
0

)}
.
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Hence span[Df (x)]+ = R
2, which implies that q.d.-MFCQ does not hold at x, and

Theorem 2 cannot be applied. Therefore we utilize Theorem 1 to check whether the
multifunction Φ is metrically regular near the point (x, (0, 0)).

Note that

ψ(y,z)(x) = d((y, z), Φ(x)) = |y − |x1| + x2| + max{0, x1 − z}.
Define ψ1

y (x) = |y −|x1|+x2| and ψ2
z (x) = max{0, x1 −z}. The functions ψ(y,z)(·), ψ1

y (·)
and ψ2

z (·) are quasidifferentiable for all y, z ∈ R. Applying basic rules of quasidifferential
calculus [10, Section III.2] one obtains that

∂ψ1
y (x) = {02}, ∂ψ1

y (x) =
{( − Sign(x1)

1

)}
, if y > f (x),

∂ψ1
y (x) = co

{(
0
0

)
,

(
2 Sign(x1)

−2

)}
, ∂ψ1

y (x) =
{( −Sign(x1)

1

)}
, if y = f (x),

∂ψ1
y (x) =

{(
Sign(x1)

−1

)}
, ∂ψ1

y (x) = {02}, if y < f (x),

∂ψ2
z (x) =

⎧⎨
⎩

{02}, if x1 < z,

co{(0, 0)T , (1, 0)T }, if x1 = z,

{(1, 0)T }, if x1 > z,

∂ψ2
z (x) = {02}

Moreover, ∂ψ(y,z)(x) = ∂ψ1
y (x) + ∂ψ2

z (x) and ∂ψ(y,z)(x) = ∂ψ1
y (x) + ∂ψ2

z (x).

Fix any x ∈ R
2 and y, z ∈ R such that (y, z) /∈ Φ(x), and suppose that the space X is

equipped with the Euclidean norm. The following three cases are possible.

1. If y > f (x), then for any t ∈ Sign(x1) one has w∗ = (−t, 1)T ∈ ∂ψ(y,z)(x) and
d(02, ∂ψ(y,z)(x) + w∗) ≥ 1, since any v∗ ∈ ∂ψ(y,z)(x) + w∗ has the form (s, 1)T for
some s ∈ R.

2. If y < f (x), then for w∗ = 02 ∈ ∂ψ(y,z)(x) one has d(02, ∂ψ(y,z)(x) + w∗) ≥ 1, since
any v∗ ∈ ∂ψ(y,z)(x) + w∗ has the form (s,−1)T for some s ∈ R.

3. If y = f (x), then x1 > z due to the fact that (y, z) /∈ Φ(x). Define w∗ =
(− sign(x1), 1) ∈ ∂ψ(y,z)(x), if x1 �= 0, and w∗ = (1, 1) ∈ ∂ψ(y,z)(x), if x1 = 0. Then
one can verify that d(02, ∂ψ(y,z)(x) + w∗) = √

2/2.

Thus, for any x ∈ R
2 and y, z ∈ R, (y, z) /∈ Φ(x), there exists w∗ ∈ ∂ψ(y,z)(x) such that

d(02, ∂ψ(y,z)(x) + w∗) ≥ √
2/2. Therefore, the multifunction Φ is metrically regular near

the point (x, (0, 0)) with the norm of metric regularity not exceeding
√
2/2 by Theorem 1.

4 Optimality Conditions

Let us utilize q.d.-MFCQ as a new constraint qualification for quasidifferential program-
ming problems with equality and inequality constraints to obtain necessary optimality
conditions for these problems. To this end, consider the following optimization problem:

min u(x) subject to fj (x) = 0, j ∈ J, gi(x) ≤ 0, i ∈ I . (P)

Here u, fj , gi : X → R are given functions, J = {1, . . . , l}, and I = {1, . . . , m}. Our aim
is to obtain optimality conditions for the problem (P) via exact penalty function approach.

Define ϕ(x) = ∑l
j=1 |fj (x)| + ∑m

i=1 max{gi(x), 0}, and denote the 
1 penalty function
for the problem (P) by Ψc(x) = u(x) + cϕ(x), where c ≥ 0 is the penalty parameter.
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Note that if the functions u, fj , and gi are quasidifferentiable, then this penalty function is
quasidifferentiable as well (see [10]).

Let Ω be the feasible region of the problem (P), and x be a locally optimal solution of
this problem. Observe that x ∈ Ω iff ϕ(x) = 0. Recall also that if u is Lipschitz continuous
near x and the penalty term ϕ has a local error bound at x, i.e. there exists τ > 0 such that
ϕ(x) ≥ τd(x,Ω) for any x in a neighbourhood of x, then the penalty function Ψc is locally
exact at x, i.e. there exist a neighbourhood U of x and c∗ ≥ 0 such that

Ψc(x) ≥ Ψc(x) ∀x ∈ U ∀c ≥ c∗,

(see, e.g. [13, Theorem 2.4 and Proposition 2.7]). If Ψc is locally exact at x, then by
definition x is a point of unconstrained local minimum of Ψc for any sufficiently large
c ≥ 0. In this case one can apply standard necessary conditions for a minimum in terms of
quasidifferentials [10] to Ψc to obtain necessary optimality conditions for the problem (P).

Theorem 3 Let the following assumptions be valid:

1. x is a locally optimal solution of the problem (P);
2. u is quasidifferentiable at x and Lipschitz continuous near this point;
3. fj , j ∈ J , and gi , i ∈ I , are quasidifferentiable in a neighbourhood of x, and there

exist quasidifferential mappings Dfj (·), j ∈ J , and Dgi(·), i ∈ I , defined in a
neighbourhood of x and o.s.c. at this point;

4. q.d.-MFCQ holds at x.

Then there exists c∗ ≥ 0 such that for any c ≥ c∗ one has

O ∈ ∂Ψc(x) + w∗ ∀w∗ ∈ ∂Ψc(x), (19)

where DΨc(x) = [∂Ψc(x), ∂Ψc(x)] is any quasidifferential of Ψc at x. Moreover, for any
w∗
0 ∈ ∂u(x), v∗

j ∈ ∂fj (x), w∗
j ∈ ∂fj (x), j ∈ J , and z∗

i ∈ ∂gi(x), i ∈ I , there exist
μ

j
, μj , λi ≥ 0 such that λigi(x) = 0 for all i ∈ I and

O ∈ ∂u(x) + w∗
0 −

l∑
j=1

μ
j

(
v∗
j + ∂fj (x)

)

+
l∑

j=1

μj

(
∂fj (x) + w∗

j

)
+

m∑
i=1

λi

(
∂gi(x) + z∗

i

)
. (20)

In addition, one can choose μ
j
, μj , and λi in such a way that for all i ∈ I and j ∈ J

one has max{|μ
j
|, |μj |, |λi |} ≤ c∗ , i.e. the multipliers μ

j
, μj , and λi are bounded for all

w∗
0 ∈ ∂u(x), v∗

j ∈ ∂fj (x), w∗
j ∈ ∂fj (x), j ∈ J , and z∗

i ∈ ∂gi(x), i ∈ I .

Proof Let us show at first that q.d.-MFCQ guarantees that ϕ has a local error bound.
Suppose thatRl is endowed with the Euclidean norm. If q.d.-MFCQ holds at x, then by The-
orem 2 the multifunction Φ : X → R

l ×R
m, Φ(x) = ∏l

j=1{fj (x)}×∏m
i=1[gi(x),+∞) is

metrically regular near the point (x, (0l , 0m)). Hence, in particular, there exist K > 0 and a
neighbourhood U of x such that

d(x, Ω) = d
(
x,Φ−1(0l , 0m)

) ≤ Kd(0, Φ(x)) ≤ Kϕ(x)

for all x ∈ U , i.e. ϕ has a local error bound at x.
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Now we can turn to the proof of (19). Under the assumptions of the theorem the penalty
function Ψc is locally exact at x by [13, Theorem 2.4 and Proposition 2.7]. Thus, there
exists c∗ ≥ 0 such that for any c ≥ c∗ the point x is a local minimizer of Ψc. Consequently,
applying the necessary conditions for a minimum in terms of quasidifferentials [10, The-
orem V.3.1] to Ψc one gets that O ∈ ∂Ψc(x) + w∗ for all w∗ ∈ ∂Ψc(x), i.e. (19) holds
true.

To prove the validity of (20) note that by the necessary condition for a minimum in terms
of directional derivative for all c ≥ c∗ and h ∈ X one has

Ψ ′
c(x, h) = u′(x, h) + c

( l∑
j=1

∣∣f ′
j (x, h)

∣∣ +
∑

i∈I (x)

max
{
g′

j (x, h), 0
}) ≥ 0,

where I (x) = {i ∈ I | gi(x) = 0} (here we used standard calculus rules for directional
derivatives; see, e.g. [10, Sect. I.3]). Let w∗

0 , v
∗
j , w

∗
j and z∗

i be as in the formulation of the
theorem. Define s(C, h) = supx∗∈C〈x∗, h〉 for any C ⊂ X∗, and

ξc(h) = s(∂u(x) + w∗
0, h) + c

l∑
j=1

max
{
s(∂fj (x) + w∗

j , h), s(−v∗
j − ∂fj (x), h)

}

+ c
∑

i∈I (x)

max
{
s(∂gi(x) + z∗

i , h), 0
}

∀h ∈ X.

Applying the definition of quasidifferential it is easy to see that ξc(h) ≥ Ψ ′
c(x, h) ≥ 0

for all c ≥ c∗ and h ∈ X. Therefore, O is a point of global minimum of the function ξc,
since ξc(O) = 0, which implies that O ∈ ∂ξc(O) for any c ≥ c∗, where ∂ξc(O) is the
subdifferential of ξc at O in the sense of convex analysis. Applying standard calculus rules
for subdifferentials of convex functions one obtains that

O ∈ ∂ξc(O) = ∂u(x) + w∗
0 + c

l∑
j=1

co
{
∂fj (x) + w∗

j ,−v∗
j − ∂fj (x)

}

+ c
∑

i∈I (x)

co
{
∂gi(x) + z∗

i ,O
}
.

for all c ≥ c∗. Hence for any c ≥ c∗ there exists αj ∈ [0, 1], j ∈ J , and βi ∈ [0, 1],
i ∈ I (x), such that

O ∈ ∂u(x) + w∗
0 + c

l∑
j=1

αj

(
∂fj (x) + w∗

j

)

− c

l∑
j=1

(1 − αj )
(
v∗
j + ∂fj (x)

)
+ c

m∑
i=1

βi

(
∂gi(x) + z∗

i

)
.

Denoting μ
j

= c(1 − αj ), μj = cαj , j ∈ J , λi = cβi for i ∈ I (x), and λi = 0 for

i ∈ I \ I (x) one obtains that (20) holds true. Note finally that setting c = c∗ one gets the
required bound on multipliers.
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Remark 8 Note that in the theorem above instead of q.d.-MFCQ it is sufficient to suppose
that the penalty term ϕ has a local error bound at x.

Remark 9 Optimality conditions similar to but weaker than (19) were obtained in [34, 35]
in the finite dimensional case under a different constraint qualification that involves some
assumptions on so-called contact points of the sets ∂fj (x) and ∂fj (x), i.e. such points v∗
of a convex set C ⊂ X∗ that s(C, h) = 〈v∗, h〉 for a given direction h. Note that one has
to compute contact points of the sets ∂fj (x) and ∂fj (x) for all feasible directions in order
to check the validity of the constraint qualification from [34, 35], which is impossible in
nontrivial cases. In contrast, q.d.-MFCQ is formulated in terms of problem data directly.
In turn, optimality conditions similar to but weaker than (20) were derived in [33] under
yet another constraint qualification in the case when X is finite dimensional, there are no
inequality constraints, and there is only one equality constraint. Furthermore, note that suf-
ficient conditions for the validity of this constraint qualification [33, Theorem 2] coincide
with q.d.-MFCQ with I = ∅ and l = 1.

At first glance optimality condition (19) might seem sharper than condition (20). Let
us show that these conditions are in fact equivalent and independent of the choice of
quasidifferentials (cf. [28, 29]).

Proposition 2 Let the functions u, fj , j ∈ J , and gi , i ∈ I , be quasidifferentiable at a
feasible point x of the problem (P). Then (19) is satisfied for some c ≥ 0 if and only if for
any w∗

0 ∈ ∂u(x), v∗
j ∈ ∂fj (x), w∗

j ∈ ∂fj (x), j ∈ J , and z∗
i ∈ ∂gi(x), i ∈ I , there exist

μ
j
, μj , λi ≥ 0 such that (20) holds true, and for all i ∈ I and j ∈ J one has λigi(x) = 0

and max{|μ
j
|, |μj |, |λi |} ≤ c. Furthermore, both these conditions are independent of the

choice of corresponding quasidifferentials.

Proof From the definition of quasidifferential it follows that

Ψ ′
c(x, h) = min

w∗∈∂Ψc(x)

max
v∗∈∂Ψc(x)+w∗〈v∗, h〉 ∀h ∈ X,

which implies that (19) is satisfied for some c ≥ 0 iff Ψ ′
c(x, h) ≥ 0 for all h ∈ X. The latter

condition is obviously independent of the choise of quasidifferential. Therefore optimality
condition (19) is independent of the choice of a quasidifferential of Ψc as well.

Let us now show that optimality conditions (19) and (20) are equivalent. Indeed, let
(19) be valid for some quasidifferential of Ψc at x and c ≥ 0. Then Ψ ′

c(x, h) ≥ 0 for all
h ∈ X. Hence arguing in the same way as in the proof of Theorem 3 one obtains that for
any w∗

0 ∈ ∂u(x), v∗
j ∈ ∂fj (x), w∗

j ∈ ∂fj (x), j ∈ J , and z∗
i ∈ ∂gi(x), i ∈ I , there exist

μ
j
, μj , λi ≥ 0 such that (20) holds true, and for all i ∈ I , j ∈ J one has λigi(x) = 0

and max{|μ
j
|, |μj |, |λi |} ≤ c . Note that the implication (19) =⇒ (20) is valid for any

quasidifferentials of the functions u, fi , and gj .
Let us prove the converse implication. Fix any quasidifferentials of the functions u, fi ,

and gj , and suppose that there exists c0 ≥ 0 such that for any w∗
0 ∈ ∂u(x), v∗

j ∈ ∂fj (x),

w∗
j ∈ ∂fj (x), j ∈ J , and z∗

i ∈ ∂gi(x), i ∈ I , there exist μ
j
, μj , λi ≥ 0 such that (20) holds

true, and for all i ∈ I , j ∈ J one has λigi(x) = 0 and max{|μ
j
|, |μj |, |λi |} ≤ c0.

Arguing by reductio ad absurdum suppose that (19) does not hold true for any c ≥ 0. In
particular, it does not hold for c = c0. Then there exists h0 ∈ X such that Ψ ′

c0
(x, h0) < 0.
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Applying standard calculus rules for directional derivatives (see, e.g. [10, Sect. I.3]) one
obtains that

Ψ ′
c0

(x, h0) = u′(x, h0) + c0

( l∑
j=1

max{f ′
j (x, h0),−f ′

j (x, h0)}

+
∑

i∈I (x)

max
{
g′

j (x, h0), 0
})

< 0. (21)

By the definition of quasidifferential there exist w∗
0 ∈ ∂u(x), v∗

j ∈ ∂fj (x), w∗
j ∈ ∂fj (x),

j ∈ J , and z∗
i ∈ ∂gi(x), i ∈ I (x), such that

u′(x, h0) = max
v∗∈∂u(x)

〈v∗, h0〉 + 〈w∗
0, h0〉,

f ′
j (x, h0) = max

v∗∈∂fj (x)
〈v∗, h0〉 + 〈w∗

j , h0〉, ∀j ∈ J,

f ′
j (x, h0) = 〈v∗

j , h0〉 + min
w∗∈∂fj (x)

〈w∗, h0〉, ∀j ∈ J,

g′
i (x, h0) = max

v∗∈∂gi (x)
〈v∗, h0〉 + 〈z∗

i , h0〉, ∀i ∈ I (x).

Hence and from (21) it follows that ξc0(h0) < 0, where the function ξc is defined in the proof
of Theorem 3. On the other hand, from the validity of (20) with max{|μ

j
|, |μj |, |λi |} ≤ c0 it

follows that O ∈ ∂ξc0(O) (see the proof of Theorem 3). Therefore ξc0(h) ≥ ξc0(O) = 0 for
all h ∈ X, which contradicts the inequality ξc0(h0) < 0. Thus, (19) holds true for c = c0.

Let us finally show the independence of (20) on the choice of quasidifferentials. Indeed,
if (20) is valid for one choice of quasidifferentials of the functions u, fj , and gi , then, as
we have just proved, optimality condition (19) is satisfied. Hence and from the implication
(19) =⇒ (20) it follows that (20) is valid for any other choice of quasidifferentials of the
functions u, fj , and gi .

Let us also give a simple example demonstrating that in some cases the optimality con-
ditions from Theorem 3 are much sharper than optimality conditions in terms of various
subdifferentials.

Example 5 Let X = R
2, and consider the following optimization problem:

min u(x) = −x1 + x2 subject to f1(x) = |x1| − |x2| = 0. (22)

Put x = 02. Observe that x is not a locally optimal solution of problem (22), since for any
t > 0 the point x(t) = (t, −t) is feasible for this problem and u(x(t)) = −2t < 0 = u(x).
Nevertheless, let us verify that several subdifferential-based optimality conditions fail to
disqualify x as a non-optimal solution.

We start with necessary optimality conditions in terms of the subdifferential of Michel-
Penot [20], which we denote by ∂MP . Let L(x, λ) = u(x) + λf1(x) be the Lagrangian
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function for problem (22). For any h ∈ R
2 the Michel-Penot directional derivative of L(·, λ)

at x has the form

dMP L(·, λ)[x, h] = sup
e∈R2

lim sup
t→+0

L(x + t (h + e)) − L(x + te)

t

= sup
e∈R2

{
− h1 + h2 + λ

(
|h1 + e1| − |e1| − |h2 + e2| + |e2|

)}

= −h1 + h2 + |λ|
(
|h1| + |h2|

)
.

Hence the Michel-Penot subdifferential of L(·, λ) at x has the form

∂MP L(·, λ)(x) = ∂ϕ(02) = co

{( |λ| − 1
|λ| + 1

)( |λ| − 1
−|λ| + 1

)( −|λ| − 1
|λ| + 1

)( −|λ| − 1
−|λ| + 1

)}

where ϕ(h) = dMP L(·, λ)[x, h]. Consequently, for any λ ∈ R such that |λ| ≥ 1 one has
02 ∈ ∂MP L(·, λ)(x), which implies that the optimality conditions from [20] are satisfied
at x. Furthermore, note that ∂MP L(·, λ)(x) = ∂ClL(·, λ)(x), which implies that optimality
conditions in terms of the Clarke subdifferential [5, Theorem 6.1.1] are satisfied at x for
any λ with |λ| ≥ 1 as well.

Next, we consider optimality conditions in term of the Jeyakumar-Luc subdifferential
[38], which we denote by ∂JL. By [38, Example 2.1] one has ∂JLf1(x) =
{(1,−1)T , (−1, 1)T }, and clearly ∂JLu(x) = {(−1, 1)T }. Hence for any λ ∈ R with
|λ| ≥ 1 one has 02 ∈ ∂JLu(x) + λ co ∂JLf1(x), i.e. the optimality conditions in terms of
the Jeyakumar-Luc subdifferential [38, Corollary 3.4] are satisfied at x.

Let us now consider optimality conditions in terms of approximate (graded, Ioffe) sub-
differentials (see [21, 23, 32]), which we denote by ∂a . Observe that for any x ∈ R

2 such
that x1, x2 > 0 one has L(x, 1) = 0, which obviously implies that ∂−

x L(x, 1) = {02}
for any such x, where ∂−

x L(x, 1) is the Dini subdifferential of L(·, 1) at x. Therefore,
02 ∈ ∂aL(·, 1)(x) = lim supx→x ∂−

x L(x, 1), i.e. the optimality conditions in terms of
approximate subdifferential [21, Proposition 12] are satisfied at x (here lim sup is the outer
limit).

Let us also consider optimality conditions in terms of the Mordukhovich basic subdiffer-
ential [31], which we denote by ∂M . One can check (see [30, p. 92–93]) that

∂Mf1(x) = co

{(
1
−1

)
,

( −1
−1

)}
∪ co

{(
1
1

)
,

( −1
1

)}
.

Therefore, −∇u(x) ∈ ∂Mf1(x), i.e. the optimality conditions in terms of the Mordukhovich
basic subdifferential [31, Theorem 5.19] hold true at x.

Finally, let us verify that optimality conditions (20) from Theorem 3 are not satisfied at x,
i.e. unlike optimality conditions in terms of various subdifferentials, optimality conditions
based on quasidifferentials detect the non-optimality of x.

Arguing by reductio ad absurdum, suppose that (20) holds true. Then for v∗
1 = (1, 0)T ∈

∂f1(x) and w∗
1 = (0, 1)T ∈ ∂f1(x) (see Example 3) there exist μ

1
, μ1 ≥ 0 such that

0 ∈
( −1
1

)
− μ

1
co

{(
1
−1

)
,

(
1
1

)}
+ μ1 co

{( −1
1

)
,

(
1
1

)}
,
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or equivalently

−1 − μ
1
− μ1 ≤ 0 ≤ −1 − μ

1
+ μ1, 1 + μ1 − μ

1
≤ 0 ≤ 1 + μ1 + μ

1
.

From the third inequality it follows that 1 + μ1 ≤ μ
1
, while from the second inequality it

follows that 1 + μ
1

≤ μ1. Therefore 2 + μ1 ≤ μ1, which is impossible. Thus, optimality
conditions (20) do not hold true at x.

As was shown in Remark 4, the function f1 is metrically regular near the point (x, 0),
which obviously implies that the penalty term ϕ(x) = |f1(x)| has a local error bound at x.
Therefore, by Theorem 3 and Remark 8 one can conclude that optimality conditions (20)
are not satisfied at x due to the non-optimality of this point.
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