
Set-Valued and Variational Analysis
https://doi.org/10.1007/s11228-019-00507-2

On the Stability of the Directional Regularity

Radek Cibulka1 ·Marius Durea2,3 ·Marian Panţiruc4 ·Radu Strugariu4
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Abstract
In this paper we select two tools of investigation of the classical metric regularity of set-
valued mappings, namely the Ioffe criterion and the Ekeland Variational Principle, which we
adapt to the study of the directional setting. In this way, we obtain in a unitary manner new
necessary and/or sufficient conditions for directional metric regularity. As an application,
we establish stability of this property at composition and sum of set-valued mappings. In
this process, we introduce directional tangent cones and the associated generalized primal
differentiation objects and concepts. Moreover, we underline several links between our main
assertions by providing alternative proofs for several results.
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1 Introduction

In this paper we continue the study of the directional regularity concepts introduced in [8],
by getting adapted metric regularity criteria of Ioffe-type inspired by [2], which allows to
derive, in a unitary way, several sufficient conditions for the stability of these properties. In
our investigation, the directional character of the regularities is formulated by the use of a
special type of the minimal time function introduced and studied in [7]. In the proof of the
main criterion for the directional metric regularity we use, as a main tool, a directional Eke-
land Variational Principle obtained in [8] by means of this minimal time function. Applying
this criterion, we derive conditions for the directional regularities of a composition and a
sum of set-valued maps. Furthermore, we give sufficient conditions for directional regu-
larities in both cases in terms of directional derivatives of set-valued maps. The novelties
that our work propose can be structured into three categories: firstly, some of the results are
completely new, secondly, many of our results generalize, to the directional setting, known
results from the classical (non-directional) case and, thirdly, we present new and shorter
proofs for several assertions.

As shown in [2, 16], the Ioffe criterion for regularity allows to obtain simpler proofs
for metric regularity conditions in different instances. Indeed, we show that this is the case
as well for the directional regularity we study here, in the sense that, for the sufficient
conditions we develop, the proofs based on this adapted criterion are much shorter than the
direct proofs which can be given by the use of the directional Ekeland Variational Principle.
Also, a more direct, but longer proof, based on iterations, of the Ioffe criterion is possible.
However, as a general procedure, we prefer to have a unitary presentation, with concise
proofs, and we leave the alternative proofs for the last section of the paper.

The paper is organized as follows. Firstly, we present the directional regularity properties
we deal with, the links between them and we compare our concepts with other directional
metric regularity constructions met in the literature. Next, we derive a Ioffe criterion for
directional regularity of single-valued mappings, and then a criterion of the same type for
set-valued maps. On this basis, we consider the stability of directional openness of set-
valued compositions and, as a particular case, that of the sum of multifunctions. Moreover,
we present sufficient conditions for the directional regularity of a set-valued map in terms
of a special type of the directional Bouligand-Severi tangent cone with implications in the
cases of composition and sum. At the end we collect, in Appendix, in two separate sub-
sections, the direct and constructive proofs of some results which were not fitted for the
unity of the presentation in the previous sections. A comparison between the proofs given
in the main part of the paper and the corresponding ones from the Appendix emphasizes the
usefulness of the Ioffe criterion.

2 Directional Regularity: Preliminaries and Comparison with Other
Concepts

Throughout the paper, we use the convention that inf ∅ = +∞ and, as we work with non-
negative quantities, that sup ∅ = 0. B(x, r) and B[x, r] are the open and the closed ball
in a metric space X with a center x ∈ X and a radius r ∈ [0, +∞], respectively, with the
convention that

B[x, r] = B(x, r) =
{ {x} , if r = 0,

X, if r = +∞.
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On the Stability of the Directional Regularity

We denote by BX := B(0, 1), BX := B[0, 1], and SX := B[0, 1] \ B(0, 1) the open unit
ball, the closed unit ball, and the unit sphere in X, respectively. For a set A ⊂ X, we denote
by int A, and cl A its topological interior, and closure, respectively. The distance from a
point x to a set A in the metric space (X, �) is d(x,A) := inf {�(x, a) | a ∈ A}. If X is a
normed vector space, the cone generated by A is designated by cone A. For x, y ∈ X, we
denote by (x, y) and [x, y] the open and the closed line segment joining the points x and y,

respectively.
Let F : X ⇒ Y be a multifunction. The domain and the graph of F are denoted respec-

tively by Dom F := {x ∈ X | F(x) �= ∅} and Gr F = {(x, y) ∈ X × Y | y ∈ F(x)}. If
A ⊂ X, then F(A) :=

⋃
x∈A

F(x). The inverse of F , which always exists, is the set-valued

mapping F−1 : Y ⇒ X given by F−1(y) = {x ∈ X | y ∈ F(x)}, y ∈ Y .
In literature, there are several concepts dealing with regularity of mappings in various

directional settings. We mention here the following works: [5, 12–14]. In this paper we are
concerned with the approach proposed in [8].

Let ∅ �= � ⊂ X and ∅ �= L ⊂ SX . Then the function

X � x �−→ TL(x,�) := inf {t ≥ 0 | ∃� ∈ L : x + t� ∈ �} (2.1)

is called the directional minimal time function with respect to L. Many properties of this
function were systematically analyzed in [7]. Remark that

TL(x,�) < +∞ if and only if x ∈ � − cone L

and

d(x,�) ≤ TL(x, �) for all x ∈ X.

Moreover, if L = SX, then TL(·, �) = d(·, �). If � = {u} for a point u ∈ X, we denote in
what follows TL(·, {u}) by TL(·, u). Clearly, for each x, u ∈ X, if TL(x, u) < +∞ (which
is equivalent to u − x ∈ cone L), then

T−L(u, x) = TL(x, u) = ‖u − x‖.

Moreover, if cone L is convex, then

(i) TL(x, u) = 0 if and only if x = u;
(ii) TL(x, u) ≤ TL(x, v) + TL(v, u), for all x, u, v ∈ X.

We recall next the directional regularity notions introduced and studied in [8], as well as
the link between them, which mimic the classical case of around-point regularities.

For two sets A, B ⊂ X, we consider the directional excess from A to B with respect to
L as

eL(A,B) := sup
x∈A

TL(x, B).

Of course, eL(A,B) = +∞ if A �⊂ B − cone L. Obviously, if L = SX, then eL(A,B)

becomes the usual excess from A to B defined by

e(A,B) := sup
x∈A

d(x, B).
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Definition 1 Let F : X ⇒ Y be a set-valued mapping between normed spaces (X, ‖ · ‖)
and (Y, ‖ · ‖) with (x, y) ∈ Gr F and sets L ⊂ SX and M ⊂ SY be nonempty.

(i) One says that F is directionally metrically regular around (x, y) with respect to L

and M with a constant c > 0 if there are ε > 0 and neighborhoods U of x and V of
y such that, for every (x, y) ∈ U × V such that TM(y, F (x)) < ε,

TL(x, F−1(y)) ≤ c · TM(y, F (x)). (2.2)

The modulus of directional regularity of F around (x, y) with respect to L and M ,
denoted by dirregL×M F(x, y), is the infimum of c > 0 such that F is directionally
metrically regular around (x, y) with respect to L and M with the constant c.

(ii) One says that F is directionally linearly open around (x, y) with respect to L and M

with a constant c > 0 if there are ε > 0 and neighborhoods U of x and V of y such
that, for every r ∈ (0, ε) and every (x, y) ∈ (U × V ) ∩ Gr F,

B(y, cr) ∩ (y − cone M) ⊂ F(B(x, r) ∩ (x + cone L)). (2.3)

The modulus of directional openness of F around (x, y) with respect to L and M ,
denoted by dirsurL×M F(x, y), is the supremum of c > 0 such that F is directionally
linearly open around (x, y) with respect to L and M with the constant c.

(iii) One says that F has the directional Aubin property around (x, y) with respect to L

and M with a constant c > 0 if there are neighborhoods U of x and V of y such that,
for every x, u ∈ U,

eM(F (x) ∩ V, F (u)) ≤ c · TL(u, x). (2.4)

The modulus of the directional Aubin property of F around (x, y) with respect to L

and M , denoted by dirlipL×M F(x, y), is the infimum of c > 0 such that F has the
directional Aubin property around (x, y) with respect to L and M with the constant c.

Of course, when L := SX and M := SY , the previous concepts reduce to the usual metric
regularity, linear openness, and Aubin property around the reference point (see, e.g., [4]
for more details). Moreover, directional metric regularity and Aubin property correspond
to the cases where the regularity moduli are finite, respectively, while the directional linear
openness holds if and only if the modulus of directional openness is strictly positive.

Remark 2 Note that a similar concept of directional openness can be defined if one
considers, instead of (2.3), that

B[y, cr] ∩ (y − cone M) ⊂ F(B[x, r] ∩ (x + cone L)) (2.5)

holds. Indeed, if according to the definition, (2.3) holds, then for arbitrary c′ < c,

B[y, c′r] ∩ (y − cone M) ⊂ B(y, cr) ∩ (y − cone M)

⊂ F(B(x, r) ∩ (x + cone L)) ⊂ F(B[x, r] ∩ (x + cone L))

for every corresponding (x, y) and r ∈ (0, ε), hence the inclusion holds for closed balls
instead of open ones and for any c′ < c. Also, if (2.5) holds for some c > 0, then for any
c′ < c,

B(y, c′r) ∩ (y − cone M) = B(y, c(c′c−1r)) ∩ (y − cone M)

⊂ B[y, c(c′c−1r)] ∩ (y − cone M) ⊂ F(B[x, c′c−1r] ∩ (x + cone L))

⊂ F(B(x, r) ∩ (x + cone L)).
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Hence, the two notions are equivalent. Moreover, observe that the value of
dirsurL×M F(x, y) remains unchanged if one defines it as the supremum of positive
constants c involved in (2.3) or in (2.5).

The next result contains the announced link between the notions given before (see [8,
Proposition 2.3]). The convention 1/0 = +∞ applies here.

Proposition 3 Let F : X ⇒ Y be a set-valued mapping between normed spaces (X, ‖ · ‖)
and (Y, ‖ · ‖) with (x, y) ∈ Gr Fand sets L ⊂ SX and M ⊂ SY be nonempty. Then

dirregL×M F(x, y) = (dirsurL×M F(x, y))−1 = dirlipM×L F−1(y, x).

For a set-valued mapping F : X×Y ⇒ Z, one may speak about the directional regulari-
ties with respect to one variable, uniformly for the other. More precisely, in this case, we use
the notation Fy := F(·, y), we consider nonempty sets L ⊂ SX, M ⊂ SZ, and we say that
F is directionally metrically regular relative to x uniformly in y around (x, y, z) ∈ Gr F

with respect to L and M with a constant c > 0 if there are ε > 0 and neighborhoods U of
x, V of y, and W of z such that, for every y ∈ V, and every (x, z) ∈ U × W such that
TM(z, Fy(x)) < ε,

TL(x, F−1
y (z)) ≤ c · TM(z, Fy(x)). (2.6)

The modulus of directional regularity of F relative to x uniformly in y around (x, y, z) with

respect to L and M , denoted by d̂irreg
x

L×MF(x, y, z), is defined as the infimum of c > 0
such that the above property holds.

Analogously, one may define the other two regularity properties relative to one vari-
able, uniformly for the other, and the corresponding regularity moduli are denoted by

d̂irsur
x

L×MF(x, y, z) and d̂irlip
x

L×MF(x, y, z).
In what follows, we compare the concepts from Definition 1 with other directional regu-

larity notions met in literature. Firstly, recall the notion of the directional metric regularity
in a given direction from [14].

Definition 4 A set-valued mapping F : X ⇒ Y from a metric space (X, �) to a normed
space (Y, ‖ · ‖) is said to be directionally metrically regular at (x, y) ∈ Gr F in a direction
w ∈ Y with a constant κ > 0 if there exist ε > 0 and δ > 0 such that, for every (x, y) ∈
B[x, ε] × B[y, ε] satisfying d(y, F (x)) < ε and y ∈ F(x) + cone B(w, δ),

d(x, F−1(y)) ≤ κ d(y, F (x)).

Proposition 5 Let (X, ‖·‖) and (Y, ‖·‖) be two normed spaces, F : X ⇒ Y be a set-valued
mapping, and (x, y) ∈ Gr F . If F is directionally metrically regular at (x, y) in a direction
w ∈ Y with a constant κ > 0, then there is a nonempty closed M ⊂ SY with cone M being
convex such that F is directionally metrically regular around (x, y) with respect to SX and
M with the constant κ .

Proof Find ε > 0 and δ > 0 such that for all (x, y) ∈ B[x, ε] × B[y, ε] satisfying
d(y, F (x)) < ε and y ∈ F(x) + cone B(w, δ) we have d(x, F−1(y)) ≤ κd(y, F (x)).
Denote M := − [SY ∩ cone B(w, δ)]. Fix any (x, y) ∈ B[x, ε] × B[y, ε] satisfying
TM(y, F (x)) < ε. Then d(y, F (x)) ≤ TM(y, F (x)) < ε, hence there is m ∈ M and
ε′ ∈ (0, ε) such that y + ε′m ∈ F(x). So

y ∈ F(x) − ε′m ⊂ F(x) + ε′ [SY ∩ cone B(w, δ)] ⊂ F(x) + cone B(w, δ).
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Consequently, TSX
(x, F−1(y)) = d(x, F−1(y)) ≤ κd(y, F (x)) ≤ κTM(y, F (x)).

The converse of the previous result does not hold in general, as the next example shows.

Example 6 Consider X := Y := R, M := {1} , F : X ⇒ Y given by

F(x) :=
{
R, for x ≤ 0 or x ≥ 1(−∞, x2

] ∪ [√
x, +∞)

, for x ∈ (0, 1) ,

and (x, y) := (0, 0). Let us prove first that F is directionally metrically regular around
(x, y) with respect to SX and M with the constant c = 1. For this, take ε > 0 such that√

ε + ε ≤ 1, and x, y ∈ (−ε, ε) such that TM(y, F (x)) < ε. If y ≤ 0, then F−1(y) = R,
hence the inequality

d(x, F−1(y)) ≤ TM(y, F (x)) (2.7)

trivially holds. Suppose now that y ∈ (0, ε). Then F−1(y) = (−∞, y2
] ∪ [√

y,+∞)
. If

x ≤ 0, then d(x, F−1(y)) = 0, hence (2.7) holds again. Consider next that x ∈ (0, ε). If
y ≤ x2, then

√
y ≤ x, so d(x, F−1(y)) = TM(y, F (x)) = 0. If y ≥ √

x, then y2 ≥ x,

and again d(x, F−1(y)) = TM(y, F (x)) = 0. Finally, consider the case that x2 < y <
√

x.
Then TM(y, F (x)) = √

x − y, and d(x, F−1(y)) = min
{
x − y2,

√
y − x

}
. But we have

that

d(x, F−1(y)) ≤ x − y2 = (√
x − y

) (√
x + y

) ≤ √
x − y = TM(y, F (x)).

We conclude that the claim is proved. Let us show next that for any direction w ∈ R, F

is not directionally metrically regular at (x, y) in the direction w. Take arbitrary ε ∈ (0, 1)

and pick x, y ∈ (0, ε) such that x2 < y <
√

x and d(y, F (x)) < ε. Observe that it is
enough to consider that w ∈ {−1, 0, 1}. In any of these cases, and for any δ > 0, y ∈
F(x) + cone B(w, δ) means that y ∈ R. Moreover, if y ↓ x2, then

√
y ↓ x, hence in this

situation d(y, F (x)) = y − x2, and

d(x, F−1(y)) = min
{
x − y2,

√
y − x

}
= √

y − x.

So, in order to have that F is directionally metrically regular at (x, y) in the direction w, we
should find κ > 0 such that for any small x, and for y > x2 arbitrarily close to x2, we have

d(x, F−1(y)) = √
y − x ≤ κ ·

(
y − x2

)
= κ · d(y, F (x)).

But this should mean that

1 ≤ κ · (√
y + x

)
for any x, y ∈ (0, ε) with y > x2 sufficiently close to x2 such that d(y, F (x)) < ε and√

y − x < x − y2, which obviously cannot hold. In conclusion, the claim is proved.

Another related concept is the regularity along a subspace from [5, 13].

Definition 7 A set-valued mapping F : X ⇒ Y from a normed space (X, ‖ · ‖) to a
metric space (Y, �) is called metrically regular along a (closed) subspace H of X around
(x, y) ∈ Gr F with a constant κ > 0 if there exists ε > 0 such that, for every (x, y) ∈
B[x, ε] × B[y, ε],

inf{‖h‖ : h ∈ H and x + h ∈ F−1(y)} ≤ κ d(y, F (x)). (2.8)
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Lemma 8 Let H be a (closed) subspace of a normed space (X, ‖ · ‖). Then, for every
� ⊂ X and every x ∈ X,

dH (x,�) := inf{‖h‖ : h ∈ H and x + h ∈ �} = TSH
(x,�).

Proof Let λ > dH (x,�) be arbitrary (if there is any). Find h ∈ H such that λ > ‖h‖ and
x + h ∈ �. If h = 0 then x ∈ � and thus TSH

(x,�) = 0 (< λ). If not, then h/‖h‖ ∈ SH

and x + ‖h‖(h/‖h‖) ∈ �. Hence TSH
(x,�) ≤ ‖h‖ < λ. Letting λ ↓ dH (x,�) we get

dH (x,�) ≥ TSH
(x,�). On the other hand, let λ > TSH

(x,�) be arbitrary (if there is any).
Find h ∈ SH and t ∈ [0, λ) such that x + th ∈ �. So dH (x,�) ≤ ‖th‖ ≤ t < λ. Letting
λ ↓ TSH

(x, �) we get dH (x,�) ≤ TSH
(x,�).

Corollary 9 Let F : X ⇒ Y be a set-valued mapping between normed spaces (X, ‖·‖) and
(Y, ‖ · ‖) with (x, y) ∈ Gr F , H be a (closed) subspace of X, and κ > 0. If F is metrically
regular alongH around (x, y)with the constant κ, then F is directionally metrically regular
around (x, y)with respect to SH and SY with the constant κ . Conversely, if F is directionally
metrically regular around (x, y) with respect to SH and SY with the constant κ, then there
is ε > 0 such that for all (x, y) ∈ B[x, ε] × B[y, ε] with d(y, F (x)) < ε inequality (2.8)
holds.

Proof As TSY
(y, 	) = d(y, 	) for any y ∈ Y and 	 ⊂ Y , Lemma 8 implies the result.

3 Criteria for Directional Regularity

In what follows, we provide some criteria for directional regularity in the lines of those
given, e.g., in [2] (see also, [3, 10, 15]). We analyze first the case of single-valued mappings,
which we see as particular instances of set-valued mappings. It is important to emphasize
that the domain of the function g in the sequel must be understood as the set where g is
defined, hence we think g as a multifunction having the cardinality of the set {g(x)} at most
one at every x ∈ X.

For the first proposition, we use the directional Ekeland Variational Principle (EVP, for
short) given in [8, Corollary 3.2].

Theorem 10 Let X be a Banach space and A ⊂ X be a closed set. Let M ⊂ SX be a closed
set such that cone M is convex, and f : A → R ∪ {+∞} be a bounded from below lower
semicontinuous function. Then, for every x0 ∈ A with f (x0) < +∞, and for every ε > 0,

there exists xε ∈ A such that

f (xε) ≤ f (x0) − εTM(xε, x0)

and for any x ∈ A \ {xε},
f (xε) < f (x) + εTM(x, xε).

As usual, the application of Ekeland Variational Principle allows to avoid the explicit use
of iterations. Another, more constructive, but longer proof of the next result is given in the
Appendix.

Proposition 11 (general criterion for single-valued maps) Let (X, ‖ · ‖) and (Y, ‖ · ‖) be
Banach spaces. Consider a nonempty closed subset L of SX such that cone L is convex, a

215



R. Cibulka et al.

nonempty closed subset M of SY , a point x ∈ X, and a mapping g : X → Y such that there
is a neighborhood U of x̄ such that the set D := U ∩ Dom g is closed and g is continuous
on D. Then dirsurL×M g(x) equals to the supremum of c > 0 for which there is r > 0 such
that for all (x, y) ∈ (B[x, r] ∩ Dom g) × B[g(x), r], with 0 < TM(y, g(x)) < +∞, there
is a point x′ ∈ Dom g satisfying

cTL(x, x′) < TM(y, g(x)) − TM(y, g(x′)).

Proof Let λ := dirsurL×M g(x) and s be the supremum from the statement. To show that
s ≤ λ, fix an arbitrary c ∈ (0, s) (if there is any). Find δ > 0 such that the set A :=
B[x, 2δ] ∩ Dom g is a subset of D and for all (u, y) ∈ (B[x, 2δ] ∩ Dom g) × B[g(x), 2δ],
with 0 �= g(u) − y ∈ cone M , there is a point x′ ∈ Dom g such that

cTL(u, x′) < TM(y, g(u)) − TM(y, g(x′)). (3.1)

By the continuity of g on A, there is ε ∈ (0, δ min{1/2, 1/c}) such that for every x ∈
B [x, ε] ∩ Dom g, one has that ‖g(x) − g(x)‖ < δ.

Fix any r ∈ (0, ε) and any x ∈ B[x, ε] ∩ Dom g. We show that

B(g(x), cr) ∩ (g(x) − cone M) ⊂ g (B(x, r) ∩ (x + cone L) ∩ Dom g) . (3.2)

Pick an arbitrary y ∈ B(g(x), cr) ∩ (g(x) − cone M). If y = g(x) then (3.2) holds trivially.
Suppose that y �= g(x). Let f : A → [0, +∞] be defined by f (z) := TM(y, g(z)),
z ∈ A. Then f is lower semicontinuous on A, since g is continuous on A and TM(y, ·) is
lower semicontinuous. Moreover, as g(x) − y ∈ cone M , we have f (x) = TM(y, g(x)) =
‖g(x) − y‖ < cr < +∞. Since A is closed, applying the directional Ekeland Variational
Principle (Theorem 10), we find u ∈ A such that

f (u) ≤ f (x) − cT−L(u, x) (3.3)

and

f (u) ≤ f (z) + cT−L(z, u), for all z ∈ A. (3.4)

By (3.3), we have cTL(x, u) = cT−L(u, x) ≤ f (x) − f (u) ≤ f (x) < cr < +∞, hence
u − x ∈ cone L and c‖u − x‖ = cTL(x, u) < cr . Consequently, we have u ∈ B(x, r) ∩
(x + cone L)∩ Dom g. As y ∈ B(g(x), cr)∩ (g(x)− cone M) is arbitrary, (3.2) will follow
once we show that y = g(u). Suppose on the contrary that y �= g(u). Note that

‖u − x‖ ≤ ‖u − x‖ + ‖x − x‖ < r + ε < 2ε < δ

and

‖y − g(x)‖ ≤ ‖y − g(x)‖ + ‖g(x) − g(x)‖ < cr + δ < cε + δ < δ + δ = 2δ.

By (3.3), we have TM(y, g(u)) = f (u) ≤ f (x) < cr < +∞, hence 0 �= g(u) − y ∈
cone M . Find x′ ∈ Dom g such that (3.1) holds. In particular, we have cTL(u, x′) <

TM(y, g(u)) < cr < +∞, and therefore∥∥x′ − x
∥∥ ≤ ∥∥x′ − u

∥∥ + ‖u − x‖ = TL(u, x′) + ‖u − x‖ < r + δ < ε + δ < 2δ.

Thus x′ ∈ A and f (x′) is well defined. Combing (3.1) and (3.4) with z := x′, we get

cTL(u, x′) < TM(y, g(u)) − TM(y, g(x′)) = f (u) − f (x′) ≤ cT−L(x′, u) = cTL(u, x′),

a contradiction. Hence y = g(u).
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By (3.2), λ ≥ c, for any c ∈ (0, s). Thus s ≤ λ. Assume that s < λ. Fix any c ∈ (s, λ).
Find ε > 0 and c′ ∈ (c, λ) such that B[x, ε] ∩ Dom g is a subset of D and for each
x ∈ B[x, ε] ∩ Dom g and each t ∈ (0, ε) we have

g(B(x, t) ∩ (x + cone L) ∩ Dom g) ⊃ B(g(x), c′t) ∩ (g(x) − cone M).

By the continuity of g, we find r ∈ (0, ε) such that ‖g(x) − y‖ < cε for each (x, y) ∈
(B[x, r] ∩ Dom g) × B[g(x), r]. Fix any y ∈ B[g(x), r] and any x ∈ B[x, r] ∩ Dom g

with 0 �= g(x) − y ∈ cone M . Let t := TM(y, g(x))/c = ‖g(x) − y‖/c. Then t ∈ (0, ε)

and y ∈ B[g(x), ct] ⊂ B(g(x), c′t). Therefore there is x′ ∈ B(x, t) ∩ Dom g such that
y = g(x′) and x′ − x ∈ cone L. Noting that x′ �= x, because t > 0, we get

0 < c TL(x, x′) = c ‖x′ − x‖ < ct = TM(y, g(x)) = TM(y, g(x)) − TM(y, g(x′)).
Hence s ≥ c > s, a contradiction.

As in the case of the classical regularity properties, the directional openness of a set-
valued mapping F : X ⇒ Y can be deduced from the directional openness of a simple
single-valued mapping, namely, the restriction of the canonical projection from X × Y onto
Y , that is the assignment Gr F � (x, y) �−→ y ∈ Y . In order to do this, we give a technical
lemma, which shows the possibility to see the minimal time function on product spaces as
maximum of corresponding minimal time functions defined on coordinate spaces.

Lemma 12 Let (X1, ‖ · ‖), . . . , (Xn, ‖ · ‖) be normed spaces and positive constants α1,
. . . , αn be given. Consider nonempty closed subsets Li of SXi

for i = 1, . . . , n. Define the
equivalent norm ‖·‖X̃ on X̃ := X1×...×Xn for each (u1, ..., un) ∈ X̃ by ‖(u1, ..., un)‖X̃ :=
max{α1‖u1‖, ..., αn‖un‖}. Then there exists L̃ ⊂ SX̃ such that cone L̃ = cone L1 × ... ×
cone Ln and, for each (u1, ..., un), (u′

1, ..., u′
n) ∈ X̃,

TL̃((u1, ..., un), (u
′
1, ..., u′

n)) = max{α1TL1(u1, u
′
1), ..., αnTLn(un, u

′
n)}. (3.5)

Proof We will proceed inductively. On X1 × X2, consider the norm defined, for each
(u, v) ∈ X1 × X2, by ‖(u, v)‖X1×X2 := max{α1‖u‖, α2‖v‖}. Take

L̃1 :=
(
α−1

1 L1 × [α−1
2 BX2 ∩ cone L2]

)
∪

(
[α−1

1 BX1 ∩ cone L1] × α−1
2 L2

)
.

Clearly, L̃1 ⊂ SX1×X2 . We show next that cone L̃1 = cone L1 × cone L2. Indeed,

cone
(
α−1

1 L1 × [α−1
2 BX2 ∩ cone L2]

)
⊂ cone

(
α−1

1 L1

)
× cone

(
α−1

2 BX2 ∩ cone L2

)
= cone L1 × cone L2,

and similarly

cone
(
[α−1

1 BX1 ∩ cone L1] × α−1
2 L2

)
⊂ cone

(
α−1

1 BX1 ∩ cone L1

)
× cone(α−1

2 L2)

= cone L1 × cone L2.

Thus cone L̃1 ⊂ cone L1 × cone L2.
On the other hand, pick an arbitrary non-zero (u, v) ∈ cone L1 × cone L2. Then there

are non-negative t1 and t2, which are not both zero, such that u ∈ t1(α
−1
1 L1) and v ∈

t2(α
−1
2 L2). If t1 ≥ t2, then v ∈ t1(t2t

−1
1 )(α−1

2 L2) ⊂ t1(α
−1
2 BX2 ∩ cone L2). Hence (u, v) ∈

t1L̃1 ⊂ cone L̃1. If t2 > t1, then u ∈ t2(t1t
−1
2 )(α−1

1 L1) ⊂ t2(α
−1
1 BX1 ∩ cone L1). Hence

(u, v) ∈ t2L̃1 ⊂ cone L̃1. Thus cone L̃1 ⊃ cone L1 × cone L2.
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We want to prove next that

TL̃1
((u, v), (u′, v′))=max{α1TL1(u, u′), α2TL2(v, v′)}, for all (u, v), (u′, v′) ∈ X1×X2.

For this, fix any (u, v), (u′, v′) ∈ X1×X2. Since cone L̃1 = cone L1×cone L2, we conclude
that TL̃1

((u, v), (u′, v′)) is finite if and only if both TL1(u, u′) and TL2(v, v′) are finite. In
this case, we have

max{α1TL1(u, u′), α2TL2(v, v′)} = max{α1‖u′ − u‖, α2‖v′ − v‖}
= ‖(u′, v′) − (u, v)‖X1×X2 = TL̃1

((u, v), (u′, v′)),
as claimed.

Next, observe that if one considers on X1 × X2 × X3 the norm defined, for each
(u, v, w) ∈ X1 × X2 × X3, by ‖(u, v,w)‖X1×X2×X3 := max

{‖(u, v)‖X1×X2 , α3 ‖w‖} ,

and repeats the previous proof for

L̃2 :=
(
L̃1 × [α−1

3 BX3 ∩ cone L3]
)

∪
(
[BX1×X2 ∩ cone L̃1] × α−1

3 L3

)
,

it follows that cone L̃2 = cone L̃1 × cone L3 = cone L1 × cone L2 × cone L3, and for all
(u, v, w), (u′, v′, w′) ∈ X1 × X2 × X3,

TL̃2
((u, v,w), (u′, v′, w′)) = max{TL̃1

((u, v), (u′, v′)), α3TL3(w,w′)}
= max{max{α1TL1(u, u′), α2TL2(v, v′)}, α3TL3(w,w′)}
= max{α1TL1(u, u′), α2TL2(v, v′), α3TL3(w,w′)}.

After a finite number of similar steps, the result follows.

Proposition 13 (general criterion for set-valued maps) Let (X, ‖ · ‖) and (Y, ‖ · ‖) be
Banach spaces. Consider nonempty closed subsets L of SX and M of SY such that cone L

is convex, a point (x, y) ∈ X × Y , and a set-valued mapping F : X ⇒ Y the graph of
which is locally closed near (x, y) ∈ Gr F . Then dirsurL×M F(x, y) equals to the supremum
of all c > 0 for which there are r > 0 and α ∈ (0, 1/c) such that for any (x, v) ∈
(B[x, r] × B[y, r]) ∩ Gr F and any y ∈ B[y, r], with 0 < TM(y, v) < +∞, there is a pair
(x′, v′) ∈ Gr F such that

c max{TL(x, x′), α‖v − v′‖} < TM(y, v) − TM(y, v′). (3.6)

Proof Let λ := dirsurL×M F(x, y) and denote by s the supremum from the statement. First,
we show that λ ≥ s. Fix an arbitrary c ∈ (0, s) (if there is any). Find α ∈ (0, 1/c) and
r > 0 such that the property involving (3.6) holds. Let X̃ := X × Y be equipped with the
norm ‖(u, v)‖X̃ := max{‖u‖, α‖v‖}, (u, v) ∈ X̃. Let L̃ be the cone from the conclusion of
Lemma 12 with n := 2, X1 := X, X2 := Y , L1 := L, L2 := SY , α1 := 1, and α2 := α.

Let g := pY|Gr F , where pY is the canonical projection from X × Y onto Y . Then there
is a neighborhood Ũ of (x, y) in X̃ such that the set D̃ := Ũ ∩ Gr F is closed and g is
continuous on D̃. Let r̃ ∈ (0, r min{1, α}). Fix any (x, v) ∈ BX̃[(x, y), r̃] ∩ Dom g =
(B[x, r̃] × B[y, r̃/α]) ∩ Gr F ⊂ (B[x, r] × B[y, r]) ∩ Gr F and any y ∈ B[y, r̃] with
0 < TM(y, v) < +∞. Find a pair (x′, v′) ∈ Gr F = Dom g satisfying (3.6). This and (3.5)
imply that

c TL̃((x, v), (x′, v′)) = c max{TL(x, x′), αTSY
(v, v′)} < TM(y, v) − TM(y, v′),

because TSY
(v, v′) = ‖v − v′‖. Proposition 11 says that dirsurL̃×M g(x, y) ≥ s (note

that c ∈ (0, s) is arbitrary). Keeping the same c, since dirsurL̃×M g(x, y) ≥ s > c, by
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the definition of the modulus of directional openness, there is ε > 0 such that for each
(x, y) ∈ (B[x, ε] × B[y, ε/α]) ∩ Gr F and each t ∈ (0, ε) we have

B(y, ct) ∩ (y − cone M) ⊂ g
(
BX̃((x, y), t) ∩ ((x, y) + cone L̃)

)
= g

(
Gr F ∩ BX̃((x, y), t) ∩ ((x, y) + cone L̃)

)
= g (Gr F ∩ ([B(x, t) ∩ (x + cone L)] × B(y, t/α))) ,

where we used that cone L̃ = cone L × cone SY = cone L × Y . Note that B(y, ct) ⊂
B(y, t/α). Pick an arbitrary ε′ ∈ (0, ε min{1, 1/α}). Fix any (x, y) ∈ (B[x, ε′]×B[y, ε′])∩
Gr F and any t ∈ (0, ε′). For any w ∈ B(y, ct) ∩ (y − cone M), there is u ∈ B(x, t) ∩ [x +
cone L] and w′ ∈ B(y, t/α) ∩ F(u) such that g(u,w′) = w, hence w = w′ ∈ F(u). Thus

B(y, ct) ∩ (y − cone M) ⊂ F(B(x, t) ∩ [x + cone L]).
Letting c ↑ s, we get λ ≥ s as desired. Suppose that λ > s. Then there are c′ > s and
ε′ > 0 such that for all (x, y) ∈ (B[x, ε′] × B[y, ε′]) ∩ Gr F and all t ∈ (0, ε′) we have

B(y, c′t) ∩ (y − cone M) ⊂ F(B(x, t) ∩ [x + cone L]).
Let α := 1/c′. Define X̃, ‖ · ‖X̃, L̃, and g as before. Then

B(y, c′t) ∩ (y − cone M) ⊂ g (Gr F ∩ ([B(x, t) ∩ (x + cone L)] × B(y, t/α)))

= g
(
Gr F ∩ BX̃((x, y), t) ∩ ((x, y) + cone L̃)

)
.

Pick any c ∈ (s, c′). Then dirsurL̃×M g(x, y) > c. Proposition 11 implies that there is
r ′ > 0 such that for any (x, v) ∈ (B[x, r ′] × B[y, c′r ′]) ∩ Gr F and any y ∈ B[y, r ′] with
0 < TM(y, v) < +∞ there is a pair (x′, v′) ∈ Dom g = Gr F such that

c TL̃((x, v), (x′, v′)) < TM(y, v) − TM(y, v′).

As TSY
(v, v′) = ‖v−v′‖, using (3.5), we get (3.6). Picking r ∈ (0, min{r ′, c′r ′}) and noting

that α = 1/c′ < 1/c, we conclude that s ≥ c, a contradiction.

4 Directional Openness Stability

In what follows, we speak about the local stability at composition of a pair of multifunctions,
which essentially says that a point from the graph of the composed multifunction, close to
the reference one, can be written by the use of points from the graphs of the involved set-
valued maps, which are also close to the corresponding reference ones. For more details on
this notion, as well as for links to the preservation of Aubin-type properties of set-valued
mappings, and also for the involvement in the stability under compositions, see [6, 9]. Given
metric spaces (X, �), (Y, �), and (Z, �), a composition of set-valued mappings F : X ⇒ Y

and G : Y ⇒ Z is the mapping G ◦ F : X ⇒ Z defined by

(G ◦ F)(x) :=
⋃

y∈F(x)

G(y), x ∈ X;

and a product of set-valued mappings F1 : X ⇒ Y and F2 : X ⇒ Z is the mapping
(F1, F2) : X ⇒ Y × Z defined by

(F1, F2)(x) := F1(x) × F2(x), x ∈ X.

Definition 14 Let (X, �), (Y, �), and (Z, �) be metric spaces and (x, y,z) ∈ X × Y × Z

be fixed. Consider set-valued mappings F : X ⇒ Y and G : Y ⇒ Z such that y ∈ F(x)
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and z ∈ G(y). We say that the pair F,G is composition-stable around (x, y, z) if for every
ε > 0 there exists δ > 0 such that, for every x ∈ B(x, δ) and every z ∈ (G◦F)(x)∩B(z, δ),

there exists y ∈ F(x) ∩ B(y, ε) such that z ∈ G(y).

Remark 15 It is important to note that the composition stability, coupled with a weaker
directional openness property, implies genuine directional linear openness (cf. [6, Proposi-
tion 3.6]).

To see this, suppose that F and G are as in the previous definition with X, Y , and Z

being normed vector spaces, and L ⊂ SX and M ⊂ SZ are nonempty sets for which there
are positive constants ε, r , and c such that, for every (x, y, z) ∈ B(x, r)×B(y, r)×B(z, r)

with y ∈ F(x) and z ∈ G(y), and for every t ∈ (0, ε),

B(z, ct) ∩ [z − cone M] ⊂ (G ◦ F)(B(x, t) ∩ [x + cone L]). (4.1)

Since F,G are composition-stable around (x, y, z), one gets the existence of δ ∈ (0, r)

such that, for every x ∈ B(x, δ) and every z ∈ (G ◦ F)(x) ∩ B(z, δ), there exists y ∈
F(x) ∩ B(y, r) with z ∈ G(y).

Take arbitrary (x, z) ∈ Gr(G ◦ F) ∩ (B(x, δ) × B(z, δ)) and t ∈ (0, ε). By the compo-
sition stability of F,G, there is y ∈ F(x) ∩ B(y, r) such that z ∈ G(y), hence (4.1) holds.
This means that, indeed, G◦F is directionally linearly open with respect to L and M around
(x, z).

We present next the main result of this section, which asserts the stability of directional
regularity under composition. Note that, in what follows, we write −A × B for (−A) × B.

Theorem 16 Let (X, ‖ · ‖), (Y, ‖ · ‖), (Z, ‖ · ‖), and (W, ‖ · ‖) be Banach spaces and
(x, y,z, w) ∈ X × Y × Z × W be fixed. Consider nonempty closed subsets L of SX, M

of SY , N of SZ , and P of SW such that cone L, cone M, cone N , and cone P are convex,
set-valued mappings F1 : X ⇒ Y, F2 : X ⇒ Z, and G : Y × Z ⇒ W such that
F1 has a locally closed graph near (x, y) ∈ Gr F1, F2 has a locally closed graph near
(x, z) ∈ Gr F2, andG has a locally closed graph near (y, z, w) ∈ Gr G. Define the mapping
EG,(F1,F2) : X × Y × Z ⇒ W by

EG,(F1,F2)(x, y, z) :=
{

G(y, z), if (y, z) ∈ (F1, F2)(x),

∅, otherwise.

Then

dirsurL×−M×N×P EG,(F1,F2)(x, y, z, w) ≥ dirsurL×M F1(x, y) · d̂irsur
y

−M×P G(y, z,w)

− dirlip−L×N F2(x, z) · d̂irlip
z

−N×P G(y, z,w).

(4.2)

If, in addition, the pair (F1, F2),G is composition-stable around (x, (y, z), w), then

dirsurL×P (G ◦ (F1, F2)) (x,w) ≥ dirsurL×M F1(x, y) · d̂irsur
y

−M×P G(y, z,w)

− dirlip−L×N F2(x, z) · d̂irlip
z

−N×P G(y, z,w).

(4.3)
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Proof If the quantity from the right-hand side of the inequality (4.2) is negative, then there
is nothing to prove. If it is positive, then there are positive constants α, β, β ′, γ , and δ such
that

dirsurL×M F1(x, y) > α, d̂irsur
y

−M×P G(y, z,w) > γ, (4.4)

and
β > β ′ > dirlip−L×N F2(x, z), δ > d̂irlip

z

−N×P G(y, z, w) (4.5)

and also c := αγ − βδ > 0.
Then, thanks to (4.4), there exists ε > 0 such that, for each t ∈ (0, ε), and each (x, y) ∈

(B[x, ε] × B[y, ε]) ∩ Gr F1, we have

B[y, αt] ∩ (y − cone M) ⊂ F1(B[x, t] ∩ (x + cone L)) (4.6)

and, for each t ∈ (0, ε), each z ∈ B[z, ε], and each (y,w) ∈ (B[y, ε] × B[w, ε]) ∩ Gr Gz,

we have
B[w, γ t] ∩ (w − cone P) ⊂ Gz(B[y, t] ∩ (y − cone M)), (4.7)

and also, thanks to (4.5), that

eN(F2(x) ∩ B[z, ε], F2(x
′)) ≤ β ′ T−L(x′, x) = β ′ TL(x, x′), for all x, x′ ∈ B[x, ε],

(4.8)
and, similarly,

eP (Gy(z)∩B[w, 2ε], Gy(z
′)) ≤δ TN(z, z′), whenever z, z′ ∈ B[z, ε] and y ∈ B[y, ε].

(4.9)
Observe that, since Gr F1, Gr F2 and Gr G are closed near the corresponding reference

points, Gr EG,(F1,F2) is closed near (x, y, z, w). Let r := min
{
(2α)−1ε, (2β)−1ε, 2−1ε

}
and λ := (αγ + βδ)−1 ∈ (0, 1/c). Define the norm on X × Y × Z by ‖(x, y, z)‖ :=
max

{‖x‖ , α−1 ‖y‖ , β−1 ‖z‖}, (x, y, z) ∈ X × Y × Z. Use Lemma 12 to find a cone
L̃ ⊂ SX×Y×Z such that cone L̃ = cone L × cone(−M) × cone N and, for each (x, y, z),
(x′, y′, z′) ∈ X × Y × Z,

TL̃((x, y, z), (x′, y′, z′)) = max
{
TL(x, x′), α−1T−M(y, y′), β−1TN(z, z′)

}
.

Fix an arbitrary (x, y, z, w) ∈ (B[x, r] × B[y, r] × B[z, r] × B[w, r]) ∩ Gr EG,(F1,F2) and
u ∈ B [w, r] such that 0 �= w − u ∈ cone P .

In order to apply Proposition 13, we must find a point (x′, y′, z′, w′) ∈ X × Y × Z × W

such that

c max
{
TL̃((x, y, z), (x′, y′, z′)), λ

∥∥w − w′∥∥}
< TP (u,w) − TP (u,w′).

To do so, take t ∈ (
0, min

{
r, α−1γ −1 ‖u − w‖}) , and define

h := αγ t · u − w

‖u − w‖ �= 0.

Then w + h ∈ B [w,αγ t] ∩ (w − cone P) and, moreover, αt ∈ (0, ε) , z ∈ B[z, ε], and
(y,w) ∈ (B[y, ε]×B[w, ε])∩Gr Gz, which means by (4.7), with αt instead of t , that there
exists y′ ∈ B[y, αt]∩(y−cone M) such that w+h ∈ G(y′, z). Since t ∈ (0, ε), and (x, y) ∈
(B[x, ε] × B[y, ε]) ∩ Gr F1, it follows by (4.6) that there is x′ ∈ B[x, t] ∩ (x + cone L)

such that y′ ∈ F1(x
′). Observing that∥∥x′ − x

∥∥ ≤ ∥∥x′ − x
∥∥ + ‖x − x‖ ≤ t + 2−1ε < ε,

one has by (4.8) that

TN(z, F2(x
′)) ≤ eN(F2(x) ∩ B[z, ε], F2(x

′)) ≤ β ′ TL(x, x′) = β ′ ∥∥x − x′∥∥ ≤ β ′t < βt,
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hence there exists z′ ∈ F2(x
′) ∩ (z + cone N) such that

∥∥z′ − z
∥∥ < βt . Then∥∥z′ − z

∥∥ ≤ ∥∥z′ − z
∥∥ + ‖z − z‖ < βt + 2−1ε < βr + 2−1ε ≤ ε,

and
‖y′ − y‖ ≤ ‖y′ − y‖ + ‖y − y‖ ≤ αt + 2−1ε < αr + 2−1ε ≤ ε,

and also

‖w+h−w‖ ≤ ‖h‖+‖w−w‖ < ‖u−w‖+‖w−w‖ ≤ ‖u−w‖+2‖w−w‖ ≤ 3r < 2ε.

It follows by (4.9), with y′ instead of y, that

TP (w + h, Gy′(z′)) ≤ eP (Gy′(z) ∩ B[w, 2ε],Gy′(z′)) ≤ δ TN(z, z′) = δ
∥∥z − z′∥∥ < βδt,

hence there exists w′ ∈ G(y′, z′) ∩ (w + h + cone P) such that
∥∥w + h − w′∥∥ < βδt .

Moreover, since (y′, z′) ∈ (F1, F2)(x
′), we have (x′, y′, z′, w′) ∈ Gr EG,(F1,F2).

Observe that, due to the choice of t,

w + h − u =
(

1 − αγ t

‖u − w‖
)

(w − u) ∈ cone P .

Then

TP (u,w′) ≤ TP (u,w + h) + TP (w + h,w′) < ‖w + h − u‖ + βδt

= ‖u − w‖ − αγ t + βδt = TP (u,w) − ct . (4.10)

Moreover,
TL(x, x′) ≤ t, T−M(y, y′) ≤ αt, TN(z, z′) < βt,

hence
TL̃((x, y, z), (x′, y′, z′)) ≤ t .

Also, ∥∥w − w′∥∥ ≤ ‖h‖ + ∥∥w + h − w′∥∥ < αγ t + βδt = λ−1t .

But the final relations, combined with (4.10), mean that

c max
{
TL̃((x, y, z), (x′, y′, z′)), λ

∥∥w − w′∥∥} ≤ ct < TP (u,w) − TP (u,w′).
Proposition 13 shows that

dirsurL×−M×N×P EG,(F1,F2)(x, y, z, w) ≥ c.

Therefore letting α ↑ dirsurL×M F1(x, y), γ ↑ d̂irsur
y

−M×P G(y, z,w), β ↓
dirlip−L×N F2(x, z), and also δ ↓ d̂irlip

z

−N×P G(y, z, w), we get (4.2).
For the second part of the conclusion, assume that X × Y × Z × W is equipped with the

product (box) topology. Denote

λ := dirsurL×M×N×P EG,(F1,F2)(x, y, z, w).

If λ = 0,we have that the right-hand side of (4.2) is nonpositive, hence (4.3) is trivial.
Suppose that λ > 0, and fix any c ∈ (0, λ). Then there exists r > 0 such that, for every
t ∈ (0, r), and every (x, y, z, w) ∈ Gr EG,(F1,F2) ∩ (B[x, r]×B[y, r]×B[z, r]×B[w, r]),
one has

B(w, ct) ∩ [w − cone P ] ⊂ EG,(F1,F2) (B((x, y, z), t) ∩ ((x, y, z) + cone(L × M × N))) .
(4.11)

Since (F1, F2),G is composition-stable around (x, (y, z), w), there exists ρ ∈ (0, r)

such that, for every x ∈ B(x, ρ) and every w ∈ (G ◦ (F1, F2))(x) ∩ B(w, ρ), there exists
(y, z) ∈ (F1, F2)(x) ∩ (B(y, r) × B(z, r)) such that w ∈ G(y, z).
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Take now arbitrary (x,w) ∈ Gr(G ◦ (F1, F2)) ∩ (B(x, ρ) × B(w, ρ)) and arbitrary t ∈
(0, r). Then there is (y, z) ∈ (F1, F2)(x) ∩ (B(y, r) × B(z, r)) such that w ∈ G(y, z). By
inclusion (4.11), for every w′ ∈ B(w, ct) ∩ [w − cone P ] , there is

(x′, y′, z′) ∈ B((x, y, z), t) ∩ ((x, y, z) + cone(L × M × N))

⊂ (B(x, t) ∩ (x + cone L)) × (B(y, t) ∩ (y + cone M))

×(B(z, t) ∩ (z + cone N))

such that (y′, z′) ∈ (F1, F2)(x
′) and w′ ∈ G(y′, z′), that is, w′ ∈ (G ◦ (F1, F2))(x

′).
Consequently,

B(w, ct) ∩ [w − cone P ] ⊂ (G ◦ (F1, F2))(B(x, t) ∩ (x + cone L)).

As (x,w) ∈ Gr(G ◦ (F1, F2)) ∩ (B(x, ρ) × B(w, ρ)) and t ∈ (0, r) were arbitrary, we
conclude that dirsurL×P (G ◦ (F1, F2)) (x,w) ≥ c. Letting c ↑ λ, we finish the proof.

As a consequence of the result above, we obtain a stability of directional openness under
summation, which represents, in fact, a directional Lyusternik-Graves type assertion. As in
the previous case, to get genuine openness, we need to impose some local sum-stability
property. For more details about the origin of this notion and its links to local composition
stability, see [9].

Definition 17 Let (X, �) and (Y, �) be metric spaces and (x, y, z) ∈ X × Y × Y be fixed.
Consider set-valued mappings F : X ⇒ Y and G : X ⇒ Y such that y ∈ F(x) and
z ∈ G(x). We say that the pair F,G is sum-stable around (x, y, z) if for every ε > 0 there
exists δ > 0 such that, for every x ∈ B(x, δ) and every w ∈ (F + G)(x) ∩ B(y + z, δ),

there exist y ∈ F(x) ∩ B(y, ε) and z ∈ G(x) ∩ B(z, ε) such that w = y + z.

Remark 18 Observe that, if one takes in Definition 14 F : X ⇒ Y × Y, F := (F1, F2),

where F1 : X ⇒ Y, F2 : X ⇒ Y are two multifunctions, G := g, where g : Y × Y → Y

is given by g(y, z) := y + z, for each (y, z) ∈ Y × Y , and (x, y, z) ∈ X × Y × Y

such that (y, z) ∈ F1(x) × F2(x), then the composition-stability of the pair F,G around
(x, (y, z), y + z) is just the sum-stability of F1, F2 around (x, y, z).

Corollary 19 Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces and (x, y, z) ∈ X × Y × Y

be fixed. Consider nonempty closed subsets L of SX and M of SY such that cone L and
cone M are convex, set-valued mappings F1, F2 : X ⇒ Y such that F1 has a locally closed
graph near (x, y) ∈ Gr F1 and F2 has a locally closed graph near (x, z) ∈ Gr F2. Define
the mapping EF1,F2 : X × Y × Y ⇒ Y by

EF1,F2(x, y, z) :=
{

y + z, if (y, z) ∈ (F1, F2)(x),

∅, otherwise.

Then

dirsurL×−M×M×M EF1,F2(x, y, z, y + z) ≥ dirsurL×M F1(x, y) − dirlip−L×M F2(x, z).
(4.12)

If, in addition, the pair F1, F2 is sum-stable around (x, y, z), then

dirsurL×M(F1 + F2)(x, y + z) ≥ dirsurL×M F1(x, y) − dirlip−L×M F2(x, z). (4.13)

Proof Take in Theorem 16 W = Z = Y, w := y + z, P := N := M , and G := g, where
g : Y × Y → Y is given by g(y, z) := y + z, for all (y, z) ∈ Y × Y .
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Observe that G is directionally linearly open with respect to y uniformly in z around
((y, z), w) ∈ Gr G with respect to −M and M with modulus 1, and also that G is direc-
tionally Aubin continuous with respect to z uniformly in y around ((y, z), w) with respect
to −M and M with modulus 1.

Hence,

d̂irsur
y

−M×MG(y, z,w) = 1 and d̂irlip
z

−M×MG(y, z, w) = 1.

Moreover, EF1,F2 = EG,(F1,F2). Consequently, we get (4.12).
The second part of the conclusion also follows from Theorem 16 by Remark 18.

Corollary 20 Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces and (x, y) ∈ X × Y be fixed.
Consider nonempty closed subsets L of SX and M of SY such that cone L and cone M

are convex, a set-valued mapping F : X ⇒ Y the graph of which is locally closed near
(x, y) ∈ Gr F , and a single-valued mapping f : X → Y which is continuous at x. Then

dirsurL×M(f + F)(x, f (x) + y) ≥ dirsurL×M F(x, y) − dirlip−L×M f (x).

Proof Since f : X → Y is continuous at x, it follows that the pair F, f is sum-stable
around (x, y, f (x)). Since all the assumptions in Corollary 19 are satisfied, the conclusion
follows.

5 Primal Conditions for Directional Regularity

In this section, we employ a directional version of the Bouligand (graphical) derivative to
obtain sufficient conditions for the directional regularity, the idea coined by J.-P. Aubin in
[1]. Let us start with a directional version of the Bouligand-Severi tangent cone to a set.

Definition 21 Let � be a nonempty subset of a normed space (X, ‖ · ‖), M ⊂ SX be a
nonempty set, and x ∈ �. The Bouligand-Severi tangent cone to � at x with respect to M

is the set

T (�, x, M) =
{
u ∈ X | lim inf

t↓0
t−1TM(x + tu, �) = 0

}
. (5.1)

Observe that T (�, x, M) is a cone and contains all points u ∈ X such that there are
sequences (un) in u + cone M converging to u and (tn) in (0,+∞) converging to 0 such
that, for each n ∈ N, we have x + tnun ∈ �. Symbolically,

T (�, x, M)={u∈X | ∃(tn) ↓ 0, ∃(un)⊂u + cone M, (un)→u, ∀n ∈ N, x + tnun ∈�}.
Moreover, note that this notion is naturally obtained by replacing the distance function

in the usual definition of Bouligand-Severi tangent cone (denoted T (�, x)) by the minimal
time function. Clearly, T (�, x,M) ⊂ T (�, x), and if M = SX, the equality holds. How-
ever, if M �= SX, the Bouligand-Severi tangent cone with respect to M does not enjoy the
usual properties of the classical contingent cone, as the next example shows.

Example 22 Take X = R
2, � = {

(a, b) ∈ R
2| (a − 1)2 + b2 ≤ 1

}
and x = (0, 0). Now,

for M = [0, +∞)2∩SX, we have that T (�, x,M) = T (�, x) = [0,+∞)×R. On the other
hand, for M = (−∞, 0]2 ∩ SX, we have that T (�, x,M) = (0,+∞) × R ⊂ T (�, x) =
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[0, +∞) × R. In particular, this shows that T (�, x,M) may not be closed. Furthermore, if
� is convex, it is easy to see that, for any M,

cone(� − x) ⊂ T (�, x,M) ⊂ cl cone(� − x) = T (�, x). (5.2)

The first choice of M from above shows that the first inclusion in (5.2) can be strict, while
the second choice shows that the second inclusion in (5.2) does not hold as equality, in
general.

Similar to the classical case, one can introduce the directional adjacent cone, as follows.

Definition 23 Let � be a nonempty subset of a normed space (X, ‖ · ‖), M ⊂ SX be a
nonempty set, and x ∈ �. The adjacent cone to � at x with respect to M is the set

T �(�, x,M) =
{
u ∈ X | lim

t↓0
t−1TM(x + tu, �) = 0

}
, (5.3)

that is,

T �(�, x, M)={u∈X | ∀(tn) ↓ 0, ∃(un)⊂u + cone M, (un)→u, ∀n∈N, x + tnun ∈�}.

It is clear that, in general,

T �(�, x,M) ⊂ T (�, x,M).

Definition 24 Let F : X ⇒ Y be a set-valued mapping between normed spaces (X, ‖ · ‖)
and (Y, ‖ · ‖) with (x, y) ∈ Gr F, L ⊂ SX and M ⊂ SY be nonempty sets.

(i) The Bouligand derivative of F at (x, y) with respect to L and M is the set-valued
mapping DL,MF(x, y) from X into Y defined, for each u ∈ X, by

DL,MF(x, y)(u) = {v ∈ Y | ∃(tn) ↓ 0, ∃(un) ⊂ u + cone L, (un) → u, ∃(vn)⊂v

+ cone M, (vn) → v,∀n ∈ N, y + tnvn ∈ F(x + tnun)}.
(ii) The adjacent derivative of F at (x, y) with respect to L and M is the set-valued

mapping denoted D
�
L,MF(x, y) from X into Y defined, for each u ∈ X, by

D
�
L,MF(x, y)(u) = {v∈Y | ∀(tn) ↓ 0, ∃(un) ⊂ u + cone L, (un) → u, ∃(vn) ⊂ v

+ cone M, (vn) → v, ∀n ∈ N, y + tnvn ∈ F(x + tnun)}.
(iii) One says that F is directionally proto-differentiable with respect toL×M at x relative

to y if DL,MF(x, y) = D
�
L,MF(x, y).

Observe that if cone L̃ = cone L × cone M, with an appropriate choice of L̃ ⊂ SX×Y ,

then

Gr DL,MF(x, y) = T (Gr F, (x, y), L̃) and

Gr D
�
L,MF(x, y) = T �(Gr F, (x, y), L̃).

The following statement is a directional version of [2, Theorem 3.2].

Theorem 25 Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces. Consider nonempty closed
subsets L of SX and M of SY such that cone L and cone M are convex and a mapping
F : X ⇒ Y the graph of which is locally closed near (x, y) ∈ Gr F . Assume that there are
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positive constants β, �, and r such that for every (x, v) ∈ (B[x, r] × B[y, r]) ∩ Gr F we
have

DL,MF(x, v)(BX ∩ cone L) + B[0, β] ∩ (− cone M) ⊃ −(β + �)M .

Then dirsurL×M F(x, y) ≥ �.

Proof Fix any c ∈ (0, �). Pick γ > 1 such that cγ < �. Fix any (x, v) ∈ Gr F ∩ (B[x, r]×
B[y, r]) and any y ∈ Y with 0 �= v − y ∈ cone M . Let

z := (β + �)
y − v

‖y − v‖ ∈ (β + �)(−M).

By the assumption, there is a pair (h,w) ∈ (BX ∩ cone L) × Y such that w ∈
DL,MF(x, v)(h) with ‖w − z‖ ≤ β and w − z ∈ cone M . Hence ‖w‖ ≤ 2β + �.
The definition of DL,MF(x, v) yields a triple (t, h′, w′) ∈ (0,+∞) × X × Y such that
v + tw′ ∈ F(x + th′) with (h′ − h,w′ − w) ∈ cone L × cone M and satisfying

(β+�)t < ‖y−v‖, ‖w−w′‖ < �−cγ, ‖w′‖ < γ (2β+�), and ‖h′‖ < γ . (5.4)

Let x′ := x + th′ and v′ := v + tw′. Then (x′, v′) ∈ Gr F . As v − y ∈ cone M , the first
inequality in (5.4) implies that we have

v + tz − y = (1 − (β + �)t/‖y − v‖) (v − y) ∈ cone M,

which means that TM(y, v + tz) = ‖y − v − tz‖ = ‖y − v‖ − t (β + �). Since w − z and
w′ −w are in cone M , we have v′ − (v + tz) = tw′ − tz = t (w′ −w)+ t (w − z) ∈ cone M .
So, by the second inequality in (5.4), we get

TM(v + tz, v′) ≤ t (‖w′ − w‖ + ‖w − z‖) < t(� − cγ + β).

Remembering that v − y ∈ cone M, we conclude that

TM(y, v′) ≤ TM(y, v + tz) + TM(v + tz, v′) < ‖y − v‖ − t (β + �) + t (� − cγ + β)

= TM(y, v) − c (tγ ).

The last two inequalities in (5.4) reveal that ‖v′−v‖ = t‖w′‖ < tγ (2β+�) and TL(x, x′) =
‖x′ − x‖ = t‖h′‖ < tγ because x′ − x = th′ = t (h′ − h) + th ∈ cone L. Therefore

TM(y, v′) < TM(y, v) − c max
{
TL(x, x′), ‖v′ − v‖/(2β + �)

}
.

Using Proposition 13 with α := 1/(2β + �) and then letting c ↑ � we conclude the proof.

We present now a necessary and sufficient condition for the directional regularity based
on a directional version of the contingent variation, a concept coined by H. Frankowska in
[11].

Definition 26 Let F : X ⇒ Y be a set-valued mapping between normed spaces (X, ‖ · ‖)
and (Y, ‖ · ‖) with (x, y) ∈ Gr F, L ⊂ SX and M ⊂ SY be nonempty sets. The contingent
variation of F at (x, y) with respect to L and M is the set F

(1)
L,M(x, y) of all vectors v ∈ Y

such that there are sequences (tn) in (0,+∞) converging to 0 and (vn) in v + cone M

converging to v such that, for each n ∈ N,

y + tnvn ∈ F(B[x, tn] ∩ [x + cone L]). (5.5)

Let us present a directional version of [11, Theorem 6.1 and Corollary 6.2].
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Theorem 27 Let (X, ‖ · ‖) and (Y, ‖ · ‖) be Banach spaces. Consider nonempty closed
subsets L of SX and M of SY such that cone L and cone M are convex and a mapping F :
X ⇒ Y the graph of which is locally closed near (x, y) ∈ Gr F . Then dirsurL×M F(x, y) is
equal to the supremum of all � > 0 for which there is r > 0 such that

F
(1)
L,M(x, v) ⊃ −�M for every (x, v) ∈ (B[x, r] × B[y, r]) ∩ Gr F . (5.6)

Proof Let λ := dirsurL×M F(x, y) and denote by s the supremum from the statement.
First, we show that λ ≥ s. Fix an arbitrary � ∈ (0, s) (if there is any). Find r > 0 such
that (5.6) holds. Pick any c ∈ (0, �) and then find γ > 1 such that cγ < �. Let (x, v) ∈
(B[x, r] × B[y, r]) ∩ Gr F and y ∈ Y with 0 �= v − y ∈ cone M be arbitrary. Set

z := �
y − v

‖y − v‖ ∈ �(−M).

By (5.6), F
(1)
L,M(x, v) � z �= 0. Hence there is (t, x′, z′) ∈ (0,+∞) × (x + cone L) × (z +

cone M) such that v + tz′ ∈ F(x′) with

�t < ‖y − v‖, ‖z − z′‖ < � − γ c, ‖z′‖ < γ�, and ‖x′ − x‖ ≤ t . (5.7)

Let v′ := v + tz′. Then (x′, v′) ∈ Gr F . As v − y ∈ cone M , the first inequality in (5.7)
implies that

v + tz − y = (1 − �t/‖y − v‖) (v − y) ∈ cone M,

which means that TM(y, v + tz) = ‖y − v − tz‖ = ‖y − v‖ − t�. Since v′ − (v + tz) =
t (z′ − z) ∈ cone M , the second inequality in (5.7) implies that

TM(v + tz, v′) = ‖v′ − v − tz‖ = t‖z′ − z‖ < t(� − γ c).

We conclude that

TM(y, v′) ≤TM(y, v+ tz) +TM(v + tz, v′)<‖y− v‖−t�+t (�−γ c)=TM(y, v)−c(tγ ).

As x′ − x ∈ cone L, using the last two inequalities in (5.7), we get that TL(x, x′) = ‖x′ −
x‖ < tγ and ‖v′ − v‖ = t‖z′‖ < tγ �. Thus

TM(y, v′) < TM(y, v) − c max
{
TL(x, x′), ‖v′ − v‖/�}

.

Now, Proposition 13 with α := 1/� says that λ ≥ c. Letting c ↑ � and then � ↑ s, we
conclude that λ ≥ s as claimed.

To show that λ = s, assume on the contrary that λ > s. Pick � ∈ (s, λ). Find r > 0 such
that, for each (x, v) ∈ (B[x, r] × B[y, r]) ∩ Gr F and each t ∈ (0, r],

B[v, �t] ∩ (v − cone M) ⊂ F(B[x, t] ∩ (x + cone L)).

Fix any (x, v) ∈ (B[x, r] × B[y, r]) ∩ Gr F . Pick an arbitrary w ∈ −�M . For each n ∈
N\ {0}, set tn := r/n and wn := w. Then tn ↓ 0 and wn → w as n → +∞. Clearly, for
each n ∈ N\ {0}, we have wn ∈ w + cone M and v + tnwn ∈ B[v, �tn] ∩ (v − cone M).
Hence v + tnwn ∈ F(B[x, tn] ∩ (x + cone L)), that is, w ∈ F

(1)
L,M(x, v). We showed that

−�M ⊂ F
(1)
L,M(x, v) for each (x, v) ∈ (B[x, r] × B[y, r]) ∩ Gr F . Thus s ≥ � > s,

a contradiction.

Note that Theorem 25 with β := 0 follows from the above statement, as the next remark
shows.

227



R. Cibulka et al.

Remark 28 Let (X, ‖·‖) and (Y, ‖·‖) be Banach spaces. Consider nonempty closed subsets
L of SX and M of SY such that cone L and cone M are convex and a mapping F : X ⇒ Y

with (x, y) ∈ Gr F . Then

(− cone M) ∩ DL,MF(x, y)(BX ∩ cone L) ⊂ (− cone M) ∩ F
(1)
L,M(x, y). (5.8)

Indeed, pick an arbitrary v from the set on the left-hand side of (5.8). Find u ∈ BX ∩ cone L

such that v ∈ DL,MF(x, y)(u). Find sequences (tn) in (0,+∞) converging to 0, (un) in
u + cone L converging to u, and (vn) in v + cone M converging to v such that, for each
n ∈ N, we have y + tnvn ∈ F(x + tnun). Let N1 := {n ∈ N| ‖un‖ ≤ 1} and N2 := N \ N1.
Suppose that N1 is infinite. Then, for each n ∈ N1, we have tnun = tnu + tn(un − u) ∈
cone L + cone L ⊂ cone L, that is, x + tnun ∈ B[x, tn] ∩ [x + cone L] and thus (5.5)
holds. Using the subsequences (vn)n∈N1 and (tn)n∈N1 , we conclude that v ∈ F

(1)
L,M(x, y).

Second, suppose that N2 is infinite. Then ‖u‖ = 1. Let t ′n := tn‖un‖, u′
n := un/‖un‖, and

v′
n := vn/‖un‖ for each n ∈ N2. Then t ′n ↓ 0, u′

n → u, and v′
n → v as N2 � n → +∞.

For each n ∈ N2, we have t ′nu′
n = tnun and t ′nv′

n = tnvn. Similarly to the previous case, we
conclude that, for each n ∈ N2, we have x+t ′nu′

n ∈ B[x, t ′n]∩[x+cone L] which means that

y + t ′nv′
n = y + tnvn ∈ F(B[x, t ′n] ∩ [x + cone L]);

moreover

v′
n − v = 1

‖un‖ (vn − v) + ‖un‖ − 1

‖un‖ (−v) ∈ cone M + cone M ⊂ cone M .

Hence v ∈ F
(1)
L,M(x, y), which proves (5.8).

On the other hand, the equality in (5.8) holds provided that X is finite dimensional and
cone L−cone L ⊂ cone L, which means that cone L is a linear subspace. Indeed, pick any v

from the set on the right-hand side of (5.8). Find sequences (tn) in (0,+∞) converging to 0
and (vn) in v+cone M converging to v such that (5.5) holds for each n ∈ N. For each n ∈ N,
find xn ∈ B[x, tn]∩[x+cone L] such that y+tnvn ∈ F(xn), that is, for un := (xn−x)/tn we
have y+tnvn ∈ F(x+tnun). As (un) lies in BX ∩cone L, there is an infinite set N ∈ N such
that u := limN�n→+∞ un exists and lies in BX ∩ cone L. Since cone L − cone L ⊂ cone L,

the sequence (un) lies in u + cone L, hence v ∈ DL,MF(x, y)(u).

At the end of this section, we formulate results that use Theorem 25 in order to give
primal sufficient conditions for the directional metric regularity of compositions and sums.
Note that the next theorem is new even for the non-directional case. For the next results,
under the notation of Definition 24, we denote by DL,MF(x, y) ∩ BY ∩ cone M the
multifunction H : X ⇒ Y given by

H(u) = DL,MF(x, y)(u) ∩ BY ∩ cone M, u ∈ X.

Theorem 29 Let spaces X, Y , Z, and W , a point (x, y,z, w), sets L, M , N , and P , and
mappings F1, F2, G and EG,(F1,F2) be as in Theorem 16. Assume that there exist positive
constants β, �, and r such that, for every (x, y, z, w) ∈ (B[x, r] × B[y, r] × B[z, r] ×
B[w, r]) ∩ Gr EG,(F1,F2):

(i) the next relation holds

DM,N,P G(y, z, w)
(
(DL,MF1(x, y) ∩ BY ∩ cone M,

DL,NF2(x, z) ∩ BZ ∩ cone N)(BX ∩ cone L)
)

+B[0, β] ∩ (− cone P) ⊃ −(β + �)P ;
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(ii) either F1 is directionally proto-differentiable with respect to L × M at x relative to y

or F2 is directionally proto-differentiable with respect to L × N at x relative to z;
(iii) either F1 has the directional Aubin property with respect to SX and M around (x, y)

or F2 has the directional Aubin property with respect to SX and N around (x, z);
(iv) G is directionally proto-differentiable with respect to M × N × P at (y, z) relative

to w;
(v) G has the directional Aubin property with respect to SY ×SZ and P around (y, z, w);

(vi) the pair (F1, F2),G is composition-stable around (x, (y, z), w).

Then dirsurL×P (G ◦ (F1, F2))(x,w) ≥ �.

Proof We prove that, for every (x, y, z, w) ∈ (B[x, r] × B[y, r] × B[z, r] × B[w, r]) ∩
Gr EG,(F1,F2),

DL,M,N,PEG,(F1,F2)(x, y, z, w)((BX ∩ cone L) × (BY ∩ cone M) × (BZ ∩ cone N))

+ B[0, β] ∩ (− cone P) ⊃ −(β + �)P .

Fix any such (x, y, z, w). It suffices to show that

DM,N,P G(y, z,w)
(
(DL,MF1(x, y) ∩ BY ∩ cone M,DL,NF2(x, z)

∩BZ ∩ cone N)(BX ∩ cone L)) ⊂ DL,M,N,PEG,(F1,F2)(x, y, z, w)((BX ∩ cone L)

×(BY ∩ cone M) × (BZ ∩ cone N)). (5.9)

To show this, consider a ∈ BX ∩ cone L, b ∈ DL,MF1(x, y)(a) ∩ BY ∩ cone M, c ∈
DL,NF2(x, z)(a) ∩ BZ ∩ cone N, and d ∈ DM,N,P G(y, z, w)(b, c).

Suppose that F2 is directionally proto-differentiable with respect to L × N at x relative
to z, and has the directional Aubin property around (x, z) with respect to SX and N . Since
b ∈ DL,MF1(x, y)(a), there exist (tn) ↓ 0, (an) → a, (bn) → b, (an) ⊂ a + cone L,

(bn) ⊂ b + cone M, such that, for every n ∈ N, y + tnbn ∈ F1(x + tnan).
Now, since F2 is directionally proto-differentiable with respect to L × N at x relative

to z, for the sequence (tn) chosen before, and because c ∈ DL,NF2(x, z)(a), there exist
(a′

n) → a, (c′
n) → c, (a′

n) ⊂ a + cone L, (c′
n) ⊂ c + cone N such that, for every n ∈ N,

z + tnc
′
n ∈ F2(x + tna

′
n). The directional Aubin property of F2 around (x, z) with respect

to SX and N means that, for sufficiently large n ∈ N,

TN(z + tnc
′
n, F2(x + tnan)) ≤ eN(F2(x + tna

′
n) ∩ U, F2(x + tnan)) ≤ �tn

∥∥an − a′
n

∥∥ ,

where a constant � > 0 and a neighborhood U of z are appropriately chosen. Fix any such
n ∈ N for a longer while. Then, there is zn ∈ F2(x + tnan) such that z+ tnc

′
n ∈ zn − cone N

and
∥∥z + tnc

′
n − zn

∥∥ ≤ �tn
∥∥an − a′

n

∥∥ + t2
n . Denote

cn = zn − z

tn
, that is, z + tncn = zn.

Then
∥∥c′

n − cn

∥∥ ≤ �
∥∥an − a′

n

∥∥ + tn and cn = c′
n + (cn − c′

n) ∈ c + cone N + cone N =
c + cone N . Hence,

z + tncn ∈ F2(x + tnan), (cn) → c and (cn) ⊂ c + cone N .

The other three cases described by (ii) and (iii) lead, similarly, to a relation of the type

(y + tnbn, z + tncn) ∈ (F1, F2)(x + tnan),

(bn) → b, (bn) ⊂ b + cone M and (cn) → c, (cn) ⊂ c + cone N .
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Next, using that d ∈ DM,N,P G(y, z,w)(b, c) and the fact that G is directionally proto-
differentiable with respect to M × N × P at (y, z) relative to w, for the (tn) from before,
we find (b′′

n) → b, (c′′
n) → c, (d ′′

n ) → d, (b′′
n) ⊂ b + cone M, (c′′

n) ⊂ c + cone N,

(d ′′
n ) ⊂ d + cone P, such that, for every n ∈ N, w + tnd

′′
n ∈ G(y + tnb

′′
n, z + tnc

′′
n). The

directional Aubin property of G around (y, z, w) with respect to SY ×SZ and P means that,
for sufficiently large n ∈ N,

TP (w+tnd
′′
n , G(y+tnbn, z+tncn)) ≤ eP (G(y+tnb

′′
n, z+tnc

′′
n) ∩ V,G(y+tnbn, z+tncn))

≤ mtn max
{∥∥bn − b′′

n

∥∥ ,
∥∥cn − c′′

n

∥∥}
,

where a constant m > 0 and a neighborhood V of w are appropriately chosen. Fix any such
n ∈ N for a longer while. There exists wn ∈ G(y + tnbn, z + tncn) such that w + tnd

′′
n ∈

wn − cone P and
∥∥wn − w − tnd

′′
n

∥∥ ≤ mtn max
{∥∥bn − b′′

n

∥∥ ,
∥∥cn − c′′

n

∥∥} + t2
n . Denote

dn = wn − w

tn
, that is, w + tndn = wn.

Then
∥∥d ′′

n − dn

∥∥ ≤ m max
{∥∥bn − b′′

n

∥∥ ,
∥∥cn − c′′

n

∥∥} + tn and dn = d ′′
n + (dn − d ′′

n ) ∈
d+cone P +cone P = d+cone P . In conclusion, there exist (tn) ↓ 0, (an) → a, (bn) → b,

(cn) → c, (dn) → d, (an) ⊂ a + cone L, (bn) ⊂ b + cone M, (cn) ⊂ c + cone N,

(dn) ⊂ d + cone P, such that, for every n ∈ N,

w + tndn ∈ G(y + tnbn, z + tncn), y + tnbn ∈ F1(x + tnan), z + tncn ∈ F2(x + tnan).

Hence,

d ∈ DL,M,N,PEG,(F1,F2)(x, y, z, w)(a, b, c).

Since a ∈ BX ∩ cone L, b ∈ BY ∩ cone M, c ∈ BZ ∩ cone N , inclusion (5.9) is proved.
Using now Theorem 25, it follows that dirsurL×M×N×P EG,(F1,F2)(x, y, z, w) ≥ �.

Since the pair (F1, F2),G is composition-stable around (x, (y, z), w), we have as in the
final part of the proof of Theorem 16 that dirsurL×P (G ◦ (F1, F2))(x,w) ≥ �.

Remark 30 In fact, (5.9) is equality. Indeed, take a ∈ BX ∩ cone L, b ∈ BY ∩ cone M,

c ∈ BZ ∩ cone N and

d ∈ DL,M,N,PEG,(F1,F2)(x, y, z, w)(a, b, c).

Then there exist (tn) ↓ 0, (an) → a, (bn) → b, (cn) → c, (dn) → d, (an) ⊂ a + cone L,

(bn) ⊂ b + cone M, (cn) ⊂ c + cone N, (dn) ⊂ d + cone P, such that, for every n ∈ N,

w + tndn ∈ G(y + tnbn, z + tncn), y + tnbn ∈ F1(x + tnan), z + tncn ∈ F2(x + tnan).

This means that b ∈ DL,MF1(x, y)(a), c ∈ DL,NF2(x, z)(a) and d ∈
DM,N,P G(y, z,w)(b, c).

Note that in (iii) one can assume that the directional Aubin property holds with respect
to L and M and cone L − cone L ⊂ cone L. Also (v) can be modified similarly.

As a consequence of Theorem 29, we present the next result for the particular case of the
sum of two set-valued maps.
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Corollary 31 Let spaces X and Y , a point (x, y, z), sets L and M , and mappings F1, F2
and EF1,F2 be as in Corollary 19. Assume that there exist positive constants β, �, and r such
that, for every (x, y, z) ∈ (B[x, r] × B[y, r] × B[z, r]) ∩ Gr EF1,F2 :

(i) the next relation holds

(DL,MF1(x, y) ∩ BY ∩ cone M + DL,MF2(x, z) ∩ BY ∩ cone M)(BX ∩ cone L)

+B[0, β] ∩ (− cone M) ⊃ −(β + �)M;
(ii) either F1 is directionally proto-differentiable with respect to L × M at x relative to y

or F2 is directionally proto-differentiable with respect to L × M at x relative to z;
(iii) either F1 has the directional Aubin property with respect to SX and M around (x, y)

or F2 has the directional Aubin property with respect to SX and M around (x, z);
(vi) the pair F1, F2 is sum-stable around (x, y, z).

Then dirsurL×M(F1 + F2)(x, y + z) ≥ �.
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Appendix

In this section, we illustrate some other connections between our results and several well-
known tools in variational analysis. In this sense, we provide some different proofs for two
of the key results in this work.

On one hand, we present a direct and constructive proof for the general criterion for the
directional regularity of single-valued maps. This underlines again the fact that the use of
the Ekeland Variational Principle is an alternative for explicit iterative procedures. On the
other hand, we provide as well another proof for the result about the stability at composition
of the directional regularity. For this, we employ now, instead of Proposition 13, a variant
of the directional Ekeland Variational Principle, formulated on product spaces on the basis
of Lemma 12.

A.1 Proof of the Criterion for the Directional Regularity by an Iterative Procedure

Let us present next the announced constructive proof of the criterion for the directional
regularity of single-valued maps.

Proof (of Proposition 11 by Iterative Procedure) Let λ := dirsurL×Mg(x) and s be the
supremum from the statement. We only prove that s ≤ λ, since the opposite inequality is
straightforward, as shown in the proof given in Section 3.

Define a function ϕ : X × X → [0, +∞] by ϕ(u, v) = TL(u, v), (u, v) ∈ X × X, and a
function ψ : Y × Y → [0,+∞] by ψ(y, z) = TM(y, z), (y, z) ∈ Y × Y . Observe that the
convexity of cone L implies that

ϕ(u, v) ≤ ϕ(u,w) + ϕ(w, v), for all u, v, w ∈ X. (A.1)
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To show that s ≤ λ, fix an arbitrary c ∈ (0, s) (if there is any) for which there is r > 0 such
that for all (x, y) ∈ (B[x, r] ∩ Dom g) × B[g(x), r], with 0 �= g(x) − y ∈ cone M , there is
a point x′ ∈ Dom g such that

c ϕ(x, x′) < ψ(y, g(x)) − ψ(y, g(x′)). (A.2)

Make r > 0 smaller, if necessary, so that the set B[x, r] ∩ Dom g is complete and g is
continuous on this set. By the continuity of g, there is ε ∈ (0, r) such that

B[g(u), cε] ⊂ B[g(x), r] and B[u, ε] ⊂ B[x, r] whenever u ∈ B[x, ε] ∩ Dom g. (A.3)

Fix any t ∈ (0, ε) and any u ∈ B[x, ε] ∩ Dom g. Let � := B[u, t] ∩ (u+ cone L)∩ Dom g.
As L ⊂ SX is closed, so is cone L. Consequently, � is complete. We have to show that

g(�) ⊃ B[g(u), ct] ∩ (g(u) − cone M).

Consider any fixed y ∈ B[g(u), ct] ∩ (g(u) − cone M); we will find x ∈ � such that
y = g(x). If y = g(u), take x := u and we are done. Assume further that y �= g(u). We
will construct a sequence x1, x2, . . . in � satisfying

c ϕ(u, xm) ≤ ψ(y, g(u)) − ψ(y, g(xm)), m ∈ N. (A.4)

As ϕ(u, u) = 0 and g(u) − y ∈ cone M (thus ψ(y, g(u)) is finite), the point x1 := u

satisfies (A.4) with m = 1. Let n ∈ N and assume that xn ∈ � satisfying (A.4) with m = n

was already found. If g(xn) = y, then take x := xn, and stop the construction. Assume
further that g(xn) �= y. Then (A.4), with m := n, implies that ψ(y, g(xn)) is finite, meaning
that g(xn) − y ∈ cone M . Using (A.3) and (A.2), we find xn+1 ∈ Dom g such that

c ϕ(xn, xn+1) < ψ(y, g(xn)) − ψ(y, g(xn+1)) and that ϕ(xn, xn+1) ≥ 1
2 sn (A.5)

where

sn := sup
{
ϕ(xn, x

′) : x′ ∈ Dom g and c ϕ(xn, x
′) < ψ(y, g(xn)) − ψ(y, g(x′))

}
.

Note that 0 ≤ sn ≤ 1
c
ψ(y, g(xn)) < +∞. Using (A.1), the first inequality in (A.5), and

(A.4) with m := n, we get

c ϕ(u, xn+1) ≤ c ϕ(u, xn) + c ϕ(xn, xn+1) < ψ(y, g(u)) − ψ(y, g(xn+1)),

which is (A.4) with m := n + 1. In particular, we have c ϕ(u, xn+1) ≤ ψ(y, g(u)) =
‖y − g(u)‖ ≤ ct ; thus xn+1 ∈ u + cone L and ϕ(u, xn+1) = ‖u − xn+1‖. Consequently,
xn+1 ∈ �. If the process stops at some n ∈ N, we are done. Assume that this was not the
case, that is, g(xn) �= y for every n ∈ N. From (A.5) and (A.1) we have, for all 1 ≤ n < m,
that

0 ≤ c ϕ(xn, xm) ≤ c ϕ(xn, xn+1) + · · · + c ϕ(xm−1, xm)

< (ψ(y, g(xn))−ψ(y, g(xn+1)))+ · · · +(ψ(y, g(xm−1))−ψ(y, g(xm)))

= ψ(y, g(xn)) − ψ(y, g(xm)), (A.6)

and so, ψ(y, g(xn)) > ψ(y, g(xm)). Thus � := limn→+∞ ψ(y, g(xn)) exists and is finite.
By (A.6), for all 1 ≤ n < m, we have ϕ(xn, xm) < +∞, and hence ϕ(xn, xm) = ‖xn −
xm‖. Consequently, (xn) is a Cauchy sequence in � (which is a complete metric space).
Put x := limn→+∞ xn. Then x ∈ � and ψ(y, g(x)) ≤ � < +∞ because ψ(y, ·) is
lower semicontinuous and g is continuous. Moreover, for any n ∈ N, using the lower semi-
continuity of ϕ(xn, ·) and (A.6) we get that

c ϕ(xn, x) ≤ c lim inf
p→+∞ ϕ(xn, xn+p) ≤ ψ(y, g(xn)) − �.
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Consequently, limn→+∞ ϕ(xn, x) = 0. Suppose that y �= g(x). By (A.2), there is x′ ∈
Dom g such that

c ϕ(x, x′) < ψ(y, g(x)) − ψ(y, g(x′)) ≤ � − ψ(y, g(x′)). (A.7)

Then (A.1) implies that lim supn→+∞ ϕ(xn, x
′) ≤ limn→+∞ ϕ(xn, x) + ϕ(x, x′) =

ϕ(x, x′). This and (A.7) imply that, for each n ∈ N sufficiently large, we have

c ϕ(xn, x
′) < ψ(y, g(xn)) − ψ(y, g(x′)).

As x �= x′ by (A.7), we have ϕ(x, x′) > 0. The lower semicontinuity of ϕ(·, x′), the choice
of sn, and (A.5) yield that

0 < ϕ(x, x′) ≤ lim inf
n→+∞ ϕ(xn, x

′) ≤ lim sup
n→+∞

sn ≤ 2 lim
n→+∞ ϕ(xn, xn+1) = 0,

a contradiction. Therefore y = g(x). We proved that c ≤ λ, and thus s ≤ λ.

A.2 Proof of Directional Openness Stability at Composition by Directional EVP

As mentioned before, in the second part of this appendix, we discuss the possibility to give
an alternative proof of the main result of the paper, namely Theorem 16, by the use of the
next variant of the directional Ekeland Variational Principle.

Theorem 32 Let (X1, ‖ · ‖), . . . , (Xn, ‖ · ‖) be Banach spaces and A ⊂ X1 × ... × Xn be
a nonempty closed set. Consider nonempty closed sets Li ⊂ SXi

, i = 1, . . . , n such that
coneLi are convex. Then, for every lower semicontinuous bounded from below function
f : A → R ∪ {+∞}, every a0 := (x01, ..., x0n) ∈ A such that f (a0) < +∞, and every
δ, α1, ..., αn > 0, there exists aδ := (xδ1, ..., xδn) ∈ A such that

f (aδ) ≤ f (a0) − δ max{α1TL1(xδ1, x01), ..., αnTLn(xδn, x0n)}
and, for every a := (x1, ..., xn) ∈ A \ {aδ},

f (aδ) < f (a) + δ max{α1TL1(x1, xδ1), ..., αnTLn(xn, xδn)}.

Proof Take L̃ as in the Lemma 12 and observe that coneL̃ = cone L1 × ... × cone Ln is
convex. Apply Theorem 10 with X := X1 ×· · ·×Xn and M := L̃ to get the statement.

Now, we are ready to provide the announced proof of the main (and the essential) part of
Theorem 16.

Proof (of Theorem 16 by Directional EVP) Again, as in the proof of Theorem 16, we only
have to consider the case where the right-hand side of the inequality (4.2) is positive. We
find again positive constants α, β, β ′, γ , and δ such that c := αγ −βδ > 0, and inequalities
(4.4) and (4.5) hold. Moreover, keeping the notation of Theorem 16, there is ε > 0 such that
(4.6), (4.7) and (4.9) hold. Also, taking into account Proposition 3, we may suppose that for
any z ∈ B(z, ε), the mapping G−1

z is directionally Aubin continuous around (w, y) with
respect to P and −M with modulus γ −1, i.e.,

e−M

(
G−1

z (w) ∩ B(y, ε),G−1
z (w′)

)
≤ γ −1TP (w′, w) = γ −1T−P (w,w′), (A.8)

for any z ∈ B(z, ε), and any w,w′ ∈ B(w, ε).
Also, in view of the local closedness of the graphs of F1, F2 and G, we can consider

that Gr F1 ∩ (B [x, ε] × B [y, αε]), Gr F2 ∩ (B [x, ε] × B [z, βε]) and Gr G ∩ (B [y, αε] ×
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B [z, βε] × B [w, (αγ + βδ) ε]) are closed, for any (x, y, z, w) ∈ B(x, ε) × B(y, αε) ×
B(z, βε) × B (w, (αγ + βδ) ε) with y ∈ F1(x), z ∈ F2(x) and w ∈ G(y, z).

Take

ρ := min
{

3−1ε, (3α)−1ε, (3β)−1ε, (3αγ + 3βδ)−1ε
}

.

Fix t ∈ (0, ρ) and (x, y, z, w) ∈ B(x, ρ) × B(y, αρ) × B(z, βρ) × B (w, (αγ + βδ) ρ)

with y ∈ F1(x), z ∈ F2(x) and w ∈ G(y, z). We want to prove that

B(w, ct) ∩ [w − cone P ] ⊂ EG,(F1,F2)

(
BX×Y×Z((x, y, z), t) ∩ ((x, y, z) + cone L̃)

)
,

where the norm on X × Y × Z and L̃ ⊂ SX×Y×Z are as in the proof of Theorem 16.
Denote

A := B(x, 2ρ) × B(y, 2αρ) × B(z, 2βρ) × B(w, 2 (αγ + βδ) ρ),

A := B [x, 2ρ] × B [y, 2αρ] × B [z, 2βρ] × B [w, 2 (αγ + βδ) ρ] ,

� := {
(x′, y′, z′, w′) ∈ X × Y × Z × W | (y′, z′) ∈ (F1, F2)(x

′) and w′ ∈ G(y′, z′)
}

.

Take an arbitrary v ∈ w−[0, ct)·P . We must prove that v ∈ EG,(F1,F2)((x, y, z)+[0, t)·L̃).
We can find τ ∈ (0, 1) such that ‖v − w‖ < τct . Remark that � ∩ A is closed (since

2ρ < ε). Define

h : � ∩ A → [0,+∞], h(p, q, r, s) := TP (v, s) = T−P (s, v),

and observe that it is lower semicontinuous and bounded from below. Thus, we can apply
Theorem 32, for τc > 0 instead of δ, and a0 = (x, y, z, w) and −L, M,−N, and SW as
sets in X, Y , Z and W , respectively, to find (̃a, b̃, c̃, d̃) ∈ � ∩ A satisfying

TP (v, d̃) ≤ TP (v,w) − τc max{T−L(̃a, x), α−1TM(̃b, y), β−1T−N (̃c, z),

(αγ + βδ)−1
∥∥d̃ − w

∥∥}
TP (v, d̃) ≤ TP (v, s) + τc max{T−L(p, ã), α−1TM(q, b̃), β−1T−N(r, c̃),

(αγ + βδ)−1
∥∥s − d̃

∥∥},
for every (p, q, r, s) ∈ � ∩ A. As an immediate consequence, b̃ ∈ F1(̃a), c̃ ∈ F2(̃a),
d̃ ∈ G(̃b, c̃), and

max{T−L(̃a, x), α−1TM(̃b, y), β−1T−N (̃c, z), (αγ + βδ)−1
∥∥d̃ − w

∥∥} < ∞,

which implies the following:

ã ∈ x + cone L, b̃ ∈ y − cone M, c̃ ∈ z + cone N,

T−L(̃a, x) = ‖̃a − x‖ , TM (̃b, y) = ∥∥b̃ − y
∥∥ , T−N (̃c, z) = ‖̃c − z‖ .

Moreover, since v ∈ w − cone P, we also have

τc max{T−L(̃a, x), α−1TM(̃b, y), β−1T−N (̃c, z), (αγ + βδ)−1
∥∥d̃ − w

∥∥}
≤ TP (v, w) = ‖v − w‖ < τct,

so

ã ∈ B(x, t) ∩ (x + cone L) = x + [0, t) · L ⊂ B(x, t) ⊂ B(x, ρ),

b̃ ∈ B(y, αt) ∩ (y − cone M) = y − [0, αt) · M ⊂ B(y, αt) ⊂ B(y, αρ),

c̃ ∈ B(z, βt) ∩ (z + cone N) = z + [0, βt) · N ⊂ B(z, βt) ⊂ B(z, βρ),

d̃ ∈ B(w, (αγ + βδ)t) ⊂ B(w, (αγ + βδ)ρ).
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Hence, (̃a, b̃, c̃, d̃) ∈ A. Now, if v = d̃, then

v ∈ EG,(F1,F2)(̃a, b̃, c̃) ⊂ EG,(F1,F2)(x + [0, t) · L, y − [0, αt) · M, z + [0, βt) · N)

= EG,(F1,F2)((x, y, z) + [0, t) · L̃),

which is exactly what we need. We will prove that v = d̃ is the only possibility.
Assume, on the contrary, that v �= d̃ . Remark that TP (v, d̃) ≤ TP (v,w) < ∞, which

means that v − d̃ ∈ −cone P . Then

v′ := v − d̃∥∥v − d̃
∥∥ ∈ −P,

since its norm equals 1 and it belongs to −cone P . Fix σ ∈ (0, αγ ) such that

c − σ > τc, (A.9)

and choose ζ ∈ (
0, min

{
3−1ρ, (αγ − σ)−1

∥∥v − d̃
∥∥})

.
We have that

‖̃a − x‖ ≤ ‖̃a − x‖ + ‖x − x‖ < ρ + ρ < ε,∥∥b̃ − y
∥∥ ≤ ∥∥b̃ − y

∥∥ + ‖y − y‖ < αρ + αρ < ε,

‖̃c − z‖ ≤ ‖̃c − z‖ + ‖z − z‖ < βρ + βρ < ε,∥∥d̃ − w
∥∥ ≤ ∥∥d̃ − w

∥∥ + ‖w − w‖ < (αγ + βδ)ρ + (αγ + βδ)ρ < ε,∥∥d̃ + (αγ − σ)ζv′ − w
∥∥ ≤ ∥∥d̃ − w

∥∥ + ‖w − w‖ + (αγ − σ)ζ < (αγ + βδ)ρ

+(αγ + βδ)ρ + 3−1ε < ε,

hence by (A.8),

T−M(̃b,G−1
c̃ (d̃ + (αγ − σ)ζv′)) ≤ e−M

(
G−1

c̃ (d̃) ∩ B(y, ε),G−1
c̃ (d̃ + (αγ − σ)ζv′)

)

≤ γ −1T−P (d̃, d̃ + (αγ − σ)ζv′) = γ −1(αγ − σ)ζ

< γ −1(αγ − 2−1σ)ζ,

hence there exists m ∈ cone M with ‖m‖ < 1 such that b̃ − γ −1(αγ − 2−1σ)ζm ∈
G−1

c̃ (d̃ + (αγ − σ)ζv′) or, equivalently,

d̃ + (αγ − σ)ζv′ ∈ G(̃b − γ −1(αγ − 2−1σ)ζm, c̃).

Now, since ζ < ε and b̃ − γ −1(αγ − 2−1σ)ζm ∈ b̃ − [0, αζ ) · M, it follows using (4.6)
that

b̃ − γ −1(αγ − 2−1σ)ζm ∈ b̃ − [0, αζ ) · M ⊂ F1(̃a + [0, ζ ) · L),

hence there exists � ∈ cone L with ‖�‖ < 1 such that b̃−γ −1(αγ −2−1σ)ζm ∈ F1(̃a+ζ�).
But we have

‖̃a + ζ� − x‖ < ‖̃a − x‖ + ‖x − x‖ + ζ < ρ + ρ + ρ ≤ ε,

and since c̃ ∈ B(z, ε), we can apply the directional Aubin property of F2 (4.8) to find that

TN (̃c, F2(̃a + ζ�)) ≤ eN(F2(̃a) ∩ B(z, ε), F2(̃a + ζ�)) ≤ βTL(̃a, ã + ζ�) = βζ ‖�‖ < βζ .

It follows that we can find n ∈ cone N with ‖n‖ < 1 such that c̃ + βζn ∈ F2(̃a + ζ�).
Finally, since∥∥∥b̃ − γ −1(αγ − 2−1σ)ζm − y

∥∥∥ <
∥∥b̃ − y

∥∥ + ‖y − y‖ + αζ < αρ + αρ + αρ ≤ ε,

‖̃c + βζn − z‖ < ‖̃c − z‖ + ‖z − z‖ + βζ < βρ + βρ + βρ ≤ ε,
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we can use the directional Aubin property of G with respect to z (4.9) to get that

TP (d̃ + (αγ − σ)ζv′, Gb̃−γ −1(αγ−2−1σ)ζm(̃c + βζn))

≤ eP (Gb̃−γ −1(αγ−2−1σ)ζm(̃c) ∩ B(w, ε),Gb̃−γ −1(αγ−2−1σ)ζm(̃c + βζn))

≤ δTN (̃c, c̃ + βζn) = βδζ ‖n‖ < βδζ,

hence there exists p ∈ cone P with ‖p‖ < 1 such that

d̃ + (αγ − σ)ζv′ + βδζp ∈ G(̃b − γ −1(αγ − 2−1σ)ζm, c̃ + βζn).

Observe that
∥∥d̃ + (αγ − σ)ζv′ + βδζp − w

∥∥ <
∥∥d̃ − w

∥∥ + ‖w − w‖ + (αγ − σ + βδ)ζ

< (αγ + βδ)ρ + (αγ + βδ)ρ + (αγ + βδ)ρ < ε,

hence(̃
a + ζ�, b̃ − γ −1(αγ − 2−1σ)ζm, c̃ + βζn, d̃ + (αγ − σ)ζv′ + βδζp

)
∈ � ∩ A,

and we can use the second relation in the Ekeland variational principle to find that
∥∥v − d̃

∥∥ ≤ TP (v, d̃ + (αγ − σ)ζv′ + βδζp)

+ τc max

{
T−L(̃a + ζ�, ã), α−1TM(̃b − γ −1(αγ − 2−1σ)ζm, b̃),

β−1T−N (̃c + βζn, c̃), (αγ + βδ)−1
∥∥(αγ − σ)ζv′ + βδζp

∥∥
}

.

Remark that

d̃ + (αγ − σ)ζv′ + βδζp = v + (d̃ − v) − (αγ − σ)ζ
d̃ − v∥∥v − d̃

∥∥ + βδζp

= v +
(

1 − ζ
αγ − σ∥∥v − d̃

∥∥
)

(d̃ − v) + βδζp

∈ v + cone P + cone P = v + cone P .

Then the previous relation becomes

∥∥v − d̃
∥∥ ≤

∥∥∥∥∥v −
[
v +

(
1 − ζ

αγ − σ∥∥v − d̃
∥∥
)

(d̃ − v) + βδζp

]∥∥∥∥∥
+τc max{ζ ‖�‖ , α−1γ −1(αγ − 2−1σ)ζ ‖m‖ , β−1βζ ‖n‖ ,

(αγ + βδ)−1ζ
∥∥(αγ − σ)v′ + βδp

∥∥}

≤
∥∥∥∥∥
(

1 − ζ
αγ − σ∥∥v − d̃

∥∥
)

(d̃ − v)

∥∥∥∥∥ + βδζ + τcζ

= ∥∥v − d̃
∥∥ − ζ (αγ − σ) + βδζ + τcζ .

Using this and (A.9), we get

τcζ ≥ ζ (αγ − βδ − σ) = ζ(c − σ) > ζτc,

a contradiction. This finishes the proof. �
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Taking into account that the proof of the directional EVP is based on an iterative
procedure, we can summarize the implications between the assertions in this work as
follows:

directional EVP ⇒
criterion for directional

regularity of
single-valued maps

⇒
criterion for directional

regularity of
set-valued maps

⇒ directional regularity
of compositions

⇑ ⇑
iterative procedure ⇒ directional EVP.
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