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Abstract

We consider nonsmooth optimization problems whose objective function is defined by the
Difference of Convex (DC) functions. With the aim of computing critical points that are also
d(irectional)-stationary for such a class of nonconvex programs we propose an algorithmic
scheme equipped with an inertial-force procedure. In contrast to the classical DC algo-
rithm of P. D. Tao and L. T. H. An, the proposed inertial DC algorithm defines trial points
whose sequence of functional values is not necessary monotonically decreasing, a property
that proves useful to prevent the algorithm from converging to a critical point that is not
d-stationary. Moreover, our method can handle inexactness in the solution of convex sub-
problems yielding trial points. This is another property of practical interest that substantially
reduces the computational burden to compute d-stationary/critical points of DC programs.
Convergence analysis of the proposed algorithm yields global convergence to critical points,
and convergence rate is established for the considered class of problems. Numerical exper-
iments on large-scale (nonconvex and nonsmooth) image denoising models show that the
proposed algorithm outperforms the classic one in this particular application, specifically in
the case of piecewise constant images with neat edges such as QR codes.
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1 Introduction

In this work we consider nonconvex nonsmooth optimization problems of the form

min f(x), with - f(x) := fi(x) — fa(x), M
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where f1, f> : R" — R U {+o0} are convex and possibly nonsmooth functions. Problems
of this type are known in the literature as DC programs, with “DC” standing for difference
of convex functions, [19]. We assume throughout this manuscript that f; is a closed function
and that Dom(f1) C Q C Dom(f>), where 2 is an open and convex set in R”. This
assumption allows us to encompass convex constrained DC programs in formulation (1).
Indeed, notice that the first component function f} can be, for example, the sum of a convex
function ¢ : R" — R with the indicator function iy of a convex set X C €, i.e., f1(x) =
@) +ix(x)withiy(x) =0if x € X and iy (x) = 400 otherwise.

DC programming forms an important sub-field of nonconvex programming and has been
receiving much attention from the mathematical programming community, [16, 17, 19, 23,
26, 35, 39, 41].

More general DC programs with DC constraints are investigated in [27, 32, 36-38,
42]. Some applications include production-transportation planning problems [21], location
planning problems [41, Chapter 5], physical layer based security in a digital communication
systems [32], chance-constrained problems [11], cluster analysis [5, 24], engineering design
problems [13, 41], energy management problems [42] and others. We refer to [41, Part
II] for a comprehensive presentation of several algorithms designed for DC optimization
problems. Solving globally nonsmooth programs as (1) is a challenging task, especially in
the large-scale setting. We will, therefore, deal with this class of problems by employing
local-solution approaches.

A well-known method for dealing with the optimization problem (1) is the DC Algorithm
— DCA - of [39] (see also [4, 26, 40]). The classical DCA handles problem (1) by defining
a sequence of trial points according to the following rule, for a given starting point x°

Dom( f1):
forallk =0,1,2,..., compute g’2‘ € 8f2(xk) and x*! ¢ arg mliRn filx) — (glz‘, x), (2)
xeR"
where 0 f> (x¥) is the subdifferential of the convex function /> at point x* (see definition in

Section 2 below). It can be shown [39, Theorem 3] that every cluster point x (if any) of the
sequence {x¥} generated by rule (2) is a critical point of problem (1), i.e., ¥ satisfies

afi(xX) Nafa(x) #4. (3)
It follows from convexity of the component functions f; and f> that rule (2) yields a
monotone sequence of function values, i.e., f(xk“) < f(xk) forall k = 0,1, ... (see

[39, Theorem 3(i)] for more details). While monotonicity might be seen as a quality of
the method, demanding monotonically decreasing function values might not be an ideal
scheme in nonconvex optimization: depending on starting points, iterates are attracted by
poor-quality critical points that prevent the (monotone) algorithm from computing a critical
point of better quality. In the context of DC programming, we mean by a “critical point of
better quality” a critical point X that is d(irectional)-stationary, i.e., X satisfies

af2(x) C af1(x). “

As shownin [19, 32], d-stationarity is the sharpest stationary definition for nonconvex prob-
lems of type (1); see also additional comments in Section 2. It is clear from its definition that
computing d-stationary points for (1) is not a trivial task in general. Few exceptions are the
situations in which either f; or f; are differentiable, [14, Section 2], and the case when f; is
the pointwise maximum of finitely many convex and differentiable functions. The latter case
is investigated in [32], where the authors propose a proximal linearized method that solves
several convex programs per iteration, and thus has a high computational burden. A less
computational demanding method is a variant of the proximal bundle algorithm proposed in
[11], but may require solving many quadratic programs per iteration; see [11, Algorithm 2].
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In this work, we are concerned with algorithms of low computational costs to compute
critical points. Moreover, we do not assume that f; is the pointwise maximum of finitely
many convex and differentiable functions. In order to try to transpose critical points that
are not d-stationary, we furnish the DCA algorithm represented by rule (2) with an inertial
scheme that can be seen as a version of the heavy-ball method of Polyak [33].

In a differentiable and convex framework, the heavy-ball method is a two-step gradi-
ent algorithm that can be interpreted as an explicit finite differences discretization of the
so-called heavy-ball with friction dynamical system [31]. In summary, the algorithm incor-
porates an inertial force in the iterative process of gradient methods by appending to the
negative-gradient direction the inertial term y (x¥ — x¥~1), where y > 0 is a given param-
eter. The heavy-ball method has been generalized in several manners: the authors of [44]
consider differentiable but nonconvex optimization problems, and in [2, 3, 29] the heavy-
ball method was extended to handle maximal monotone operators. The paper [31] deals with
nonsmooth nonconvex optimization problems of the form minycrr f1(x) + £(x), where f;
is as above and & : R” — R is a smooth nonconvex function with Lipschitz continuous gra-
dient. The authors of [31] assume f; + & to be coercive and propose a linearized proximal
method with inertial force to compute stationary points.

In the DC context, £ = — f; is a concave function. However, in this work we do not
assume that either f, is smooth nor f = f; — f> is coercive. Our proposal follows the
general lines of the DCA and replaces the subgradient glg of the second component function
f> in rule (2) by g& + y(xk — x¥=1), with y > 0. This leads to the following iterative
scheme, for a given point x* € Dom( fi):

for all k=0, 1,...,compute g5 € 3f>(x*)andx* ! e arg m]iél fix) —(gh+y(F —x*1) x).
xeR"?
)]

As we will see in Section 4, the sequence of function values issued by the above scheme is
not necessarily monotone due to the inertia imposed by the term y (x¥ — x¥=1). As already
said, this property can be beneficial for the quest of computing critical points that are also
d-stationary for (1). Nevertheless, it is not assured that our Inertial DC Algorithm — InDCA
— illustrated by rule (5) will always compute d-stationary points, but critical ones. Numer-
ical experiments reported in Section 6 below show that InNDCA is more robust than DCA,
meaning that for the same starting points InNDCA computes very often better critical points
than DCA does.
As for (2), rule (5) is not practical when solving the resulting convex subproblem

min f1(x) - (g +yk —x* N x) ©6)

is too time consuming. For this reason, the given algorithm only demands x**! to be an inex-
act solution with a vanishing approximation error, an idea already explored in [35, 38, 42] by
employing different techniques. This is a second property of practical interest of our algo-
rithm as it substantially reduces the computational burden to compute a d-stationary/critical
point of DC programs.

The remainder of this work is organized as follows: Section 2 provides some notation
and preliminary results that will be employed throughout the text. In addition, the section
contains two examples illustrating the benefits of incorporating an inertial force to the DC
algorithm. Section 3 presents our inertial DC algorithmic pattern as well as some practi-
cal issues concerning the implementation of some of its variants. Convergence analysis and
convergence rate are considered in Section 4, and the application of interest is discussed in
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Section 5: nonconvex image denoising models. Section 6 reports some preliminary numer-
ical results comparing InDCA against DCA and the nonconvex algorithm iPiano of [31].
Finally, Section 7 closes the paper with some concluding remarks.

2 Notation, Main Definitions and lllustrative Examples

For any points x, y € R", (x, y) stands for the Euclidean inner product, and || - || for the
associated norm, i.e., |x|| = +/{x, x). For a set X C R", we denote by iy its indicator

function, i.e., ix (x) = 0ifx € X andix(x) = +oo otherwise. For a convex set X its normal
cone at the point x is denoted by Nx(x), whichis the set {y : (y,z —x) < 0Vz e X} if
x € X and the empty set otherwise.

As convex functions are directionally differentiable in the interior of their domains [34,
Theorems 23.1 and 23.4 ], the limit

b Jiletd) — fi(x)
fi(x,d).—ltlﬁ)l ;

for f;,i = 1,2, is well defined for all x in the interior of Dom( f;) and all d € R”. It is well
known that f/(x; d) = maxgeyy, (x) (g, d), where

i) ={geR": fi(y) = i)+ (g, y—x) VyeR"}
is the subdiferential of f; at point x. For € > 0 the e-subdiferential is denoted by
defikx) :={geR": fi(y) = fil)+ (g, y—x)—€ VyeR"}.

Since DC functions are also locally Lipschitz continuous (because their components f;
are so0), their directional derivatives are well defined for all x in the interior of Dom(f;),
i=1,2

fxd)= fllxed) — fr(x;d).

A point x € R” is a d(irectional)-stationary point of problem (1) iff/()f; x—x)=>0
for all x € R”, which can be shown to be equivalent to the inclusion (4), [19]. Notice that
verifying (4) computationally is impractical in many cases of interest. Hence, one generally
employs a weaker notion of stationarity: a point x € R” is called a critical point of problem
(1) if x satisfies (3). In summary, all local minimizers of problem (1) are d-stationary points,
which in turn are critical points of (1). The reverse implications are, in general, not true as
illustrated in [32, Example 2] (see also Example 1 below).

Throughout this work we assume the following condition, which is a mild hypothesis in
the DC setting:

Assumption Al. Function f> is strongly convex on Q2 with a known parameter p > 0, that
is, for every g2 € df>2(x) one has

f2(0) = falx) + (g2, y — x) + glly —x|?, Vx,yeQ. )

We care to mention that A1, also present in [42], is not a restrictive assumption at all. In
fact, if A1 does not hold for a certain DC function f = ¢ — v we can obtain another DC
decomposition of f satisfying Al by adding an arbitrary strongly convex function w : Q& —
R to the component functions: note that f = fi; — f> with fi = ¢ + wand fo = ¥ + .
Since one can always take w(-) = || - %, then p can be assumed known in Al without loss
of generality (just take p = 2 in this case).
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An Inertial Algorithm for DC Programming 899

Under A1 and the hypothesis that the inertial parameter y in (5) satisfies 0 < y < p/2
we illustrate the behavior of the sequences generated by rules (2) and (5) in the following
two examples.

Example 1 (Transposing critical points that are not d-stationary.) Consider the bi-
dimensional DC function f(x) = fi(x) — f2(x), with fi(x) = lIx)I? and fHx) =
max(—xp, 0) + max(—xp, 0) + 0.5||x||2. Its curve is plotted in Fig. 1, as well as the behav-
ior of some sequences of points generated by defining the next iterate x**! as in (2) (DCA,
Fig. 1b) and sequences generated by the new rule (5) (InDCA, Fig. 1c) with inertial factor
y = 0.49, which was chosen to be less than p/2 = 0.5.

For the four different starting points, DCA determined four different critical points, all
presented in Table 1. However, the global solution ¥ = (—1, —1) T is the only d-stationary
point of the problem of minimizing f over R2.

While the critical points computed by the classical DC algorithm depend strongly on
the starting points, the inertial DC algorithm is able (in this example) to compute the d-
stationary point (in this case a global solution) regardless the initial point. This is thanks to
the inertial factor y (x¥ — x*¥~1) that prevents the iterative process from stopping at critical
points that are not d-stationary. In some situations it is also possible to overcome local
solutions, as illustrated by the following example.

Example 2 (Trasposing local minimizers: a two-variable nonconvex 1D denoising model.)
We consider the following nonconvex denoising optimization problem for 1D signals:

n—1
min = b + ;¢<|x,»+1 —xil).
The concave function ¢ (r) := log(1 + 2r)/2 is employed to induce sparsity of the one-
lag-difference of the reconstructed signal x: one wishes to reconstruct piecewise constant
signals. As it will be shown later (see Proposition 2) the above nonconvex objective is indeed
a DC function f = f| — f2, with possible DC components given by f(x) := %Hx — b+
SUS) ien = x|+ x]? and fo00) = 200 B =l = 205 @i — i) + [lx)?
(hence the parameter of strongly convexity of f> is o > 2). In order to analyze the iter-
ative process yielded by rules (2) and (5) applied to this problem, we consider dimension
n = 2 and parameters © = 0.6, b = (0.1, 3)T. Notice that differently from Example 1,
subproblems (2) and (5) do not have explicit solutions. We therefore compute iterates by

(a) DC function (b) DCA (c) InDCA with v = 0.49

Fig.1 Iterative process and level curves of function f(x) = f1(x) — f2(x), with fi(x) = ||x||2 and f>(x) =

max(—xi, 0) + max(—xp, 0) + 0.5]|x Hz. Comparison between the classical DCA and the proposed inertial
DC algorithm
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Table 1 Critical points of

function x fx) Qi) af2(¥)

f@) = llx]|* = [max(—x1,0) +

max(—xa, 0) + 0.5]x?] (-1,-nDT -1 (-2,-97  (=2,-27

determined by rule (2) ©, -7 —-05 (©,-2)7 (s, =2)T withs € [—1, 0]
(-1,007 —05 (=2,00T (=2,5)7 withs € [-1, 0]
0,007 0 0,07 (s1,52) T with sy, s € [—1,0]

solving these subproblems numerically up to a given tolerance. The iterative processes with
five different initial points are presented in Fig. 2, with 0 < y < p/2. In three of the
five initial points, sequences generated by DCA could not converge to the global minimum
X = (0.3970, 2.7030) T, but to the critical point (31/20, 31/20)—r that is a local solution
(thus a d-stationary point) of the problem. Instead, rule (5) was more successful due to iner-
tial factor y: for y = 0.7, only one sequence converged to the critical point that is not the
global minimum. Yet, for y = 0.9 all five sequences converged to the global solution.

Example 2 suggests to consider a larger factor of inertia y > 0. However, our analysis
given in Section 3 shows that y cannot be arbitrarily large: the inertial parameter can vary
along the interval [0, p/2), where p > 0 is the constant of strongly convexity of the second
component function f>.

3 An Inertial DC Algorithmic Pattern

In this section, we formalize our inertial DC algorithm (InDCA) represented by rule (5).
We care to mention that if subproblem (6) is difficult to solve (e.g. when f is assessed via
simulation, optimization, numerical multidimensional integration etc.) then defining trial
points by rule (5) (as well as (2)) can be too time consuming. To overcome this difficulty we
follow the lead of [35, 38] and allow trial points to be inexact solutions of subproblem (6). In
[38] trial points are defined as €¥*!-solutions of the convex subproblems, where €¥*! — 0.
This idea is also explored in the context of linearized proximal methods in [35].

Differently from [35, 38] we define the trial point x¥*! in such a manner that the e**1-
subdifferential of f] at x**1 intersects the set d > o + y(xk — xk=1y:

et L T Nafa(ch) +y(F =1 £ 0.

(b) InDCA v =0.7 (¢) InDCA v=0.9

Fig.2 Tterative process and level curves of function f (x) = %llx — b||2—|—X:l'-’;1 ¢ (|xir1—x;]), with u = 0.6,
b= (0.1, 3)T and ¢ (r) = log(1 + 2r)/2. Global solution is ¥ = (0.3970, 2.7030) " and the optimal value
is f(x) &~ 0.91538. The set of critical points of f that does not contain the global solution is C = {(r, r) :

max{by, by} — 1/u <r <min{by, by} + 1/u},ie, C = {(r,r) : 1.333 <r < 1.7667}
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An Inertial Algorithm for DC Programming 901

The motivation for such a strategy lies in the fact that if the sequence {x¥} converges to a
point % and {€X} vanishes, then the above condition eventually implies criticality (3) of x.
In fact, as it will be shown in Section 4, convergence of the whole sequence {xk} is not
required: any cluster point of {x*} can be shown to be a critical point of (1). Furthermore,
the inexactness €“*! involved in the iterative process is automatically controlled by our
algorithm in such a manner that errors vanish as the iterative process progresses. The InNDCA
is presented in the following algorithmic pattern.

Algorithm 1 Inertial DC algorithmic pattern

1: Let x° € Dom(f1), Tol > 0,1 € [0, 1) and y € [0, (1 — A)p/2) be given. Set x ! = x°
2: fork=0,1,2,... do

3: Set d* = y(x* — x*~1) and find x**! € R” such that
dort AT Naf (") +d* #£9 with 0=l < Agux“‘ — 2k ®)
4:  if |xF! — x*|| < Tol and ||d*|| < Tol then
5: Stop and return (xk,f(xk))
6 end if
7: end for

The following is an alternative to condition (8) that is suitable when the first component
function fi is smooth: compute x**! € R” such that

gt = (85 + a1 = A5 I = k| for some g}t € 7 () and gf € ().
©)
The Algorithmic pattern 1 boils down to specific optimization algorithms upon the choice
of its parameters. We start by addressing some particular cases issued by the choice A = 0.
The choice A > 0 means that subproblem (5) can be inexactly solved. Practical details on
how to implement (8) and (9) for A > 0 are given in Section 3.2.

3.1 Some Specific Settings for the Algorithmic Pattern withA = 0
3.1.1 The DC Algorithm with/without Inertial Force

Consider the Algorithmic pattern 1 with A = y = 0. With this choice of parameters
condition (8) is equivalent to (9), which reads as

0 T Naf(") #0.
Such condition is ensured, for instance, if glz‘ € dfz (x*) and x solves miny,ecgrn f1(x) —
(g’z‘, x), the subproblem of the classic DC algorithm of [39]: optimality of x**! implies
g5 € 3fi(x**1), and therefore glzc € 3fi (kY N af(xb).
If . = 0 but y > 0 then either (8) or (9) is equivalent to define xkl by solving (6): its
optimality condition is g’2‘ + y(xk — x*) € 3f; (x*¥*1). We use this property in the sequel.

k+1

3.1.2 The Linearized Proximal Method with/without Inertial Force
Consider A = 0 in the Algorithmic pattern 1. Suppose that w : R” — R is a strongly

convex and continuously differentiable function, and that fi(x) = ¢(x)+w(x) and fo(x) =
Y(x) + w(x), i.e.,, w is a regularizing function. Under this assumption, g’z‘ € afz(xk) is
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902 W. de Oliveira and M. P. Tcheou

given by g’z‘ = gf;j + Va(x*), with g@ € 9y (xh). Accordingly, subproblem (6) (yielding
(8) when A = 0) becomes

min ¢(x) + w(x) — (gfb + Va)(xk) + y(xk — xkil),x).
xeR”?

By adding the constant term —w(xk) + (g@ + Vo (x5 + y(xk — x*=1), x%) to the above
subproblem we get

min ¢(x) + 0 () = (") = (g, + Vo) +y(* —x7hH, x —xf)

xeR"

= min p(x) — (g, +y (" —x* N, x —x*) + D(x, x5, (10)
xeR”

with D(x, x*) := o (x) — 0(x*) — (Vo (x¥), x — x¥) the Bregman function induced by w.
Hence, Algorithm 1 becomes an Inertial Linearized Proximal Method for DC programming,
a new variant of proximal methods.

In particular, suppose that w(x) = §||x||2. Then the solution of subproblem (10) also

solves
2

min p(x) — (g5, x) + 2 |x - [xuf(xk—xk”)] (i
xeR" 2 1%

We care to mention that depending on the structure of ¢, subproblem (11) can be efficiently
solved by specialized algorithms. This is the case of nonconvex image denoising models,
the application considered in Sections 5 and 6.

If one chooses y = 0, then Algorithm 1 satisfying (8) with A = 0 by solving (11) is just
the linearized proximal method applied to problem (1) [32, 35]. On the other hand, if y > 0
then Algorithm 1 can be seen as an extension of the iPiano algorithm of [31] to deal with
nonsmooth DC programs (the original algorithm of [31] requires the nonconvex function -
¥ to be differentiable and its gradient to be Lipschitz continuous, an assumption that is not
required here).

3.1.3 Convex Setting: Proximal Method and Proximal Subgradient Splitting Method

Once again, suppose that f in (1) is given by f1(x) = @(x) + §||x||2 and fr(x) = ¥ (x) +
§||x||2. As seen above, subproblem (6) becomes (11). Furthermore, suppose that ¥ is not
convex but a concave function. Then Algorithm 1 satisfying (8) with A = 0 by solving (11)
becomes a proximal subgradient splitting method [7] applied to the (now convex) problem
minycgrr @(x) — ¥ (x). Differently from the proximal subgradient splitting methods found
in the literature employing (11) with y = 0, the one resulting from Algorithm 1 (under the
above assumptions) is of the inertial type because it allows y # 0. Besides, if ¥ := 0 then
subproblem (11) yields an inertial iteration of a proximal method applied to (1), which is (in
this particular case) simply min,crr ¢(x).

3.2 Some Specific Settings for the Algorithmic Pattern with A > 0

We start by showing that if A > 0, then Algorithm 1 relates to the local-search method
of [38].

3.2.1 AlLocal-search Like Method with/without Inertial Force
Note that (8) implies the following inclusion, where glz‘ is a subgradient of f; at point x¥,

&+ yf =2y € g frxF .

@ Springer



An Inertial Algorithm for DC Programming 903

The definition of the K*!-subdifferential Ok+1 f1 (x**+1) provides the inequality
fi) = i + (g5 +y o = x T x =) = forall x e R,
which in turn gives

A= (gh+y (F=x*1, x) = 1 FTH —(gh+y (K =2, AT~k for all x € R”.

k+1 k

In particular, x is an e¥*!-solution of (6). This procedure is akin to the local-search
method of [38], but with the following differences: in [38] y = 0 and the error e+ must
be chosen to form a summable series. We care to mention that the local-search of [38] is
general enough to handle DC constraints, which is not the case of Algorithm 1. An extension
of our algorithm to handle DC constraints is left for future investigation.

3.2.2 Bundle Like Algorithm with/without Inertial Force

Suppose that w : R" — R, is a strongly convex and continuously differentiable function,
filx) = o(x) +ix(x) + w(x), fo(x) = ¥(x) + w(x) and X is a convex set. In order to
compute a point x**! satisfying (8) we consider subproblem (6), which reads as

min ¢(x) + o (x) - (gh +yF —x* N, (12)

and an “inner” iterative process v = 0, 1, 2, ... generating a sequence of iterates {z”} whose
clusters points solve (12). Instead of defining x**! as one of the cluster points of {z"},
we break the inner iterative process and define x**! := z"*1 as soon as z"*! is an €"*1-
solution of (12), with €”*! satisfying the right-side of (8). To this end, we replace the convex
function ¢ in (12) with a cutting-plane model ¢" defined by

@ (x) ::mfx{w(zf)ﬂg;;,x—z/)} with g/ € dp(z/), j=0,1,....v. (13
J=V

Convexity of ¢ ensures that ¢” approximates ¢ from below: ¢¥(x) < ¢(x) for all x. These
are the main ingredients of the following implementable scheme for computing a trial point
xK+1 satisfying (8).

Algorithm 2 An implementable scheme for satisfying (8)

1: Giveni > 0,0 <y < p/2, x* and x*=1 set d¥ = y (x¥ — x¥=1) and 20 = x¥
2: Compute (¢(z°), gg € 9p(z%)

3: forv=0,1,2,... do

4: Define ¢V as in (13) and let z"*! be a solution of
min ¢ (x) + o (x) - (g +d* x) (14)
XE

5: Compute (p(z"11), g;“ € 9p(z"t1)) and set "t 1= p(z" ) — ¢V (2" 1))

6 ife’t! <22)2"F — xk|” then

7: Stop and exit with xk*1 := zv+1

8: end if

9: end for

Proposition 1 Let k be fixed and suppose that x* does not solve (12). Then Algorithm 2
stops after finitely many steps v with a point x**1 := zV+1 sarisfying (8).
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Proof Optimality condition of subproblem (14) yields

g5 +d* € 99" (@ + Vo) + Nx (@) (15)
Since 7! € X, we have that Nx (z"*!) = dix(z"*!) [20]. Then
i) = o) + o) +ix(x) (definition of f})
> ¢"(x) + ox) +ix(x) (by (13))
> 3" @) + o) +ix @ + (g +dF x — ) (by (15))
= o@) + o) + (gh +dF x — 2t
—[p"h = ¢V (z"th, (because 7! € X)

showing that g’z‘ +d* belongs to 8,v+1 f1(z"+1). It remains to show that the algorithm satisfies

€'l = ("t — ¢V (2"t < A4t - <K% after finitely many steps. To this end, we
recall that Algorithm 2 can be understood as a prox-form of bundle methods [10, Algorithm
4.1]. Since (12) is a strictly convex program, it thus follows from the analysis of! [10] that
the limit point of {z”*l} is a solution of (12) and, moreover,

lim [p(z"*") — ¢"(z"*1)] =0, implying that lim €"*!' =0.
V—> 00 V—> 00
k

. . . . . 2
As by assumption x” is not a solution of (12), then the inequality evtl < )Lg llzv+ — XX
must be satisfied after finitely many steps v. O

If x* is the unique solution of (12), then Algorithm 2 ensures (under the analysis of [10])
that {z"} converges to x*. Therefore, to guarantee that Algorithm 2 will always halt after
finitely many steps one may consider the following additional test ensuring that z*! is a
Tol-solution of (12): if p(z"*!) — ¢”(z"*!) < Tol, then exit x**1 := zV+1,

3.2.3 Computing a point satisfying condition (9)

We now show how to compute x**! satisfying (9) for a particular class of problem (1) whose
first component fi is of class C ! and the domains of both fi and f> is the whole space R”.
Given an arbitrary vector g’z‘ € df> (x5, let y(xk ) € R" be a solution of subproblem (5).
Under the given assumptions, it follows that V i (y(x)) — (glz‘ +d*y =0.Let{z'} bea
sequence of points generated by a convergent algorithm applied to (5) (e.g. a Newtonian
method, [22]) such that lim,cp 2" ! = y(xk). Then, by continuity of V f; we conclude
that

lim VA1) = VAGGD) = & +d"

If there is no index v € N’ such that |V £ (z"+1) — (g5 +d)|| < 14)12"H1 — x¥|, then
{z"*1} 5+ would converge to x¥ faster than {V f1(z" T} N/ converges to glzC +d*. This yields
y(x¥) = xF and V f1(x¥) = g’2‘ + d*, proving that x* is a critical point of (1) if d¥ = 0.
Otherwise, Algorithm 1 sets x**! = x¥ (resulting d**! = 0) and proceeds to next iteration.
(If d¥ = 0 and x* is not a critical point, the condition of (9) can be satisfied after finitely
many steps by some inner iterate z"*!.)

I'See Proposition 4.3 in [10] for the particular choice w(x) = % llx]12.
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3.3 An Alternative Stopping Test

The stopping test given in the Algorithmic pattern 1 is a reliable and straightforward one.
However, it may not scale well the underlying optimization problem when the function is
“flat” around a critical point and/or when the dimension of x is very large.

A more practical stopping test depending on the function values has been investigated
in [38, Remark 4]. We thus rely on [38] and Lemma 2 below to propose the following
alternative stopping test for Algorithm 1:

An alternative stopping test for Algorithm 1
1 if ‘f(kar]) + (]—)L%P—V ”xk+1 _ xk”2 _ [f(xk) + (1—)2/7—)/ ”xk _xk71||2:” < Tol
then
2: Stop and return (xk,f(xk))
3: end if

. . —p— 2, .
As it will be seen in Lemma 2, the sequence {f(x**!) + ank“ —xk)7}) is
monotonically decreasing. The reasoning of the above test is to stop the algorithm when the
decrease issued by such a sequence is small enough.

4 Convergence Analysis

As point x**t1 is chosen to satisfy either (8) or (9) we conclude that df; (xktD # () and
therefore x**1 € Dom( f1), implying that {x¥} C Dom(f}). By assumption, there exists an
open set in R” satisfying Dom( f;) C 2 C Dom( f2). Hence, the sequence of points gener-
ated by Algorithm 1 is well defined. Furthermore, since f> is a convex function, its subdif-
ferential df5 is locally bounded. As a result, any sequence { gk} with gk Ock+1 f1 (N
3f>(x%) 4+ d* is bounded as long as {x*} is bounded as well. With this in mind, we start
the convergence analysis of Algorithm 1 with the following simple lemma. Throughout this
subsection we consider Algorithm 1 with Tol = 0.

Lemma 1 Suppose Algorithm 1 terminates at iteration k. Then x* is a critical point of
problem (1).

Proof Under these assumptions, the algorithm stopping test yields x**! = x* and @* = 0.
Either (8) or (9) provides 8 f; (x) N f>(x*) #8, i.e., x* is a critical point of problem (1). [

The following lemma plays an important role in the convergence analysis of Algorithm 1.

Lemma 2 Let {x*} be the sequence generated by Algorithm 1. If assumption Al holds,
A € [0,1)and y € [0,(1 — A)p/2), then % > 0 and the sequence {f(xk) +

—Mo— 2, . . . .
W lxk — x*k=1"Y is monotonically decreasing, that is

1-A)p— 2 1-A)p— 2
Ftrty EERPZY et by < ey 4 2207 kb
C(-1p-2y

; Ik ==V forallk=0,1,2,...
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906 W. de Oliveira and M. P. Tcheou

Proof Suppose that x¥*! satisfies (8), and let g5 + d@* € 1 f1(x**1) with gf € 92 (x%)
and d* = y (xk—x*=1). Then fi(x) > fi(x*1)+(gh +a*, x —xk+1) —*+1 forall x € R™.
In particular, by setting x = x* and recalling that e¥*! < )~§|I)€1€Jrl - xkll2 by (8) we
get

AR = A 4 (gh + atxE =) a2t (16)
Suppose now that x¥*1 satisfies (9). Then

AR = AR 4 (gh L xk =k
= iR 4 (gh 4+ dF xk — K — (gh b — gt xR - xR
> AR 4 (gh b ak xF = xRy gt — gk bkt — XK

where the last step is due to the Cauchy-Schwartz inequality. Since condition (9) ensures
that ||g'1‘+1 — (glz‘ +dY| < k%”x“l — x¥||, we get once again inequality (16).
Assumption Al gives the inequality fr(x*T!) > f(x%) + (glzc, XL xRy 4

e — x*|I%, which summed to (16) yields f; (x*) — fo(x¥) > ik 1) — ok t1) +
(d¥, xk — XY 4 (1= 1) 2|lxk ! — xK|)%. Therefore,

SO+ (1= DT = < ) 4 @ i)

. _ 12 2.
Since (dk,xk‘H —Xk) — y(xk —Xk l,xk+l _xk) < %”xk —)Ck 1” + %”xk+l _xk” it
follows that

1-=Mp—-vy
7”)6](-5-1 _

FE 4 S

2 Y 1.2
Pl sf(x">+5||xk—x’< .

The stated result thus follows from the identity £ = (1_}%” Y _ (1_’\)2” =2 O

The property that the sequence {f @5 + % [lxk — xk-1 ||2} is monotonically
decreasing is enough to prove convergence of Algorithm 1. We care to mention that the
sequence of functional value {f (x*)} is not necessary monotone, in contrast to all other DC
algorithms found in the literature (see for instance, [11, 14, 23, 32, 35, 39]). Remind that
the non-monotonicity of the function values was crucial for INDCA to escape from the local
solution in Example 2.

Theorem 1 Consider Algorithm 1, assume Al, . € [0, 1), y € [0, (1 — X)p/2), and x0e
Dom( f1). Assume also that the level set Lf(xo) ={xelR":f(x) < f(xo)} is bounded.

Then any cluster point x of the sequence {xk} generated by the algorithm is a critical point
of problem (1).

Proof 1f the algorithm terminates at a certain iteration k, Lemma 1 provides the result.
Let us assume the algorithm does not stop. Lemma 2 ensures that the sequence {f " +
—M)p— 2. . . .
W lxk — x*F=11"Y is monotonically decreasing. Since
d-Mp—-vy

(I=Mp—vy 142
5 O—X 1”

1.2
Ik — 7 < £+

FOby < R + >
= f(x9),
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the assumption of bounded level set ensures that {x*} is a bounded sequence. By summing
up the inequality in Lemma 2 we obtain

(1—=2)p =2y & 2

IA

o —A’ _
Z[f( )+#nxk—x"”u2
k=0
— (f(xk+l) + (1 — )\’Q)’p e ”xk+1 _xk||2)]

= £ ~ lim (f ktty 4 LTDOTY e xk||2)

2
< f&% — inf f(x)<oo. 17)
xELj (x0)
As a result, limy |x* — x**1|| = 0 and thus, limy €1 = 0 (Eq. (8)) and limg 4 = 0.

Let K C {0,1,...} be an index set such that llmkeK x¥1 = 3. Since the bounded
subsequence {xk} k belongs to the open set 2 C Dom( f>) and f; is convex, then by [18,
Theorem 3.1.2] the sequence {glz‘} k is bounded as well and, therefore, it has a cluster point
22. Let K’ C K be an index set such that limy¢ g g’z{ = g». By recalling that g’2‘ +dk e
Ockt1 f1 (x**1) if (8) holds and that the subdifferentials of convex functions are closed sets,
we conclude that g» € df1(x) regardless the rule (8) or (9) (because limycg- x**1 = % and
limg g/ g’z‘ = go). It remains to show that g € df>(x). But this follows from the fact that
g5 € 3f2(x") and 0 < limgegr [lx% — | < limgegr ¥ — K 4 Timgegr 694 — ) =
0 (where we have used the triangular inequality on lxk = xk1 — (& — x¥t1)|| and recalled
the limits established above). Therefore, the closeness of the subdifferential of f, yields
g2 € 9f2(x) and the proof is complete. O

Once the convergence analysis of Algorithm 1 has been established, we now turn our
attention to its speed of convergence. To this end, we consider a particular instance of
Algorithm 1.

4.1 Rate of Convergence

Throughout this section, we assume that fi(x) = ¢(x) + Ix112/2 and fo(x) = ¥(x) +
lx]|2/2, yielding p > 1 in Al and y € [0, 1/2) in Algorithm 1. We moreover assume
that A = 0 in condition (8) and let gf‘p be an arbitrary subgradient of ¢ at point x¥. In

this manner, determining x**! satisfying either (8) or (9) results in defining (for g’2< =
k k
8y +x )

Xkt — arg m%l o(x) + ||x||2/2 — (g]&, +xF+ )/(Xk —Xk_]),x)
xeRn

. 1 _ 2
= arg min o(x) + < |lx — (F + g + y(F — x|
xeRn 2
= (I +0p) ' (* + gl +y(* —x*).

As a result, this choice of parameter makes Algorithm 1 a linearized proximal method with
inertia force. This allows us to rely on the analysis of [31, § 4.6] to establish the rate of

@ Springer



908 W. de Oliveira and M. P. Tcheou

convergence of this method applied to the DC program (1). To this end, we denote by r(x)
the following residuum

r(x)i=x— (I +39) ' (x +gy), with gy € dp(x).
Notice that if (x¥) = 0, then x¥ solves minycg» o(x)+ %Hx — (xk+ g@)llz. Its optimality

condition yields g@ € 8g0(xk), showing that x¥ is a critical point for problem (1) (which
reads for this particular setting as minycrr @(x) — ¥ (x)). The following result shows that

the rate of convergence of both sequences {||r(xk)||2} and {||lx*+1 — xk||2} isO (%)

Theorem 2 Suppose that the level set Lf(xo) =f{xeR": f(x) < f(xo)} is bounded,
y €[0,1/2) and let]_‘ = mian(xo)f(x) and k > 0. Then

o
@  min ||x"“—x"||25<1 2 )f(") /

i€{0,....k) -2y k+1

and _
. 16 0y —

®  min )’ < feo-f
i€{0,....k} 1—-2y k+1

Proof Ttem (a) follows directly from the development below

1-2 2 1=2y

min [lx" —x7)° <

i€{0,....k} 2

k
(k+1) 3 = < 560 - 7
i=0

where the last inequality is due to (17) by recalling that . = 0 and p > 1. We now proceed
to show item (b). By using the non-expansiveness of the operator (I + d¢)~! we have that

Ix" =x T =yl —x =l gl 4y (o —x T = (4 gl
> [|(I+09) ™ (' +gl +y (' —x ") — (I +09) T (' +g)) |
=[x = +0p) T (" + gl (18)
As a result,
e = = = T = (4 8) T A gl — =
> |t — (I +09) 7 (x4 gl — It — x|
= lr)l = llx’ = x|

where the first inequality follows from (18) and the second one by the triangular inequal-
ity. Therefore, [|r(x")| < 2max{||lxt' — x|, |x' — x'~1||}. Item (b) follows from the
following development:

k k
) ) . ) . . 2
k 1 : i < i <4 i+1 _ i , i i1
(k+ )ig{f(l)llnk} lr(xHI = E lr(xHI < E max{||x Xt =X

,,,,,

i=0 i=0
k k
<4 [Z B iy P —x"“||2]
i=0 i=0
K i1 ) 2 0 -
1 1
ssgnx S e MUCRRS
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where the second inequality holds because the arguments in the max-function are positive,
and the last one is again due to (17) with A =0 and p > 1. O

5 Application of Interest: Nonconvex Image Denoising

Image reconstruction techniques have become important tools in computer vision systems
and many other applications that require sharp images obtained from noisy/corrupted ones.
The convex total variation (TV) formulations have proven to provide a good mathematical
basis for several basic operations in image reconstruction [8]. In order to present such for-
mulations, let b € R" be the vectorization of a corrupted n| x ny grayscale image B (in this
case, n = nj - np). A TV formulation, with penalizing function ¢ : Ry — R, consists in
solving the following minimization problem

min Zlx = bI2+ TVp(x). with TVo(x) = Y @IV, (19)

i=1

where & > 0 is a fidelity parameter and (Vx); € R? denotes the discretization of the
gradient of image x at pixel i, that is, (Vx); represents finite difference approximations of
first-order horizontal and vertical partial derivatives. In a matrix representation X € R"1*"2
of x € R" we have that

(Vx); = S/ L7}, with i the coordinate of x where the pixel X;_; is stored.
Xij+1— X1 j

Thus (Vs =/ (Xr41j = X1)% + (X — Xi )2

If the penalizing function is chosen to be ¢ (r) = r, then problem (19) consists in a con-
vex nonsmooth optimization problem that can be efficiently solved by several specialized
algorithms such the ones proposed in [1, 6, 9]. This is the main benefit of using a convex
formulation for image denoising. Nevertheless, nonconvex regularizations have remarkable
advantages over convex ones for restoring images, in particular, high-quality piecewise con-
stant images with neat edges [30]. In order to preserve edges in the restoration process, some
authors [25, 28] employ a nonconvex penalizing function ¢ to induce sparse image gradi-
ents (Vx);. This makes (19) a nonconvex and nonsmooth problem, that has been recently
dealt with by local (strongly) convex approximations in [25].

In what follows we show that for a wide class of penalizing functions ¢ : Ry — R,
problem (19) is indeed a DC programming problem with available DC decompositions.

5.1 DC Decomposition of Nonconvex Denoising Models

Assume that ¢ : R — R is a concave and non-decreasing function. As a result, its right
derivative is well defined for all » > 0, that is, the limit qbg_ (r) == limy o w exists
for all » > 0. Our goal is to prove that under these assumptions, the composite function
TVy(x) = Z:’z 1 @(I(Vx); ) can be written as a difference of two convex functions. To this
end, we will need the following useful result, whose proof can be obtained by combining
some developments presented in [41, § 4]. For the sake of completeness, we provide below
a short proof.
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910 W. de Oliveira and M. P. Tcheou

Lemma 3 Let ¢ : R" — Ry be a convex function. If ¢ : R — R is a concave and
non-decreasing function such that ¢Q_(O) < 00, then T c(x) — ¢(c(x)) is convex for all

T > ¢/, (0).

Proof The hypotheses on ¢ imply that ¢, (r) > 0 for all » > 0 and ¢/, (r9) > ¢/, (r1) for all
0 <ryp <ry.Lett > ¢/ (0) > 0 be fixed and define the convex function w(r) = 77 —¢ ()
for all » > 0. It follows that

wi(r) =1 —¢\ () = ¢} (0)—¢\ () =0 Vr=0,

showing that w is non-decreasing on R . As a result, the composite function w(c(x)) is
convex as well (because c is). Since w(c(x)) = 7 c(x) — ¢(c(x)), the result follows. O

Proposition 2 Let ¢ : Ry — R be as in Lemma 3, and the TV function given by TV (x) 1=
Yt I(VX)ill . Then Tt TV (x) — T Vi(x) is a convex function for all T > ¢!, (0) > 0.

Proof Fix a pixel i. Since c(x) = ||[(Vx);] is convex and non-negative, Lemma 3 ensures
that 7 ||(Vx); || — ¢ (J|(Vx);]l) is a convex function. The result thus follows from the fact that
the sum of convex functions is convex and definitions of 7V and T V. O

Since the requirements on the penalizing function ¢ are mild, Proposition 2 is quite
general. For instance, all the functions ¢ considered in [25] and reported in Table 2 satisfy
the assumptions of Proposition 2 with ¢ > 1. (This ensures that function f, in Example 2
is indeed convex.)

5.2 Specific DC Models

We now focus on subproblem (6) resulting from the considered nonconvex image denoising
model. Without loss of generality, we assume in the remaining of this paper that the penal-
izing function ¢ : Ry — R satisfies ¢/, (0) = 1 (this is the case of the functions presented
in Table 2). In this setting, the DC function reads as

F@ =501 + TV = 2L b P4 TV ) = [ S =P+ TV (0 =T Ve (0]

S1(x) f2(x)
(20)

In the above definition, p > 0 is an arbitrarily chosen parameter to satisfy Assumption Al.

In our numerical experiments we set p = 1. Since f is nonnegative and centered around b,

1 is coercive and thus has bounded-level sets, satisfying thus the assumption of Theorem 1.
With this formulation, subproblem (6) reads as

tp

. 2 . _
min “0 L ) — cFP 4 TV @), with ¢F = b (g +yF — XD+ ). @)

xeR

Table2 Some examples of

concave, differentiable and Plog Prat Qatan Pexp
non-decreasing penalizing 7
functions ¢, : Ry — Ry $alr)  TECED Far/2 atan((l:j/%)//z pomle dmercen

parameterized by a > 0

’ 1 1 1 1
¢a(r) I+ar (1+ar/2)? 1+ar+a?r? exp(ar)

@ Springer



An Inertial Algorithm for DC Programming 911

i.e., a convex denoising problem with corrupted image b perturbed by (g§ + y(xk —
x¥=1/(1u + p). As already mentioned this subproblem can be efficiently solved by several
specialized methods [1, 6, 9].

6 Numerical Results

In this section, we consider the nonconvex image denoising model (19) with penalizing

atan((1+ar)/v/3)—m/6
a3

can be achieved with the remaining functions of Table 2, adequately tuned, we only provide

detailed results for this penalizing function. Since ¢/, (0) = 1, Proposition 2 ensures that
the objective function of (19) has the DC decomposition f; — f>, with f; and f> given
in (20).

In our numerical experiments we set p = 1 in (20) and A = 0 in Algorithm 1. As a
result, condition (8) is equivalent (for A = 0) to define the next iterate x**1 as a solution
of the convex image denoising problem (21) with corrupted image perturbed by an inertial
force. This task is accomplished at every iteration of our algorithm by employing the con-
vex nonsmooth denoising method known as FISTA (Fast Iterative Shrinkage/Thresholding
Algorithm) [6]. We have also tested our algorithm with A > 0 employing the bundle-
method’s idea described in Algorithm 2. However, for this class of problems, the resulting
DC bundle algorithm was not competitive with its exact counterpart employing FISTA.
Hence, we do not report results on inexact variants of Algorithm 1. In what follows we
examine the numerical performance of the following solvers, all of them coded in MATLAB
version R2015b:

function ¢, an given by ¢ (r) := with a = 4. Given that similar results

—  DCA - Algorithm 1 with y = A = 0. The trial point x**! is defined by solving the
convex subproblem (21) with a MATLAB implementation of FISTA .2

— InDCA - The same as DCA, but with inertial factor y = 0.499 instead.

— InDCA,, - The same as DCA, but varying the inertial factor y > 0 along the iterative
process. We initialize the solver with y = 2.5 and set

1 —
y < max{0499, y/2} whenever f(x*!)+ Tynxk“ )
Yook _ k=12
+2 lx® — x|

The reasoning behind this rule is given by Lemma 2, which ensures f(x**1) +
L2kt — k) < feky 4 Lk — 251 for all y € [0, 1/2) (because we set
o = 1). However, due to the nature of function f>, Assumption Al may hold for a larger
o (this is why we start with y = 2.5 instead of y < 1/2). If the inequality in the above
rule holds and y > 1/2, then y is found to be too large to ensure convergence of the
algorithm. We thus must reduce y until becoming lower than the threshold p/2 = 1/2.
— 1Piano - Inertial proximal algorithm for nonconvex optimization. This is an imple-
mentation of Algorithm 2 given in [31], with the inertial parameter therein fixed to’
0.8, and constants L, @ given by 100 and 0.003, respectively. This choice of parameters

2 Available at https://web.iem.technion.ac.il/images/user-files/becka/papers/tv_fista.zip
3For this algorithm, the inertial parameter needs to be less than one.
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was made upon some tuning. This solver requires function — f> to be differentiable and
Lipschitz continuous, which is not the case of f, given in (20). Therefore, for 1Piano
only, we replaced f> with the convex and differentiable function fzsmOOth(x) =
Bl = bI7 + X0 s (V)i D) = (s (I(Vx)i )], where s(1) = /12 + ¢2 — c is the
pseudo-Huber function with parameter ¢ = 1073, Once an oracle provides the gradient
gk of Z?:l s(IVxX)il) — o Gs(I(Vx)il)] at x = x*, the next iterate is computed in a
closed form: x**1 := [apub + (x* — gk + y(xk - xk’l))]/(l + au). Therefore, when
compared to the DC solvers above, iPiano possesses a much lower computational
burden per iteration. Although we considered f5™°°*" along the optimization process
of 1Piano, the function values provided in the tables below correspond to the function
f = fi — f2 (without smoothing).

All these solvers employ the same black-box for f, and the same stopping-test: the iterative
process terminates when the inequality

max{||x¥1 — XX, p ek = XKy <5 x 107 A 4 x5 s satisfied.

We set the maximum number of iterations of the DC solvers to 100. Since iPiano has
a low computational burden per iteration, its maximum number of iterations was fixed to
1000.

The numerical performances of these four nonconvex solvers (with three of them exploit-
ing the DC decomposition (20) of (19)) are assessed on two piecewise-constant images
corrupted by a Gaussian noise with mean 0 and variance 0.1. Figure 3a and c present the
original (non-corrupted) images whereas Fig. 3b and d show the corrupted ones. Each image
has dimension 200 x 200, which yields large-scale nonsmooth DC optimization problems of
dimension n = 40 000. Numerical experiments were performed on a computer with Intel(R)
Core(TM), i13-3110M CPU 2.40, 4G (RAM), under Windows 10, 64Bits.

In order to check the quality of the restored images we employ two well-known measures
in the community of computational vision: the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM). Detailed descriptions of these measures can be found in [15,
43]. For our purposes, it is enough to keep in mind that the larger the PSNR is the better
is the restoration. The same indication can be yielded when the SSIM is closer to one.
Nevertheless, the focus here is on CPU time and function values provided by considered
solvers: we aim at illustrating the performance of the new proposal, rather than investigating
technical matters of Digital Images/Computational Vision.

(a) QR code (b) QR code (¢) Checkerboard (d) Checkerboard
Original Corrupted Original Corrupted

Fig. 3 Piecewise constant images. The corrupted images were obtained by the original ones by adding a
Gaussian noise. All images have dimension 200x200
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We start by presenting in Table 3 the results obtained by applying the four con-
sidered solvers to the nonconvex image denoising model (19) issued by the corrupted
QR-code image of Fig. 3b. In our experiments, the fidelity parameter u ranges from 0.55
to 1.25.

The results show that the inertial DC algorithms provide lower function values in less
CPU time/subgradient evaluations. Concerning these features, the performance of InDCA

Table 3 Restoration of the corrupted QR-code image

Solver " CPU(s) #g f(xPest) PSNR SSIM
iPiano 0.55 469 1000 9322.314 21.687 0.882
DCA 0.55 122 58 9084.983 21.931 0.882
InDCA 0.55 111 53 9084.814 21.855 0.881
InDCA,, 0.55 62 26 9045.975 19.253 0.839
iPiano 0.65 477 1000 9543.678 21.719 0.890
DCA 0.65 223 100 9302.109 22.033 0.889
InDCA 0.65 223 100 9300.447 21.997 0.888
InDCA,, 0.65 140 60 9263.575 21.332 0.874
iPiano 0.75 473 1000 9763.515 21.591 0.891
DCA 0.75 234 100 9528.582 21.951 0.892
InDCA 0.75 189 80 9526.251 21.935 0.892
InDCA,, 0.75 242 100 9476.832 21.817 0.897
iPiano 0.85 479 1000 9989.072 21.355 0.888
DCA 0.85 213 88 9762.382 21.687 0.893
InDCA 0.85 190 79 9755.709 21.731 0.894
InDCA,, 0.85 109 45 9686.490 21.835 0.902
iPiano 0.95 472 1000 10209.231 21.107 0.884
DCA 0.95 174 72 9995.409 21.323 0.891
InDCA 0.95 137 57 9993.745 21.390 0.890
InDCA,, 0.95 95 39 9900.572 21.505 0.876
iPiano 1.05 470 1000 10434.161 20.810 0.876
DCA 1.05 192 80 10221.634 21.103 0.888
InDCA 1.05 134 56 10220.961 21.055 0.887
InDCA,, 1.05 84 35 10118.874 21.453 0.879
iPiano 1.15 472 1000 10672.028 20.545 0.864
DCA 1.15 163 67 10461.936 20.738 0.879
InDCA 1.15 162 67 10452.538 20.785 0.880
InDCA,, 1.15 82 34 10338.301 21.263 0.879
iPiano 1.25 487 1000 10909.249 20.226 0.856
DCA 1.25 162 68 10706.295 20.433 0.872
InDCA 1.25 158 66 10694.461 20.479 0.875
InDCA,, 1.25 102 42 10547.789 20.932 0.858

CPU times are given in seconds. The notation # g, stands for the number of subgradient evaluations of
function f, (or fzsmOOth). This coincides with the number of iterations performed by the algorithms. The
maximum number of subgradient evaluations was set to 1000 for solver iPiano and to 100 for the other
solvers
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was better than the one of DCA. Moreover, solver InDCA,, (that has a larger inertial factor)
significantly outperformed DCA in this application. For instance, for the case © = 1.15
solver InDCA,, found a critical point with function value around 1.18% lower than the
function value provided by DCA. Furthermore, in this case, solver InDCA,, was almost 50%
faster than DCA.

In Fig. 4 we present the restored images obtained by the solvers applied to the instance
with u = 0.85 (the one with highest values of PSNR and SSIM). In addition to the non-
convex models, we present in Fig. 4a the image restored by employing a convex model
(resulting from setting ¢ (r) := r in (19), i.e.,, TV (x) instead of T Vj(x)). The convex
denoising model was solved by algorithm FISTA [6]. Among all the considered val-
ues of the fidelity parameter © in (19), the best results were obtained with © = 3.75
for the convex model. The quality-measure values in Fig. 4a indicates that convex mod-
els are not effective to preserve edges in the restoration process of piecewise-constant
images, corroborating thus with the conclusion drawn in [30]. Moreover, the quality of
the restored image of Fig. 4a is visibly worse than the one restored by solver InDCA,, .
In fact, Fig. 4e contains less noise than the images restored by solvers 1Piano, DCA
and InDCA.

In what follows we examine the corrupted checkerboard image of Fig. 3d. Table 4
contains some results obtained by applying the four considered solvers to this image
by varying the fidelity parameter u from 0.8 to 1.6. Once again, the inertial DC solver
InDCA,, provided better results than the other considered solvers. The inertial solvers
required fewer iterations than DCA to terminate with a critical point of better quality
(except for the instance © = 0.9, at which solver InDCA performed more iterations
than DCA).

In Fig. 5 we present the restored images obtained by the solvers applied to the
instance with © = 1. Once again, the convex denoising model was solved by algorithm
FISTA.

6.1 Assessing Numerical Performance on Several Instances

In order to assess the numerical performances of the considered DC solvers we examine
72 instances of the nonconvex image denoising model (19), obtained by varying w as in
Table 4 and by considering four different penalizing functions ¢ as in Table 2, and the two
corrupted images of Fig. 3.

We present the performance profiles [12] of DCA, InDCA and InDCA,, on these 72
instances. As an example, let the criterion of analysis be CPU time. For each solver, we plot

Bl EigE i EigE

..a
(a) Convex model (b) iPiano (c) DCA (d) InDCA (e) InDCA~,
PSNR = 19.453 PSNR = 21.355 PSNR = 21.687 PSNR = 21.731 PSNR = 21.835
SSIM = 0.813 SSIM = 0.888 SSIM = 0.893 SSIM = 0.894 SSIM = 0.902

F(aF) =10334.721  f(zF) = 9989.072 f(aF) = 9762.382 f(a*) = 9755.709 f(aF) = 9686.490

Fig. 4 Restored QR-code images. Convex model with fidelity parameter © = 3.75 and nonconvex model
with y = 0.85. For comparison reasons, the final value f (x%) in (a) was computed with ;. = 0.85
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Table 4 Restoration of the corrupted checkerboard image

Solver "W CPU(s) #g fxbest) PSNR SSIM
iPiano 0.80 474 1000 9026.884 23.879 0.820
DCA 0.80 105 56 8778.145 24.049 0.826
InDCA 0.80 81 44 8779.285 24.160 0.826
InDCA,, 0.80 110 58 8716.393 24.239 0.772
iPiano 0.90 479 1000 9251.406 23.481 0.812
DCA 0.90 81 44 9014.267 23.670 0.822
InDCA 0.90 86 47 9006.346 23.702 0.824
InDCA,, 0.90 60 32 8921.761 23.862 0.734
iPiano 1.00 474 1000 9475.528 23.166 0.801
DCA 1.00 112 61 9237.498 23.337 0.811
InDCA 1.00 106 57 9232.004 23.365 0.812
InDCA,, 1.00 56 30 9138.142 24.230 0.849
iPiano 1.10 470 1000 9708.161 22.730 0.786
DCA 1.10 114 61 9481.109 22.952 0.799
InDCA 1.10 105 56 9474.022 22.968 0.801
InDCAy, 1.10 52 28 9326.864 24.059 0.773
iPiano 1.20 472 1000 9949.721 22.205 0.761
DCA 1.20 109 58 9727.282 22.451 0.782
InDCA 1.20 92 49 9719.249 22.511 0.783
InDCA,, 1.20 63 34 9536.481 23.969 0.803
iPiano 1.30 476 1000 10187.130 21.754 0.739
DCA 1.30 140 73 9968.101 21.992 0.765
InDCA 1.30 134 70 9959.879 22.045 0.768
InDCA,, 1.30 77 42 9757.747 23.434 0.794
iPiano 1.40 475 1000 10424.813 21.317 0.714
DCA 1.40 149 75 10215.140 21.553 0.742
InDCA 1.40 116 59 10208.485 21.593 0.744
InDCA,, 1.40 55 29 10035.034 22.944 0.822
iPiano 1.50 476 1000 10673.945 20.855 0.684
DCA 1.50 165 85 10473.202 21.082 0.713
InDCA 1.50 127 64 10464.077 21.091 0.716
InDCAy, 1.50 61 31 10277.361 22.424 0.808
iPiano 1.60 476 1000 10921.842 20.390 0.661
DCA 1.60 155 80 10731.337 20.626 0.683
InDCA 1.60 136 70 10724.553 20.635 0.687
InDCA,, 1.60 54 28 10524.680 21.858 0.786

The notation # g stands for the number of subgradient evaluations of function f, (or fzsmOOth). This coin-
cides with the number of iterations performed by the algorithms. The maximum number of subgradient

evaluations was set to 1000 for solver 1Piano and to 100 for the other solvers
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B R

(a) Convex model (b) iPiano (c) DCcA (d) InDCA (e) InDCA~,
PSNR = 22.101 PSNR = 23.166 PSNR = 23.337 PSNR = 23.365 PSNR = 24.230
SSIM =0.725 SSIM = 0.801 SSIM = 0.811 SSIM = 0.812 SSIM = 0.849

F(z*) = 9513.226 F(aF) = 9475.528 F(xF) = 9237.498 F(zF) = 9232.004 F(ak) = 9138.142

Fig.5 Restored checkerboard images. Convex model with fidelity parameter ;+ = 3.4 and nonconvex model
with y = 1. For comparison reasons, the final value f (x*) in (a) was computed with y = 1

the proportion of instances that is solved within a factor n of the time required by the best
algorithm. More specifically, denoting by ¢, (i) the time spent by solver s to solve instance
i and by ¢*(i) the best time for the same instance among all the solvers, the proportion of
instances solved by s within a factor 7 is

number of instances i such that #,(i) < nt*(i)

o = -
s () total number of instances

Therefore, the value o (1) gives the probability of the solver s to be the best by a given
criterion. Furthermore, unless #; (i) = oo (which means that solver s failed to solve instance
i), it follows that lim,)_, oo ¢ty () = 1. Thus, the higher is the line, the better is the solver (by
this criterion).

Figure 6a presents the performance profile of the solvers with respect to CPU time.
Solver InDCA,, was the fastest one in 74% of the considered instances, followed by InDCA
(18%). A similar conclusion can be drawn concerning the number of subgradient evaluations
of f> (that coincides with the number of iterations): Figure 6b shows that InDCA,, was the
solver that required less subgradient evaluations in 75% of the instances.

We recall that the optimal values of the considered instances of problem (19) are
unknown. To assess the quality of the solutions computed by the solvers we proceed as
follows. Let f* be the function value of instance i computed by solver s, and let ]_gbe” =

ming j?' be the best function value computed by the three solvers. In Fig. 6¢c we plot the

CPU time Iterations (# evaluations of 92) Best ion value

1 15 2 25 3 1 15 2 25 3
Performance ratio, n Performance ratio, n Performance ratio, n
(a) CPU time (b) Subgradient evaluations of fa (c) Critical points’ quality

Fig.6 Performance profile over 72 instances of the nonconvex image denoising model (19)
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(s _ sbest 1
performance profile of the solvers with respect to the criterion* % Solver InDCA,,

computed the best function value in 86% of the cases, followed by ‘InDCA that was the most
effective one in 12.5% of the instances.

These results show that furnishing the DC algorithm with an inertial force pays off:
for the considered application we observed that the quality of the computed critical points
improves whereas the CPU time decreases. Finally, we comment that the total CPU time to
solve these 72 instances by DCA was 137 minutes, by InDCA 127 minutes, and by InDCA,,
108 minutes. The latter provided a CPU time reduction of around 21% concerning DCA.

7 Concluding Remarks

With the purpose of computing critical points of better quality in (unconstrained or convex-
constrained) DC programs we have equipped the classical DC algorithm with an inertial
force. Convergence analysis and rate of convergence of the new proposal have been estab-
lished. Moreover, we have investigated less demanding procedures to compute trial points
and have shown that the given algorithmic pattern covers and extends some well-known
optimization methods found in the literature, such as the DCA, proximal linearized method,
and DC bundle methods.

The numerical performance of two variants of the given algorithmic pattern was assessed
on nonconvex and nonsmooth image denoising models yielding optimization problems of
dimension 40 000. In this application, every iteration of our inertial DC algorithm amounts
to solving a convex image denoising model with corrupted image perturbed by an inertial
force. As presented in the numerical section, such a perturbed model can be efficiently
solved by specialized approaches such as the FISTA algorithm. At least for this application,
our numerical experiments indicate that the proposed algorithm outperforms the classic
one in terms of CPU time, number of subgradient evaluations (of the second-component
function) and, mainly, in terms of quality of the computed critical points.

Acknowledgments The authors are grateful to the Reviewers and the Associate Editor for their remarks
and constructive suggestions that considerably improved the original version of this article.
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