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Abstract
We show that well-posedness (namely approximative well-posedness) properties of opti-
mization problems are very efficient tools in subdifferential calculus of optimal value
(marginal) function and in particular of infimal convolution. Under well-posedness con-
ditions we establish an inclusion for the Mordukhovich limiting subdifferential of the
marginal function and obtain new properties and descriptions of the Fréchet, proximal
and Mordukhovich limiting subdifferentials of the infimal convolution. We also formulate
sufficient conditions for well-posedness properties under consideration.
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1 Introduction

The optimal value function (or marginal function in other terminology) reveals dependence
of optimal value on some parameters. Quite often, the parameterized optimization problem

The research of G.E. Ivanov is supported by the Russian Foundation for Basic Research, grant
18-01-00209.

� Grigorii E. Ivanov
g.e.ivanov@mail.ru

Lionel Thibault
lionel.thibault@univ-montp2.fr

1 Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow Region,
141700, Russia
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is a perturbation of some original optimization problem. Such problems arise in optimiza-
tion (e.g., in the method of Lagrange multipliers) and regularization methods (such as
Moreau and Lasry-Lions regularizations). In particular, the Moreau-type infimal convolu-
tion problem is a very important case of parameterized optimization problems and includes
such significant examples as the best approximation problem in a Banach space, the optimal
control problem with constant dynamics, Moreau regularization etc.

Differential properties of the optimal value function are crucial in both theory and numer-
ical methods. Since the marginal functions are nonsmooth in general, the proper terms to
describe their differential properties are subdifferentials such as Fréchet, Clarke, limiting
and proximal subdifferentials.

A lot of investigations are devoted to study and describe differentials of the optimal
value function in a general setting and in particular cases (see [4–11, 13–22] and references
therein). We propose in this work an approach to investigate differential properties of the
optimal value function based on some special well-posedness (WP) conditions. Hadamard
and Tykhonov WP and WP under perturbations [2, 5, 12, 23, 24] are well-known and very
useful concepts in stability and sensitivity analysis, numerical optimization and optimal
control methods, variational analysis and so on. We introduce new WP conditions, namely
approximative WP and stronger Lipschitz approximative WP, which are related to famous
WP conditions but differ from them. We also compare approximative WP condition with
docility condition introduced in [19].

Let us focus on various ideas and results of the present paper. Applying the Ekeland vari-
ational principle we obtain, in the general Banach space framework, an inclusion for the
Fréchet ε-subdifferential of the optimal value function into the Fréchet ε-subdifferential of
the objective function (Theorem 3.2), which improves the result of Ngai and Penot [18, The-
orem 3] obtained for Asplund space. Then we use this inclusion to prove an inclusion for the
Mordukhovich limiting subdifferential under approximative WP conditions (Theorem 3.5).
The latter result is akin to the result [18, Corollary 5], but neither of them is a consequence of
the other even in Asplund space. As a consequence of Theorem 3.5 we obtain some known
results of Thibault [22] and Ngai, Luc and Théra [17, Theorem 2.5]. Another consequence
of Theorem 3.5 is the inclusion of the Mordukhovich limiting subdifferential of infimal
convolution of two functions into the intersection of the Mordukhovich limiting subdiffer-
entials of these functions (Theorem 4.6(a)) under approximative WP conditions. Though
the reverse inclusion fails in general, it holds under Lipschitz approximative WP condi-
tions for lower regular functions (Theorem 4.6(b)). Using sufficient conditions for Lipschitz
approximative WP we obtain sufficient conditions for coincidence of the Mordukhovich
limiting subdifferential of infimal convolution of two functions and the intersection of the
Mordukhovich limiting subdifferentials of these functions (Theorem 4.8).

2 ApproximativeWell-posedness

In the present paper we continue research started in [6, 7] and [8]. Let (U, d) and (X, d) be
metric spaces. For a real ε > 0 and a point x ∈ X we will denote the open (resp. closed)
ball centered at x with radius ε > 0 by B(x, ε) (resp. B[x, ε]). The effective domain of an
extended real-valued function f : X → R ∪ {+∞} is dom f := {x ∈ X : f (x) ∈ R}.

Throughout this section, we keep U and X as metric spaces as stated above. Let h :
U × X → R ∪ {+∞} be an extended real-valued function. Consider the problem

Ph: Minimize h(u, x) over x ∈ X (2.1)
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with parameter u ∈ U . The optimal value of Ph at u ∈ U is

hinf(u) := inf
x∈X

h(u, x).

If x ∈ X satisfies the equality h(u, x) = hinf(u) ∈ R, it is called a solution of Ph at u ∈ U .
A sequence (xk) in X is called minimizing for Ph at u ∈ U if

lim
k→∞ h(u, xk) = hinf(u).

The problem Ph is called Tykhonov well-posed at u0 ∈ U if it admits a unique solution x0
and every minimizing sequence for Ph at u0 converges to x0 (see [2, 12, 23, 24]). In the
case when h(u0, ·) is lower semicontinuous, Ph is Tykhonov well-posed at u0 if and only if
every minimizing sequence for Ph at u0 converges.

Let x0 ∈ X be a unique solution of Ph at u0 ∈ U . Denote by M(h, u) the set of all
minimizing sequences for Ph at u ∈ U and define the function �h,u0 : U → [0, +∞[ as

�h,u0(u) := inf
(xk)∈M(h,u)

lim inf
k→∞ d(xk, x0), u ∈ U . (2.2)

The problem Ph is called approximately well-posed (AWP) at u0 ∈ U if it admits a
unique solution at u0 and

lim
u

hinf−→u0

�h,u0(u) = 0, (2.3)

i.e. �h,u0(uk) → 0 for any sequence (uk) in U such that uk → u0 and hinf(uk) → hinf(u0).
If, in addition, there exist positive reals λ1, λ2 and δ such that

�h,u0(u) ≤ λ1d(u, u0) + λ2|hinf(u) − hinf(u0)|
for all u ∈ B(u0, δ) such that |hinf(u) − hinf(u0)| < δ, then the problem Ph is called
Lipschitz approximately well-posed (LAWP) at u0.

Clearly, if the problem Ph is LAWP at u0, it is AWP at u0.

Remark 2.1 Suppose that x0 ∈ X is a unique solution of Ph at u0 ∈ domhinf and that for
any u ∈ domhinf around u0 there exists a solution x(u) of Ph at u such that x(u) → x0
as u → u0. Then Ph is AWP at u0. If, in addition, there exists λ1, λ2 > 0 such that
d(x(u), x0) ≤ λ1d(u, u0) + λ2|hinf(u) − hinf(u0)| for all u ∈ domhinf around u0, then Ph

is LAWP at u0.

Remark 2.2 If Ph at u0 is well-posed under perturbations (see, e.g., Zolezzi [24]), then it is
AWP at u0.

Lemmas 2.1 and 2.3 offer sufficient conditions for the problem Ph to be AWP. The first
lemma is a variant of Berge’s maximum theorem (see Example 6, Section 1, Chapter I and
Propositions 1, 2, Section 1, Chapter IX in [2] and also Proposition 5.1 in [12]).

Lemma 2.1 Let (U, d) be a metric space, (X, d) be a compact metric space and h : U ×
X → R ∪ {+∞} be a lower semicontinuous function. Suppose that Ph admits a unique
solution x0 at u0 ∈ domhinf. Then Ph is AWP at u0.

Proof Fix any sequence (uk) in U such that uk → u0 and hinf(uk) → hinf(u0). As hinf(u0)

is finite, for sufficiently large k the value hinf(uk) is finite too. In view of compactness of
X and lower semicontinuity of h for sufficiently large k there exists a solution xk of Ph at
uk . Let us prove that xk → x0. Suppose the contrary. Then extracting a subsequence due
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to compactness of X we may suppose that xk → x̂ �= x0. Using the lower semicontinuity
of h and the relations h(uk, xk) = hinf(uk) → hinf(u0), we arrive at h(u0, x̂) ≤ hinf(u0).
This means that x̂ and x0 are two different solutions of Ph at u0. This contradicts the
uniqueness assumption of the lemma and proves that xk → x0. For any k ∈ N the
constant sequence (xk, xk, . . .) belongs to M(h, uk) and hence �h,u0(uk) ≤ d(xk, x0).
Consequently, �h,u0(uk) → 0 and Ph is AWP at u0.

Lemma 2.2 Let x0 ∈ X be a unique solution of Ph at u0 ∈ U . Then for any u ∈ U there
exists (xk) ∈ M(h, u) such that

lim
k→∞d(xk, x0) = �h,u0(u). (2.4)

Proof Fix any u ∈ U . If �h,u0(u) = +∞, then by (2.2) for any (xk) ∈ M(h, u) we have
lim infk→∞ d(xk, x0) = +∞ and the statement of the lemma holds true. If hinf(u) = +∞,
then h(u, x) = +∞ for any x ∈ X and the constant sequence (x0, x0, . . .) is a minimizing
one for Ph at u. In this case �h,u0(u) = 0 and the desired statement holds true as well.
Further, we suppose that �h,u0(u) < +∞ and hinf(u) < +∞. Fix any numbers λ >

�h,u0(u) and μ > hinf(u). According to (2.2) one can find a sequence (zi) ∈ M(h, u)

such that lim infi→∞ d(zi, x0) < λ. Consequently, there exists i ∈ N which satisfies the
inequalities d(zi, x0) < λ and h(u, zi) < μ. Now fix any sequences (λk) and (μk) such
that λk ↓ �h,u0(u) and μk ↓ hinf(u). As it was shown above, for any k ∈ N there exists
xk ∈ X which satisfies the inequalities d(xk, x0) < λk and h(u, xk) < μk . Hence, (xk) ∈
M(h, u) and

lim sup
k→∞

d(xk, x0) ≤ lim sup
k→∞

λk = �h,u0(u) ≤ lim inf
k→∞ d(xk, x0).

This implies (2.4).

Lemma 2.3 Let (U, d) and (X, d) be metric spaces. Suppose that u0 ∈ domhinf and the
function h(·, x) is continuous at u0 uniformly with respect to x ∈ X, i.e. there exists a
function ε : U → [0, +∞[ such that

h(u0, x) − ε(u) ≤ h(u, x) ≤ h(u0, x) + ε(u) ∀u ∈ U, ∀x ∈ X

and

lim
u→u0

ε(u) = 0.

Then the following hold:

(a) The function hinf(·) is continuous at u0.
(b) If additionally Ph is Tykhonov well-posed at u0, then Ph is AWP at u0.

Proof (a). By the assumption, we have

hinf(u0) − ε(u) ≤ hinf(u) ≤ hinf(u0) + ε(u) ∀u ∈ U,

and hence lim
u→u0

hinf(u) = hinf(u0).

(b). Assume additionally that Ph is Tykhonov well-posed at u0. Let x0 be the solution
of Ph at u0. Fix a sequence (uk) in U that converges to u0. Lemma 2.2 implies
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that for any k ∈ N there exists xk ∈ X such that h(uk, xk) < hinf(uk) + 1
k
and

d(xk, x0) > �h,u0(uk) − 1
k
. Since

h(u0, xk) ≤ h(uk, xk) + ε(uk) ≤ hinf(uk) + 1

k
+ ε(uk) → hinf(u0) as k → ∞,

it follows that (xk) is a minimizing sequence for Ph at u0. Then by Tykhonov well-
posedness we have xk → x0, and consequently �h,u0(uk) < d(xk, x0) + 1

k
→ 0.

Therefore, Ph is AWP at u0.

The following proposition provides a sufficient condition for the problem Ph to be AWP
and LAWP.

Proposition 2.4 Let (U, d) and (X, d) be metric spaces. Assume that (u0, x0) ∈ domh and

h(u, x) ≥ h(u0, x0) + ϕ(d(x, x0)) − ξ(d(u, u0)) ∀u ∈ U, ∀x ∈ X, (2.5)

where ϕ : [0, +∞[→ [0,+∞[ is a nondecreasing function such that ϕ(t) > ϕ(0) = 0 for
all t > 0 and ξ : [0, +∞[→ [0, +∞[ is such that limt↓0 ξ(t) = ξ(0) = 0. Then Ph admits
x0 as unique solution at u0, hinf is lower semicontinuous at u0 and Ph is AWP at u0.

If additionally there exist positive constants λ, μ such that

ϕ(t) ≥ λt, ξ(t) ≤ μt ∀t ≥ 0, (2.6)

then Ph is LAWP at u0.

Proof Putting u = u0 in (2.5), we get

h(u0, x) ≥ h(u0, x0) + ϕ(d(x, x0)) > h(u0, x0) ∀x ∈ X \ {x0}.
Consequently, hinf(u0) = h(u0, x0) and Ph admits x0 as unique solution at u0. Inequality
(2.5) also implies that

hinf(u) ≥ h(u0, x0) − ξ(d(u, u0))
u→u0−→ h(u0, x0) = hinf(u0)

and hence hinf is lower semicontinuous at u0.
Fix any τ1 ∈]0, ϕ(1)[ and consider the function ϕ−1 : [0, τ1] → [0, 1] defined as

ϕ−1(τ ) := inf{t > 0 : ϕ(t) > τ }, τ ∈ [0, τ1]. (2.7)

Since ϕ is nondecreasing and ϕ(t) > ϕ(0) = 0 for all t > 0, it follows that

lim
τ↓0 ϕ−1(τ ) = ϕ−1(0) = 0. (2.8)

Let us prove that
�h,u0(u) ≤ ϕ−1(τu) (2.9)

for any u ∈ domhinf such that

ξ(d(u, u0)) + |hinf(u) − hinf(u0)| =: τu < τ1. (2.10)

Assume the contrary: there exists u ∈ domhinf which satisfies (2.10) and �h,u0(u) >

ϕ−1(τu). Then one can find tu such that ϕ−1(τu) < tu < �h,u0(u). Fix any sequence
(xk) ∈ M(h, u). Using (2.2) one can find k0 ∈ N such that d(xk, x0) > tu (and hence
ϕ(d(xk, x0)) ≥ ϕ(tu)) for all k ≥ k0. According to (2.5) we get for all k ≥ k0

h(u, xk) ≥ h(u0, x0) + ϕ(d(xk, x0)) − ξ(d(u, u0)) ≥ hinf(u0) + ϕ(tu) − ξ(d(u, u0)).
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Passing to the limit as k → ∞ and taking into account that (xk) is a minimizing sequence
for Ph at u, we have by (2.10)

ϕ(tu) ≤ ξ(d(u, u0)) + hinf(u) − hinf(u0) ≤ τu.

In view of (2.7) this contradicts the inequality ϕ−1(τu) < tu. So, (2.9) is proved for any
u ∈ domhinf satisfying (2.10).

In order to prove that
lim

u
hinf−→u0

�h,u0(u) = 0, (2.11)

we fix any sequence (uk) in domhinf such that uk
hinf−→ u0. We also fix any ε > 0. In view

of (2.8) one can find τ ∈]0, τ1[ such that ϕ−1(τ ) < ε. Since ξ(d(uk, u0)) + |hinf(uk) −
hinf(u0)| → 0 (here we use the assumption limt↓0 ξ(t) = 0), we have ξ(d(uk, u0)) +
|hinf(uk) − hinf(u0)| < τ for sufficiently large k. Then by (2.9) we have �h,u0(uk) ≤
ϕ−1(τ ) < ε for sufficiently large k. Consequently, �h,u0(uk) → 0 as k → ∞ and (2.11) is
proved. From (2.11) we see that Ph is AWP at u0.

Now assume that (2.6) holds for some λ, μ > 0. If t > τu

λ
, then ϕ(t) ≥ λt > τu. Hence,

ϕ−1(τu) = inf{t > 0 : ϕ(t) > τu} ≤ inf
{

t > 0 : t >
τu

λ

}

= τu

λ
. (2.12)

Define δ := τ1
1+μ

. For any u ∈ B(u0, δ) such that |hinf(u) − hinf(u0)| < δ (if any) we have

τu = ξ(d(u, u0)) + |hinf(u) − hinf(u0)|
≤ μd(u, u0) + |hinf(u) − hinf(u0)| < (μ + 1)δ = τ1

and by (2.9) and (2.12) we get

�h,u0(u) ≤ ϕ−1(τu) ≤ τu

λ
≤ μ

λ
d(u, u0) + 1

λ
|hinf(u) − hinf(u0)|.

Consequently, Ph is LAWP at u0.

Compliance, docility and meekness conditions introduced in [19, 20] are shown to
be useful tools in subdifferential calculus of optimal value functions. Let us compare
AWP condition with docility one, which is the closest to AWP among above mentioned
conditions.

Given ε ≥ 0, the ε-solution of Ph at u ∈ U is

Sε(u) = {x ∈ X : h(u, x) ≤ hinf(u) + ε}.
The function h : U × X → R ∪ {+∞} is called docile at u0 ∈ U if

∀α > 0 ∃η > 0, ∀u ∈ B(u0, η), ∀β > 0, Sβ(u) ∩ Sα(u0) �= ∅. (2.13)

Lemma 2.5 Let (U, d) and (X, d) be metric spaces. Assume that Ph is Tykhonov well-
posed at u0 ∈ U and h is docile at u0. Then Ph is AWP at u0.

Proof Fix any (uk) in U such that uk → u0 and hinf(uk) → hinf(u0) and fix any ε > 0.
It suffices to prove that �h,u0(uk) ≤ ε for sufficiently large k ∈ N. Since Ph is Tykhonov
well-posed at u0 it admits a unique solution x0 ∈ X (S0(u0) = {x0}) and there exists αε > 0
such that Sαε (u0) ⊂ B(x0, ε). Using docility condition one can find ηε > 0 such that for any
u ∈ B(u0, ηε) and any β > 0 we have Sβ(u)∩Sαε (u0) �= ∅. Since uk → u0 there exists Kε

such that uk ∈ B(u0, ηε) for all k ≥ Kε . Fix any k ≥ Kε and let us show that�h,u0(uk) ≤ ε.
Since Sβ(uk) ∩ Sαε (u0) �= ∅ for any β > 0, one can find a sequence (xn) inM(h, uk) such
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that xn ∈ Sαε (u0) for all n ∈ N. In view of the inclusions xn ∈ Sαε (u0) ⊂ B(x0, ε) we
obtain the desired inequality �h,u0(uk) ≤ ε.

Lemma 2.6 Let (U, d) and (X, d) be metric spaces. Assume that Ph is AWP at u0 ∈ U

and x0 ∈ X is the solution of Ph at u0. Suppose that h(u0, ·) is continuous at x0 and hinf is
continuous at u0. Then h is docile at u0.

Proof Assume the contrary. Then there exists α > 0 such that for any k ∈ N one can find
uk ∈ B(u0,

1
k
) and βk > 0 with Sβk

(uk) ∩ Sα(u0) = ∅. Since h(u0, ·) is continuous at x0
one can find δ > 0 such that h(u0, x) < h(u0, x0) + α for all x ∈ B(x0, δ) and hence
B(x0, δ) ⊂ Sα(u0). Let us show that �h,u0(uk) ≥ δ for all k ∈ N. Fix any k ∈ N. According
to Lemma 2.2 there exists a sequence (xn) in M(h, uk) such that limn→∞ d(xn, x0) =
�h,u0(uk). The inclusion (xn) ∈ M(h, uk) also gives xn ∈ Sβk

(uk) for sufficiently large
n. In view of Sβk

(uk) ∩ B(x0, δ) = ∅ we obtain d(xn, x0) ≥ δ for sufficiently large n, and
thus �h,u0(uk) ≥ δ > 0. Since uk ∈ B(u0,

1
k
) for all k ∈ N it follows that uk → u0. By

continuity of hinf at u0 we get hinf(uk) → hinf(u0). So, (2.3) is violated. This contradicts
the assumption that Ph is AWP at u0.

Remark 2.3 In general AWP condition does not imply docility condition. For example, let

U = X = R, h(u, x) =
{

0, u = x,

+∞, u �= x.

Then Ph is AWP (and even LAWP) at 0 but h is not docile at 0.
On the other hand, docility condition does not imply AWP condition. This can be seen

from the example h(u, x) = x2+u2

1+x4
with U = X = R. In the later example h is docile at 0

while Ph is not AWP at 0.

3 Subdifferentials of the Optimal Value Function

From now on let X be a normed linear space. Let f : X → R ∪ {+∞} be a given function
and let x ∈ dom f .

For any ε ≥ 0, the Fréchet ε-subdifferential of f at x is

∂F,εf (x) = {x∗ ∈ X∗ : ∀η > 0 ∃δ > 0, ∀x′ ∈ B(x, δ),

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + (ε + η)‖x′ − x‖}.
If ε = 0, then ∂F f := ∂F,εf is called the Fréchet subdifferential of f .

The proximal subdifferential of f at x is

∂P f (x) = {x∗ ∈ X∗ : ∃δ > 0, ∃r > 0, ∀x′ ∈ B(x, δ),

〈x∗, x′ − x〉 ≤ f (x′) − f (x) + r‖x′ − x‖2}.
TheMordukhovich limiting subdifferential ∂Lf (x) at x is the set of all x∗ ∈ X∗ such that

there exist εk ↓ 0, xk → x0 with f (xk) → f (x), and x∗
k → x∗ weak∗, x∗

k ∈ ∂F,εk f (xk) for
all k ∈ N (see [14]).

Hereinafter letU be also a normed linear space. Consider the linear spaceU×X endowed
with the norm

‖(u, x)‖ = max{‖u‖, ‖x‖}, (u, x) ∈ U × X. (3.1)
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As usual, we identify (U × X)∗ with U∗ × X∗ through the pairing

〈(u∗, x∗), (u, x)〉 = 〈u∗, u〉 + 〈x∗, x〉 ∀u ∈ U, ∀x ∈ X.

As earlier we consider an extended real-valued function h : U × X → R ∪ {+∞}.
Given a point (u, x) ∈ domh, we shall use ∂F,εh(u, x), ∂P h(u, x) and ∂Lh(u, x) to

denote correspondingly the Fréchet ε-subdifferential, the proximal subdifferential and the
limiting subdifferential of h at (u, x) with respect to the norm (3.1) in U × X.

We denote by ∂
F,ε
u h(u, x) (respectively by ∂P

u h(u, x)) the Fréchet ε-subdifferential
(respectively proximal subdifferential) of the function h(·, x) at the point u. We shall use
∂L
u h(u, x) to denote the set of all u∗ ∈ U∗ such that there exist εk ↓ 0, (uk, xk) → (u, x)

with h(uk, xk) → h(u, x), and u∗
k → u∗ weak∗, u∗

k ∈ ∂
F,εk
u h(uk, xk) for all k ∈ N.

Similarly, we define ∂
F,ε
x h(u, x), ∂P

x h(u, x) and ∂L
x h(u, x).

Remark 3.1 It follows immediately from the definitions that for any (u, x) ∈ domh

∂F,εh(u, x) ⊂ ∂F,ε
u h(u, x) × ∂F,ε

x h(u, x), ε ≥ 0,

∂P h(u, x) ⊂ ∂P
u h(u, x) × ∂P

x h(u, x),

∂Lh(u, x) ⊂ ∂L
u h(u, x)×∂L

x h(u, x).

The properties in the following lemma are easily verified and we omit their proofs.

Lemma 3.1 Let U and X be normed spaces and let x0 ∈ X be a solution of Ph at u0 ∈
domhinf. Then for any ε ≥ 0

∂F,εhinf(u0) × {0} ⊂ ∂F,εh(u0, x0),

∂F,εhinf(u0) ⊂ ∂F,ε
u h(u0, x0),

∂P hinf(u0) × {0} ⊂ ∂P h(u0, x0),

∂P hinf(u0) ⊂ ∂P
u h(u0, x0).

Remark 3.2 The inclusion ∂
F,ε
u h(u0, x0) ⊂ ∂F,εhinf(u0) generally fails. Consider, for

example, U = X = R, h(u, x) = |x − u|. Then hinf(u) = 0 for all u ∈ R, ∂F hinf(0) = {0},
while ∂F

u h(0, 0) = [−1, 1]. However an inclusion in the form
lim inf

h(u0,x)→hinf(u0)
∂F
u h(u0, x) ⊂ ∂F hinf(u0)

was obtained by Penot under docility assumption (2.13) and some additional assumptions
(see [19, Proposition 3.6] and related results in [19] and [20]).

The following theorem is an analogue of the first inclusion of Lemma 3.1 in the
case when the infimum is not achieved. It provides a sharp inclusion for the Fréchet
ε-subdifferential of the optimal value function.

Theorem 3.2 Let U and X be Banach spaces and h : U × X → R ∪ {+∞} be a lower
semicontinuous function. Let u∗ ∈ ∂F,εhinf(u) for some u ∈ domhinf and ε ≥ 0. Let δ > 0.
Then there exists β > 0 such that for any x ∈ X with h(u, x) < hinf(u) + β there exist
û ∈ B(u, δ), x̂ ∈ B(x, δ) with (u∗, 0) ∈ ∂F,ε+δh(̂u, x̂) and |h(̂u, x̂) − hinf(u)| < δ.
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Proof Fix any η > 0. By definition of the Fréchet ε-subdifferential there exists θ > 0 such
that

〈u∗, u′ − u〉 ≤ hinf(u
′) − hinf(u) + (ε + η)‖u′ − u‖ ∀u′ ∈ B[u, 2θ ]. (3.2)

Define

β1 := min

{

θ, δ,
δ

δ + ‖u∗‖∗
,

δ

ε + 2η + ‖u∗‖∗

}

and β := β2
1 .

Fix any x ∈ X with h(u, x) < hinf(u) + β = hinf(u) + β2
1 . Taking into account that

hinf(u
′) ≤ h(u′, x′) for any u′ ∈ U , x′ ∈ X, we have

〈u∗, u′ − u〉 ≤ h(u′, x′) − h(u, x) + (ε + η)‖u′ − u‖ + β2
1 ∀u′ ∈ B[u, 2θ ], ∀x′ ∈ X.

In terms of the function

g(u′, x′) := h(u′, x′) + (ε + η)‖u′ − u‖ − 〈u∗, u′〉, u′ ∈ U, x′ ∈ X

it means that

g(u′, x′) ≥ g(u, x) − β2
1 ∀u′ ∈ B[u, 2θ ], ∀x′ ∈ X.

Applying the Ekeland variational principle (see [3]) for the complete metric space B[u, 2θ ]
gives some û ∈ B[u, 2θ ] and x̂ ∈ X with

‖û − u‖ + ‖x̂ − x‖ ≤ β1, (3.3)

g(̂u, x̂) ≤ g(u, x), (3.4)

g(̂u, x̂) ≤ g(u′, x′) + β1 max{‖u′ − û‖, ‖x′ − x̂‖} ∀u′ ∈ B[u, 2θ ], ∀x′ ∈ X.

The latter inequality and the definition of g entail for all u′ ∈ B [̂u, β1] ⊂ B[u, 2θ ] and all
x′ ∈ X

〈u∗, u′ − û〉 ≤ h(u′, x′) − h(̂u, x̂) + β1 max{‖u′ − û‖, ‖x′ − x̂‖}
+(ε + η)(‖u′ − u‖ − ‖û − u‖)

≤ h(u′, x′) − h(̂u, x̂) + (ε + δ + η)max{‖u′ − û‖, ‖x′ − x̂‖},
and hence (u∗, 0) ∈ ∂F,ε+δh(̂u, x̂). Inequality (3.4) implies that

h(̂u, x̂) ≤ h(u, x) + 〈u∗, û − u〉 ≤ h(u, x) + β1‖u∗‖∗
< hinf(u) + β2

1 + β1‖u∗‖∗ ≤ hinf(u) + β1(δ + ‖u∗‖∗) ≤ hinf(u) + δ.

Using (3.2), (3.3), we have

hinf(u) − h(̂u, x̂) ≤ hinf(u) − hinf(̂u) ≤ −〈u∗, û − u〉 + (ε + η)‖û − u‖
≤ (‖u∗‖∗ + ε + η)β1 < δ.

So, |h(̂u, x̂) − hinf(u)| < δ, which finishes the proof.

Lemma 3.3 Let X be an Asplund space, f : X → R ∪ {+∞} be a lower semicontinuous
function, x0 ∈ dom f , ε ≥ 0, δ ≥ 0 and x∗

0 ∈ ∂F,ε+δf (x0). Then for any η > 0 there exist
x ∈ dom f and x∗ ∈ X∗ such that

‖x − x0‖ < η, |f (x) − f (x0)| < η, ‖x∗ − x∗
0‖∗ < δ + η, x∗ ∈ ∂F,εf (x).

Proof According to the definition of the Fréchet ε-subdifferential we have ∂F,tf (x0) =
∂F ft,x0(x0) for any t ≥ 0, where ft,x0(x) := f (x) + t‖x − x0‖ for any x ∈ X. Applying
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the fuzzy sum rule [4, Theorem 3] (valid in Asplund spaces) for the sum fε+δ,x0(x) =
fε,x0(x) + δ‖x − x0‖, we complete the proof.

As a consequence of Theorem 3.2 we obtain the result of Ngai and Penot [18, Theorem
3] for Asplund spaces.

Corollary 3.4 Let U and X be Asplund spaces and h : U × X → R ∪ {+∞} be a lower
semicontinuous function. Then for any u ∈ domhinf, ε ≥ 0 and u∗ ∈ ∂F,εhinf(u) there exist
sequences (uk) in U , (u∗

k) in U∗, (xk) in X and (x∗
k ) in X∗ with (u∗

k, x
∗
k ) ∈ ∂F,εh(uk, xk) for

all k ∈ N such that ‖uk − u‖ → 0, ‖u∗
k − u∗‖∗ → 0, ‖x∗

k ‖∗ → 0 and h(uk, xk) → hinf(u).

Proof Fix any sequence δk ↓ 0. By Theorem 3.2 there exist sequences (̂uk) in U and (̂xk)

in X with (u∗, 0) ∈ ∂F,ε+δk h(̂uk, x̂k), ‖ûk − u‖ < δk and |h(̂uk, x̂k) − hinf(u)| < δk for
all k ∈ N. For each k ∈ N the inclusion (u∗, 0) ∈ ∂F,ε+δk h(̂uk, x̂k) and Lemma 3.3 (where
we put η = δ = δk) give uk ∈ U , u∗

k ∈ U∗, xk ∈ X and x∗
k ∈ X∗ such that (u∗

k, x
∗
k ) ∈

∂F,εh(uk, xk), ‖uk − ûk‖ < δk , ‖x∗
k ‖∗ < 2δk , ‖u∗

k − u∗‖∗ < 2δk , |h(uk, xk) − h(̂uk, x̂k)| <

δk . This completes the proof.

Via Theorem 3.2 we have, under the AWP property for Ph, inclusions for the Mor-
dukhovich limiting subdifferential similar to those in Lemma 3.1.

Theorem 3.5 Let U and X be Banach spaces and h : U × X → R ∪ {+∞} be a lower
semicontinuous function. Assume that Ph is AWP at u0 ∈ U and x0 ∈ X is the solution of
Ph at u0. Then

∂Lhinf(u0) × {0} ⊂ ∂Lh(u0, x0), (3.5)

∂Lhinf(u0) ⊂ ∂L
u h(u0, x0). (3.6)

Proof Fix u∗ ∈ ∂Lhinf(u0). By definition of the limiting subdifferential there exist εk ↓ 0,
uk → u0 with hinf(uk) → hinf(u0), and u∗

k → u∗ weak∗, such that u∗
k ∈ ∂F,εkhinf(uk) for

all k ∈ N. Since Ph is AWP at u0 it follows that �h,u0(uk) → 0, where �h,u0(·) is defined
by (2.2). Applying Theorem 3.2 for u = uk , u∗ = u∗

k , ε = δ = εk gives βk > 0 such that for
any x ∈ X with h(uk, x) < hinf(uk)+βk there exist ûk = ûk(x) ∈ B(uk, εk), x̂k = x̂k(x) ∈
B(x, εk) with (u∗

k, 0) ∈ ∂F,2εkh(̂uk, x̂k) and |h(̂uk, x̂k) − hinf(uk)| < εk . Using Lemma 2.2
one can choose xk ∈ B(x0, �h,u0(uk) + εk) such that h(uk, xk) < hinf(uk) + βk . Denoting
x′
k = x̂k(xk), u′

k = ûk(xk), we have for any k ∈ N

u′
k ∈ B(uk, εk), x′

k ∈ B(xk, εk),

(u∗
k, 0) ∈ ∂F,2εkh(u′

k, x
′
k), |h(u′

k, x
′
k) − hinf(uk)| < εk .

Observing that

‖x′
k − x0‖ ≤ ‖x′

k − xk‖ + ‖xk − x0‖ ≤ εk + �h,u0(uk) + εk −→ 0,

‖u′
k − u0‖ ≤ ‖u′

k − uk‖ + ‖uk − u0‖ ≤ εk + ‖uk − u0‖ −→ 0,

we conclude that (u′
k, x

′
k) → (u0, x0). Further, taking into account that hinf(uk) →

hinf(u0) = h(u0, x0) and |h(u′
k, x

′
k) − hinf(uk)| < εk → 0, we see that h(u′

k, x
′
k) →

h(u0, x0). Consequently, (u∗, 0) ∈ ∂Lh(u0, x0), which proves (3.5). The other inclusion
(3.6) follows from (3.5) and Remark 3.1.
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Remark 3.3 The assumption of Theorem 3.5 that Ph is AWP at u0 is essential. Indeed,
consider the following continuous function

h(u, x) =
{ |x| + u, u ≤ 0 or |xu| ≤ 1,

max
{

u + 2
u

− |x|, 0
}

, u > 0 and |xu| > 1.

One can easily see that hinf(u) = min{u, 0} and Ph at u0 = 0 admits a unique solution
x0 = 0. So, 0 ∈ ∂Lhinf(0), while ∂L

u h(0, 0) = {1}. Consequently, ∂Lhinf(u0) �⊂ ∂L
u h(u0, x0).

According to Theorem 3.5 the problemPh is not AWP at u0. We suggest the reader to check
it directly.

Inspired by the famous Palais-Smale property, Ngai and Penot [18] introduced the
following condition (Cp) at u0 ∈ domhinf:

(Cp): if sequences (uk) in U , (u∗
k) in U∗, (xk) in X and (x∗

k ) in X∗ are such that
(x∗

k , u∗
k) ∈ ∂F h(uk, xk) for all k ∈ N, ‖uk − u0‖ → 0, u∗

k → u∗ weak∗, ‖x∗
k ‖∗ → 0 and

h(uk, xk) → hinf(u0), then there exists a convergent subsequence of (xk).
The following result of Ngai and Penot is akin to Theorem 3.5.

Proposition 3.6 ([18, Corollary 5]). Assume that U and X are Asplund spaces, a function
h : U × X → R ∪ {+∞} is lower semicontinuous, u0 ∈ domhinf, u∗ ∈ ∂Lhinf(u0)

and condition (Cp) is satisfied. Then there exists a solution x0 of Ph such that (u∗, 0) ∈
∂Lh(u0, x0).

Example 3.1 Let U = X = R, u0 = 0, u∗ = 0 and

h(u, x) = |x|
(

(1 − xu)2 + u4
)

, u, x ∈ R.

For any u ∈ R one can easily see that hinf(u) = 0, xk → 0 for any minimizing sequence
(xk) ∈ M(h, u) and x0 = 0 is a unique solution for Ph at u. Hence, �h,u0(u) = 0 for
all u ∈ R and Ph is AWP at u0. However condition (Cp) is not satisfied in this example.
Indeed, consider sequences xk = k, uk = 1

k
, x∗

k = 1
k4
, u∗

k = 4
k2
. Observe that (x∗

k , u∗
k) ∈

∂F h(uk, xk) for all k ∈ N, ‖uk−u0‖ → 0, ‖x∗
k ‖∗ → 0, u∗

k → u∗ and h(uk, xk) → hinf(u0),
but the sequence (xk) has no convergent subsequence. This example shows that Theorem
3.5 does not follow from Proposition 3.6 even in Asplund space.

In the next corollary we shall need the following proposition (see [14, Theorem 2.33])
on the Mordukhovich limiting subdifferential of a sum.

Proposition 3.7 LetX be an Asplund space. Let f, g : X → R∪{+∞} be two proper lower
semicontinuous functions, one of them being Lipschitz continuous around x ∈ dom f ∩
dom g. Then

∂L(f + g)(x) ⊂ ∂Lf (x) + ∂Lg(x).

For a set C ⊂ X we denote by dC and ψC the distance function and the indicator
function, that is,

dC(x) := inf
y∈C

‖x − y‖, (3.7)

ψC(x) :=
{

0, x ∈ C,

+∞, x ∈ X \ C.
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The Mordukhovich limiting normal cone of the set C ⊂ X at x ∈ C is the limiting
subdifferential of the function ψC :

NL
C (x) := ∂LψC(x). (3.8)

Given a function f : U × X → R ∪ {+∞} and a multifunction G : U ⇒ X, consider for
u ∈ U the problem:

Minimize f (u, x) over x ∈ G(u). (3.9)

Problem (3.9) is equivalent to the problem Ph with

h(u, x) := f (u, x) + ψgphG(u, x), u ∈ U, x ∈ X,

where gphG = {(u, x) ∈ U × X : x ∈ G(u)} is the graph of G.
The optimal value of (3.9) is

hinf(u) = inf
x∈X

h(u, x) = inf
x∈G(u)

f (u, x). (3.10)

We shall say that problem (3.9) is AWP at u0 ∈ U if Ph is AWP at u0.

Corollary 3.8 Let U and X be Asplund spaces, G : U ⇒ X be a multifunction with closed
graph and f : U × X → R be a lower semicontinuous function. Let problem (3.9) be AWP
at u0 ∈ U and let x0 ∈ X be the solution of this problem at u0. Assume that f is Lipschitz
continuous around (u0, x0).

Then the limiting subdifferential of the optimal value function (3.10) satisfies the
following inclusion:

∂Lhinf(u0) × {0} ⊂ ∂Lf (u0, x0) + NL
gphG(u0, x0). (3.11)

If additionally for any u sufficiently close to u0 the function f (u, ·) is Lipschitz on X

with some Lipschitz constant κ ′(u) < κ , where κ doesn’t depend on u, then

∂Lhinf(u0) × {0} ⊂ ∂Lf (u0, x0) + κ∂L�G(u0, x0) (3.12)

where
�G(u, x) := dG(u)(x) = inf

y∈G(u)
‖x − y‖, u ∈ U, x ∈ X.

Proof Using Theorem 3.5 and Proposition 3.7 we obtain

∂Lhinf(u0) × {0} ⊂ ∂Lh(u0, x0) = ∂L(f + ψgphG)(u0, x0)

⊂ ∂Lf (u0, x0) + ∂LψgphG(u0, x0)

= ∂Lf (u0, x0) + NL
gphG(u0, x0).

So, (3.11) is proved. Let us prove (3.12).
Let a neighborhood U0 of u0 be such that for any u ∈ U0 the function f (u, ·) is Lipschitz

continuous on X with Lipschitz constant κ ′(u) < κ . Consider the function

h̃(u, x) = f (u, x) + κdG(u)(x) = f (u, x) + κ�G(u, x), u ∈ U, x ∈ X.

Observe that for each u ∈ U0 one has h̃inf(u) = hinf(u) and any minimizing sequence for
Ph at u is a minimizing sequence for P

h̃
at u. Consequently, �

h̃,u0
(u) ≤ �h,u0(u) for all

u ∈ U0. Since x0 is a unique solution of problem (3.9) at u0, it follows that x0 is a unique
solution for P

h̃
at u0. So, Ph̃

is AWP at u0. According to Proposition 3.7 we have

∂Lh̃(u0, x0) ⊂ ∂Lf (u0, x0) + κ∂L�G(u0, x0).
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Using Theorem 3.5 for h̃ in place of h, we obtain

∂Lhinf(u0) × {0} = ∂Lh̃inf(u0) × {0} ⊂ ∂Lh̃(u0, x0)

⊂ ∂Lf (u0, x0) + κ∂L�G(u0, x0).

In view of the equality NL
C (u0, x0) = ⋃

s≥0 s∂LdC(u0, x0) (see (4.21) and [22])
inclusion (3.11) may be rewritten in the form

∂Lhinf(u0) × {0} ⊂ ∂Lf (u0, x0) +
⋃

s≥0

s∂LdgphG(u0, x0).

So, inclusion (3.11) correlates with [22, Proposition 3.1] and other results of Thibault.
Inclusion (3.12) is akin to the result of Ngai, Luc and Théra [17, Theorem 2.5].

4 Subdifferentials of the Infimal Convolution

The Moreau-type infimal convolution of two functions f, g : X → R ∪ {+∞} is
(f � g)(u) = inf

x∈X

(

f (x) + g(u − x)
)

, u ∈ X.

The infimal convolution problem Pf,g at a point u ∈ X is the problem Ph with

h(u, x) = f (x) + g(u − x), u, x ∈ X.

Applying Lemma 2.3(b) to the function h(u, x) = f (x)+g(u−x), we obtain the following
lemma.

Lemma 4.1 Let X be a normed space. Assume that g : X → R is uniformly continuous
and Pf,g is Tykhonov well-posed at u0 ∈ dom (f � g). Then Pf,g is AWP at u0.

Lemma 4.2 Let X be a normed space and let any ε ≥ 0 be given. Assume that x0 ∈ X is a
solution of Pf,g at u0 ∈ dom (f � g). Then

∂F,ε(f � g)(u0) ⊂ ∂F,εf (x0)
⋂

∂F,εg(u0 − x0), (4.1)

∂P (f � g)(u0) ⊂ ∂P f (x0)
⋂

∂P g(u0 − x0). (4.2)

Proof Using the second inclusion of Lemma 3.1 for h(u, x) = f (x) + g(u − x), we obtain

∂F,ε(f � g)(u0) = ∂F,εhinf(u0) ⊂ ∂F,ε
u h(u0, x0) = ∂F,εg(u0 − x0).

Similarly, using the second inclusion of Lemma 3.1 for h̃(u, x̃) = f (u − x̃) + g(x̃) and
x̃0 = u0 − x0, we have

∂F,ε(f � g)(u0) = ∂F,εh̃inf(u0) ⊂ ∂F,ε
u h̃(u0, x̃0) = ∂F,εf (u0 − x̃0) = ∂F,εf (x0).

So, (4.1) is proved. The proof of (4.2) is similar.

Inclusion (4.1) was previously obtained in [1, Lemma 3.6] for ε = 0 and in [15, Propo-
sition 2.1] for ε ≥ 0. This inclusion correlates with the result of Kecis and Thibault
[10, Theorem 3.1]. In a particular case when g is a Minkowski functional, Lemma 4.2 was
proved in [6, Theorem 3.1].

In the case of infimal convolution, Theorem 3.2 can be translated as follows.
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Corollary 4.3 Let X be a Banach space, f, g : X → R ∪ {+∞} be lower semicontinuous
functions, u ∈ dom (f � g), ε ≥ 0 and u∗ ∈ ∂F,ε(f � g)(u). Let δ > 0. Then there exists
β > 0 such that for any x, z ∈ X with x + z = u and f (x) + g(z) < (f � g)(u) + β there
exist x̂ ∈ B(x, δ) and ẑ ∈ B(z, δ) with

u∗ ∈ ∂F,ε+δf (̂x)
⋂

∂F,ε+δg(̂z), (4.3)

|f (̂x) + g(̂z) − (f � g)(u)| < δ. (4.4)

Proof Applying Theorem 3.2 for the function

h(u′, x′) = f (x′) + g(u′ − x′), u′, x′ ∈ X

and δ
2 in place of δ gives β > 0 such that for any x ∈ X with f (x) + g(u − x) <

(f � g)(u) + β there exist û ∈ B
(

u, δ
2

)

, x̂ ∈ B
(

x, δ
2

)

such that (u∗, 0) ∈ ∂F,ε+δ/2h(̂u, x̂)

and (4.4) holds true with ẑ = û − x̂. Due to the inclusion (u∗, 0) ∈ ∂F,ε+δ/2h(̂u, x̂) there
exists θ > 0 such that for all u′ ∈ B(̂u, θ), x′ ∈ B(̂x, θ)

〈u∗, u′ − û〉 ≤ h(u′, x′) − h(̂u, x̂) + (ε + δ)max{‖u′ − û‖, ‖x′ − x̂‖}
= f (x′) − f (̂x) + g(u′ − x′) − g(̂u − x̂)

+(ε + δ)max{‖u′ − û‖, ‖x′ − x̂‖}.
Putting u′ = û − x̂ + x′ we get

〈u∗, x′ − x̂〉 ≤ f (x′) − f (̂x) + (ε + δ)‖x′ − x̂‖ ∀x′ ∈ B(̂x, θ).

Consequently, u∗ ∈ ∂F,ε+δf (̂x).
Similarly, setting x′ = x̂, u′ = û − ẑ + z′ we obtain

〈u∗, z′ − ẑ〉 ≤ g(z′) − g(̂z) + (ε + δ)‖z′ − ẑ‖ ∀z′ ∈ B(̂z, θ)

and hence u∗ ∈ ∂F,ε+δg(̂z).

Similarly to the proof of Corollary 3.4 one can easily see that for Asplund spaces
Corollary 6 of Ngai and Penot [18] follows directly from Corollary 4.3.

The next theorem gives the description of the Fréchet and proximal subdifferentials of
the infimal convolution under LAWP conditions.

Theorem 4.4 Let X be a normed space. Assume that x0 ∈ X is a solution of Pf,g at
u0 ∈ dom (f � g), f � g is lower semicontinuous at u0 and Pf,g is LAWP at u0. Then for
any R > 0 there exist positive reals λ and ε0 such that for any ε ∈ [0, ε0] and z0 = u0 − x0
one has

∂F,εf (x0)
⋂

∂F,εg(z0)
⋂

B(0, R) ⊂ ∂F,λε(f � g)(u0). (4.5)

Furthermore,
∂F (f � g)(u0) = ∂F f (x0)

⋂

∂F g(z0), (4.6)

∂P (f � g)(u0) = ∂P f (x0)
⋂

∂P g(z0). (4.7)

Proof Consider the functions h(u, x) = f (x) + g(u − x) with u, x ∈ X and hinf = f � g.
Since Pf,g is LAWP at u0, there exist positive reals λ1, λ2, δ1 such that

�h,u0(u) ≤ λ1‖u − u0‖ + λ2 |hinf(u) − hinf(u0)|
for all u ∈ B(u0, δ1) with |hinf(u) − hinf(u0)| < δ1. (4.8)
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Fix any R > 0 and denote

λ = 4(1 + λ1 + λ2R), ε0 = 1

8λ2
.

Consider any ε ∈ [0, ε0] and let us prove (4.5).
Fix any u∗ ∈ ∂F,εf (x0)

⋂

∂F,εg(z0)
⋂

B(0, R) and η ∈]0, ε0]. By definition of the
Fréchet ε-subdifferential there exists a positive real δ2 < min{δ1, 4λ2δ1} such that

〈u∗, x − x0〉 ≤ f (x) − f (x0) + (ε + η)‖x − x0‖ ∀x ∈ B(x0, δ2), (4.9)

〈u∗, z − z0〉 ≤ g(z) − g(z0) + (ε + η)‖z − z0‖ ∀z ∈ B(z0, δ2). (4.10)

As hinf is lower semicontinuous at u0, one can find a positive real δ3 ≤ δ2/λ such that

hinf(u0) ≤ hinf(u) + δ2

4λ2
∀u ∈ B(u0, δ3). (4.11)

Fix any u ∈ B(u0, δ3) and let us prove that

〈u∗, u − u0〉 ≤ hinf(u) − hinf(u0) + λ(ε + η)‖u − u0‖. (4.12)

If hinf(u) − hinf(u0) > δ2/(4λ2), then

〈u∗, u − u0〉 ≤ ‖u∗‖ · ‖u − u0‖ ≤ Rδ3 ≤ Rδ2

λ
<

δ2

4λ2
< hinf(u) − hinf(u0)

and (4.12) holds true. Further, we suppose that hinf(u) − hinf(u0) ≤ δ2/(4λ2). Taking into
account (4.11), we get

|hinf(u0) − hinf(u)| ≤ δ2

4λ2
< δ1.

Consequently, (4.8) implies that

�h,u0(u) ≤ λ1δ3 + λ2
δ2

4λ2
≤ λ1δ2

λ
+ δ2

4
<

δ2

2
.

According to Lemma 2.2 there exists a sequence (xk) ∈ M(h, u) such that limk→∞ ‖xk −
x0‖ = �h,u0(u) < δ2

2 . Denoting zk = u−xk , we see that ‖zk−z0‖ ≤ ‖xk−x0‖+‖u−u0‖ <

‖xk − x0‖ + δ3, and hence lim supk→∞ ‖zk − z0‖ < δ2. Using (4.9), (4.10), we have for
sufficiently large k

〈u∗, xk − x0〉 ≤ f (xk) − f (x0) + (ε + η)‖xk − x0‖,
〈u∗, zk − z0〉 ≤ g(zk) − g(z0) + (ε + η)‖zk − z0‖.

Adding this two inequalities together, we arrive at

〈u∗, u − u0〉 ≤ f (xk) + g(zk) − f (x0) − g(z0) + (ε + η) (‖xk − x0‖ + ‖zk − z0‖) .
Since (xk) ∈ M(h, u), it follows that f (xk) + g(zk) = h(u, xk) → hinf(u). Passing to the
limit as k → ∞, we obtain

〈u∗, u − u0〉 ≤ hinf(u) − hinf(u0) + (ε + η)
(

2�h,u0(u) + ‖u − u0‖
)

. (4.13)

Denoting D := 〈u∗, u − u0〉 − hinf(u) + hinf(u0), by (4.8) we get

�h,u0(u) ≤ λ1‖u − u0‖ + λ2 |hinf(u) − hinf(u0)|
≤ λ1‖u − u0‖ + λ2(|D| + |〈u∗, u − u0〉|)
≤ (λ1 + λ2R)‖u − u0‖ + λ2|D|.
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So, (4.13) implies that

D ≤ 2(ε + η)
(

(λ1 + λ2R)‖u − u0‖ + λ2|D| + ‖u − u0‖
)

≤ λ(ε + η)

2
‖u − u0‖ + 2(ε + η)λ2|D|.

As ε ≤ ε0 and η ≤ ε0, we have ε + η ≤ 2ε0 = 1
4λ2

, and hence D ≤ λ(ε+η)
2 ‖u − u0‖ + |D|

2 .
If D ≥ 0, the latter inequality yields

D ≤ λ(ε + η)‖u − u0‖. (4.14)

In the other case (D < 0) (4.14) is still valid. Thus (4.12) is proved, that is, for any η ∈]0, ε0]
one can find δ3 > 0 such that

〈u∗, u − u0〉 ≤ hinf(u) − hinf(u0) + λ(ε + η)‖u − u0‖ ∀u ∈ B(u0, δ3).

Consequently, u∗ ∈ ∂F,λε(f � g)(u0) and (4.5) is proved. Using (4.5) and (4.1) for ε = 0
we obtain (4.6).

The proof of inclusion (4.7) is similar.

Example 4.1 Let X = R
2,

f (x1, x2) =
{ −|x2|3, x1 = 0,

+∞, x1 �= 0,
g(x1, x2) =

{

0, x1 = x3
2 ,+∞, x1 �= x3
2 ,

for all (x1, x2) ∈ R
2. One can easily see that (x1, x2) =

(

0, u2 − u
1/3
1

)

is a unique

solution of Pf,g at (u1, u2). Therefore (f � g)(u1, u2) = −
∣

∣

∣u2 − u
1/3
1

∣

∣

∣

3
, in particular,

(f � g)(u1, 0) = −|u1|, (0, 0) ∈ ∂F f (0, 0)
⋂

∂F g(0, 0), but (0, 0) �∈ ∂F (f � g)(0, 0).
According to Remark 2.1, Pf,g is AWP at (0, 0). This example shows that in Theorem 4.4
the assumption that Pf,g is LAWP can’t be reduced to the assumption that Pf,g is AWP.

The next theorem provides sufficient conditions for Pf,g to be LAWP and as a
consequence sufficient conditions for description of the subdifferentials of the infimal
convolution.

Theorem 4.5 Let X be a normed space and α, β ∈ R with α < β. Suppose that functions
f : X → R∪{+∞}, g : X → R and points x0 ∈ dom f , z0 ∈ dom g satisfy the inequalities

f (x) − f (x0) ≥ −α‖x − x0‖ ∀x ∈ X, (4.15)

g(z) − g(z0) ≥ β‖z − z0‖ ∀z ∈ X. (4.16)

Then

(a) Pf,g admits x0 as unique solution at u0 = x0 + z0, f � g is lower semicontinuous at
u0 and Pf,g is LAWP at u0;

(b) equalities (4.6), (4.7) are valid;
(c) for anyR > 0 there exist positive reals λ and ε0 such that for any ε ∈ [0, ε0] inclusion

(4.5) is valid as well.

Proof For the function h(u, x) = f (x) + g(u − x) we have for any u, x ∈ X

h(u, x)−h(u0, x0) ≥ −α‖x−x0‖+β‖u−x−u0+x0‖ ≥ (β−α)‖x−x0‖−|β| ·‖u−u0‖.
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Using Proposition 2.4 for ϕ(t) = λt , ξ(t) = μt with λ = β − α, μ = |β|, we obtain
assertion (a). Applying Theorem 4.4, we get assertions (b) and (c).

A function f : X → R ∪ {+∞} is called lower regular at a point x ∈ dom f (see [13])
whenever

∂Lf (x) = ∂F f (x).

Theorem 4.6 Let X be a Banach space, f, g : X → R ∪ {+∞} be lower semicontinuous
functions and x0 ∈ X be the solution of Pf,g at u0 ∈ dom (f � g), z0 = u0 − x0.

(a) If Pf,g is AWP at u0 ∈ X, then

∂L(f � g)(u0) ⊂ ∂Lf (x0)
⋂

∂Lg(z0). (4.17)

(b) If Pf,g is LAWP at u0, f and g are lower regular at x0 and z0 respectively, and f � g

is lower semicontinuous at u0, then f � g is lower regular at u0 and inclusion (4.17)
holds as an equality.

Proof (a). Using Theorem 3.5 for h(u, x) = f (x) + g(u − x), we obtain

∂L(f � g)(u0) = ∂Lhinf(u0)⊂ ∂L
u h(u0, x0) = ∂Lg(z0).

Similarly, using Theorem 3.5 for h̃(u, z) = f (u − z) + g(z), we obtain

∂L(f � g)(u0) = ∂Lh̃inf(u0)⊂ ∂L
u h̃(u0, z0) = ∂Lf (u0 − z0) = ∂Lf (x0).

So, (4.17) is proved.
(b). Using inclusion (4.17) and equality (4.6) of Theorem 4.4, one has

∂L(f � g)(u0) ⊂ ∂Lf (x0)
⋂

∂Lg(z0) = ∂F f (x0)
⋂

∂F g(z0)

= ∂F (f � g)(u0) ⊂ ∂L(f � g)(u0).

Theorem 4.6(b) improves Theorem 4.1 from [7], where g was supposed to be a
Minkowski functional.

Using Theorem 4.6(a) and sufficient conditions for Pf,g to be AWP we obtain the
following corollary.

Corollary 4.7 Let X be a Banach space, f, g : X → R ∪ {+∞} be lower semicontinuous
functions and x0 ∈ X be the solution of Pf,g at u0 ∈ dom (f � g), z0 = u0 − x0. Assume,
in addition, that at least one of the following conditions holds:

(a) the function g : X → R is uniformly continuous and the problem Pf,g is Tykhonov
well-posed at u0; or

(b) inequalities (4.15), (4.16) are satisfied with some α, β ∈ R such that α < β.

Then inclusion (4.17) holds true.
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Proof In case (a) inclusion (4.17) follows from Lemma 4.1 and Theorem 4.6(a). In case (b)
it suffices to apply Theorem 4.5(a) and Theorem 4.6(a).

In the particular case when g is a Minkowski functional, Corollary 4.7 was proved in
[7, Theorems 3.1, 3.2]. In [16, Theorem 5.5] Corollary 4.7(b) was proved in another case,
namely when g is subaditive and coercive with some constant � > 0 and f is Lipschitz
continuous on dom f with a constant m < �.

Remark 4.1 Let the problem Pf,g be LAWP (and hence AWP) at a point u ∈ dom (f � g)

and let x ∈ X be the solution of Pf,g at u. The inclusion

∂Lf (x)
⋂

∂Lg(u − x) ⊂ ∂L(f � g)(u) (4.18)

fails in general. Indeed, consider in R
2 the functions

f (x1, x2) = |x1| + min{|x1|, |x2|}, g(x1, x2) = |x2| + min{|x1|, |x2|}.
Observing that f (x1, x2) ≥ 0 and g(x1, x2) ≥ 0 for all (x1, x2) ∈ R

2, we get
(f � g)(u1, u2) ≥ 0 for all (u1, u2) ∈ R

2. On the other hand, since f (0, u2) = g(u1, 0) =
0 it follows that (f � g)(u1, u2) ≤ f (0, u2)+g(u1, 0) = 0. Thus, (f � g)(u1, u2) = 0 and
(0, u2) is a solution of Pf,g at any (u1, u2) ∈ R

2. Since the function (u1, u2) �→ (0, u2) is
Lipschitz continuous, it follows that Pf,g is LAWP at any point (u1, u2) ∈ R

2.
Consider the functional x∗ = (1, 1), i.e., 〈x∗, (u, x)〉 = u + x for all (u, x) ∈ R

2. Since
f (x1, x2) = x1 +x2 for all (x1, x2) such that 0 < x2 < x1, it follows that x∗ ∈ ∂F f (x1, x2)

whenever 0 < x2 < x1 and, therefore, x∗ ∈ ∂Lf (0, 0). Similarly, x∗ ∈ ∂Lg(0, 0). On the
other hand, x∗ �∈ ∂L(f � g)(0, 0) = {(0, 0)}, since (f � g)(u1, u2) = 0 for all (u1, u2) ∈
R
2. So, in this example inclusion (4.18) is false.

Theorem 4.8 Let X be a Banach space, f, g : X → R ∪ {+∞} be lower semicontinuous
functions. Let g be lower regular at z0 ∈ dom g and satisfy (4.16) for some β ∈ R. Suppose,
in addition, that at least one of the following conditions holds:

(a) X is finite-dimensional, f is Lipschitz continuous on dom f with some constant α <

β and x0 ∈ dom f ; or
(b) f is lower regular at x0 ∈ dom f and satisfies the inequality (4.15) with α < β.

Then

∂L(f � g)(x0 + z0) = ∂Lf (x0)
⋂

∂Lg(z0).

In case (b) the function f � g is lower regular at the point (x0 + z0).

Proof First assume that condition (a) holds. Fix any x′
0 ∈ dom f . Since f is Lipschitz

continuous on dom f with constant α, it follows that inequality (4.15) with x′
0 in place of

x0 holds true. According to Theorem 4.5(a) the problem Pf,g is LAWP at x′
0 + z0 for any

x′
0 ∈ dom f .
Fix any u∗ ∈ ∂Lf (x0)

⋂

∂Lg(z0). By definition of the limiting subdifferential there exist
εk ↓ 0, u∗

k → u∗ and xk → x0 such that f (xk) → f (x0) and u∗
k ∈ ∂F,εk f (xk) for all k ∈ N.

Due to the lower regularity of g one has ∂Lg(z0) = ∂F g(z0). Since u∗
k → u∗ ∈ ∂F g(z0),

there exists ε′
k ↓ 0 with ε′

k ≥ εk and u∗
k ∈ ∂F g(z0) + B(0, ε′

k) ⊂ ∂F,ε′
k g(z0) for all k ∈ N.
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According to Theorem 4.5(c) there exists λ > 0 such that for all sufficiently large k we
have u∗

k ∈ ∂F,λε′
k (f � g)(xk + z0). Observe that (f � g)(xk + z0) = f (xk) + g(z0) →

f (x0) + g(z0) = (f � g)(x0 + z0). It ensures that u∗ ∈ ∂L(f � g)(x0 + z0) and hence

∂Lf (x0)
⋂

∂Lg(z0) ⊂ ∂L(f � g)(x0 + z0).

The reverse inclusion follows from Corollary 4.7(b).
In the case (b) Theorem 4.5(a) and Theorem 4.6(b) imply the desired statement.

Under additional assumptions that g is positively homogeneous and subadditive, while
f is Lipschitz continuous on dom f in both cases (a) and (b), Theorem 4.8 was proved in
[16, Theorem 5.5]. Case (b) of Theorem 4.8 under the assumption that g is a Minkowski
functional was established in [7, Theorem 4.2].

Observe that for g(·) = ‖ · ‖ one has (ψC � g)(·) = dC(·) (see (3.7)). Given a closed set
C in a Banach space X and x0 ∈ C, applying Theorem 4.8 for f (·) = ψC(·) and g(·) = ‖·‖
either in the case when X is finite-dimensional or in the case when ψC is lower regular at
x0, one obtains the well known equality

∂LdC(x0) = NL
C (x0)

⋂

B[0, 1].
In the paper [7] we give an example of a closed set C ⊂ �2 such that for some x0 ∈ C

NL
C (x0)

⋂

B[0, 1] �⊂ ∂LdC(x0).

This example shows that the assumption of Theorem 4.8 that either X is finite-dimensional
or f is lower regular at x0 is essential.

Theorem 4.9 Let C be a closed subset of a Banach space X and x0 ∈ C. Let g : X →
R ∪ {+∞} be a lower semicontinuous function which satisfies (4.16) for some β > 0 and
z0 ∈ dom g. Then

NL
C (x0) =

⋃

s≥0

s∂L(ψC � g)(x0 + z0).

Proof In view of (4.16) one has g(z0) = minz∈X g(z). Consequently, for any x ∈ C

g(z0) = min
x′∈X

ψC(x′) + min
z∈X

g(z) ≤ (ψC � g)(x + z0) ≤ ψC(x) + g(z0) = g(z0).

So,

(ψC � g)(x + z0) = g(z0) ∀x ∈ C. (4.19)

Fix any u∗ ∈ NL
C (x0) = ∂LψC(x0). By the definition of the limiting subdifferential there

exist εk ↓ 0, u∗
k → u∗ weak∗ and xk → x0 such that xk ∈ C and u∗

k ∈ ∂F,εkψC(xk) for
all k ∈ N. Since the sequence (u∗

k) converges weak
∗, it is bounded and hence there exists

s > 0 such that u∗
k ∈ B(0, sβ) for all k ∈ N. Inequality (4.16) implies that B(0, β) ⊂

∂F g(z0). Therefore,
u∗

k

s
∈ ∂F g(z0) for all k ∈ N. Since u∗

k ∈ ∂F,εkψC(xk), it follows that
u∗

k

s
∈ ∂F,εk/sψC(xk). Observe that the function f = ψC satisfies (4.15) with α = 0 at

x0 and at xk in place of x0 as well. According to Theorem 4.5(c) there exists λ > 0 such

that
u∗

k

s
∈ ∂F,λεk (ψC � g)(xk + z0) for all sufficiently large k. It follows by (4.19) that
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(ψC � g)(xk + z0) = g(z0) = (ψC � g)(x0 + z0). Consequently, by the definition of the
limiting subdifferential u∗

s
∈ ∂L(ψC � g)(x0 + z0). So, the inclusion

NL
C (x0) ⊂

⋃

s≥0

s∂L(ψC � g)(x0 + z0) (4.20)

is proved. Corollary 4.7(b) implies that ∂L(ψC � g)(x0 + z0) ⊂ ∂LψC(x0) = NL
C (x0). Due

to conicity of NL
C (x0) we get the reverse inclusion to (4.20).

Taking g(·) := ‖ · ‖ and z0 := 0, Theorem 4.9 generalizes the result of Thibault [22] that
for any point x0 of a closed subset C in a Banach space

NL
C (x0) =

⋃

s≥0

s∂LdC(x0). (4.21)

Theorem 4.9 also includes, as a corollary, Proposition 2.7 in Thibault [22] for the Mor-
dukhovich limiting normal cone of the graph of a multifunction G : U ⇒ X which is closed
near (u0, x0) ∈ gphG, that is, there is a neighborhood W of (u0, x0) such that W ∩ gphG

is closed in W relative to the induced topology.

Corollary 4.10 Let U and X be Banach spaces and let G : U ⇒ X be a multifunction the
graph of which is closed near (u0, x0) ∈ gphG. For the function �G : U × X → R defined
by

�G(u, x) = inf
y∈G(u)

‖x − y‖, x ∈ X, u ∈ U,

one has the equality

NL
gphG(u0, x0) =

⋃

s≥0

s∂L�G(u0, x0). (4.22)

Proof Without loss of generality, we may and do suppose that gphG is closed. Consider
for (u, x) ∈ U × X the problem:

Minimize ‖x − y‖ over y ∈ G(u).

The optimal value function of this problem coincides with

�G(u, x) = inf
y∈G(u)

‖x − y‖, x ∈ X, u ∈ U,

and this function �G is clearly the infimal convolution

�G = ψgphG � g

of the indicator function of the graph gphG and of the function

g(u, x) = ‖x‖ + ψ{0}(u) =
{ ‖x‖, u = 0,

+∞, u �= 0,
u ∈ U, x ∈ X.

Fix any (u0, x0) ∈ gphG. Since g satisfies (4.16) with z0 = (0, 0) and β = 1 (as easily
seen), Theorem 4.9 applied to the closed set C = gphG yields (4.22).
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imal subdifferentials, Set-Valued and Variational Analysis. https://doi.org/10.1007/s11228-016-0398-z
(2017)

7. Ivanov, G.E., Thibault, L.: Infimal convolution and optimal time control problem II: Limiting subdiffer-
ential. Set-Valued and Variational Analysis 25(3), 517–542 (2017)

8. Ivanov, G.E., Thibault, L.: Infimal convolution and optimal time control problem III: minimal time
projection set. SIAM J. Optim. 28(1), 30–44 (2018)

9. Jourani, A., Thibault, L., Zagrodny, D.: Differential properties of the Moreau envelope. J. Funct. Anal.
266(3), 1185–1237 (2014)

10. Kecis, I., Thibault, L.: Moreau envelopes of s-lower regular functions. Nonlinear Anal. 127, 157–181
(2015)

11. Kruger, A.Y.: Properties of generalized differentials. Sib. Math. J. 26, 822–832 (1985)
12. Lucchetti, R., Zolezzi, T.: On well-posedness and stability analysis in optimization. In: Fiacco, A. (ed.)

Mathematical Programming with Data Perturbations, Lecture Notes Pure Appl. Math. vol. 195 Dekker,
pp. 223–251 (1998)

13. Mordukhovich, B.S.: Approximation methods in problems of optimization and control. Wiley, New York
(2005)

14. Mordukhovich, B.S.: Variational analysis and generalized differentiation I: Basic Theory, II: Applica-
tions. Springer, Berlin (2006)

15. Nam, N.M.: Subdifferential formulas for a class of nonconvex infimal convolutions. Optimization 64,
2213–2222 (2015)

16. Nam, N.M., Cuong, D.V.: Generalized differentiation and characterizations for differentiability of
infimal convolutions. Set-Valued Var. Anal. 23, 333–353 (2015)

17. Van Ngai, H., The Luc, D., Théra, M.: Extensions of fréchet ε-subdifferential calculus and applicationss.
J. Math. Anal. Appl. 268, 266–290 (2002)

18. Van Ngai, H., Penot, J.-P.: Subdifferentiation of regularized functions. Set-Valued Var. Anal. 24, 167–189
(2016)

19. Penot, J.-P.: Differentiability properties of optimal value functions. Canad. J. Math. 56(4), 825–842
(2004)

20. Penot, J.-P.: Calmness and stability properties of marginal and performance functions. Numer. Funct.
Anal. Optim. 25(3-4), 287–308 (2004)

21. Penot, J.-P.: Calculus without derivatives graduate texts in mathematics, vol. 266. Springer, New York
(2013)

22. Thibault, L.: On subdifferentials of optimal value functions. SIAM J. Control Optim. 29(5), 1019–1036
(1991)

23. Tykhonov, A.N.: On the stability of the functional optimization problem. USSR Journal of Computa-
tional Mathematics and Mathematical Physics 6(4), 631–634 (1966)

24. Zolezzi, T.: Well-posedness and optimization under perturbations. Ann. Oper. Res. 101, 351–361 (2001)

861

https://doi.org/10.1007/s11228-016-0398-z

	Well-posedness and Subdifferentials of Optimal Value and Infimal...
	Abstract
	Abstract
	Introduction
	Approximative Well-posedness
	Subdifferentials of the Optimal Value Function
	Subdifferentials of the Infimal Convolution
	References


