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Abstract In this paper, we introduce a new class of nonsmooth convex functions called
SOS-convex semialgebraic functions extending the recently proposed notion of SOS-convex
polynomials. This class of nonsmooth convex functions covers many common nonsmooth
functions arising in the applications such as the Euclidean norm, the maximum eigenvalue
function and the least squares functions with �1-regularization or elastic net regulariza-
tion used in statistics and compressed sensing. We show that, under commonly used strict
feasibility conditions, the optimal value and an optimal solution of SOS-convex semial-
gebraic programs can be found by solving a single semidefinite programming problem
(SDP). We achieve the results by using tools from semialgebraic geometry, convex-concave
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minimax theorem and a recently established Jensen inequality type result for SOS-convex
polynomials. As an application, we show that robust SOS-convex optimization proble
ms under restricted spectrahedron data uncertainty enjoy exact SDP relaxations. This
extends the existing exact SDP relaxation result for restricted ellipsoidal data uncertainty
and answers an open question in the literature on how to recover a robust solution of uncer-
tain SOS-convex polynomial programs from its semidefinite programming relaxation in this
broader setting.

Keywords Nonsmooth optimization · Convex optimization · SOS-convex polynomial ·
Semidefinite program · Robust optimization

Mathematics Subject Classification (2010) 90C25 · 90C22 · 90C31

1 Introduction

Convex optimization is ubiquitous across science and engineering [3, 6]. It has found appli-
cations in a wide range of disciplines, such as automatic control systems, signal processing,
electronic circuit design, data analysis, statistics (optimal design), and finance (see [3, 7]
and the references therein). The key to the success in solving convex optimization problems
is that convex functions exhibit a local to global phenomenon: every local minimizer is a
global minimizer. Despite the great success of theoretical and algorithmic development and
its wide application, we note that a convex optimization problem is, in general, NP-hard
from the complexity point of view.

Recently, for convex polynomials, a new notion of sums-of-squares-convexity (SOS-
convexity) [1, 15] has been proposed as a tractable sufficient condition for convexity based
on semidefinite programming. The SOS-convex polynomials cover many commonly used
convex polynomials such as convex quadratic functions and convex separable polynomials.
An appealing feature of an SOS-convex polynomial is that deciding whether a polynomial
is SOS-convex or not can be equivalently rewritten as a feasibility problem of a semidefinite
programming problem (SDP) which can be validated efficiently. It has also been recently
shown that for an SOS-convex optimization problem, its optimal value and optimal solu-
tion can be found by solving a single semidefinite programming problem [22] (see also [17,
18]). On the other hand, many modern applications of optimization to the area of statis-
tics, machine learning, signal processing and image processing often result in structured
nonsmooth convex optimization problems [7]. These optimization problems often take the
following generic form minx∈Rn{g(x) + h(x)}, where g : Rn → R is a convex quadratic
function and h : Rn → R is a nonsmooth function. For example, in many signal processing
applications g represents the quality of the recovered signal while h serves as a regulariza-
tion which enforces prior knowledge of the form of the signal, such as simplicity/sparsity
(in the sense that the solution has fewest nonzero entries). Some typical choices of the regu-
larization function promoting the sparsity of the solution are the so-called �1-norm and the
weighted sum of �1-norm and �2-norm (referred as the elastic net regularization [26]), and
is therefore nonsmooth. With these applications in mind, this then motivates the following
natural and important question:

Is it possible to extend the SOS-convex polynomials and SOS-convex optimization prob-
lems to the nonsmooth setting which not only covers broad nonsmooth problems arising in
common applications but also maintains the appealing feature of tractability (in terms of
semidefinite programming)?
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The purpose of this paper is to provide an affirmative answer for the above question. In
particular, in this paper, we make the following contributions:

(1) In Section 3, we identify a new class of nonsmooth convex functions which are
referred to as SOS-convex semialgebraic functions (Definition 3.1). This class of non-
smooth convex functions covers not only convex functions which can be expressed as
the maximum of finitely many SOS-convex polynomials (in particular, SOS-convex
polynomials) but also many common nonsmooth functions arising in the applications
such as the Euclidean norm, the maximum eigenvalue function (by identifying the
space of symmetric matrices Sn as an Euclidean space with dimension n(n + 1)/2)
and the least squares functions with �1-regularizer or elastic net regularizer used in
compressed sensing.

(2) In Section 4, we show that, under a commonly used strict feasibility condition, the
optimal value and an optimal solution of SOS-convex semialgebraic optimization
problems can be found by solving a single semidefinite programming problem which
extends the previous known result of SOS-convex polynomial optimization problems
(Theorem 4.1 and Theorem 4.2). We achieve this by exploiting tools from semialge-
braic geometry, convex-concave minimax theorem and a recently established Jensen
inequality type result for SOS-convex polynomials.

(3) In Section 5, as applications, we establish that robust SOS-convex optimization
problems under restricted spectrahedron data uncertainty enjoy exact semidefinite
programming relaxations under strict feasibility conditions. This extends the existing
result for restricted ellipsoidal data uncertainty established in [19] and answers the
open question left in [19] on how to recover a robust solution from the semidefinite
programming relaxation in this broader setting.

2 Preliminaries

First of all, let us recall some notations and basic facts on sums-of-squares polynomial and
semidefinite programming problems. Recall that Sn denotes the space of symmetric (n×n)

matrices with the trace inner product and � denotes the Löwner partial order of Sn, that is,
for M,N ∈ Sn, M � N if and only if (M − N) is positive semidefinite. Let Sn+ := {M ∈
Sn | M � 0} be the closed convex cone of positive semidefinite symmetric (n×n) matrices.
Note that for M,N ∈ Sn+, denote the inner product as usual: 〈M, N〉 := Tr [MN ], where
Tr [.] refers to the trace operation. Note also that M � 0 means that M is positive definite.
In the sequel, unless otherwise stated, the space Rn is equipped with the Euclidean norm,

that is, ‖x‖ :=
(

n∑
i=1

|xi |2
)1/2

for all x = (x1, x2, ..., xn) ∈ R
n. Consider a polynomial f

with degree at most d where d is an even number. LetRd [x1, . . . , xn] be the space consisting
of all real polynomials on R

n with degree at most d, and let s(d, n) :=
(

n + d

d

)
be the

dimension of Rd [x1, . . . , xn]. Write the canonical basis of Rd [x1, . . . , xn] by
x(d) := (1, x1, x2, . . . , xn, x

2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n, . . . , xd

1 , . . . , xd
n )T

and let x
(d)
α be the α-th coordinate of x(d), 1 ≤ α ≤ s(d, n). Then, we can write f (x) =∑s(d,n)

α=1 fαx
(d)
α .

We say that a real polynomial f is sums-of-squares (cf. [21]) if there exist real polyno-
mials fj , j = 1, . . . , q, such that f = ∑q

j=1 f 2
j . The set consisting of all sum of squares
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real polynomials in the variable x is denoted by �2[x]. Moreover, the set consisting of all
sum of squares real polynomials with degree at most d is denoted by �2

d [x]. For a polyno-
mial f , we use degf to denote the degree of f . Let l = d/2. Then, f is a sum-of-squares
polynomial if and only if there exists a positive semidefinite symmetric matrix W ∈ S

s(l,n)
+

such that

f (x) = (x(l))T Wx(l), (1)

where x(l) = (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n, . . . , xl

1, . . . , x
l
n)

T . For each 1 ≤
α ≤ s(d, n), we denote i(α) = (i1(α), . . . , in(α)) ∈ (N ∪ {0})n to be the multi-index such
that

x(d)
α = xi(α) := x

i1(α)
1 . . . xin(α)

n .

Then, by comparing the coefficients in (1), we have the following linear matrix inequality
characterization of a sum-of-squares polynomial.

Lemma 2.1 Let d be an even number. For a polynomial f on R
n with degree at most d, f

is a sum-of-squares polynomial if and only if the following linear matrix inequality problem
has a solution⎧⎨

⎩
W ∈ S

s(l,n)
+

fα =
∑

1≤β,γ≤s(l,n),i(β)+i(γ )=i(α)

Wβ,γ , 1 ≤ α ≤ s(d, n), l = d/2.

We now recall the definition of SOS-convex polynomial. The notion of SOS-convex
polynomial was first proposed in [15] and further developed in [1]. Here, for convenience
of our discussion, we follow the definition used in [1].

Definition 2.1 (SOS-Convex Polynomials [15]) A real polynomial f on Rn is called SOS-
convex if the polynomial F : (x, y) �→ f (x)−f (y)−∇f (y)T (x −y) is a sums-of-squares
polynomial on R

n × R
n.

The significance of the class of SOS-convex polynomials is that checking whether a
polynomial is SOS-convex is equivalent to solving a semidefinite programming problem
(SDP) which can be done in polynomial time; while checking a polynomial is convex or
not is, in general, an NP-hard problem [1, 15]. Moreover, another important fact is that,
for SOS-convex polynomial program, an exact SDP relaxation holds under the usual strict
feasibility condition. In contrast, solving a convex polynomial program, is again, in general,
an NP hard problem [1].

Clearly, a SOS-convex polynomial is convex. However, the converse is not true, that
is, there exists a convex polynomial which is not SOS-convex [1]. The sum of two SOS-
convex polynomials and nonnegative scalar multiplication of an SOS-convex polynomial
are still SOS convex polynomials. It is known that any convex quadratic function and any
convex separable polynomial is an SOS-convex polynomial [17]. Moreover, an SOS-convex
polynomial can be non-quadratic and non-separable. For instance, f (x) = x8

1 +x2
1 +x1x2+

x2
2 is a SOS-convex polynomial which is non-quadratic and non-separable.
The following existence result for solutions of a convex polynomial optimization

problem will also be useful for our later analysis.

Lemma 2.2 (Solution Existence of Convex Polynomial Programs [2, The-
orem 3]) Let f0, f1, . . . , fm be convex polynomials on R

n and let C :=
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{x ∈ R
n : fi(x) ≤ 0, i = 1, . . . , m} be nonempty. If inf

x∈C
f0(x) > −∞ then

argminx∈C f0(x) �= ∅.

3 SOS-Convex Semialgebraic Functions

We begin this section with introducing the notion of SOS-convex semialgebraic functions.
The class of SOS-convex semialgebraic functions is a subclass of the class of locally
Lipschitz nonsmooth convex functions, and includes SOS-convex polynomials.

Definition 3.1 (SOS-convex semialgebraic functions) We say f : Rn → R is an SOS-
convex semialgebraic function on R

n if it admits a representation

f (x) = max
y∈�

{h0(x) +
m∑

j=1

yjhj (x)}, m ∈ N, (2)

where

(1) each hj , j = 0, 1, . . . , m, is a polynomial, and, for each y ∈ �, h0 +
m∑

j=1

yjhj is a

SOS-convex polynomial on R
n;

(2) � is a nonempty compact semidefinite program representable set given by

� = {y ∈ R
m : ∃ z ∈ R

p such that A0 +
m∑

j=1

yjAj +
p∑

l=1

zlBl � 0}, (3)

for some p ∈ N, Aj and Bl, j = 0, 1, ..., m, l = 1, ..., p,being (t × t)-symmetric matrices
with some t ∈ N.

Moreover, the maximum of the degree of the polynomial hj , j = 1, . . . , m,is called the
degree of the SOS-convex semialgebraic function f with respect to the representation (2).

Remark 3.1 (Discussion on the notion of SOS-convex semialgebraic functions) In classi-
cal algebraic geometry literature [5], a set C is called a semialgebraic set if it can be written
as finite union of sets with the form {x ∈ R

n : φ1(x) = 0, . . . , φk(x) = 0, ψ1(x) <

0, . . . , ψq(x) < 0} for some real polynomials ψ1, . . . , ψk and ψ1, . . . , ψq . We also say a
function f is semialgebraic if its graph {(x, f (x)) : x ∈ R

n} is a semialgebraic set [5, 24].
It is not hard to verify that any SOS-convex semialgebraic function is a semialgebraic func-
tion with additional SOS-convex structure. This provides the motivation of the name of this
class of nonsmooth functions.

The class of SOS-convex semialgebraic functions contains many common nonsmooth
convex functions. Below, we provide some typical examples.

Example 3.1 (Examples of SOS-convex semialgebraic functions)

(1) Let f (x) = max1≤i≤m fi(x) where each fi , i = 1, . . . , m, is an SOS-convex poly-
nomial. Note that f (x) = maxy∈
 g(x, y) where 
 is the simplex in R

m given by

 = {y : yi ≥ 0,

∑m
i=1 yi = 1} and g(x, y) =∑m

i=1 yifi(x). Then, we see that f is
an SOS-convex semialgebraic function.
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(2) Let f (x) = ‖x‖. Then, f is an SOS-convex semialgebraic function. To see this, we
only need to note that

‖x‖ = max
‖y‖≤1

n∑
i=1

xiyi,

and the unit ball defined by ‖ · ‖ is a compact semidefinite program representable set.

More generally, f (x) = ‖x‖p := (∑n
i=1 |xi |p

) 1
p with p = s

s−1 and s being an even
positive integer, is an SOS-convex semialgebraic function. To see this, we only need
to note that

‖x‖p = max
‖y‖s≤1

n∑
i=1

xiyi .

and the set {y ∈ R
n : ‖y‖s ≤ 1} = {y ∈ R

n : ∑n
i=1 ys

i ≤ 1} is described by an
SOS-convex polynomial inequality (as s is even) and so, is a compact semidefinite
program representable set [15].

(3) Identify the space of (n × n) symmetric matrices Sn with the trace inner product
Tr(AB) =∑ij AijBij as Rn(n+1)/2 with the usual inner product. Let f : Sn → R be
defined by f (X) = λmax(X) where λmax is the maximum eigenvalue. Then, f is an
SOS-convex semialgebraic function on Sn. To see this, we only need to notice that

λmax(X) = max{Tr(XY ) : Y ∈ Sn,Tr(Y ) = 1, Y � 0}
and the set {Y ∈ Sn : Tr(Y ) = 1, Y � 0} is a compact semidefinite program
representable set.

Next, we see that SOS-convex semialgebraic functions cover many least squares func-
tions with regularization. To see this, we need the following simple proposition which shows
that finite addition preserves SOS-convex semialgebracity.

Proposition 3.1 Let fi be SOS-convex semialgebraic functions on R
n, i = 1, . . . , q. Then,∑q

i=1 fi is an SOS-convex semialgebraic function on R
n.

Proof To see the conclusion, it suffices to show the case where q = 2. We first show
that f1 + f2 is an SOS-convex semialgebraic function. As fi , i = 1, 2 are SOS-convex
semialgebraic functions, fi(x) = maxyi∈�i

{hi
0(x) +∑mi

j=1 yi
j h

i
j (x)}, where mi ∈ N, hi

l ,
l = 0, 1, . . . , m are SOS-convex polynomials and �i is a compact semidefinite program
representable sets given by

�i = {yi ∈ R
mi : ∃ zi ∈ R

pi such that Ai
0 +

mi∑
j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0}.

Then,

f1(x) + f2(x) = max
(y1,y2)∈�1×�2

⎧⎨
⎩h10(x) + h20(x) +

m1∑
j=1

y1
j h1j (x) +

m2∑
j=1

y2
j h2j (x)

⎫⎬
⎭ .
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Note that�1×�2 is also a compact semidefinite program representable set. Thus, f1+f2
is also an SOS-convex semialgebraic function.

Example 3.2 (Further examples: least squares functions with regularizations) Let A ∈
R

m×n and b ∈ R
m. From the preceding proposition, we see that the following functions

which arises in sparse optimization are SOS-convex semialgebraic:

(1) The least squares function with �1-regularization f (x) = ‖Ax − b‖2 + μ‖x‖1 where
μ > 0. Note that since ‖x‖1 := |x1| + |x2| + ... + |xn| and |xi | = max{xi,−xi}, i =
1, 2, ..., n,it follows from Example 3.1 and Proposition 3.1 that ‖·‖1 is an SOS-convex
semialgebraic function, while the function x �→ ‖Ax − b‖2 is a convex quadratic
function and thus is SOS-convex semialgebraic.

(2) The least squares function with elastic net regularization [26] f (x) = ‖Ax − b‖2 +
μ1‖x‖1 + μ2‖x‖2 where μ1, μ2 > 0.

4 Exact SDP Relaxation for SOS-Convex Semialgebraic Programs

In this section, we show that an SOS-convex semialgebraic program as the problem (P )

below admits an exact SDP relaxation in the sense that the optimal value of the SDP
relaxation problem equals the optimal value of the underlying SOS-convex semialgebraic
program. Moreover, a solution for the SOS-convex semialgebraic program can be recovered
from its SDP relaxation, under strict feasibility assumptions.

Consider the following SOS-convex semialgebraic program:

(P ) inf f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . , s,

where each fi , i = 0, 1, . . . , s, is an SOS-convex semialgebraic function in the form

fi(x) = max
yi∈�i

{hi
0(x) +

m∑
j=1

yi
j h

i
j (x)}, m ∈ N,

such that

(1) each hi
j is a polynomial with degree at most d, and for each yi = (yi

1, ..., yi
m) ∈ �i ,

the function

hi
0 +

m∑
j=1

yi
j h

i
j is an SOS-convex polynomial on R

n;

(2) �i , i = 0, 1, . . . , s, is a nonempty compact semidefinite program representable set
given by

�i = {(yi
1, . . . , y

i
m) ∈ R

m : ∃zi = (zi
1, ..., z

i
pi

) ∈ R
pi such that Ai

0+
m∑

j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0

}
,

for some pi ∈ N ∪ {0}.
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Without loss of generality, we always assume that d is an even number.
Inspired from [2, 20], we now introduce a relaxation problem for problem (P) as follows

(SDP) sup
λi
0≥0,(λi

1,...,λ
i
m)∈Rm

zi
l ∈R,μ∈R

{
μ : h00 +

m∑
j=1

λ0j h
0
j +

s∑
i=1

⎛
⎝λi

0h
i
0 +

m∑
j=1

λi
j h

i
j

⎞
⎠− μ ∈ �2

d [x],

A0
0 +

m∑
j=1

λ0jA
0
j +

p0∑
l=1

z0l B
0
l � 0,

λi
0A

i
0 +

m∑
j=1

λi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0, i = 1, . . . , s

}
.

In the special case where the objective function can be expressed as a maximum of finitely
many SOS-convex polynomials, the relaxation problem (SDP) collapses to the relaxation
problem introduced in [20]. Moreover, direct application of Lemma 2.1 shows that (SDP)

can be equivalently rewritten as the following semidefinite programming problem

sup
λi
0≥0,(λi

1,...,λ
i
m)∈Rm

zi
l∈R,μ∈R,W∈Ss(d/2,n)

{μ : (h00)1+
m∑

j=1

λ0j (h
0
j )1+

s∑
i=1

⎛
⎝λi

0(h
i
0)1+

m∑
j=1

λi
j (h

i
j )1

⎞
⎠−μ = W1,1,

s.t. (h00)α +
m∑

j=1

λ0j (h
0
j )α +

s∑
i=1

⎛
⎝λi

0(h
i
0)α +

m∑
j=1

λi
j (h

i
j )α

⎞
⎠

=
∑

1≤β,γ≤s(d/2,n)
i(β)+i(γ )=i(α)

Wβ,γ , 2 ≤ α ≤ s(d, n)

f +
m∑

i=1

⎛
⎝λ0i g

0
i +

s∑
j=1

λ
j
i g

j
i

⎞
⎠− μ ∈ �2

d ,

W � 0, A0
0 +

m∑
j=1

λ0jA
0
j +

p0∑
l=1

z0l B
0
l � 0,

λi
0A

i
0 +

m∑
j=1

λi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0, i = 1, . . . , s}.

Next, we show that an exact SDP relaxation holds between (P) and (SDP) in the sense
that their optimal values are the same. We start with a simple property for a bounded set
which is described by linear matrix inequalities.

Lemma 4.1 Let U be a nonempty compact set with the form U = {(u1, . . . , um) ∈
R

m : ∃z ∈ R
psuch that A0 +∑m

j=1 ujAj +∑p

l=1 zlBl � 0} where Aj ,Bl ∈ Sq . Let

(λ0, . . . , λm) ∈ R
m+1 be such that λ0A0 + ∑m

j=1 λjAj + ∑p

l=1 vlBl � 0 for some
(v1, . . . , vp) ∈ R

p. Then, the following implication holds:

λ0 = 0 ⇒ λj = 0 for allj = 1, . . . , m. (4)
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Proof Let (λ0, . . . , λm) ∈ R
m+1 be such that λ0A0 +∑m

j=1 λjAj +∑p

l=1 vlBl � 0 for
some (v1, . . . , vp) ∈ R

p . We proceed by the method of contradiction. Suppose that λ0 = 0
and there exists j0 ∈ {1, . . . , m} with λj0 �= 0. This means that

m∑
j=1

λjAj +
p∑

l=1

vlBl � 0 and(λ1, . . . , λm) �= 0Rm.

Now take û = (û1, . . . , ûm) ∈ U . Then, we have A0 +∑m
j=1 ûjAj +∑p

l=1 v̂lBl � 0 for
some (v̂1, . . . , v̂p) ∈ R

p , and so,

A0 +
m∑

j=1

(ûj + tλj )Aj +
p∑

l=1

(v̂l + tvl)Bl � 0 for allt ≥ 0.

The latter implies that

(û1, . . . , ûm) + t (λ1, . . . , λm) ∈ U for allt ≥ 0,

which contradicts the boundedness of U . Thus, the conclusion follows.

We are now ready to state and prove the first main result of this section, showing the
exactness of the SDP relaxation for SOS-convex semialgebraic programs under a strict
feasibility condition.

Theorem 4.1 (Exact SDP Relaxation for SOS-convex Semialgebraic Programs) For
problem (P ), suppose the following strict feasibility condition holds: there exists x0 ∈ R

n

such that fi(x0) < 0, i = 1, . . . , s. Then, we have

val(P ) = val(SDP),

where val(P ) and val(SDP) are the optimal values of problems (P ) and
(SDP),respectively.

Proof We first justify that val(P ) ≥ val(SDP). Let λi
0 ≥ 0, (λi

1, ..., λ
i
m) ∈ R

m, zi
l ∈ R,and

μ ∈ R,be feasible for (SDP). Then, we have

h00 +
m∑

j=1

λ0j h
0
j +

s∑
i=1

⎛
⎝λi

0h
i
0 +

m∑
j=1

λi
jh

i
j

⎞
⎠− μ ∈ �2

d [x],

A0
0 +

m∑
j=1

λ0jA
0
j +

p0∑
l=1

z0l B
0
l � 0,

λi
0A

i
0 +

m∑
j=1

λi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0, i = 1, . . . , s.

Take any x ∈ R
n with fi(x) ≤ 0, i = 1, ..., s. We want to show f0(x) ≥ μ. For each

i = 1, . . . , s,pick yi = (yi
1, . . . , y

i
m) ∈ �i . By the definition of �i, there exist z̄i ∈ R

pi

such that Ai
0 +

m∑
j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0. For each j = 1, . . . , m and i = 1, . . . , s,put

ỹi
j :=
⎧⎨
⎩

λi
j

λi
0
if λi

0 �= 0,

yi
j if λi

0 = 0,
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and

z̃i
l :=
⎧⎨
⎩

zi
l

λi
0
if λi

0 �= 0,

zi
l if λi

0 = 0.

Then, for each i = 1, . . . , s, we have

A0
i +

m∑
j=1

ỹi
jA

i
j +

pi∑
l=1

z̃i
lB

i
l =
{

1
λi
0

(
λi
0A

i
0 +∑m

j=1 λi
jA

i
j +∑pi

l=1 zi
lB

i
l

)
if λi

0 �= 0,

Ai
0 +∑m

j=1 yi
jA

i
j +∑pi

l=1 zi
lB

i
l if λi

0 = 0,

which is always a positive semidefinite symmetric matrix. So, ỹi := (ỹi
1, ..., ỹ

i
m) ∈ �i and

hence

hi
0(x) +

m∑
j=1

ỹi
j h

i
j (x) ≤ fi(x) ≤ 0 for all i = 1, ..., s. (5)

Moreover, as the sets �i are bounded, according to Lemma 4.1, for each i = 1, . . . , s, if
λi
0 = 0, then λi

j = 0 for all j = 1, . . . , m. This implies that

h00 +
m∑

j=1

λ0j h
0
j +

s∑
i=1

λi
0

⎛
⎝hi

0 +
m∑

j=1

ỹi
j h

i
j

⎞
⎠− μ

= h00 +
m∑

j=1

λ0j h
0
j +

s∑
i=1

⎛
⎝λi

0h
i
0 +

m∑
j=1

(λi
0ỹ

i
j )h

i
j

⎞
⎠− μ

= h00 +
m∑

j=1

λ0j h
0
j +

s∑
i=1

⎛
⎝λi

0h
i
0 +

m∑
j=1

λi
jh

i
j

⎞
⎠− μ ∈ �2

d [x].

So, noting that (λ01, . . . , λ
0
m) ∈ �0 and λi

0 ≥ 0 for all i = 1, ..., s, by (5) it holds that

f0(x) ≥ h00(x) +
m∑

j=1
λ0j h

0
j (x)

≥ h00(x) +
m∑

j=1
λ0j h

0
j (x) +

s∑
i=1

λi
0

(
hi
0(x) +

m∑
j=1

ỹi
j h

i
j (x)

)
≥ μ.

Therefore, val(P ) ≥ val(SDP).
Next, we will justify that val(P ) ≤ val(SDP). As val(P ) ≥ val(SDP) always holds, it

suffices to consider the case val(P ) > −∞. Noting that the feasible set of (P ) is nonempty,
we may assume that ν := val(P ) ∈ R. Our assumptions guarantee that there exists x0 such
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that fi(x0) < 0, i = 1, . . . , s,and each fi is a continuous convex function. So, the standard
Lagrangian duality for convex programming problem shows that

ν := inf
x∈Rn

{
f0(x) : fi(x) ≤ 0, i = 1, ..., s

}

= max
λ∈Rs+

inf
x∈Rn

{
f0(x) +

s∑
i=1

λifi(x)
}

= max
λ∈Rs+

inf
x∈Rn

max
y∈

s∏
i=0

�i

hλ(x, y),

(6)

where λ := (λ1, ..., λs) ∈ R
s , y := (y0

1 , . . . , y
0
m, ..., ys

1, . . . , y
s
m) ∈ R

m(s+1), and

hλ(x, y) := h00(x) +
m∑

j=1

y0
j h0j (x) +

s∑
i=1

λi

⎛
⎝hi

0(x) +
m∑

j=1

yi
j h

i
j (x)

⎞
⎠ .

Note that
s∏

i=0
�i is a convex compact set, and for any λ ∈ R

s+ the function hλ(x, y) is

convex in x for each fixed y and is concave in y for each fixed x. Thus, for each λ ∈ R
s+,by

the convex-concave minimax theorem we have

inf
x∈Rn

max
y∈

s∏
i=0

�i

hλ(x, y) = max
y∈

s∏
i=0

�i

inf
x∈Rn

hλ(x, y).

This together with (6) yields

ν = max
λ∈Rs+

max
y∈

s∏
i=0

�i

inf
x∈Rn

hλ(x, y)

= max
yi∈�i,0≤i≤s
λ1≥0,...,λs≥0

inf
x∈Rn

{
h00(x) +

m∑
j=1

y0
j h0j (x) +

s∑
i=1

λi

(
hi
0(x) +

m∑
j=1

yi
j h

i
j (x)
)}

.

In particular, the latter shows that there exist (ỹi
1, . . . , ỹ

i
m) ∈ �i, 0 ≤ i ≤ s,and λ̃1 ≥

0, ..., λ̃s ≥ 0,such that

inf
x∈Rn

{
h00(x) +

m∑
j=1

ỹ0
j h0j (x) +

s∑
i=1

λ̃i

(
hi
0(x) +

m∑
j=1

ỹi
j h

i
j (x)
)} = ν.

Denote G(x) := h0
0(x) + ∑m

j=1 ỹ0
j h0j (x) + ∑s

i=1 λ̃i

(
hi
0(x) + ∑m

j=1 ỹi
j h

i
j (x)
) − ν. By

Lemma 2.2, there exists a ∈ R
n such that G(a) = infx∈Rn G(x) = 0 (and so, ∇G(a) = 0).

As G is an SOS-convex polynomial, H(x, y) := G(x) − G(y) − ∇G(y)T (x − y) is a
sums-of-squares polynomial. Letting y = a, it follows that G(x) = H(x, a) is also a
sums-of-squares polynomial, that is,

h00 +
m∑

j=1

ỹ0
j h0j +

s∑
i=1

λ̃i

(
hi
0 +

m∑
j=1

ỹi
j h

i
j

)− ν ∈ �2
d [x]. (7)
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On the other hand, for each i = 0, ..., s,since (ỹi
1, . . . , ỹ

i
m) ∈ �i,there exists z̃i =

(z̃i
1, ..., z̃

i
pi

) ∈ R
pi such that

Ai
0 +

m∑
j=1

ỹi
jA

i
j +

pi∑
l=1

z̃i
lB

i
l � 0. (8)

Now, let λ0j := ỹ0
j , j = 1, . . . , m, z0l := z̃0l , l = 1, ..., p0, λi

0 := λ̃i and λi
j := λ̃i ỹ

i
j and

zi
l := λ̃i z̃

i
l for each j = 1, . . . , m, i = 1, . . . , s, l = 1, ..., pi . From (7), (8) and λ̃i ≥ 0, we

see that

h00 +
m∑

j=1

λ0j h
0
j +

s∑
i=1

⎛
⎝λi

0h
i
0 +

m∑
j=1

λi
jh

i
j

⎞
⎠− ν ∈ �2

d [x],

A0
0 +

m∑
j=1

λ0jA
0
j +

p0∑
l=1

z0l B
0
l � 0,

and

λi
0A

i
0 +

m∑
j=1

λi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0, i = 1, . . . , s.

This says that λi
0 ≥ 0, (λi

1, ...., λ
i
m) ∈ R

m, zi
l ∈ R, ν ∈ R is feasible for (SDP). Thus,

val(P ) = ν ≤ val(SDP),

and hence val(P ) = val(SDP). The proof is complete.

Remark 4.1 (Special Cases: Min-max programs involving SOS-convex polynomials)
In the case where the objective function f0 can be expressed as a finite maximum of
SOS-convex polynomials and the constraint functions fi , i = 1, . . . , s, are SOS-convex
polynomials, Theorem 4.1 has established in [20, Theorem 3.1] for min-max programs.

In the preceding theorem, we see that the optimal value of a SOS-convex semialgebraic
optimization problem (P) can be found by solving a single semidefinite programming prob-
lem, that is, its SDP relaxation problem (SDP). Next, we examine the important question
that: how to recover an optimal solution of (P) from its SDP relaxation problem?

For a given z = (zα) ∈ R
s(r,n), we define a linear function Lz : Rr [x1, . . . , xn] → R by

Lz(u) =
s(r,n)∑
α=1

uαzα with u(x) =
s(r,n)∑
α=1

uαx(r)
α . (9)

For each α = 1, . . . , s(2r, n), define Mα to be the (s(r, n)× s(r, n)) symmetric matrix such
that

Tr(MαW) =
∑

1≤β,γ≤s(r,n)
i(β)+i(γ )=i(α)

Wβ,γ for all W ∈ Ss(r,n).

Then, for z = (zα) ∈ R
s(2r,n), the moment matrix with respect to the sequence z = (zα)

with degree r is denoted by Mr (z), and is defined by

Mr (z) =
∑

1≤α≤s(2r,n)

zαMα.
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As a simple illustration, let r = 4 and n = 1, for z = (z1, . . . , z5)
T ∈ R

s(4,1) = R
5,

Lz(u) =
5∑

i=1

αizi, for all u(x) = α1 + α2x + α3x
2 + α4x

3 + α5x
4.

Moreover, for r = 1, n = 2 and z ∈ R
s(2,2) = R

6

M1(z) =
⎛
⎝ z1 z2 z3

z2 z4 z5
z3 z5 z6

⎞
⎠ .

Recall that (SDP) can be equivalently rewritten as a semidefinite programming problem
given as in (4). The Lagrangian dual of this semidefinite programming reformulation is

inf
y=(yα)∈Rs(d,n)

Zi�0

sup
λi
0≥0,(λi

1,...,λ
i
m)∈Rm

zi
l ∈R,μ∈R,W�0

{
μ + y1

(
(h00)1 +

m∑
j=1

λ0j (h
0
j )1

+
s∑

i=1

(
λi
0(h

i
0)1 +

m∑
j=1

λi
j (h

i
j )1

)
− μ − W1,1

)

+ ∑
2≤α≤s(d,n)

yα

⎛
⎜⎝(h00)α+

m∑
j=1

λ0j (h
0
j )α+

s∑
i=1

(
λi
0(h

i
0)α+

m∑
j=1

λi
j (h

i
j )α

)
− ∑

1≤β,γ≤s(d/2,n)
i(β)+i(γ )=i(α)

Wβ,γ

⎞
⎟⎠

+Tr
(
Z0(A

0
0 +

m∑
j=1

λ0jA
0
j +

p0∑
l=1

z0l B
0
l )
)

+
s∑

i=1
Tr
(
Zi(λ

i
0A

i
0 +

m∑
j=1

λi
jA

i
j +

pi∑
l=1

zi
lB

i
l

)}
,

which can be further simplified as

(SDP ∗) inf
y=(yα)∈Rs(d,n),Zi�0

∑
1≤α≤s(d,n)

(h00)αyα + Tr
(
Z0A

0
0

)

s.t.
∑

1≤α≤s(d,n)

(hi
0)αyα + Tr

(
ZiA

i
0

) ≤ 0, i = 1, . . . , s,

∑
1≤α≤s(d,n)

(hi
j )αyα + Tr

(
ZiA

i
j

) = 0, i = 0, 1, . . . , s, j = 1, . . . , m,

Tr
(
ZiB

i
l

) = 0, i = 0, 1, ..., s, l = 1, ..., pi ,

M d
2
(y) =

∑
1≤α≤s(d,n)

yαMα � 0,

y1 = 1.

We note that the problem (SDP ∗) is also a semidefinite programming problem, and hence
can be efficiently solved as well.

Next, we recall the following Jensen’s inequality for SOS-convex polynomial (cf [21])
which will play an important role in our later analysis.

Lemma 4.2 (Jensen’s inequality for SOS-convex polynomial [21, Theorem 5.13]) Let f

be an SOS-convex polynomial on R
n with degree 2r . Let y ∈ R

s(2r,n) with y1 = 1 and
Mr (y) � 0. Then, we have

Ly(f ) ≥ f (Ly(X1), . . . , Ly(Xn)),
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where Ly is given as in (9) and Xi denotes the polynomial which maps a vector in Rn to its
ith coordinate.

The next main result of this section is the following theorem, providing a way to recover
a solution of problem (P) from a solution of its SDP relaxation.

Theorem 4.2 (Recovery of the solution) For problem (P ), suppose that the following strict
feasibility conditions hold:

(i) there exists x̄ ∈ R
n such that fi(x̄) < 0 for all i = 1, ..., s;

(ii) for each i = 0, 1, . . . , s, there exist ȳi ∈ R
m and z̄i ∈ R

pi such that

Ai
0 +

m∑
j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0.

Consider the SDP relaxation problem (SDP) and its Lagrangian dual problem
(SDP ∗). Let (y∗, Z∗

0 , Z
∗
1 , ..., Z

∗
s ) be an optimal solution for (SDP ∗) and let x∗ :=

(Ly∗(X1), . . . , Ly∗(Xn))
T ∈ R

n where Xi denotes the polynomial which maps a vector
x ∈ R

n to its ith coordinate. Then, x∗ is an optimal solution for (P ).

Proof From condition (i), the exact SDP relaxation result (Theorem 4.1) gives us that
val(P ) = val(SDP). Note that (SDP) and (SDP ∗) are dual problems to each other. The
usual weak duality for semidefinite programming implies that val(SDP ∗) ≥ val(SDP) =
val(P ). Next, we establish that val(SDP ∗) = val(P ), where val(SDP ∗) is the optimal
value of problem (SDP ∗). To see this, let x be a feasible point of (P ) and let ρ := f0(x).
Then

f0(x) = max
y0∈�0

{h00(x) +
m∑

j=1

y0
j h0j (x)} = ρ

and

fi(x) = max
yi∈�i

{hi
0(x) +

m∑
j=1

yi
j h

i
j (x)} ≤ 0, i = 1, . . . , s,

where �i , i = 0, 1, . . . , s are compact sets given by �i = {yi := (yi
1, . . . , y

i
m) ∈ R

m :
∃zi = (zi

1, ..., z
i
pi

) ∈ R
pi such thatAi

0 +∑m
j=1 yi

jA
i
j +∑pi

l=1 zi
lB

i
l � 0

}
. This shows that

(y0, z0) ∈ R
m × R

p0 , A0
0 +

m∑
j=1

y0
j A0

j +
p0∑
l=1

z0l B
0
l � 0 ⇒ h00(x) +

m∑
j=1

y0
j h0j (x) ≤ ρ,

and

(yi, zi)∈R
m×Rpi , Ai

0+
m∑

j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l �0 ⇒ hi

0(x)+
m∑

j=1

yi
j h

i
j (x) ≤ 0, i = 1, . . . , s.

It then follows from condition (ii) and the strong duality theorem for semidefinite program-
ming that there exist Zi � 0, i = 0, 1, . . . , s such that⎧⎪⎪⎨

⎪⎪⎩

h00(x) + Tr
(
Z0A

0
0

) ≤ ρ,

hi
0(x) + Tr

(
ZiA

i
0

) ≤ 0, i = 1, ..., s,
hi

j (x) + Tr
(
ZiA

i
j

) = 0, i = 0, 1, . . . , s, j = 1, . . . , m,

Tr
(
ZiB

i
l

) = 0, i = 0, 1, ..., s, l = 1, ..., pi,
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Let x(d) = (1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

2
2 , . . . , x

2
n, . . . , xd

1 , . . . , xd
n )T . Then,

(x(d), Z0, Z1, . . . , Zs) is feasible for (SDP ∗) and

f0(x) = ρ ≥ h00(x) + Tr
(
Z0A

0
0

) = ∑
1≤α≤s(d,n)

(h00)αx(d)
α + Tr

(
Z0A

0
0

)
.

This shows that val(P ) ≥ val(SDP ∗), and hence val(P ) = val(SDP ∗). In particular, we
have val(P ) = val(SDP) = val(SDP ∗).

Now, let (y∗, Z∗
0 , Z

∗
1 , ..., Z

∗
s ) be an optimal solution for (SDP ∗). Then, Z∗

i � 0, i =
0, 1, ..., s, and ∑

1≤α≤s(d,n)

(hi
0)αy∗

α + Tr
(
Z∗

i Ai
0

) ≤ 0, i = 1, . . . , s,
∑

1≤α≤s(d,n)

(hi
j )αy∗

α + Tr
(
Z∗

i Ai
j

) = 0, i = 0, 1, . . . , s, j = 1, . . . , m,

Tr
(
Z∗

i Bi
l

) = 0, i = 0, 1, ..., s, l = 1, ..., pi,

M d
2
(y∗) = ∑

1≤α≤s(d,n)

y∗
αMα � 0,

y∗
1 = 1.

Note that for each (y0
1 , ..., y

0
m) ∈ �0,one can find z0 = (z01, ..., z

0
p0

) ∈ R
p0 such that

A0
0 +

m∑
j=1

y0
j A0

j +
p0∑
l=1

z0l B
0
l � 0.

So, for each (y0
1 , ..., y

0
m) ∈ �0,it holds that

∑
1≤α≤s(d,n)

(h00)αy∗
α + Tr

(
Z∗
0A

0
0

) ≥ ∑
1≤α≤s(d,n)

(h00)αy∗
α − Tr

(
Z∗
0(

m∑
j=1

y0
j A0

j +
p0∑
l=1

z0l B
0
l )
)

= ∑
1≤α≤s(d,n)

(h00)αy∗
α −

m∑
j=1

y0
jTr
(
Z∗
0A

0
j

)

= ∑
1≤α≤s(d,n)

(h00)αy∗
α +

m∑
j=1

y0
j

∑
1≤α≤s(d,n)

(h0j )αy∗
α

= Ly∗
(
h00 +

m∑
j=1

y0
j h0j

)
.

(10)

Since h00 +
m∑

j=1
y0
j h0j is SOS-convex, M d

2
(y∗) ≥ 0,and y∗

1 = 1,by Lemma 4.2, we have

Ly∗

⎛
⎝h00+

m∑
j=1

y0
j h0j

⎞
⎠≥
⎛
⎝h00+

m∑
j=1

y0
j h0j

⎞
⎠(Ly∗(X1), . . . , Ly∗(Xn))=h00(x

∗)+
m∑

j=1

y0
j h0j (x

∗)

(11)
for every (y0

1 , ..., y
0
m) ∈ �0. Taking supremum over all (y0

1 , ..., y
0
m) ∈ �0 in (1) and using

(2), it follows that

f0(x
∗) ≤

∑
1≤α≤s(d,n)

(h00)αy∗
α + Tr

(
Z∗
0A

0
0

)
.

Taking into account that (y∗, Z∗
0 , Z

∗
1 , ..., Z

∗
s ) is an optimal solution for (SDP ∗),we get

val(SDP ∗) =
∑

1≤α≤s(d,n)

(h00)αy∗
α + Tr

(
Z∗
0A

0
0

) ≥ f0(x
∗).
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We claim that x∗ is feasible for (P). Granting this, we have

val(SDP ∗) ≥ f0(x
∗) ≥ val(P ) = val(SDP ∗).

This forces that f0(x∗) = val(P ), and so, x∗ is an optimal solution for (P).
We now verify our claim. Take any i = 1, ..., s and (yi

1, ..., y
i
m) ∈ �i . Then one can find

zi = (zi
1, ..., z

i
pi

) ∈ R
pi such that

Ai
0 +

m∑
j=1

yi
jA

i
j +

pi∑
l=1

zi
lB

i
l � 0.

Arguing as before, we arrive at

fi(x
∗) ≤

∑
1≤α≤s(d,n)

(hi
0)αy∗

α + Tr
(
Z∗

i Ai
0

) ≤ 0.

This shows that x∗ is feasible for (P). So, the conclusion follows.

Finally, we illustrate how to find the optimal value and an optimal solution for an SOS-
convex semialgebraic program by solving a single semidefinite programming problem.

Example 4.1 (Illustrative example) Consider the following simple 2-dimensional nons-
mooth convex optimization problem:

(EP ) min x4
1 − x2

s.t. x2
1 + x2

2 + 2‖(x1, x2)‖ − 1 ≤ 0.

Let

�1 = {(y1
1 , y

1
2 ) : (y1

1 )
2+(y1

2 )
2 ≤ 1} = {(y1

1 , y
1
2 ) :
⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+y1

1

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠+y1

2

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ � 0}.

Let h10(x) = x2
1 + x2

2 − 1 and h1
j (x) = 2xj , j = 1, 2. We first observe that, for each

(y1
1 , y

1
2 ) ∈ �1,the function h10+

∑2
j=1 y1

j h1j is an SOS-convex polynomial. Denote f0(x) =
x4
1 − x2 and f1(x) = x2

1 + x2
2 + 2‖(x1, x2)‖ − 1. Then, f1(x) = max(y11 ,y12 )∈�1

{h10(x) +
y1
1h

1
1(x) + y1

2h
1
2(x)}, and so, f1 is an SOS-convex semialgebraic function. Obviously, f0

is an SOS-convex polynomial and thus is also an SOS-convex semialgebraic function. This
shows that (EP) is an SOS-convex semialgebraic program.

Let x0 = (0, 0). It can be verified that f1(x0) = −1 < 0. Thus, Theorem 4.1 implies
that val(EP ) = val(ESDP) where (ESDP) is given by

(ESDP) sup
λ10≥0,λ1j ∈R,μ∈R

{μ : f0 +
⎛
⎝λ10h

1
0 +

2∑
j=1

λ1j h
1
j

⎞
⎠− μ ∈ �2

4 [x],

λ10

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+ λ11

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠+ λ12

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ � 0}.
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Note that

f0 +
⎛
⎝λ10h

0
1 +

2∑
j=1

λ1j h
1
j

⎞
⎠− μ ∈ �2

4 [x]

⇔ x4
1 − x2 + λ10(x

2
1 + x2

2 − 1) + 2λ11x1 + 2λ12x2 − μ

=
(
1, x1, x2, x

2
1 , x1x2, x

2
2

)
⎛
⎜⎜⎜⎜⎜⎝

W11 W12 W13 W14 W15 W16
W12 W22 W23 W24 W25 W26
W13 W23 W33 W34 W35 W36
W14 W24 W34 W44 W45 W46
W15 W25 W35 W45 W55 W56
W16 W26 W36 W46 W56 W66

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1
x1
x2
x2
1

x1x2
x2
2

⎞
⎟⎟⎟⎟⎟⎠

, W = (Wij ) ∈ S6+,

⇔ W11 = −λ10 − μ,W12 = λ11, 2W14 + W22 = λ10,

W33 + 2W16 = λ10, 2W13 = −1 + 2λ12, W44 = 1,

W23 = W24 = W34 = 0, Wi5 = 0, i = 1, . . . , 5, Wi6 = 0, i = 2, . . . , 6,

W = (Wij ) ∈ S6+.

Thus, (ESDP) can be equivalently rewritten as the following semidefinite programming
problem:

sup
λ10≥0,λ1j ∈R,μ∈R,W∈S6

{μ : W11 = −λ10 − μ,W12 = λ11, 2W14 + W22 = λ10,

W33 + 2W16 = λ10, 2W13 = −1 + 2λ12, W44 = 1,

W23 = W24 = W34 = 0,Wi5 = 0, i = 1, . . . , 5, Wi6 = 0, i = 2, . . . , 6,

W = (Wij ) ∈ S6+

λ10

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠+ λ11

⎛
⎝ 0 0 1

0 0 0
1 0 0

⎞
⎠+ λ12

⎛
⎝ 0 0 0

0 0 1
0 1 0

⎞
⎠ � 0}.

Solving this semidefinite programming problem using CVX [10, 14], we obtain the optimal
value val(ESDP) = −0.414214 ≈ 1 − √

2 and the dual variable y∗ = (y∗
1 , . . . , y

∗
15) ∈

R
15 = R

s(4,2) with y∗
1 = 1, y∗

2 = 0 and y∗
3 = 0.414214 ≈ √

2 − 1. It can be
verified that the conditions in Theorem 4.2 are satisfied. So, Theorem 4.2 implies that
x∗ = (Ly∗(X1), Ly∗(X2)) = (y∗

2 , y
∗
3 ) = (0,

√
2 − 1) is a solution for (EP).

Indeed, the optimality of (0,
√
2− 1) for (EP) can be verified independently. To see this,

note that for all (x1, x2) which is feasible for (EP), one has

x2
1 + x2

2 + 2‖(x1, x2)‖ − 1 ≤ 0.

In particular,

|x2|2 + 2|x2| − 1 = x2
2 + 2|x2| − 1 ≤ 0,

which implies that |x2| ≤ √
2 − 1. Thus, for all feasible point (x1, x2) for (EP), x4

1 − x2 ≥
−x2 ≥ −|x2| ≥ 1 − √

2, and so, val(EP ) ≥ 1 − √
2. On the other hand, direct verification
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shows that (0,
√
2 − 1) is feasible for (EP) with the object value 1 − √

2. So, val(EP ) =
1 − √

2 and (0,
√
2 − 1) is a solution of the problem (EP).

5 Applications to Robust Optimization

In this section, we show that how our results can be directly applied to the area of robust
optimization [4, 8, 9] (for some recent development see [11–13, 16, 17, 23, 25]). Consider
the following robust SOS-convex optimization problem under constraint data uncertainty

(RP ) min f (x)

s.t. g
(0)
i (x) +

ti∑
j=1

u
(j)
i g

(j)
i (x) +

s∑
j=ti+1

u
(j)
i g

(j)
i (x) ≤ 0, ∀ui ∈ Ui , i = 1, . . . , m,

where f, g
(j)
i , i = 1, . . . , m, j = 0, 1, ..., ti ,are SOS-convex polynomials with degree d,

g
(j)
i , i = 1, . . . , m, j = ti + 1, ..., s,are affine functions, and ui are uncertain parame-

ters belonging to uncertainty sets Ui , i = 1, . . . , m. For simplicity, we only discuss the
cases where the objective function does not affected by the the data uncertainty. Indeed, by
introducing an additional variable, we can always assume the objective function is free of
uncertainty (see [4, 16]).

In the case where Ui is the so-called restricted ellipsoidal uncertainty set given by

U e
i = {(u1i , . . . , uti

i , u
ti+1
i , . . . , us

i ) : ‖(u1i , . . . , uti
i )‖ ≤ 1, u

j
i ≥ 0, j = 1, . . . , ti}

‖(uti+1
i , . . . , us

i )‖ ≤ 1},

this robust optimization problem was first examined in [13] in the special case of robust
convex quadratic optimization problems, and then subsequently in [19] for general robust
SOS-convex polynomial optimization problems. In particular, [19] showed that the optimal
value of (RP) with Ui = U e

i can be found by solving a related semidefinite programming
problem (SDP) and raised an open question that how to found an optimal solution of (RP)
from the corresponding related SDP.

As we will see, as a simple application of the result in Section 4, we can extend the exact
semidefinite programming relaxations result in [19] to a more general setting and answer
the open question left in [19] on how to recover a robust solution from the semidefinite
programming relaxation in this broader setting. To do this, we first introduce the notion of
restricted spectrahedron data uncertainty set which is a convex compact set given by

U res
i = {(u(1)

i , . . . , u
(ti )
i , u

(ti+1)
i , . . . , u

(s)
i ) ∈ R

s : A0
i +

s∑
j=1

u
(j)
i A

j
i � 0,

(u
(1)
i , . . . , u

(ti )
i ) ∈ R

ti+, (u
(ti+1)
i , . . . , u

(s)
i ) ∈ R

s−ti }. (12)

It is not hard to see that the restricted ellipsoidal uncertainty set is a special case of the
restricted spectrahedron data uncertainty set as the norm constraint can be expressed as a
linear matrix inequality.
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5.1 Robust SOS-Convex Optimization with Restricted Spectrahedron Data
Uncertainty

Now, let us consider the robust SOS-convex optimization problem with restricted spectra-
hedron data uncertainty set, that is, problem (RP) with Ui = U res

i . We first see that this
robust optimization problem can be regarded as an SOS-convex semialgebraic program.

Indeed, let f0(x) = f (x), gi(x, ui) = g
(0)
i (x) +

ti∑
j=1

u
(j)
i g

(j)
i (x) +

s∑
j=ti+1

u
(j)
i g

(j)
i (x) and

fi(x) = maxui∈U res
i

{gi(x, ui)}, i = 1, . . . , m. From the construction of the restricted spec-
trahedron data uncertainty, for each ui ∈ U res

i , gi(·, ui) is an SOS-convex polynomial.
Moreover, each restricted spectrahedron data uncertainty set U res

i can be written as

U res
i = {(u(1)

i , . . . , u
(ti )
i , u

(ti+1)
i , . . . , u

(s)
i ) ∈ R

s : Ã0
i +

s∑
j=1

u
(j)
i Ã

j
i � 0},

where

Ã0
i =
(
0ti×ti 0
0 A0

i

)
, Ã

j
i =
(
diag ej 0

0 A
j
i

)
, j = 1, . . . , ti , andÃj

i =
(
0ti×ti 0
0 A

j
i

)
, j = ti +1, . . . , s.

(13)

Here, ej ∈ R
ti denotes the vector whose j th element equals to one and 0 otherwise. There-

fore, the robust optimization problem (RP) with Ui = U res
i can be cast as an SOS-convex

semialgebraic program, and hence, one can associate this robust optimization problem a
relaxation problem

(S̃DP ) sup
λ0i ≥0,λj

i ∈R,μ∈R
{μ : f +

m∑
i=1

⎛
⎝λ0i g

(0)
i +

s∑
j=1

λ
j
i g

(j)
i

⎞
⎠− μ ∈ �2

d [x],

s.t. λ0i A
0
i +

s∑
j=1

λ
j
i A

j
i � 0, (λ1i , . . . , λ

ti
i ) ∈ R

ti+, i = 1, ..., m}.

Similar as in the previous section, we note that (S̃DP ) can be equivalently rewritten as the
following semidefinite programming problem:

sup
λ0i ≥0,λj

i ∈R,μ∈R,W∈Ss(d/2,n)

{μ : f1 +
m∑

i=1

⎛
⎝λ0i (g

(0)
i )1 +

s∑
j=1

λ
j
i (g

(j)
i )1

⎞
⎠− μ = W1,1,

s.t. fα +
m∑

i=1

⎛
⎝λ0i (g

(0)
i )α +

s∑
j=1

λ
j
i (g

(j)
i )α

⎞
⎠ =

∑
1≤β,γ≤s(d/2,n)
i(β)+i(γ )=i(α)

Wβ,γ , 2 ≤ α ≤ s(d, n),

λ0i Ã
0
i +

s∑
j=1

λ
j
i Ã

j
i � 0, W � 0, i = 1, ..., m}. (14)
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The usual Lagrangian dual problem of the above semidefinite programming reformulation
of (S̃DP ) is another semidefinite programming problem which can be expressed as

(S̃DP
∗
) inf

y=(yα)∈Rs(d,n),Zi�0

∑
1≤α≤s(d,n)

fαyα

s.t.
∑

1≤α≤s(d,n)

(g
(0)
i )αyα + Tr

(
ZiÃ

0
i

) ≤ 0, i = 1, . . . , m,

∑
1≤α≤s(d,n)

(g
(j)
i )αyα + Tr

(
ZiÃ

j
i

) = 0, i = 1, . . . , m, j = 1, . . . , s,

M d
2
(y) =

∑
1≤α≤s(d,n)

yαMα � 0,

y1 = 1.

Now, we establish an exact SDP relaxation result for robust SOS-convex optimization
problem with restricted spectrahedron data uncertainty set, and show how to recover a
solution of the robust problem from its SDP relaxation problem. This extends the exact
semidefinite programming relaxations result in [19] from restricted ellipsoidal data uncer-
tainty to the more general setting of restricted spectrahedron data uncertainty, and answers
the open question left in [19] on how to recover a robust solution from the semidefinite
programming relaxation in this broader setting.

Proposition 5.1 Consider (RP) under restricted spectrahedron data uncertainty, that is,
Ui = U res

i where U res
i are convex compact sets given as in (12). Suppose that there exists

x0 ∈ R
n such that for all i = 1, . . . , m

g
(0)
i (x0) +

s∑
j=1

u
(j)
i g

(j)
i (x0) < 0 for all ui ∈ U res

i .

Then, the following statements hold.

(i) It holds that val(RP ) = val(S̃DP ).
(ii) Suppose in addition that, for each i = 1, . . . , m, there exists (ū

(1)
i , . . . , ū

(s)
i ) ∈ R

s

such that ū(j)
i > 0 for all j = 1, . . . , ti , and

A0
i +

s∑
j=1

ū
(j)
i A

j
i � 0. (15)

Consider the SDP relaxation problem (S̃DP ) and its Lagrangian dual prob-

lem (S̃DP
∗
). Let (y∗, Z∗

i ) be an optimal solution for (S̃DP
∗
) and let x∗ :=

(Ly∗(X1), . . . , Ly∗(Xn))
T ∈ R

n where Xi denotes the polynomial which maps a
vector to its ith coordinate. Then, x∗ is a solution for (RP).

Proof of (i) Let Ãj
i , i = 1, . . . , m, j = 0, 1, . . . , s be defined as in (13). Then,

U res
i = {(u(1)

i , . . . , u
(ti )
i , u

(ti+1)
i , . . . , u

(s)
i ) ∈ R

s : Ã0
i +

s∑
j=1

u
(j)
i Ã

j
i � 0}.
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Now, as g
(j)
i , j = 0, 1, . . . , ti , are SOS-convex polynomials and g

(j)
i , j = ti + 1, . . . , s, are

affine functions, g(0)
i +∑s

j=1 u
(j)
i g

j
i is an SOS-convex polynomial for each ui ∈ U res

i . Put

fi(x) := sup
ui

{
g

(0)
i (x) +

s∑
j=1

u
(j)
i g

(j)
i (x) : ui := (u

(1)
i , ..., u

(s)
i ) ∈ U res

i

}
.

We see that each fi is an SOS-convex semialgebraic function, i = 1, . . . , m and fi(x0) < 0
for all i = 1, ..., m. Therefore, Theorem 4.1 implies that

val(RP ) = sup
λ0i ≥0,λj

i ∈R,μ∈R
{μ : f +

m∑
i=1

⎛
⎝λ0i g

(0)
i +

s∑
j=1

λ
j
i g

(j)
i

⎞
⎠− μ ∈ �2

d ,

λ0i Ã
0
i +

s∑
j=1

λ
j
i Ã

j
i � 0, i = 1, ..., m}

= sup
λ0i ≥0,λj

i ∈R,μ∈R
{μ : f +

m∑
i=1

⎛
⎝λ0i g

(0)
i +

s∑
j=1

λ
j
i g

(j)
i

⎞
⎠− μ ∈ �2

d ,

λ0i A
0
i +

s∑
j=1

λ
j
i A

j
i � 0, (λ1i , . . . , λ

ti
i ) ∈ R

ti+, i = 1, ..., m}.

[Proof of (ii)] From the definition of Ã
j
i , i = 1, . . . , m, j = 0, 1, . . . , s, and our

assumption (15), we see that, for each i = 1, . . . , m,

Ã0
i +

s∑
j=1

ū
j
i Ã

j
i � 0.

Therefore, the assumption of Theorem 4.2 holds and the conclusion of (ii) follows from
Theorem 4.2.
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