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Abstract Chance constraints represent a popular tool for finding decisions that enforce the
satisfaction of random inequality systems in terms of probability. They are widely used
in optimization problems subject to uncertain parameters as they arise in many engineer-
ing applications. Most structural results of chance constraints (e.g., closedness, convexity,
Lipschitz continuity, differentiability etc.) have been formulated in finite dimensions. The
aim of this paper is to generalize some of these well-known semi-continuity and convexity
properties as well as a stability result to an infinite dimensional setting. The abstract results
are applied to a simple PDE constrained control problem subject to (uniform) state chance
constraints.
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1 Introduction

Many mathematical and engineering applications contain some considerable amount of
uncertainty in their input data, e.g., unknown model coefficients, forcing terms and bound-
ary conditions. Partial differential equations with uncertain coefficients play a central role
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and are efficient tools for modeling randomness and uncertainty for the corresponding
physical phenomena. Recently there is a growing interest and meanwhile a large amount
of research literature for such PDEs, see e.g. [7–9, 22, 23] and references therein. More-
over, optimal control problems of such uncertain systems are of great practical importance.
We mention here the works [10, 18, 24] and references therein. We note that the analysis
of PDE constrained optimization with uncertain data is still in its beginning, in particu-
lar when uncertainty enters state constraints. The appropriate approach depends critically
on the nature of uncertainty. If no statistical information is available, uncertainty cannot
be modeled as a stochastic parameter but could be rather treated in a worst case or robust
sense (e.g., [32]). On the other hand, if a (usually multivariate) statistical distribution can
be approximated for the uncertain parameter, then a robust approach could turn out to be
unnecessarily conservative and methods from stochastic optimization are to be preferred.

In [13, 16], the authors consider the minimization of different risk functionals (expected
excess and excess probability) in the context of shape optimization, where the uncertainty
is supposed to have a discrete distribution (finite number of load scenarios). In [4] an excess
probability functional has been considered for a continuous multivariate (Gaussian) distribu-
tion. Randomness in constraints can be delt with by imposing a so-called chance constraint.
To illustrate this, consider a random state constraint

y(x,ω) ≤ ȳ(x) ∀x ∈ D,

where x, y refer to space and state variables, respectively, ω is a random event, D is a
given domain and ȳ a given upper bounding function for the state. The associated joint state
chance constraint then reads as

P(y(x,ω) ≤ ȳ(x) ∀x ∈ D) ≥ p,

where P is a probability measure and p ∈ [0, 1] is a safety level, typically chosen close
to, but different from one. The chance constraint expresses the fact that the state should
uniformly stay below the given upper bound with high probability. In a problem of opti-
mal control, the state chance constraint transforms into a (nonlinear) control constraint, thus
defining an optimization problem with decisions which are robust in the sense of proba-
bility. This probabilistic interpretation of constraints has made them a popular tool first of
all in engineering sciences (e.g., hydro reservoir control, mechanics, telecommunications
etc.). We note that the state chance constraint above could be equivalently formulated as a
constraint for the excess probability

P(C (y,ω) ≥ 0) ≥ p

of the random cost function

C (y,ω) := sup
x∈D

{y(x, ω) − ȳ(x)},

thus making a link to the papers discussed before. Note, however, that C is nondifferentiable
in this case.

A mathematical theory treating PDE constrained optimization in combination with
chance constraints is still in its infancy. The aim of this paper is to generalize semi-
continuity and convexity properties of chance constraints, well-known in finite-dimensional
optimization/operations research, to a setting of control problems subject to (uniform) state
chance constraints. Although optimization problems with chance constraints (under con-
tinuous multivariate distributions of the random parameter) are considered to be difficult
already in the finite-dimensional world, there exist a lot of structural results on, for instance,
convexity (e.g., [20, 27, 28]), or differentiability (e.g., [26, 33]). For a numerical treatment
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in the framework of nonlinear optimization methods, efficient gradient formulae for prob-
ability functions have turned out to be very useful in the case of Gaussian or Gaussian-like
distributions (e.g., [5, 21]). A classical monograph containing many basic theoretical results
and numerous applications of chance constraints is [29]. A more modern presentation of the
theory can be found in [31].

The paper is organized as follows: In Section 2, we provide some basic results on weak
sequential semi-continuity properties of probability functions and on convexity of chance
constraints in an abstract framework. Section 3 presents a stability result for optimal values
and solutions to optimizatin problems with chance constraints under perturbations of the
random distribution. In Section 4, these results will be applied to a specific PDE constrained
optimisation problem with random state constraints.

2 Continuity Properties of Probability Functions

We consider the following probability function

h(u) := P (g (u, ξ, x) ≥ 0 ∀x ∈ C) (u ∈ U). (1)

Here, U is a Banach space, C is an arbitrary index set, g : U × R
s × C → R is some con-

straint mapping and ξ is an s-dimensional random vector living on some probability space(
Ω,F ,P

)
. Probability functions of this type figure prominently in stochastic optimization

problems either in the form of chance constraints h(u) ≥ p or as an objective in reliabil-
ity maximization problems. We are going to provide conditions for weak sequential upper
semicontinuity of h first and, by adding appropriate assumptions, for weak sequential lower
semicontinuity next. Throughout the paper we shall make use of the abbreviations w.s.u.s.
for ’weakly sequentially upper semicontinuous’ and w.s.l.s. for ’weakly sequentially lower
semicontinuous’.

Proposition 1 In (1), assume that the g(u, ·, x) are Borel measurable for all u ∈ U and
x ∈ C and that the g (·, z, x) are weakly sequentially upper semicontinuous (w.s.u.s.) for
all x ∈ C and z ∈ R

s . Then, h defined in (1) is w.s.u.s.

Proof Defining
g̃ (u, z) := inf

x∈C
g (u, z, x)

(
u ∈ U, z ∈ R

s
)
, (2)

Equation (1) can be equivalently described as h(u) = P (g̃ (u, ξ) ≥ 0). By assumption on
g, the function g̃ is Borel measurable in its second and w.s.u.s. in its first argument. Now,
the assertion follows from Lemma 2 (applied to g̃) in the Appendix.

The simple analogue of the previous Proposition, providing weak sequential lower semi-
continuity of h under the condition that all functions g(·, ·, x) (x ∈ C) are weakly
sequentially lower semicontinuous (w.s.l.s.) cannot hold true even in a one-dimensional
setting, where g : R × R × R is defined as

g(u, z, x) := u − z ∀x ∈ C := R

and the distribution of ξ is the Dirac measure in zero. Then, clearly, g is even continuous
but the probability function satisfies

h(u) =
{

0 if u < 0
1 if u ≥ 0

.
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Hence, it fails to be lower semicontinuous at ū := 0.
The following proposition provides some missing conditions ensuring the weak sequen-

tial lower semicontinuity of h:

Proposition 2 In (1), assume that

1. C is a compact subset of Rd .
2. g is w.s.l.s. (as function of all three variables simultaneously).

Then h is w.s.l.s. at all u ∈ U satisfying

P (g̃ (u, z) = 0) = 0, (3)

where g̃ is defined in (2).

Proof We show first that g̃ is w.s.l.s. Indeed, fix an arbitrary (ū, z̄) ∈ U × R
s and consider

an arbitrary weakly convergent sequence (uk, zk) ⇀ (ū, z̄) and a realizing subsequence
such that

lim
l

g̃(ukl
, zkl

) = lim inf
k→∞ g̃(uk, zk).

By our assumptions 1. and 2., the infimum in (2) is attained. Hence, there exists a sequence
xl ∈ C such that g̃(ukl

, zkl
) = g(ukl

, zkl
, xl). By compactness of C, we may assume that

xlα →α x̄ for some subsequence and some x̄ ∈ C. Exploiting 2. once more, we arrive at

lim inf
k→∞ g̃(uk, zk) = lim

α
g̃(uklα

, zklα
) = lim

α
g(uklα

, zklα
, xlα )

= lim
α

inf g(uklα
, zklα

, xlα ) ≥ g(ū, z̄, x̄) ≥ g̃(ū, z̄).

Consequently, g̃ is w.s.l.s. in both variables simultaneously. In particular, it is Borel mea-
surable in the second one and, so, one may invoke Lemma 2 (applied to g̃) in the Appendix
in order to derive that h is w.s.l.s. at all u ∈ U satisfying (3).

Remark 1 The result of Proposition 2 can be maintained by using the following alternative
assumptions:

1. C is a finite subset of Rd

2. g(·, ·, x) is w.s.l.s. for all x ∈ C

Note, that here we have strengthened the first assumption in favor of weakening the second
one. The reason, why this is possible, is that g̃ in the proof of Proposition 2 happens to be
w.s.l.s. as a finite minimum of w.s.l.s. functions.

We observe the following easy to check sufficient condition for (3) to hold:

Proposition 3 In the setting of Proposition 2 assume that

1. the g(u, ·, x) are concave for all u ∈ U and x ∈ C.
2. for each u ∈ U there exists some z̄ ∈ R

s such that g(u, z̄, x) > 0 for all x ∈ C.
3. ξ has a density.

Then, (3) holds true at all u ∈ U .

Proof Fix an arbitrary u ∈ U . Observe first that, as a consequence of 1., g̃(u, ·) is a concave
function. The assumptions of Proposition 2 ensure that the infimum in (2) is attained. Hence,
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by 2., there exists some z̄ ∈ R
s such that g̃(u, z̄) > 0. Both observations entail that the

set

E := {z ∈ R
s | g̃(u, z̄) = 0}

is a subset of the boundary of the convex set

{z ∈ R
s | g̃(u, z̄) ≥ 0}.

Since the boundary of a convex set has Lebesgue measure zero, E itself has Lebesgue mea-
sure zero. By 3., the distribution of ξ is absolutely continuous with respect to the Lebesgue
measure, whence P(ξ ∈ E) = 0. This finally yields (3).

We next address the question of convexity for a chance constraint h(u) ≥ p for h intro-
duced in (1). To this aim, we recall that a function ϕ : V → R (V a vectors space) is defined
to be quasiconcave, if the following relation holds true:

ϕ(λu + (1 − λ)v) ≥ min{ϕ(u), ϕ(v)} ∀u, v ∈ V ; ∀λ ∈ [0, 1]
The next proposition can be proven exactly in the same way as in [29, Theorem 10.2.1].
As this original proof has been given in an unnecessarily restricted setting (U finite dimen-
sional, C a finite index set), we provide here a streamlined proof applicable to our setting in
(1) for the readers convenience.

Proposition 4 Let U be an arbitrary vector space and C be an arbitrary index set. Let
the s-dimensional random vector ξ have a log-concave density (i.e., a density whose loga-
rithm is a possibly extended-valued concave function). Finally, assume that the g(·, ·, x) are
quasiconcave for all x ∈ C. Then, the set

M := {u ∈ U | h(u) ≥ p} (4)

is convex for any p ∈ [0, 1], where h refers to (1).

Proof Recall that, for g̃ defined in (2), we may write

h(u) = P(g̃(u, ξ) ≥ 0) (u ∈ U). (5)

We note that g̃ is quasiconcave. Indeed, fix an arbitrary pair of points

(u1, z1), (u2, z2) ∈ U × R
s

along with an arbitrary λ ∈ [0, 1]. Moreover, choose an arbitrary ε > 0. Then, there exists
some x ∈ C such that

g̃(λ(u1, z1) + (1 − λ)(u2, z2)) ≥ g(λ(u1, z1) + (1 − λ)(u2, z2), x) − ε

≥ min{g(u1, z1, x), g(u2, z2, x)} − ε

≥ min{g̃(u1, z1), g̃(u2, z2)} − ε.

Here, in the second inequality, we exploit the quasiconcavity assumption on g(·, ·, x) for all
x ∈ C. As ε > 0 was arbitrarily chosen, the claimed quasiconcavity of g̃ follows. Next, the
assumption on ξ having a logconcave density implies by Prekopa’s Theorem [29, Theorem
4.2.1] that ξ has a logconcave distribution. This means that

P(ξ ∈ λA + (1 − λ)B) ≥ [P(ξ ∈ A)]λ[P(ξ ∈ B)]1−λ (6)
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holds true for all convex subsets A,B ∈ R
s and all λ ∈ [0, 1]. In order to prove the claimed

convexity of the set M in (4), let u1, u2 ∈ M and λ ∈ [0, 1] be arbitrarily given. Accord-
ingly, h(u1), h(u2) ≥ p. We have to show that λu1 + (1 − λ)u2 ∈ M . To this aim, define a
multifunction H : U ⇒ R

s by

H(u) := {z ∈ R
s | g̃(u, z) ≥ 0} (u ∈ U).

Observe that H(u1) and H(u2) are convex sets as an immediate consequence of the
quasiconcavity of g̃. We claim that

H(λu1 + (1 − λ)u2) ⊇ λH(u1) + (1 − λ)H(u2). (7)

Indeed, selecting an arbitrary z ∈ λH(u1) + (1 − λ)H(u2), we may find z1 ∈ H(u1) and
z2 ∈ H(u2) such that z = λz1 + (1 − λ)z2. In particular,

g̃(u1, z1), g̃(u2, z2) ≥ 0.

Exploiting the quasiconcavity of g̃ proven above, we arrive at

g̃(λu1 + (1 − λ)u2), z) = g̃(λ(u1, z1) + (1 − λ)(u2, z2)

≥ min{g̃(u1, z1), g̃(u2, z2)} ≥ 0.

In other words, z ∈ H(λu1 + (1 − λ)u2), which proves (7). Now, (5) along with (6) yields
that

h(λu1 + (1 − λ)u2) = P(ξ ∈ H(λu1 + (1 − λ)u2))

≥ P(ξ ∈ λH(u1) + (1 − λ)H(u2))

≥ [P(ξ ∈ H(u1))]λ[P(ξ ∈ H(u2))]1−λ

= hλ(u1)h1−λ(u2) ≥ pλp1−λ = p.

Consequently, λu1 + (1 − λ)u2 ∈ M as desired.

We note that in the previous convexity result the assumption of a log-concave density
could be relaxed in the sense of generalized concavity properties (r-concavity), see [29].
We restrict ourselves here to log-concavity for the sake of simplicity and observe that
many prominent multivariate distributions (including the Gaussian one) have a log-concave
density.

3 A Stability Result for Chance Constrained Optimization Problems

In this section we establish a stability results for optimal solutions and optimal values of a
chance constrained optimization problem in Banach spaces under perturbations of the dis-
tribution of the random vector. In this way, corresponding earlier finite-dimensional results
in [19, 30] are substantially extended.

We consider the following (nominal) optimization problem with chance constraint:

min
u∈U0

{f (u)|P (g (u, ξ, x) ≥ 0 ∀x ∈ C) ≥ p} . (8)

Here, U0 is a subset of the Banach space U and f : U → R is some objective function,
while g, ξ and C are as in (1). The scalar p ∈ [0, 1] denotes a probability or safety level
at which the random inequality system is supposed to be satisfied. We recall the set-valued
mapping H : U ⇒ R

s already introduced in the proof of Proposition 4 and defined by

H(u) := {z ∈ R
s | g (u, z, x) ≥ 0 ∀x ∈ C} (u ∈ U).
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By μ := P ◦ ξ−1 we denote the distribution (the law) of our random vector ξ . Cleary, μ is
the probability measure on R

s induced by ξ . By definition,

μ (H (u)) = P (g (u, ξ, x) ≥ 0 ∀x ∈ C) = h(u) (u ∈ U) , (9)

where h is defined in (1). Then, problem (8) can be rewritten as

min
u∈U0

{f (u)|μ (H (u)) ≥ p} . (10)

The solution of this problem requires the distribution μ of the random vector ξ to be known.
This, however, is rarely the case in practice and, more typically, one replaces the unknown
μ by some approximating probability measure ν whose construction may be based on his-
torical observations of ξ . This fact leads us to embed the nominal problem (10) into a family
of optimization problems parameterized by the family P (Rs) of all probability measures
on R

s :
min {f (u)|u ∈ Φ (ν)} (

ν ∈ P
(
R

s
))

. (11)

Here, Φ : P (Rs) ⇒ U is a mutlifunction representing the constraint set and being defined
as

Φ (ν) := {u ∈ U0|ν (H(u)) ≥ p} .

Clearly, for ν = μ, problem (11) reduces to the nominal problem (10). In general, however,
ν will be different from μ and so, the solution of (11) will differ from the theoretical solution
of (10). Then, it comes as a natural question, under what conditions solutions and optimal
values will behave in a stable way when perturbing the nominal measure μ. Does closeness
of ν to μ (for instance, thanks to a large historical data base) imply closeness of solutions and
optimal values of (11) to those of (10). In order to answer this question, we have to define
first closeness of probability measures. To this aim, we introduce a so-called discrepancy
distance:

α (ν1, ν2) :=

max

{

sup
u∈U0

|ν1 (H(u)) − ν2 (H(u))| , sup
z∈Rs

∣
∣ν1

(
z + R

s−
) − ν2

(
z + R

s−
)∣∣

}

(
ν1, ν2 ∈ P (Rs)

)
(12)

We note that α is a metric on P (Rs) by comparing ν1 and ν2 on all ’cells’ z + R
s−. To

emphasize this fact, we will write
(
P (Rs) , α

)
for this metric space of probability mea-

sures. Moreover, by comparing ν1 and ν2 on all sets H(u) with u ∈ U0, this metric will turn
out to be a suitable one for our stability analysis. Finally, we introduce the optimal value
function φ : P (Rs) → R as well as the optimal solution mapping Ψ : P (Rs) ⇒ U for
the parametric problem (11) as:

φ (ν) := inf {f (u)|u ∈ Φ (ν)} ; Ψ (ν) := {u ∈ Φ (ν) |f (u) = φ (ν)} . (13)

Theorem 1 In (8), let U be a reflexive Banach space and C an arbitrary index set. Let
p ∈ (0, 1). Assume the following conditions:

1. ξ has a log-concave density.
2. The g(·, ·, x) are quasiconcave for all x ∈ C.
3. The g (·, z, x) are w.s.u.s. for all x ∈ C and z ∈ R

s .
4. U0 is bounded, closed and convex.
5. There exists some û ∈ U0 such that P

(
g

(
û, ξ, x

) ≥ 0 ∀x ∈ C
)

> p

6. f is w.s.l.s.
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Then, there exists some ε > 0 such that, with μ referring to the probability distribution
of ξ ,

Ψ (ν) 
= ∅ ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε. (14)

Moreover, φ is lower semicontinuous at μ. If additionally f is w.s.u.s., then φ is upper semi-
continuous at μ. In other words, if f is weakly sequentially continuous, then φ is continuous
at μ. Moreover, in this case, Ψ is weakly upper semicontinuous at μ, i.e., for every weakly
open set V in U such that Ψ (μ) ⊆ V , there exists some ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε. (15)

Proof Define the multifunction M̃ : R ⇒ U by

M̃(t) := {u ∈ U0|μ (H(u)) ≥ t} (t ∈ R) .

For every ν ∈ P (Rs) one has by (12) the implication

u ∈ M̃(p+α (μ, ν)) =⇒ u ∈ U0, μ (H(u)) ≥ p+α (μ, ν) ≥ p+μ (H(u))−ν (H(u)) ,

which entails the inclusion
M̃(p + α (μ, ν)) ⊆ Φ (ν) .

Taking this into account and recalling (9), Lemma 3 in the Appendix allows us to prove the
existence of some ε, γ > 0 such that for all u ∈ U0 and all ν ∈ P (Rs) with α (μ, ν) < ε:

d(u,Φ (ν)) ≤ d(u, M̃(p + α (μ, ν))) = d(u, {u ∈ U0|μ (H(u)) ≥ p + α (μ, ν)})
= d(u, {u ∈ U0|h(u) ≥ p + α (μ, ν)}
≤ γ max{log (p + α (μ, ν)) − log h(u), 0}.

Assume now that u ∈ Φ (μ) is arbitrarily given. In particular, u ∈ U0 and h(u) =
μ (H(u)) ≥ p. Exploiting the general relation log (c + d) − log c ≤ d/c for c, d > 0, we
may continue the estimation above as

d(u,Φ (ν)) ≤ γ max{log (μ (H(u)) + α (μ, ν)) − log μ (H(u)) , 0}
≤ γ max{α (μ, ν) /μ (H(u)) , 0} ≤ γ max{α (μ, ν) /p, 0}
= Lα (μ, ν) ∀u ∈ Φ (μ) ∀ν ∈ P

(
R

s
) : α (μ, ν) < ε, (16)

for L := γ /p. By 5., we have that μ
(
H(û)

)
> p, whence û ∈ Φ (μ). According to (16),

we know that

d(û, Φ (ν)) ≤ Lα (μ, ν) ≤ Lε < ∞ ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε.

In particular, the sets Φ (ν) are nonempty and they are also weakly sequentially compact by
Lemma 4 in the Appendix. As a consequence of 6., f attains its minimum over Φ (ν). This
proves (14).

Let now νn ∈ P (Rs) be a sequence with α (μ, νn) → 0 and

lim inf
α(μ,ν)→0

φ (ν) = lim
n→∞ φ (νn) .

By the already proven relation (14), we may choose an associated sequence

wνn ∈ Ψ (νn) ⊆ Φ (νn) ⊆ U0.

By definition, f (wνn) = φ (νn) for all n. Since wνn is a bounded sequence in a reflex-
ive Banach space, there exist a weakly converging subsequence wνnk ⇀k w̄. Since also
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α
(
μ, νnk

) →k 0, it follows from Lemma 5 in the Appendix that w̄ ∈ Φ (μ). Consequently,
exploiting 6., one arrives at

lim inf
α(μ,ν)→0

φ (ν) = lim
k→∞ f

(
wνnk

) ≥ f (w̄) ≥ φ (μ) .

This proves the asserted lower semicontinuity of φ at μ.
Next, assume that f is w.s.u.s. and let νn ∈ P (Rs) be a sequence with α (μ, νn) → 0

and
lim sup

α(μ,ν)→0
φ (ν) = lim

n→∞ φ (νn) .

According to the already proven relation (14), we may select some u∗ ∈ Ψ (μ) ⊆ Φ (μ).
Then, φ (μ) = f (u∗) and, by (16), we have that

d(u∗, Φ (νn)) ≤ Lα (μ, νn)

for n large enough. Since we have already seen that the Φ (ν) are nonempty, whenever
α (μ, ν) < ε, we may select elements uνn ∈ Φ (νn) satisfying the relation

∥
∥u∗ − uνn

∥
∥ ≤ d(u∗, Φ (νn)) + n−1 ≤ Lα (μ, νn) + n−1.

Consequently, uνn → u∗. Moreover ϕ (νn) ≤ f (uνn) and we conclude from f being w.s.u.s.
(actually upper semicontinuity of f in the strong topology would be sufficient here) that

lim sup
α(μ,ν)→0

φ (ν) ≤ lim sup
n→∞

f (uνn) ≤ f (u∗) = φ (μ) .

This proves the asserted upper semicontinuity of φ at μ.
Hence, we have shown so far that weak sequential continuity of f implies continuity of φ

at μ. Having this result in mind, we finally prove the weak upper semicontinuity of Ψ at μ.
If this didn’t hold true, then there would exist a weakly open set V in U such that Ψ (μ) ⊆ V

as well as a sequence νn ∈ P (Rs) such that α (μ, νn) → 0 and a sequence uνn ∈ Ψ (ν)\V .
In particular, f (uνn) = φ (νn) for all n. Since Ψ (ν) ⊆ Φ (ν) ⊆ U0, where U0 is bounded,
there exists a weakly convergent subsequence uνnk ⇀k ū /∈ V . From uνnk ∈ Φ

(
νnk

)
and

α
(
μ, νnk

) →k 0 we derive with the help of Lemma 5 that ū ∈ Φ (μ). On the other hand,
the weak sequential continuity of f and the already proven in this case continuity of φ at μ

provide
f (ū) ↼k f (uνnk ) = φ

(
νnk

) →k φ(μ).

The relations ū ∈ Φ (μ) and f (ū) = φ(μ) now lead to the contradiction ū ∈ Ψ (μ)

⊆ V .

The following Corollary provides an important consequence of the weak upper semicon-
tinuity of the solution set mapping at the nominal distribution μ ∈ P (Rs):

Corollary 1 In addition to assumptions 1. - 5. in Theorem 1, let the objective f in (8)
be weakly sequentially continuous and convex. Moreover, let un ∈ U and νn ∈ P (Rs)

be sequences such that un ∈ Ψ (νn) and α(μ, νn) →n 0. Then, each weakly convergent
subsequence unk

of un has a weak limit in Ψ (μ), i.e., a weak limit which is a solution of the
nominal problem (8).

Proof By assumption, (8) is a convex optimization problem (i.e., it has a convex objective
and a convex constraint set Φ (μ) as a consequence of assumption 4. in Theorem 1 and of
Proposition 4). Hence, the set Ψ (μ) of optimal solutions to (8) is convex. Now, if unk

⇀k
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ū ∈ U is a weakly convergent subsequence of un and if we assumed that ū /∈ Ψ (μ), then
by the Hahn-Banach Theorem, one could find u∗ ∈ U∗ and γ ∈ R, such that

〈
u∗, u

〉
< γ <

〈
u∗, ū

〉 ∀u ∈ Ψ (μ) .

Since Ψ is weakly upper semicontinuous at μ by Theorem 1, there exists ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε.

for the weakly open set
V := {

u ∈ U | 〈u∗, u
〉
< γ

}
.

It follows that
〈
u∗, unk

〉
< γ for k sufficiently large. Hence, unk

is not contained in the
weakly open set

Ṽ := {
u ∈ U | 〈u∗, u

〉
> γ

}

containing ū. This contradicts unk
⇀k ū.

4 Example from PDE Constrained Optimization

Chance constraints arise in many important engineering applications, where PDEs play a
crucial role. The framework developed in Section 2 is used to treat simple linear PDE con-
strained optimization subject to such chance constraint. The solutions of linear PDEs depend
linearly and continuously on the given data and this fact guarantees the weak sequentially
semicontinuity of the function g in the chance constraint, which makes the framework
developed in Section 2 applicable. More precisely, we consider the following simple PDE:

− ∇x · (κ(x) ∇xy(x,ω)) = r(x, ω), (x, ω) ∈ D × Ω

n · (κ(x) ∇xy(x,ω)) + α y(x, ω) = u(x) (x,ω) ∈ ∂D × Ω, (17)

where D ⊂ R
d , d = 2, 3, α > 0 and ∇x is the gradient operator with index x indicating

that the gradient has to be build with respect to the spatial variable x ∈ D. Moreover
ω is the stochastic variable, which belongs to a complete probability space denoted by
(Ω,F , P ). Here Ω is the set of outcomes, F ⊂ 2Ω is the σ -algebra of events, and
P : F → [0, 1] is a probability measure. In (17) the function denoted by u will play the
role of a deterministic control variable (boundary control), whereas the function r indicates
an uncertain source function. Such PDEs appear for instance in shape optimization with
stochastic loadings, see e.g. [16], or in induction heating problems in semiconductor single
crystal growth processes, see e.g. [14]. For problems arising in the context of crystal growth
of semiconductor single crystals optimizing the temperature - the state of the system -
within a desirable range is one of important goals. In [14] a stationary heat equation is
considered with a source term caused by an induction process. There, such an induction
process generated by time-harmonic electromagnetic fields can not be realized exactly and
exhibits uncertainty which consequently results in a random temperature field.

Remark 2 In order to make this section self-contained, we collect some well-known results
concerning the well-posedness of (17), see [7, 8, 11, 18, 25], and highlight properties which
are important for the applicability of the results of Section 2 in Section 4.2. We note that with
the framework presented in Section 2, we are not able to treat PDE constrained optimization
with a chance constraint involving nonlinear source terms in the PDE or even the case,
where the coefficient κ in (17) is a random field κ(x, ω).
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To ensure well-posedness of (17), we follow the lines in [7, 8, 11, 18] and assume that

D ∈ C1,1, κ ∈ C0,1(D) and ∃κ0 > 0 : κ0 ≤ κ(x)∀x ∈ D. (18)

4.1 Well-posedness of (17)

Throughout this paper, we use standard notations (e.g., see [3]) for the Sobolev spaces
Hm(D) for each real number m with norms ‖ · ‖Hm(D). We denote the inner product on
Hm by (·, ·)Hm and c a generic constant whose value may change with the context. Let ξ be
an R

s-valued random variable in a probability space (Ω,F , P ). If ξ ∈ L1
P (Ω), we define

Eξ = ∫
Ω

ξ(ω) dP (ω) as its expected value. We now define the stochastic Sobolev spaces

L2(Ω; Hm(D)) = {v : D × Ω → R | ‖v‖L2(Ω;Hm(D)) < ∞},
where

‖v‖2
L2(Ω;Hm(D))

=
∫

Ω

‖v‖2
Hm(D)dP (ω) = E‖v‖2

Hm(D).

Note that the stochastic Sobolev space L2(Ω; Hm(D)) is a Hilbert space with the inner
product

(u, v)L2(Ω;Hm(D)) = E

∫

D

∇u · ∇v dx.

For simplicity, we use the following notation:

H m(D) = L2(Ω; Hm(D)).

For instance,
L 2(D) = L2(Ω; L2(D))

and
H 1(D) = {v ∈ L 2(D) | E‖v‖2

H 1(D)
< ∞}.

Moreover we define
B(D̄) = L2(Ω;B(D̄)),

where by B(D̄) we denote the space of continuous functions on D̄.

We now state the well-posedness for (17).

Proposition 5 Let (18) be fulfilled. Then for every (r, u) ∈ L 2(D) × H
1
2 (∂D) there exists

a unique solution y ∈ H 2(D) of (17) in the sense

E

(∫

D

κ(x) ∇xy(x, ω) · ∇xρ(x, ω) dx + α

∫

∂D

y(x, ω) ρ(x, ω) ds

)

= E

(∫

D

r(x, ω) ρ(x, ω) dx +
∫

∂D

u(x) ρ(x,ω) ds

)
, ∀ρ ∈ H 1(D) (19)

Moreover, the mapping

Y : L 2(D) × H
1
2 (∂D) → H 2(D), (r, u) �→ y := Y (r, u)

is linear and continuous, i.e.

‖y‖H 2(D) ≤ c

(
‖r‖L 2(D) + ‖u‖

H
1
2 (∂D)

)
. (20)

Proof This a conseuqence of the Lax-Milgram Lemma.
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Remark 3 For dim(D) = 3, we know that the continuous embedding H 2(D) ↪→ B(D̄) is
fulfilled. Hence, the solution y from Proposition 5 belongs to B(D̄) and we further obtain

‖y‖B(D̄) ≤ c

(
‖r‖L 2(D) + ‖u‖

H
1
2 (∂D)

)
. (21)

4.2 Optimization Problem

In preparation of the PDE constrained optimization problem we make the following
assumptions:

(O1) Let U := H
1
2 (∂D), ȳ(·) ∈ B(D̄) and a subset C ⊆ D of the domain be given.

(O2) The admissible set Uad is a bounded, closed and convex subset of U .
(O3) The cost functional L : H 2(D) × H

1
2 (∂D) → R is weakly sequentially lower

semi-continuous and bounded from below by zero.

Now, our overall optimization problem reads as

(P )

⎧
⎪⎪⎨

⎪⎪⎩

min E(L(y(x,ω), u(x)))

over H 2(D) × Uad

s.t. (19) is satisfied
P(ω ∈ Ω | y(x, ω) ≤ ȳ(x), ∀x ∈ C) ≥ p, p ∈ (0, 1)

Remark 4 As indicated in the beginning of this section for problems arising in the context
of crystal growth of semiconductor single crystals optimizing the temperature - the state of
the system - within a desirable range is one important goal. In application this is an impor-
tant issue since engineers are interested to prevent damage in semiconductor single crystals
which are caused by high temperature distributions. But as one has to deal with uncertain
time-harmonic electromagnetic fields. The temperature field is consequently random, too.
In this case it is reasonable to request that the temperature as state variable stays with high
probability in some prescribed domain.

4.3 Finite Sum Expansion

For the source function r in (17) we make the ansatz of a finite (truncated) sum expansion
extensively used in the literature:

r(x, ω) :=
s∑

k=1

βk(x) ξk(ω), (22)

which enables us to approximate the infinite dimensional stochastic field by a finite dimen-
sional (s-dimensional) random variable. For a discussion of this ansatz, we refer to [17] or
[4, Section 2.4]. With

β(x) := (β1(x), . . . , βs(x))T ; ξ(ω) := (ξ1(ω), . . . , ξs(ω))T ,

we define

r̃(x, ξ) := β(x) · ξ(ω), (23)
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where ξ is is an R
s-valued random variable. Using the solution operator Y and (23) we

define
g : U × R

s × D → R, g(u, ξ, x) := ȳ(x) − Y (r̃(x, ξ), u(x)). (24)

Lemma 1 The function g(·, ·, x), defined in (24), is weakly sequentially continuous and
quasiconcave for all x ∈ D.

Proof Using Proposition 5, under the assumption (22 ), we obtain from (20) the estimate

‖y‖H 2(D) ≤ c
(
(‖β‖[L2(D)]s · ‖ξ‖[L2(Ω)]s ) + ‖u‖U

)
. (25)

which means that y is depending linearly and continuously on the data (ξ, u) for fixed
x ∈ D. Linearity in combination with continuity provides weak sequential continuity and
quasiconcavity. Consequently the assertions of the lemma immediately follow.

4.4 Properties of the Reduced Problem

Defining the reduced cost functional by

f (u(·)) := E(L(Y (r̃(·, ξ), u(·)), u(·))) (26)

and using the definition

h(u) := P(g(u, ξ, x) ≥ 0, ∀x ∈ C), (27)

with g, defined in (24), and ξ , defined in (23), the chance constraint in (P ) can be formulated
as

M := {u ∈ U | h(u) ≥ p}. (28)

Then the reduced optimal control problem reads as

(P ) min
u∈Uad∩M

f (u). (29)

The aim of the following Theorem is to establish the existence of a solution to (P ).

Theorem 2 Assume (O1)-(O3). Then, the problem (P ) admits a solution.

Proof By Lemma 1, the function g(·, ·, x) is weakly sequentially continuous for all x ∈ D.
Then, Proposition 1 yields that h is weakly sequentially upper semicontinuous, whence M

in (28) is weakly sequentially closed. Consequently, by (O2) Uad ∩M is weakly sequentially
closed, too. Moreover, the reduced cost function f , defined in (26) as a composition of three
operators E, L and Y , is weakly sequentially lower semicontinuous. This is true, because E

and Y are linear and continuous and E additionally monotonous. Hence, (O3) provides the
desired property of f . Now, the existence of a solution to (P ) follows by the direct method
in the calculus of variations.

In the previous theorem, one of the main ingredients in proving the existence result was
to establish the weak sequential upper semicontinuity of the function h. This was done
by using Lemma 1 and Proposition 1. In the following theorem we will refine this upper
semicontinuity result to a semicontinuity result by additionally taking into account a lower
semicontinuity property. The theorem will then ensure weak sequential continuity of the
fuction h.
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Theorem 3 Let C be a finite subset of Rd and the random variable ξ , defined in (23), have
a density. Moreover, assume that for each u ∈ U there exists some z̄ ∈ R

s such that

Y (r̃(x, z̄), u(x)) < ȳ(x) ∀x ∈ C. (30)

Then the function h, defined in (27), is weakly sequentially continuous.

Proof Using once again Lemma 1, it follows that g(·, ·, x) is weakly sequentially continu-
ous for all x ∈ C ⊆ D. Then, h is w.s.u.s. by Proposition 1. Moreover, it is obvious that
g(u, ·, x) is linear for all u ∈ U and x ∈ C, and consequently concave. This is assump-
tion 1. in Proposition 3, while the existence of a density for ξ required here, corresponds to
assumption 3. of the same Proposition. Finally, (30) translates by (24) to assumption 2. of
Proposition 3. Now this Proposition guarantees via Remark 1 that h is w.l.s.c.

We observe that we could not derive the result of the last Theorem for general compact
sets C ⊆ D by referring to Proposition 2. The reason is that we are not able in Lemma 1
to establish the required weak sequential lower semicontinuity of g in all three variables
simultaneaously. Therefore we benefit from the alternative result mentioned in Remark 1
and using weak sequential lower semicontinuity of g in the first two variables only. This, of
course, comes at the price of reducing C to a finite set.

The condition given by (30) can be interpreted as a Slater’s condition. It means that for
every given control u there must exists a realization z̄ of the random variable ξ such that
the state y has to be uniformly strictly smaller than the given state ȳ. If this condition is not
fulfilled then the upper limit function ȳ was chosen too restrictively.

An instance for the use of Theorem 3 is the consideration of random state constraints in
disjunctive form which would lead to the following state chance constraint:

P(ω ∈ Ω | ∃x ∈ C : y(x,ω) > ȳ(x)) ≥ p.

Here, in contrast to the previous setting in problem (P) one is interested in the comple-
mentary situation, namely that with high probability the random state exceeds some given
threshold at least somewhere on the domain. Turning this state chance constraint into a con-
trol constraint as before and using the functions g, h defined in (24) and (27), respectively,
we arrive at the condition

P(ω ∈ Ω | ∃x ∈ C : y(x,ω) > ȳ(x)) = P(ω ∈ Ω | ∃x ∈ C : g(u, ξ, x) < 0)

= 1 − h(u) ≥ p.

So, instead of (28) the chance constraint would be defined by M := {u | h(u) ≤ 1 − p}.
In order to prove an existence result similar to that of Theorem 2, one would now need
the weak sequential lower (rather than upper) semicontinuity of h. This would come as a
consequence of Theorem 3.

In the following theorem we are going to establish a condition such that (P ) becomes a
convex optimization problem.

Theorem 4 Assume (O1)-(O3). Let the random variable ξ , defined in (23), have a density
whose logarithm is a (possibly extended-valued) concave function. Moreover, assume that
the objective function L is convex. Then problem (P ) is a convex optimization problem.
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Proof The convexity of L and the linearity of the solution operator Y , see ( 25), yield that
the mapping

u(·) �→ L(Y (r̃(·, ξ), u(·)), u(·))
is convex. Then by the linearity of the expectation E, we obtain that u �→ f (u) is convex.
Moreover, Lemma 1(b) provides that g(·, ·, x) is quasiconcave for all x ∈ C. Then, it fol-
lows from Proposition 4 that M is convex. By assumption Uad is convex and consequently
the intersection M ∩ Uad is convex, too. Hence, the assertion of the theorem follows.

Remark 5 Numerous multivariate distributions have log-concave densities, e.g. normal dis-
tribution, Student’s t-distribution, uniform distribution on compact and convex sets, see e.g.
[29]. Hence, the assumption about the logconcave densities is fairly general. Often in PDE
constrained optimization the objective functional L has the form L(y, u) = L1(y) + L2(u)

where L1 and L2 are separately convex and are defined by L1 : H 2(D) � y �→ L1(y) ∈ R

and L2 : U � u �→ L2(u) ∈ R.

As indicated in Remark 4 one has to deal with uncertain time-harmonic electromag-
netic fields which result in uncertain temperature fields. In practice the distribution of such
uncertain time-harmonic electromagnetic fields are unknown and engineers work instead
with some approximating probability measure whose construction in most cases is based
on historical observations of the uncertain electromagnetic fields. Now the stability results
in Section 3 guarantee stability of solutions and optimal values of (P ) to those with
approximating probability measure.

In preparation of a stability result for our optimization problem with respect to perturba-
tions of the random distribution, we denote by μ := P ◦ ξ−1 the distribution of our random
vector ξ , defined in (23). We adapt the notation of Section 3 to our concrete optimization
problem (29). We define the multifunction

H(u) := {z ∈ R
s |Y (r̃(x, z), u(x)) ≤ ȳ(x) ∀x ∈ C} (u ∈ U).

Moreover, with each probability measure ν ∈ P(Rs) we associate the feasible set

Φ(ν) := {u ∈ Uad |ν(H(u)) ≥ p}.
This allows us to embed our given problem (29) into a family of problems

(Pν) min {f (u)|u ∈ Φ (ν)} (
ν ∈ P

(
R

s
))

. (31)

parameterized by all probability measures. We observe that for ν := μ = P◦ξ−1 we recover
our nominal problem (29) with the given distribution of the random vector ξ : Indeed, by
definition,

Φ(μ) = {u ∈ Uad |μ(H(u)) ≥ p} = {u ∈ Uad |P(ξ ∈ H(u)) ≥ p}
= {u ∈ Uad |P(Y (r̃(x, ξ), u(x)) ≤ ȳ(x) ∀x ∈ C) ≥ p} = Uad ∩ M.

Consequently, problems (Pν) can be considered as perturbations of the nominal problem
and it is of interest, whether optimal solutions and optimal values of (Pν) behave sta-
ble under small perturbations. Here, closeness between ν and μ will be measured by the
discrepancy distance α introduced in (12). Finally, we recall the defintions of the parameter-
dependent optimal value function φ and optimal solution mapping Ψ defined in (13) and
associated with the family of problems (Pν) in (31). Now, we have paved the way for the
desired stability result:
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Theorem 5 Consider the optimization problem (P) introduced in Section 4.2 and corre-
sponding to (29). Assume (O1)-(O3) with an arbitrary index set C. Let the random variable
ξ , defined in (23), have a density whose logarithm is a (possibly extended-valued) concave
function. Moreover, assume that there exists some û ∈ Uad such that

P
(
Y (r̃(x, ξ), û(x)) < ȳ(x) ∀x ∈ C

)
> p (32)

Then, there exists some ε > 0 such that, with μ referring to the probability distribution of ξ ,

Ψ (ν) 
= ∅ ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε. (33)

Moreover, φ is lower semicontinuous at μ. If additionally the cost function L in our
optimization problem (P) is weakly sequentially upper semicontinuous, then φ is upper
semicontinuous at μ. In other words, if L is weakly sequentially continuous, then φ is con-
tinuous at μ. Moreover, in this case, Ψ is weakly upper semicontinuous at μ, i.e., for every
weakly open set V in U such that Ψ (μ) ⊆ V , there exists some ε > 0 such that

Ψ (ν) ⊆ V ∀ν ∈ P
(
R

s
) : α (μ, ν) < ε. (34)

Proof To prove Theorem 5 we have to check the assumptions of Theorem 1, where the first
one is evident by being directly imposed here. Next, Lemma 1 guarantees the assumption 2.
and 3. of Theorem 1. Defining U0 as Uad , the assumption (O2) provides assumption 4. in

Theorem 1. Moreover, since H
1
2 (∂Ω) as a Hilbert space is reflexive and arguing as in the

proof of Theorem 2 that the reduced cost function f , defined in (26) as a composition of
three operators E, L and Y , is weakly sequentially lower semicontinuous gives assumption
6. in Theorem 1. Clearly, (32) corresponds to assumption 5. in Theorem 1. Therefore, we
get the first part of the assertion of our Theorem. Arguing as in the proof of Theorem 2 that
the reduced cost function f , defined in (26) as a composition of three operators E, L and Y ,
is weakly sequentially upper semicontinuous, the second part of our Theorem 5 is proved
by the second part of Theorem 1.

Corollary 2 In addition to the assumptions in Theorem 5, let the objective L in (O3) be
weakly sequentially continuous and convex. Moreover, let un ∈ U and νn ∈ P (Rs) be
sequences such that un ∈ Ψ (νn) and α(μ, νn) →n 0. Then, each weakly convergent sub-
sequence unk

of un has a weak limit in Ψ (μ). In other words: each weakly convergent
subsequence of solutions to the approximating problems has a weak limit which is a solution
of the nominal problem (P).

Proof Arguing as in the proof of Theorem 2 that the reduced cost function f , defined in
(26) as a composition of three operators E, L and Y , is weakly sequentially semicontinuous,
Corollary 2 provides the assertion.

5 Conclusions

We have shown that and how certain basic structural and stability properties of chance con-
straints, which are well established in finite dimensions, can be carried over to and verified
in a Banach space setting. So far, a simple class of PDE constrained optimization prob-
lems could be demonstrated to be a good candidate for ensuring these properties and, in
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particular, for deriving the existence of solutions and their stable dependence on perturba-
tions of the underlying probability distribution. Figuring out more complex problem classes
will be a major future challenge. Moreover, passing to more interesting structural proper-
ties like Lipschitz continuity and differentiability of the probability functions or convexity
of the feasible set under less restrictive assumptions will be in the focus of future research.
The ultimate goal of such analysis - which is nontrivial already in finite dimensions (see [1,
2, 20, 21]) - would be the efficient numerical solution of state chance constrained in PDE
constrained optimization.

Acknowledgments The authors express their gratitude to two anonymous referees whose very careful
reading and critical comments led to a substantially improved presentation of this paper.

Appendix

Lemma 2 Let X be a Banach space and g : X×R
m → R, be Borel measurable in the sec-

ond argument. Further, let ξ be an m-dimensional random vector defined on a probability
space

(
Ω,A ,P

)
. Then, the probability function

ϕ(x) := P (g (x, ξ) ≥ 0) (x ∈ X)

is well-defined and if g is weakly sequentially upper semicontinuous (w.s.u.s.) in the first
argument, then ϕ is w.s.u.s. too. If, conversely, g is weakly sequentially lower semicontinu-
ous (w.s.l.s.) in the first argument, then ϕ is w.s.l.s. too in those arguments x̄ ∈ X satisfying
the relation

P (g (x̄, ξ) = 0) = 0. (35)

Proof Observe first, that ϕ is well defined by Borel measurability of g in the second argu-
ment. Fix an arbitrary x̄ and let xn ⇀ x̄ be an arbitrary weakly convergent sequence. Denote
by xnl

a subsequence such that

lim sup
n→∞

ϕ(xn) = lim
l→∞ ϕ(xnl

). (36)

Define the sets

A := {ω ∈ Ω|g (x̄, ξ (ω)) ≥ 0} ; An := {ω ∈ Ω|g (xn, ξ (ω)) ≥ 0} (n ∈ N) .

Then, by g being w.s.u.s. in the first argument, we have that

lim sup
n→∞

g(xn, ξ (ω)) ≤ g (x̄, ξ (ω)) < 0 ∀ω ∈ Ω\A.

Consequently, g(xn, ξ (ω)) < 0 for all ω ∈ Ω\A and all n ≥ n0(ω). Denoting by χC the
characteristic function of a set C, this entails that χAn (ω) →n→∞ 0 for all ω ∈ Ω\A. By
the dominance convergence theorem,

∫

Ω\A
χAn (ω)P (dω) →n→∞ 0 ∀ω ∈ Ω\A.
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On the other hand, χAn (ω) ≤ χA (ω) = 1 for ω ∈ A, whence

lim
l→∞ ϕ(xnl

) = lim
l→∞P

(
g

(
xnl

, ξ
) ≥ 0

) = lim
l→∞

∫

Ω

χAnl
(ω)P (dω)

= lim
l→∞

(∫

Ω\A
χAnl

(ω)P (dω) +
∫

A

χAnl
(ω)P (dω)

)

≤ lim
l→∞ sup

∫

Ω\A
χAnl

(ω)P (dω) + lim
l→∞ sup

∫

A

χAnl
(ω)P (dω)

= lim
l→∞ sup

∫

A

χAnl
(ω)P (dω)

≤ lim
l→∞ sup

∫

A

P (dω) = P (A) = P (g (x̄, ξ) ≥ 0)

= ϕ(x̄).

Combining this with (36) yields that ϕ is w.s.u.s. in x̄.
Next, let x̄ ∈ X be arbitrary such that (35) is fulfilled. Let xn ⇀ x̄ be an arbitrary weakly

convergent sequence. Define the sets

A := {ω ∈ Ω|g (x̄, ξ (ω)) > 0} ; An := {ω ∈ Ω|g (xn, ξ (ω)) ≥ 0} (n ∈ N) .

Then, with g being w.s.l.s. in the first argument, we have that

lim inf
n→∞ g(xn, ξ (ω)) ≥ g (x̄, ξ (ω)) > 0 ∀ω ∈ A.

Hence, χAn (ω) →n→∞ χA (ω) = 1 for all ω ∈ A, whereas χAn (ω) ≥ χA (ω) = 0 for all
ω ∈ Ω\A. Now, Fatou’s Lemma combined with (35) yields that

lim inf
n→∞ ϕ(xn) = lim inf

n→∞

∫

Ω

χAn (ω)P (dω) ≥
∫

Ω

lim inf
n→∞ χAn (ω)P (dω)

≥
∫

A

χA (ω)P (dω) = P (g (x̄, ξ) > 0)

= P (g (x̄, ξ) ≥ 0) = ϕ(x̄).

Hence, ϕ is w.s.l.s. in x̄ ∈ X.

Lemma 3 Under the assumptions of Theorem 1, there are constants ε, γ > 0 such that
(with d referring to the point-to-set distance)

d (u, {u ∈ U0|h(u) ≥ τ }) ≤ γ max{log τ − log h(u), 0} ∀u ∈ U0 ∀τ ∈ [p − ε, p + ε] .

Proof By definition of h in (1), the inequality μ (H (u)) ≥ p is equivalent with h(u) ≥
p. At the end of the proof of Proposition 4 (which to invoke is justified by 1. and 2. in
Theorem 1), we have shown that, for arbitrary u1, u2 ∈ U and λ ∈ [0, 1] the inequality

h(λu1 + (1 − λ)u2) ≥ hλ(u1)h1−λ(u2)

holds true. This means that log h is concave and, hence, the inequality μ (H (u)) ≥ p

is equivalent with h̃(u) ≤ − log p, where h̃ := − log h is a convex function. By 3. in
Theorem 1 and Proposition 1, h is w.s.u.s. and, hence, h̃ is w.s.l.s. Define the multifunction
M : U ⇒ R by

M(u) :=
{ [h̃(u),∞) if u ∈ U0

∅ else
.
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We claim that M has a closed and convex graph. To this aim, consider an arbitrary sequence
(un, tn) → (

ū, t̄
)

with tn ∈ M(un). Then, un ∈ U0 and, hence, ū ∈ U0 by closedness of U0

(see 4. in Theorem 1). Moreover, h̃(un) ≤ tn. Since h̃ is w.s.l.s., we derive that

h̃(ū) ≤ lim inf
n→∞ h̃(un) ≤ lim inf

n→∞ tn = t̄ .

Consequently, t̄ ∈ M(ū) implying that the graph of M is closed. To show its convexity,
let t1 ∈ M(u1), t2 ∈ M(u2) and λ ∈ [0, 1] be arbitrarily given. Then, first, u1, u2 ∈ U0,
whence λu1 + (1 − λ) u2 ∈ U0 by convexity of U0 (see 4. in Theorem 1). Second, we have
that h̃(u1) ≤ t1 and h̃(u2) ≤ t2. Then, convexity of h̃ yields that

h̃(λu1 + (1 − λ) u2) ≤ λt1 + (1 − λ) t2.

In other words,
λt1 + (1 − λ) t2 ∈ M(λu1 + (1 − λ) u2),

proving that the graph of M is also convex.
Finally, observe that 5. in Theorem 1 implies h(û) > p, whence h̃(û) < − log p. It

follows that − log p ∈ int M(û). Altogether, the previously shown properties allow us to
invoke the Robinson-Ursescu Theorem [6, Chapter 3, Theorem 1] in order to derive the
existence of some ε > 0 such that

d(u,M−1(t)) ≤ 1

ε
d(t, M(u))(1 + ‖u − û‖) ∀u ∈ U0 ∀t ∈ [− log p − ε,− log p + ε].

Here, d represents the point to set distance and M−1 refers to the inverse multifunction
corresponding to M . This is easily identified to be

M−1(t) = {u ∈ U0|h̃(u) ≤ t}.
Since U0 is bounded, there exists some L̃ > 0 with

∥∥u − û
∥∥ ≤ L̃ for all u ∈ U0. Hence,

with L := L̃ + 1, we get the estimate

d(u, {u ∈ U0|h̃(u) ≤ t}) ≤ L
ε

max{h̃(u) − t, 0}
∀u ∈ U0 ∀t ∈ [− log p − ε,− log p + ε] .

which can further be developed to

d(u, {u ∈ U0|h(u) ≥ e−t }) ≤ L
ε

max
{

log e−t

h(u)
, 0

}

∀u ∈ U0 ∀t ∈ [− log p − ε,− log p + ε] .

and, finally, to

d (u, {u ∈ U0|h(u) ≥ τ }) ≤ L

ε
max{log τ − log h(u), 0} ∀u ∈ U0 ∀τ ∈ [pe−ε, peε].

Observing that pe−ε < p < peε, the assertion follows.

Lemma 4 Under the assumptions of Theorem 1, one has that for every ν ∈ P (Rs) the
function ν (H(u)) is w.s.u.s. and the set Φ (ν) is weakly sequentially compact.

Proof Let η be an s-dimensional random vector having distribution ν. Then, by definition

ν (H(u)) = P (η ∈ H(u)) = P (g (u, η, x) ≥ 0 ∀x ∈ C) .
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Replacing ξ by η in the definition of the probability function (1), Proposition 1 implies via
3. in Theorem 1 that the function ν (H(·)) is w.s.u.s. Hence, the set

{u ∈ U |ν (H(u)) ≥ p}
is weakly sequentially closed. On the other hand, U0 is weakly sequentially compact by
being bounded, convex and closed in a reflexive Banach space [12, p. 217] (see assumptions
of Theorem 1 ). It follows that Φ (ν), as an intersection of a weakly sequentially compact
with a weakly sequentially closed set is weakly sequentially compact again.

Lemma 5 Let the assumptions of Theorem 1 hold true. Then, for every sequence (νn, un) ∈
P (Rs) × U and every (ν̄, ū) ∈ P (Rs) × U satisfying the relations

α (νn, ν̄) → 0, un ⇀ ū, un ∈ Φ (νn) ,

it follows that ū ∈ Φ (ν̄).

Proof Clearly, ū ∈ U0 due to un ∈ U0 and by U0 being weakly sequentially closed. By
definition,

νn (H(un)) ≥ p ∀n ∈ N.

Next, let ε > 0 be arbitrarily given and let η be an s -dimensional random vector having
distribution ν̄. Then, by definition

ν̄ (H(u)) = P (η ∈ H(u)) = P (g (u, η, x) ≥ 0 ∀x ∈ C) .

Replacing ξ by η in the definition of the probability function ( 1), Proposition 1 implies that
the function ν̄ (H(·)) is w.s.u.s. Consequently, for n large enough, one has that

ν̄ (H(un)) ≤ ν̄ (H(ū)) + ε/2.

Since also α (νn, ν̄) ≤ ε/2 for n large enough, we infer that

ν̄ (H(ū)) ≥ ν̄ (H(ū)) − ν̄ (H(un)) − |ν̄ (H(un)) − νn (H(un))| + νn (H(un))

≥ −ε/2 − α (νn, ν̄) + p ≥ p − ε.

As ε > 0 was chosen arbitrarily, it follows that ν̄ (H(ū)) ≥ p which entails that ū ∈
Φ (ν̄).
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27. Prėkopa, A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343
(1973)

28. Prėkopa, A.: Programming under probabilistic constraints with a random technology matrix. Optimiza-
tion 5, 109–116 (1974)
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