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Abstract In this work, we address an uncertain minimax optimal control problem with lin-
ear dynamics where the objective functional is the expected value of the supremum of the
running cost over a time interval. By taking an independently drawn random sample, the
expected value function is approximated by the corresponding sample average function. We
study the epi-convergence of the approximated objective functionals as well as the con-
vergence of their global minimizers. Then we define an Euler discretization in time of the
sample average problem and prove that the value of the discrete time problem converges
to the value of the sample average approximation. In addition, we show that there exists
a sequence of discrete problems such that the accumulation points of their minimizers are
optimal solutions of the original problem. Finally, we propose a convergent descent method
to solve the discrete time problem, and show some preliminary numerical results for two
simple examples.
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1 Introduction

In this work we consider an uncertain minimax optimal control problem. We assume that the
dynamics is linear, and the involved coefficients as well as the initial condition depend on
stochastic parameters. The goal is to minimize the expected value of a supremum over the
time interval of a function which depends on the state and also on the stochastic parameter.
The aim of this paper is to propose an approximation scheme for this problem, combining
some of the results recently presented in [19] and [13].

Minimax optimal control problems differ from those problems usually considered in the
optimal control literature where an accumulated cost is minimized. There are many appli-
cations where minimizing a maximum arises naturally, as for instance, minimization of the
maximum trajectory deviation from what is desired ([10, 11, 17]). These problems were
studied in the last decades by several authors. As usual in the optimal control theory there
are two main approaches. The first one is based on the Dynamic Programming Principle
where the value function is obtained as the unique viscosity solution of the Hamilton-
Jacobi-Bellman equation, see for instance [1] and [7] for the deterministic framework and
[6] and [8] for the stochastic one. The other approach is based on the Pontryagin Maximum
Principle, and we recommend [24] for the case of maximum cost.

Instead of dealing with those approaches, in this work we use the nonsmooth opti-
mization techniques presented in [13]. In that work, a numerical method for determin-
istic minimax optimal control problems is proposed through the definition of a suitable
discrete time approximation. Since the definition of the objective function includes a
supremum, in order to obtain (directional) differentiability properties, convexity assump-
tions are added. Then, a set of optimality conditions for the continuous and dis-
crete time cases are obtained, allowing the design of an easily implementable descent
method.

Many applications are naturally (or better) modeled by systems with uncertainties. There
are different sources of uncertainty such as measurement errors, uncertain initial data, or
unknown parameters and inputs. Usually in the literature, there are two different approaches
to dealing with uncertain optimization problems. The first one is to consider the criterion
expressed in terms of expectations of the cost (e.g. [15, 19, 22]), and the second one is to
consider the worst-case performance criterion (e.g. [18, 23, 27]). When there is informa-
tion about the behavior of the perturbation (probably available from a statistical analysis),
and that is if we assume that the probability distribution of the uncertainties is known,
then it makes sense to consider the mean value as objective criterion. Although, depend-
ing on the goal of the problem, there are many cases where the other approach is chosen.
On the other hand, when no information is available on the expected perturbations, then
the worst-case approach is commonly used. An analysis of advantages an disadvantages of
using this two options is out of the scope of this paper. In this work we assume the knowl-
edge of the probability distribution of the uncertainties involved, and we deal with the first
approach.

In the recent work [19], the authors present a numerical framework to solve an uncertain
optimal control problem with Mayer-type objective functional. The main idea is to approx-
imate the expected value with a sample average (see [14, 22]), by taking an independently
drawn random sample from the space of stochastic parameters. With strong differentiabil-
ity assumptions, they provide results about the convergence of the objective functionals in
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terms of epi-convergence, and they also show that accumulation points of global minimizers
of the approximate problems are minimizers of the original problems.

The main difference in the present work is that the functional to be minimize involves a
supremum, so assumptions about differentiability cannot be considered. In order to obtain
some kind of differentiability of the objective functional, we add some convexity assump-
tions as in [13]. Also, for the sake of simplicity we assume that the cost function only
depends on the state and the random parameter. As in [19], using some previous notions
and results about random lower semicontinuity and epi-convergence, we analyze the rela-
tionship between our problem and the sample average approximation. With the aim of
obtaining a computationally implementable scheme, we define an associated discrete time
problem and analyze the convergence of the values of the problems. We also prove the exis-
tence of a sequence of discrete time problems such that the accumulation points of their
minimizers are optimal solutions of the original problem. We provide optimality condi-
tions for the three problems and propose a convergent descent numerical method following
[13].

The article is organized as follows: In Section 2 we present some preliminary results
which are essential for the next sections. In Section 3 we state the main assumptions that
we make in the entire paper, we define the uncertain minimax optimal control problem,
the sample average approach and the associated discrete time problem, showing the exis-
tence of minimizers for all of them. In Section 4, we prove the epi-convergence of the
objective functionals of the sample average problem to the original one and also a mini-
mizers convergence result. In addition, we provide convergence results for the values and
minimizers of the discrete time problems. In Section 5 we analyze the directional dif-
ferentiability of the cost functionals and we introduce optimality conditions for all the
problems. In Section 6, we propose an algorithm to solve the discrete time problem and
present a convergence result. Finally, in Section 7 we give some preliminary numerical
results.

2 Preliminaries

In this section, for the convenience of the reader, we recall some notions and results that are
essential for the next sections.

Definition 1 (Carathéodory functions) Let (�,A) be a measurable space, X, Y metric
spaces and consider the function f : X × � → Y . The function f is called Carathéodory
function if

1. x �→ f (x, ω) is continuous for each ω ∈ �,
2. ω �→ f (x, ω) is measurable for each x ∈ X.

In particular, it is well known that Carathéodory functions are jointly measurable.
Now we give the notion of epi-convergence, which is a fundamental convergence con-

cept for sequences of lower semicontinuous functions in optimization theory, and variational
analysis. It was studied for the first time in the 60’s, in the initial works [25, 26] and [16].
Then, in the 80’s it was used in the study of approximation of nonlinear programming
problems such as [3–5]. For a detailed analysis and historical remarks on this topic we
recommend [21, Chapter 7]. As in [19], we also introduce the concept of random lower
semicontinuity.
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Definition 2 Let (X, d) be a separable complete metric space. Consider the sequence of
lower semicontinuous functions fM : X → R, M ∈ N. We say that fM epi-converges to f ,

denoted fM
epi→ f , if and only if

1. lim inf fM(xM) ≥ f (x) whenever xM → x,
2. lim fM(xM) = f (x) for at least one sequence xM → x.

Definition 3 Let (X, d) be a separable complete metric space with B the Borel sigma-
field. Let P be a probability measure on the measurable space (�,A) such that A is
P-complete. A function f : X × � → R is a random lower semicontinuous function if and
only if

1. for all ω ∈ �, the function x → f (x, ω) is lower semicontinuous,
2. (x, ω) �→ f (x, ω) is B ⊗ A measurable.

As we said in the introduction, following the lines stated in [19], one of the aims in this
paper is to approximate an uncertain minimax optimal control problem by a sample average
approach. In order to justify this approximation, we need the following result.

Theorem 4 [5, Theorem 2.3] Let (�,A,P) be a probability space such that A is
P-complete. Let (X, d) be a separable complete metric space. Suppose that the function
f : X × � → R is a random lower semicontinuous function and there exists an integrable
function a0 : � → R such that f (x, ω) ≥ a0(ω) almost surely. Let {ω1, . . . , ωM } be an
independent P-distributed random draw, and define

f̂ (·, ω1, . . . , ωM) := 1

M

M∑

i=1

f (·, ωi). (1)

Then, as M → ∞, f̂ (·, ω1, . . . , ωM) epi-converges almost surely to E
Pf (·, ω).

The last result that we include is about the convergence of minimizers.

Theorem 5 [2, Theorem 2.5] Let (X, d) be a separable complete metric space. Consider a
sequence of lower semicontinuous functions fM : X → R such that fM epi-converges to
f . If {xM }M∈N ⊂ X is a sequence of global minimizers of fM , and x̄ is any accumulation
point of this sequence (along a subsequence indexed by a set K ⊂ N), then x̄ is a global
minimizer of f and limM∈K infx∈X fM(xM) = infx∈X f (x).

Further analysis on this topic can be found in [14].

3 Minimax Optimal Control Problems

In this section we present the uncertain minimax optimal control problem (P ) that we want
to solve, the first approximation via a sample average (PM), and finally a discrete time
problem that approximates (PM). We state the main assumptions that we make in the entire
paper, we prove the well-posedness of all the problems and also the existence of minimizers.
The relationship between the values and optimal solutions of the problems will be studied
in Section 4.
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3.1 Uncertain Minimax Optimal Control Problem

Let (�,A,P) be a complete probability space. We consider the following uncertain system
{ d

dt y(t, ω) = g(t, y(t, ω), u(t), ω), t ∈ [0, T ]
y(0, ω) = x + φ(ω), x ∈ R

r ,
(2)

for ω ∈ �, where g : [0, T ] × R
r × R

m × � → R
r is a given function. In the notation

above yu(t, ω) ∈ R
r denotes the state function and u(t) ∈ R

m the control. We define the
set of controls as

U = {u : [0, T ] → U ⊂ R
m; u(·) measurable}, (3)

where U is a compact and convex set, and the function to be minimized J : U → R is
defined as

J (u) = E
P

[
sup

t∈[0,T ]
f (yu(t, ω), ω)

]
, (4)

with f : R
r × � → R. Then the uncertain minimax optimal control problem that we

consider is

min J (u); u ∈ U . (P )

In order to prove the well-posedness of the above definitions, we state the main assumptions
that we consider in this work.

(A.1) The function g is linear in y and u, i.e.

g(t, y, u, ω) = A(t, ω)y + B(t, ω)u + C(t, ω), (5)

where A : [0, T ]×� → R
r×r , B : [0, T ]×� → R

r×m and C : [0, T ]×� → R
r

are Carathéodory functions, bounded on [0, T ] × �. For � = A,B,C we denote
M� their bounds. In addition, there exist measurable functions L� : � → R, such
that for all t, s ∈ [0, T ] and for each ω ∈ �,

|�(t, ω) − �(s, ω)| ≤ L�(ω)|t − s|. (6)

Also, the function φ is measurable and bounded on �, with bound Mφ .
(A.2) The function f is Carathéodory, and the map y �→ f (y, ω) is convex and continu-

ously differentiable for each ω ∈ �. Also, there exists a function Cf : � → R that
belongs to L1(�), such that for all y ∈ R

r , and ω ∈ �,

|∇yf (y, ω)| ≤ Cf (ω) [|y| + 1] . (7)

In addition, there exists x̄ ∈ R
r such that f (x̄, ·) belongs to L1(�).

Remark 6 The linearity of the dynamics and the convexity of the function f prove that the
functional J is convex. On one hand, this implies that local minimizers are global mini-
mizers, then Theorem 5 assures the convergence of the solutions of the sample average
approximation problems to optimal controls for the continuous problem (see Theorem 14).
Weaker convexity assumptions would require a deeper consistency analysis. On the other
hand, convexity leads to necessary and sufficient optimality conditions. Otherwise, the lack
of convexity may require stronger differentiability hypotheses in order to obtain at least nec-
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essary optimality conditions. Also, the linearity of the dynamics will be useful to derive the
variation of the state with respect to control (see Theorem 20).

Lemma 7 Under the assumption (A.1), for any u ∈ U and ω ∈ � there exists a unique
solution yu of the system (2), and the map (t, ω) �→ yu(t, ω) is a Carathéodory function. In
addition, there exists My > 0 such that for each ω ∈ �,

sup
t∈[0,T ]

|yu(t, ω)| ≤ My. (8)

Proof It is clear that for all u ∈ U there exists a unique solution yu of (2), and yu is a
Carathéodory function. By Hölder inequality, we have

|yu(t, ω)| ≤ ∫ t

0 |A(s, ω)||yu(s, ω)|ds + ∫ t

0 |B(s, ω)||u(s)|ds
+∫ t

0 |C(s, ω)|ds + |x| + |φ(ω)|
≤ ∫ t

0 |A(s, ω)||yu(s, ω)|ds + T
1
2 MB ||u||L2 + T MC + |x| + |φ(ω)|.

(9)

Then, by Grönwall’s Lemma we obtain

sup
t∈[0,T ]

|yu(t, ω)| ≤ M(u,ω), (10)

where M(u,ω) := [T 1
2 MB ||u||L2 +T MC +|x|+ |φ(ω)|]eT MA . Since the set U is compact

and the function φ is bounded, the result follows.

Remark 8 Let K ⊂ R
r be a bounded set, then for any y, x ∈ K , by assumption (A.2) we

have
|f (x, ω) − f (y, ω)| ≤ ∫ 1

0 |∇yf (y + ξ(x − y), ω)||x − y|dξ
≤ Cf (ω) [|y| + |x − y| + 1] |x − y|
≤ C̃f (ω)|x − y|.

(11)

where C̃f ∈ L1(�) since K is bounded. In particular, by the previous lemma, there exists
Lf ∈ L1(�) such that for all u, v ∈ U and ω ∈ � we obtain

sup
t∈[0,T ]

|f (yu(t, ω), ω) − f (yv(t, ω), ω)| ≤ Lf (ω) sup
t∈[0,T ]

|yu(t, ω) − yv(t, ω)|. (12)

In the remainder we use the last inequality several times.

Lemma 9 If assumption (A.1) holds, then there exists a constant C > 0 such that for all
u, v ∈ U and ω ∈ � we have

sup
t∈[0,T ]

|yu(t, ω) − yv(t, ω)| ≤ C||u − v||L2 . (13)

Proof By Hölder inequality we obtain,

|yu(t, ω) − yv(t, ω)| ≤
∫ t

0
|A(s, ω)||yu(s, ω) − yv(s, ω)|ds + T

1
2 MB ||u − v||L2 . (14)

The result follows by the Grönwall’s Lemma, defining C := T
1
2 MBeT MA .
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Now, to prove that the functional J is well defined we need the following result. For
notational convenience we define the function F : U × � → R, as

F(u, ω) := max
t∈[0,T ]

f (yu(t, ω), ω) (15)

Proposition 10 Assume (A.1) and (A.2) hold. The function F is well defined, it is a
Carathéodory function and there exists an integrable function LF : � → R such that for
all u, v ∈ U ,

|F(u, ω) − F(v, ω)| ≤ LF (ω)||u − v||L2 . (16)

Proof By Lemma 7, we know that the map t �→ yu(t, ω) is continuous, and by (A.2) so is
the function f on the first variable. Then supt∈[0,T ] f (yu(t, ω), ω) is actually a maximum,
so F is well defined.

Now, by Remark 8 for every ω ∈ � we have,

|F(u, ω) − F(v, ω)| ≤ maxt∈[0,T ] |f (yu(t, ω)) − f (yv(t, ω))|
≤ Lf (ω)maxt∈[0,T ] |yu(t, ω) − yv(t, ω)|
≤ Lf (ω)C||u − v||L2 ,

(17)

where C is given by Lemma 9, then u �→ F(u, ω) is continuous for all ω ∈ � and (16)
holds with LF (ω) := Lf (ω)C. By (A.2) we deduce that LF belongs to L1(�).

Now we have to prove that for all u ∈ U the application ω �→ F(u, ω) is measurable. We
fix u ∈ U , for all t ∈ [0, T ] we have ω �→ yu(t, ω) is measurable by Lemma 7, since f is a
Caratheódory function and so it is jointly measurable, we deduce that ω �→ f (yu(t, ω), ω)

is measurable. Then the map ψ : � → R defined as

ψ(ω) = sup
t∈[0,T ]∩Q

f (yu(t, ω), ω) (18)

is measurable. Since f is continuous in the first variable and the map t �→ yu(t, ω) is
continuous for each ω ∈ �, by the density of rational numbers we obtain

ψ(ω) = F(u, ω). (19)

We conclude that F(u, ·) is measurable.

Corollary 11 If (A.1) and (A.2) hold, the functional J is well defined and the problem (P )

has a solution.

Proof Since the function F(u, ·) is measurable, it is clear that the functional J is well
defined. Now in order to prove the existence of minimizer we start proving that J is a proper
function. For any u ∈ U , we have

F(u, ω) = max
t∈[0,T ]

f (yu(t, ω), ω) ≥ f (x + φ(ω), ω). (20)

Also, by (A.2) we obtain that ω �→ f (x + φ(ω), ω) is integrable, in fact by Remark 8 we
have

|f (x + φ(ω), ω)| ≤ |f (x̄, ω)| + Lf (ω)|x + φ(ω) − x̄|, (21)
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and the right hand side (r.h.s.) belongs to L1(�). We can conclude that J (u) > −∞ for all
u ∈ U . Now to see that J is not identically +∞, by Lemma 7 we obtain that for any u ∈ U
and for all t ∈ [0, T ], and ω ∈ �,

|f (yu(t, ω), ω)| ≤ |f (x + φ(ω), ω)| + Lf (ω)|yu(t, ω) − yu(0, ω)|
≤ |f (x + φ(ω), ω)| + Lf (ω)2My.

(22)

Since the r.h.s. is clearly integrable, we deduce that J (u) is finite.
By the previous proposition, for u, v ∈ U we obtain

|J (u) − J (v)| ≤ E
P[LF ]||u − v||L2 , (23)

then J is Lipschitz continuous on U . Since for each ω ∈ �, the function f (·, ω) is convex,
and the state equation is linear, we can conclude that the function F(·, ω) is convex on U .
By the linearity of the expectation, J is a convex function on U . Therefore, J is weakly
lower semicontinuous on U . By the compactness of the set U , the set of controls U is closed
and bounded in L2[0, T ]. Thus, there exists a minimizer of J in U .

3.2 Sample Average Approximation

The idea of this section is to approximate the problem presented in the above section using
a sample average approximation. Under the same assumptions, let {ω1, . . . , ωM } be an
independent P-distributed random draw, we consider the state given by

{
d
dt y(t, ωi) = g(t, y(t, ωi), u(t), ωi), t ∈ [0, T ]
y(0, ωi) = x + φ(ωi),

∀i = 1, . . . , M, (24)

and the cost functional JM : U → R defined as

JM(u) := 1

M

M∑

i=1

F(u, ωi). (25)

Then we obtain the following optimal control problem

min JM(u); u ∈ U . (PM)

The problem (PM) is a deterministic optimal control problem, and by the assumptions made
it is clear that it is well-posed. In this case we also have the existence of minimizers.

Proposition 12 Under assumptions (A.1) and (A.2), for all M ∈ N there exists a solution
of (PM).

Proof For each ωi , i = 1, . . . , M , the function u �→ F(u, ωi) is continuous and convex,
then also is JM , and that implies that JM is a weakly lower semicontinuous function of u.
Since the set U is closed and bounded in L2[0, T ], there exists a minimizer of JM in U .

3.3 Discrete Time Approximation

In the next section we will justify how we can approximate (P ) by (PM) when M → ∞.
But in order to solve (PM) we define a discrete time approximate problem, which will be
suitable solved by a descent numerical method.
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We fix M ∈ N and {ω1, . . . , ωM } an independent P-distributed random draw. We divide
the interval [0, T ] into N subintervals with common length h = T/N and we restrict the
controls to be sectionally constant. So, the set of discrete controls is

Uh = {u ∈ U : u is constant in [kh, (k + 1)h), k = 0, ..., N − 1}. (26)

A discrete policy u is identified as {un}N−1
n=0 , un ∈ U ⊂ R

m, so Uh can be identified as
UN ⊂ R

m×N .
We introduce an approximated discrete time system. For u ∈ Uh we define the response

yu of the discrete time system by the recursive formula
{

yn+1
u (ωi) = yn

u(ωi) + hg(tn, y
n
u(ωi), u

n, ωi), n = 0, ..., N − 1,

y0
u(ωi) = x + φ(ωi),

(27)

for i = 1, . . . , M . Defining the functional Jh
M : Uh → R, as

Jh
M(u) := 1

M

M∑

i=1

max
n=0,...,N

f (yn
u(ωi), ωi),

the discrete time optimal control problem is

min Jh
M(u); u ∈ Uh. (P h

M)

Clearly, the minimization problem has a solution since Jh
M is continuous over the compact

set Uh.

4 Convergence

In this section we analyze the relationship between the previous defined problems. We start
showing that the objective functions of (PM) epi-converge to the objective function of (P ),
and we also show that the accumulation points of minimizers of (PM) are minimizers of (P )

and the value of (PM) converges to the value of (P ). After that, we study the discretization
in time, and we demonstrate that the value of the problem (P h

M) converges to the value
of (PM) for all M . We finish the section proving that there exists a sequence of discrete
problems (P

hM

M ) where the accumulation points of the sequence of minimizers are optimal
solutions of (P ).

By the Strong Law of Large Numbers, we know that JM(u) → J (u) as M → ∞, for
almost all u ∈ U . Following the ideas of [19] we can show a strong convergence result.

Theorem 13 Assume that (A.1) and (A.2) hold. Let {ω1, . . . , ωM } be an independent

P-distributed random draw, then JM
epi→ J as M → ∞, almost surely in U .

Proof By Lemma 10, the function F is Carathéodory and that implies that F is B ⊗ A
measurable and continuous in u for each ω ∈ �. So, we can conclude that F is a random
lower semicontinuous function. We also have

F(u, ω) = max
t∈[0,T ]

f (yu(t, ω), ω) ≥ f (yu(0, ω), ω) = f (x + φ(ω), ω). (28)

Thus, as in the proof of Corollary 11 we can see that the map ω �→ f (x +φ(ω), ω) belongs

to L1(�). Then, by Theorem 4 we can conclude that JM
epi→ J a.s. in U .
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Under the same assumptions, we have a convergence result about the minimizers and the
value of (PM) and (P ).

Theorem 14 Let {uM }M∈N be a sequence of optimal controls for (PM) and ū an accumu-
lation point, i.e. ū = limM∈K uM where K is an infinite subset of N. Then, ū is a minimizer
of (P ) and in addition limM∈K JM(uM) = J (ū).

Proof Since the functions JM and J are convex, all the minimizers are global minimizers.
We can apply Theorem 5 because JM is continuous for all M ∈ N and by Theorem 13,

JM
epi→ J a.s. in U .

In order to analyze the relationship between (P h
M) and (P ), we start by comparing the

continuous and the discrete states associated to a given discrete control u ∈ Uh. We note
that Uh ⊂ U . In what follows we assume M ∈ N and the independent P-distributed random
draw {ω1, . . . , ωM } are fixed.

Lemma 15 Let u ∈ Uh be a given control. Let yu be the solution of (2) and (yn
u) the

solution of (27), both associated to u. Then, for all ωi, i = 1, . . . , M there exists Cy(ωi)

such that
max

n=0,...,N
|yu(tn, ωi) − yn

u(ωi)| ≤ Cy(ωi)h. (29)

Proof On one hand, denoting MU the bound of the compact set U ⊂ R
m and defining

Ly := MAMy + MBMU + MC , where My is given by Lemma 7, we obtain

sup
tn≤t<tn+1

|yu(t, ω) − yu(tn, ω)| ≤ Lyh. (30)

On the other hand, a straightforward calculation gives, for all n = 0, . . . , N − 1,

|yu(tn+1) − yn+1
u | ≤ |yu(tn) − yn

u | + ∫ tn+1
tn

LAh|yu(s)| + MA|yu(s) − yn
u |ds

+ ∫ tn+1
tn

LBh|un|ds + ∫ tn+1
tn

LChds,
(31)

where the argument ωi is omitted for notational convenience. Thus,

|yu(tn+1) − yn+1
u | ≤ |yu(tn) − yn

u | + h2MyLA + hMA[Lyh + |yu(tn) − yn
u |]

+h2LBMU + h2LC

≤ (1 + hMA)|yu(t0) − y0
u| + ∑n−1

k=0(1 + hMA)kh2C2,

(32)

where C2(ωi) := MyLA(ωi)+MALy +LB(ωi)MU +LC(ωi). Therefore, the result follows
by taking Cy(ωi) := T eT MAC2(ωi).

Here one of the main result of this section, we state that the value of the discrete time
problem (P h

M) converges to the value of (PM).

Theorem 16 Let ūh be an optimal control for (P h
M), and ū an optimal solution for (PM),

then
lim
h↓0 Jh

M(ūh) = JM(ū). (33)
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Proof Let Nh be a natural number and h = T
Nh

. Since Uh ⊂ U , any uh ∈ Uh is an
admissible control for (PM), then

|JM(uh) − Jh
M(uh)| ≤

M∑
i=1

| max
t∈[0,T ]

f (yuh(t, ωi), ωi) − max
n=0,...,Nh

f (yn
uh(ωi), ωi)|

≤
M∑
i=1

| max
t∈[0,T ]

f (yuh(t, ωi), ωi) − max
n=0,...,Nh

f (yuh(tn, ωi), ωi)|

+
M∑
i=1

| max
n=0,...,Nh

f (yuh(tn, ωi), ωi) − max
n=0,...,Nh

f (yn
uh(ωi), ωi)|

≤
M∑
i=1

|Lf (ωi)Ly |h +
M∑
i=1

|Lf (ωi)Cy(ωi)|h.

(34)
Where the last inequality holds by (29), (30), and Remark 8. Since the points {ω1, . . . , ωM }
are fixed, we can conclude that there exists C̄M > 0, such that

|JM(uh) − Jh
M(uh)| ≤ C̄Mh. (35)

Now, by the optimality of ū we have

JM(ū) ≤ JM(ūh) ≤ JM(ūh) − Jh
M(ūh) + Jh

M(ūh) ≤ Jh
M(ūh) + C̄Mh. (36)

On the other hand, for all ε > 0, by the density of uniformly continuous functions in
L2[0, T ] (which in turn can be approximated by uniform step functions), there existNε such
that for all Nh > Nε there exists uh ∈ Uh such that

||ū − uh||L2 ≤ ε. (37)

Since F(·, ωi) is Lipschitz, so is JM and being ūh optimal for (P h
M), we obtain

Jh
M(ūh) ≤ Jh

M(uh) − JM(uh) + JM(uh)

≤ C̄Mh + JM(uh) − JM(ū) + JM(ū)

≤ C̄Mh + LJM
ε + JM(ū).

(38)

The result follows by (36) and (38).

Theorem 17 For each M ∈ N there exists hM > 0 with hM → 0 as M → ∞ such that if
ū

hM

M ∈ UhM is an optimal control for (P
hM

M ), then any accumulation point of the sequence

{ūhM

M } is an optimal control for (P ).

Proof By Theorem 16, for each M ∈ N we can choose hM > 0 such that

J
hM

M (ū
hM

M ) ≤ JM(ūM) + 1

M
. (39)

We can also choose hM → 0 such that C̄MhM → 0 as M → ∞, where C̄M is given by
(35).

Now let ū be an accumulation point of {ūhM

M }, i.e. there exists a subsequence of {ūhM

M },
still denoted {ūhM

M } such that ū
hM

M → ū. Then, by the epi-convergence of JM to J given by
Theorem 13, (39) and (35) we obtain

J (ū) ≤ lim inf JM(ū
hM

M ) − Jh
M(ū

hM

M ) + Jh
M(ū

hM

M )

≤ lim inf C̄MhM + JM(ūM) + 1
M

= infu∈U J (u)

(40)
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where the equality holds by Theorem 14. Thus, ū is an optimal control.

Remark 18 By the nature of the proofs of Theorem 13 and Theorem 16, we are not able
to deduce an error estimate bound for the approximations that we consider. Nevertheless, if
we only consider the discretization in time, i.e., we focus in the approximation of (PM) via
(P h

M), it is possible to obtain an error estimate of order
√

h for the value function, following
[12].

5 Optimality Conditions

In this section, based on [13] we state a set of optimality conditions for all the problems.

5.1 Uncertain Minimax Optimal Control Problem

We start analyzing the directional differentiability of the functional J . We recall that TU (u)

is the tangent cone to U in u (see [9]).

Proposition 19 Under assumptions (A.1) and (A.2), the function J is directionally dif-
ferentiable at any u ∈ U and the directional derivative in a direction v ∈ TU (u) is given
by

J ′(u; v) = E
P sup

t∈Cu,ω

〈∇f (yu(t, ω), ω), zv(t, ω)〉 , (41)

where Cu,ω is the set of critical times

Cu,ω = argmax
t∈[0,T ]

f (yu(t, ω), ω), (42)

and zv solves the differential equation
{ dz

dt
(t, ω) = A(t, ω)z(t, ω) + B(t, ω)v(t), t ∈ [0, T ]

z(0, ω) = 0,
(43)

for all ω ∈ �.

Proof Fix ω ∈ �, by [13, Proposition 2.1], F(·, ω) is directionally differentiable in U and
the directional derivative in a direction v ∈ TU (u) is given by

F ′(u, ω; v) = sup
t∈Cu,ω

〈∇f (yu(t, ω), ω), zv(t, ω)〉 , (44)

where Cu,ω is given by (42) and zv(·, ω) solves (43).
For any h > 0, by Lemma 10 we have

∣∣∣∣
F(u + hv, ω) − F(u, ω)

h

∣∣∣∣ ≤ LF (ω)h||v||L2

h
(45)

Since LF ∈ L1(�) we can apply the Dominated Convergence Theorem and conclude that

J ′(u; v) = E
P sup

t∈Cu,ω

〈∇f (yu(t, ω), ω), zv(t, ω)〉 . (46)
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Following [13], for each ω ∈ � the solution of (43) is given by

zv(t, ω) =
∫ t

0
Sts(ω)B(s, ω)v(s)ds, (47)

where the matrix Sts is the solution of the system
{

d
dt Sts(ω) = A(t, ω)Sts(ω), t ∈ [s, T ]

Sss(ω) = I.
(48)

Now, the directional derivative can be written as

J ′(u; v) = E
P sup

t∈Cu,ω

〈
∇f (yu(t, ω)),

∫ t

0
Sts(ω)B(s, ω)v(s)ds

〉
. (49)

Defining for each u ∈ U , t ∈ [0, T ] and ω ∈ �, the element of L2[0, T ]
qu,t (s, ω) := It (s)B

�(s, ω)Sts(ω)�∇f (yu(t, ω), ω), ∀s ∈ [0, T ],
where It (s) is equal to 1 if s ≤ t and 0 otherwise, we can rewrite (49) as

J ′(u; v) = E
P sup

t∈Cu,ω

〈
qu,t (ω), v

〉
. (50)

Therefore, we have a first order optimality condition based on the fact that if u is an
optimizer then every directional derivative is non-negative for every direction in TU (u),
which is also a sufficient condition since the function is convex ([9]). The following result
is the analogous of [13, Theorem 2.1].

Theorem 20 Assume (A.1) and (A.2) hold. Let u ∈ U , then u is optimal if and only if

min
v∈TU (u)

E
P[ sup

t∈Cu,ω

〈
qu,t (ω), v

〉] = 0. (51)

We also have necessary optimality conditions which do not involve the computation of
the set of critical times, see [13, Theorem 2.2]

Theorem 21 Condition (51) implies

inf
v∈TU (u)

E
P[ sup

t∈[0,T ]
〈
qu,t (ω), v

〉] = 0, (52)

inf
v∈TU (u)

E
P[ sup

t∈[0,T ]
{
f (yu(t, ω), ω) − F(u, ω) + 〈

qu,t (ω), v
〉}] = 0, (53)

and for any ρ > 0,

inf
v∈TU (u)

E
P[ sup

t∈[0,T ]
{
f (yu(t, ω), ω) − F(u, ω) + 〈

qu,t (ω), v
〉}] + ρ

2
‖v‖2 = 0. (54)

5.2 Sample Average Approximation

Along this section, we assume that M ∈ N and the independent P-distributed random
draw {ω1, . . . , ωM } are fixed. Following the same ideas of the above section, we present
optimality conditions for problem (PM).

The following result is straightforward from [13, Theorem 2.1] and (44).
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Theorem 22 Under assumptions (A.1) and (A.2), u ∈ U is an optimal control for (PM) if
and only if

inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈Cu,ωi

〈
qu,t (ωi), v

〉 = 0. (55)

We also have the analogous necessary optimality conditions.

Theorem 23 If u ∈ U is an optimal control for (PM) then,

inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈[0,T ]

〈
qu,t (ωi), v

〉 = 0, (56)

inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈[0,T ]

{
f (yu(t, ωi), ωi) − F(u, ωi) + 〈

qu,t (ωi), v
〉} = 0, (57)

and for any ρ > 0,

inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈[0,T ]

{
f (yu(t, ωi), ωi) − F(u, ωi) + 〈

qu,t (ωi), v
〉} + ρ

2
‖v‖2 = 0. (58)

Proof Let u be optimal. Since v = 0 is an admissible direction, by Theorem 22 we have

0 = inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈Cu,ωi

〈
qu,t (ωi), v

〉 ≤ inf
v∈TU (u)

1

M

M∑

i=1

sup
t∈[0,T ]

〈
qu,t (ωi), v

〉 ≤ 0. (59)

So (55) implies (56). From the definition of Cu,ωi
, for all i = 1, . . . , M ,

supt∈Cu,ωi

〈
qu,t (ωi), v

〉 ≤ supt∈[0,T ]
{
f (yu(t, ωi), ωi) − F(u, ωi) + 〈

qu,t (ωi), v
〉}

≤ supt∈[0,T ]
〈
qu,t (ωi), v

〉
.

(60)

By (55) and (56), we obtain (57). Analogously, (58) follows.

5.3 Discrete Time Approximation

For the sake of completeness, we adapt some results from [13, Chapter 3].

Proposition 24 Given a discrete policy u = {un}N−1
n=0 , the functional Jh

M is directionally
differentiable at u and for any v ∈ TUh(u) we have

Jh
M

′
(u, v) = 1

M

M∑

i=1

max
n∈Cu,ωi

〈∇f (yn
u(ωi), ωi), z

n
v(ωi)

〉
(61)

where Cu,ωi
= argmax {f (yn

u(ωi), ωi) : 0 ≤ n ≤ N} is the set of critical times, and zv

solves, for i = 1, . . . , M , the following system of difference equations

{
zn+1(ωi) = [I + hA(tn, ωi)]zn(ωi) + hB(tn, ωi)v

n, n = 0, . . . , N − 1,
z0(ωi) = 0.

(62)
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The solution of (62) can be written as a function of v, in fact

zn
v(ωi) =

n−1∑

j=0

Sn−1,j (ωi)v
j (63)

where S satisfies Sn+1,j (ωi) = [I + hA(tn+1, ωi)]Sn,j , 0 ≤ j ≤ n and Sjj (ωi) =
hB(tj , ωi), ∀j ≥ 0, i = 1, . . . , M . Defining,

q
j
u,n(ωi) :=

{
0 ∀j ≥ n,

S�
n−1,j (ωi)∇f (yn

u(ωi), ωi) ∀j < n,
(64)

for all i = 1, . . . , M , we can conclude

Jh
M

′
(u; v) = 1

M

M∑

i=1

max
n∈Cu,ωi

n−1∑

j=0

〈
q

j
u,n(ωi), v

j
〉
= 1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), v

〉
,

where qu,n(ωi) is the matrix with columns q
j
u,n(ωi), v is identified with the matrix of

columns vj and the last product is defined as
〈
qu,n(ωi), v

〉 := tr(q�
u,n(ωi)v).

Now we easily obtain the first optimality condition for the discrete problem.

Theorem 25 Let u ∈ Uh and define Uh
u := Uh − u. Then u is an optimal control for (P h

M)

if and only if

min
v∈Uh

u

1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), v

〉 = 0. (65)

Note that the minimization over Uh
u in (65) is equivalent to the minimization over TUh(u).

In fact, the set of controls Uh is convex and since the sample {ω1, . . . , ωM } is fixed, the
functionals qu,n(ωi) are bounded in L2[0, T ].

In order to develop a convergent numerical method, we propose an analogous version
of the optimality condition (58) which was only a necessary one in the continuous-time
framework. However, in the discrete case, condition (66) is not only necessary, but also
sufficient.

Theorem 26 Condition (65) is equivalent to

min
v∈Uh

u

1

M

M∑

i=1

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} + ρ

2
||v||2 = 0, (66)

for any ρ > 0 where Fh : Uh × � → R is defined as

Fh(u, ω) := max
n=0,...,N

f (yn
u(ω), ω). (67)

Proof As in Theorem 23 we can see that (65) implies (66). Now assume that (66) holds
while (65) does not hold. Then, there exists v∈ Uh

u such that

1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), v

〉
< 0. (68)

857



L. S. Aragone et al.

Let λ̄ > 0 be small enough such that

1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), v

〉 + ρ

2
λ̄||v||2 < 0. (69)

Then, for all 0 < λ < λ̄ we have

1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), λv

〉 + ρ

2
||λv||2 < 0. (70)

Now, for all i = 1, . . . , M we define the functions ai, bi : Uh
u → R by

ai(v) := max
n∈Cu,ωi

〈
qu,n(ωi), v

〉 + ρ
2 ||v||2,

bi(v) := max
n/∈Cu,ωi

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} + ρ
2 ||v||2. (71)

It is straightforward that ai and bi are continuous for all i = 1, . . . , M . Also,

lim
λ↓0 ai(λv) = 0, (72)

lim
λ↓0 bi(λv) = max

n/∈Cu,ωi

{
f (yn

u(ωi), ωi) − Fh(u, ωi)
}

= −δi < 0. (73)

We define δ := min{δ1, . . . , δM } > 0. Then there exists λb such that for all 0 < λ ≤ λb we
have

bi(λv) < − δ

2
, (74)

for all i = 1, . . . , M . By (72) there exists λa such that for all 0 < λ ≤ λa ,

− δ

2
< ai(λv) <

δ

2
, (75)

for all i = 1, . . . , M . Thus, if 0 < λ < min{λa, λb, λ̄} then bi(λv) < ai(λv) for all
i = 1, . . . , M . Therefore,

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), λv

〉} + ρ

2
||λv||2 = ai(λv), (76)

for all i = 1, . . . , M . So by the definition of ai and (70) we have

1
M

M∑
i=1

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), λv

〉} + ρ
2 ||λv||2

= 1
M

∑M
i=1ai(λv) < 0,

(77)

which contradicts (66). So we conclude that (65) holds.

Remark 27 Note that condition (65) is also equivalent to

min
v∈Uh

u

1

M

M∑

i=1

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} = 0. (78)

Indeed, for all v ∈ Uh
u and ωi , i = 1, . . . , M we have

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉}

≤ max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} + ρ
2 ||λv||2 ≤ 0.

(79)

Then (78) implies (66) which is equivalent to (65). The converse follows as in Theorem 23.
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6 Algorithm

In this section, following the lines of [13] we present a numerical method to solve the
discrete time problem (P h

M), which is based on the optimality condition (66). Let define
θ : UN → R and η : UN → R

m×N (where we identify Uh ≡ UN, Uh
u ≡ UN

u ) as

θ(u) := min
v∈UN

u

1

M

M∑

i=1

max
n=0,..,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} + ρ

2
||v||2 (80)

η(u) := argmin
v∈UN

u

M∑

i=1

max
n=0,...,N

{
f (yn

u(ωi), ωi) − Fh(u, ωi) + 〈
qu,n(ωi), v

〉} + ρ

2
‖v‖2 . (81)

An admissible control u satisfying (66) is optimal; otherwise, the minimizer in (66) gives a
descent direction of the functional J h

M , in fact

Jh
M

′
(u; η(u)) = 1

M

M∑

i=1

max
n∈Cu,ωi

〈
qu,n(ωi), η(u)

〉 ≤ θ(u) < 0. (82)

Taking that into account, we introduce an algorithm that computes at each step a descent
direction solving (66) and performs an Armijo line search. Using condition (66) has two
main advantages. On the one hand, the supremum is computed over the whole set of times.
The application u �→ Cu is not always continuous as a set-valued function, which is a
drawback in the aim to obtain convergence properties. On the other hand, the quadratic term
regularizes the operator to be minimized, which turns to be strongly convex so it has unique
solution. Therefore, the functions θ and η are continuous (see [20, Chapter 5]).

Algorithm 1

Step 1: Choose the parameters α, β ∈ (0, 1) and ρ > 0. Set k = 1 and choose the
initial point u1 ∈ UN .

Step 2: Compute:

yn
uk

(ωi), f (yn
uk

(ωi), ωi), n = 0, . . . , N, i = 1, . . . , M

Fh(uk, ωi) = max
n=0,..,N

f (yn
uk

(ωi), ωi), i = 1, . . . , M.

Step 3: Compute θ(uk) and η(uk) given by (80) and (81), respectively.
Step 4: If θ(uk) = 0, Stop (uk satisfies the optimality condition). Else, find the

maximum λk = βj , j ∈ N0, such that

Jh
M(uk + λk η(uk)) < Jh

M(uk) + αλk θ(uk).

Step 5: Set uk+1 = uk + λk η(uk), k = k + 1 and restart Step 2.

In practice, problems (80) and (81) are solved by introducing auxiliary variables ξi ∈
R, i = 1, . . . , M , and considering the quadratic programs

min ρ
2 ‖v‖2 + 1

M

M∑
i=1

ξi

s.t. ξi ≥ f (yn
u(ωi), ωi) − Fh(u, ωi) + 〈

qu,n(ωi), v
〉
,

v ∈ UN
u , ξi ∈ R, n = 0, ..., N, i = 1, . . . , M

(83)
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which can be solved efficiently by standard algorithms.
Following the arguments of [13, Theorem 4.1] we obtain the next convergence result.

Theorem 28 Let {uk} be the sequence generated by Algorithm 1. Then, either {uk} finishes
at a minimizer or it is infinite and every accumulation point of {uk} is optimal.

7 Numerical Results

In this section, we illustrate the implementation of Algorithm 1 on two simple examples.
The first one is a toy example where it is easy to obtain the optimal control analytically,
while the second one consists in controlling the amplitude of a harmonic oscillator on a
given time interval.

We coded Algorithm 1 with Scilab 5.5.2 (see www.scilab.org). The implemented stop-
ping test was ‖θ(uk)‖ < 10−6 and the quadratic programs (83) were solved with quapro
Scilab routine. The Armijo parameters were α = 0.1 and β = 0.9. Tests were run on a 3.40
GHz, 8GB RAM, Intel Core i7 processor PC. The preliminary results seem to be promis-
sory, though the addressed problems are small academic examples. Despite the fact that the
presented approach uses only time discretization, an acceptable accuracy may require large
sample sizes and small time step-sizes, so the approximation scheme may lead to large scale
problems (even more so with high dimensional systems). This drawback is already men-
tioned in the literature (see [15, 19, 22]) and further study is needed on this topic, but that is
beyond the scope of the present work.

7.1 A Simple Example with Analytic Solution

Consider the problem (P ) with the uncertain parameter uniformly distributed in � = [0, 1].
The trajectory evolves in R satisfying ẏ(t, ω) = B(ω)u(t), for t ∈ [0, 1] and y(0, ω) = 0,
where B(ω) = 1 if ω ∈ [0, a] and B(ω) = −1 if ω ∈ (a, 1], for some fixed a ∈ (0, 1). The
control constraint set is U = [0, 1] and the cost function is given by f (y, ω) = y.

Hence, since u ≥ 0, it is straightforward that

F(u, ω) =
⎧
⎨

⎩

max
t∈[0,1]

∫ t

0u(s)ds = ∫ 1
0 u(s)ds, if ω ∈ [0, a],

− min
t∈[0,1]

∫ t

0u(s)ds = 0, if ω ∈ (a, 1].

Therefore, J (u) = a
∫ 1
0 u(s)ds, which attains its unique minimum at u ≡ 0. Suppose that an

independent uniform distributed sample {ω1, ω2, ..., ωM } is taken from [0, 1]. If ωi ∈ [0, a]
for at least one i ∈ {1, ..., M}, the problem (PM) has a unique minimizer u ≡ 0. Otherwise,
if ωi ∈ (a, 1] for all i, then J ≡ 0 and any control in U is a minimizer. So, if a is small, one
can expect to need large sample sizes M in order to obtain meaningful approximations, in
the sense that the functional J evaluated at an optimal control of (PM) is near the optimum
of (P ). Precisely, the probability of ωi ∈ [0, a] for at least one i ∈ {1, ..., M} is 1−(1−a)M ,
so for obtaining a meaningful problem (PM) with probability larger than p ∈ (0, 1), it
is necessary that ln(1−p)

ln(1−a)
< M . This behavior is illustrated in Table 1, where results for

decreasing values of a and increasing values of M are showed.
For all the trials, the step-size was h = 0.05 and the initial control was u1 = (1, ..., 1) ∈

U20 with ‖u1‖ ≈ 4.47. We report the number of sample elements ωi belonging to [0, a],
the obtained objective function value and the norm of the optimal control, as well as the
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Table 1 Numerical results for different values of M . If no ωi belongs to [0, a], the initial control is optimal,
otherwise, the optimal control u ≡ 0 is obtained

M ωi ≤ a J ‖u‖ it. ωi ≤ a J ‖u‖ it.

a = .1 a = .05

10 0 0.00 4.47 1 0 0.00 4.47 1

15 3 0.00 0.00 2 0 0.00 4.47 1

20 1 0.00 0.00 5 3 0.00 0.00 4

30 4 0.00 0.00 3 5 0.00 0.00 3

35 3 0.00 0.00 4 1 0.00 0.00 8

40 8 0.00 0.00 2 2 0.00 0.00 5

45 6 0.00 0.00 3 4 0.00 0.00 4

50 3 0.00 0.00 5 4 0.00 0.00 4

a = .025 a = .0125

10 0 0.00 4.47 1 0 0.00 4.47 1

15 0 0.00 4.47 1 0 0.00 4.47 1

20 3 0.00 0.00 3 1 0.00 0.00 5

25 0 0.00 4.47 1 1 0.00 0.00 6

30 0 0.00 4.47 1 0 0.00 4.47 1

35 0 0.00 4.47 1 1 0.00 0.00 8

40 1 0.00 0.00 9 0 0.00 4.47 1

45 1 0.00 0.00 10 2 0.00 0.00 6

50 2 0.00 0.00 6 1 0.00 0.00 11

required number of iterations. Note that, when no sample elements belong to [0, a], only
one iteration is required because any control is optimal (in particular the initial control u1).
Otherwise, the algorithm obtains the optimal control u ≡ 0, and tends to be more efficient
as more sample elements belong to [0, a]. For the larger problem with just one sample
element in [0, a], 11 iterations were necessary to achieve the tolerance, but it took less than
10 seconds.

7.2 Harmonic Oscillator

We consider a harmonic oscillator with natural frequency ω uniformly distributed on [0, 1],
starting from an initial point with non-zero velocity. The aim is to design a control that
minimize the amplitude on a given time interval [0, 2]. This is a variation of the problem
studied in [19, Section 7.1], where the system starts at an extremum point with zero velocity
and the aim is to stabilize the oscillator at the final time.

In particular, we performed numerical experiments for the dynamical system given by
ẏ = Aωy + u with the initial condition y(0) = (0, 1)�, where y(t) = (y1(t), y2(t))

� :
[0, 2] → R

2, u(t) = (u1(t), u2(t))
� : [0, 2] → [−3, 3]2, and

Aω =
(
0 −ω

ω 0

)
.

In this case, the functional cost is given by J (u) = E
P max

t∈[0,2]
y2
1 (t).
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We analyze the behavior of the system in three different cases: the uncontrolled system,
the system with a control designed for a specific single parameter ω̄ and the system with the
control obtained by the sample average approach. Specifically, considering a sample size
M , we take a sample {ω1, ..., ωM } in order to define the problem (PM) and compute, for
step-sizes h, the objective function values Jh

M(u) for the controls u ≡ 0, u = ū and u = u∗,
where ū solves (P1) with the fixed parameter ω̄ and u∗ solves (P h

M).
First, we consider the single parameter approach, i.e. problem (P1) with some fixed

parameter ω̂ ∈ [0, 1]. It is straightforward that this problem has the exact minimum J (û) =
0 at the control û ≡ (ω̂, 0). Now, by introducing this control in problem (P), the obtained
trajectories for any ω �= 0 are

⎧
⎨

⎩
yω̂,1(t, ω) =

(
ω̂
ω

− 1
)
sin(ωt),

yω̂,2(t, ω) =
(
1 − ω̂

ω

)
cos(ωt) + ω̂

ω
.

Table 2 Convergence table for P h
M as h goes to zero. Comparison between the values of the cost function

Jh
M at the three different controls 0, ū and u∗

N it. QP it. Time (s) Jh
M(u∗) ‖θ(u∗)‖ Jh

M(0) J h
M(ū)

M = 10

10 244 16 14.44 0.007788 8.401005e-07 0.800874 0.215130

20 125 17 23.01 0.005969 6.543774e-07 0.725481 0.195252

40 99 15 161.55 0.005190 9.733017e-07 0.690280 0.186078

80 42 14 176.20 0.005024 7.751443e-07 0.673507 0.181744

160 13 14 206.21 0.005068 1.039236e-07 0.665313 0.179636

M = 20

10 468 15 53.00 0.006660 8.285572e-08 0.766726 0.215746

20 25 16 8.95 0.005152 2.079706e-07 0.696047 0.197660

40 30 15 66.89 0.004592 8.617495e-07 0.663169 0.189361

80 31 16 246.04 0.004378 9.072021e-07 0.647514 0.185447

160 22 15 729.86 0.004338 1.866180e-07 0.639851 0.183539

M = 40

10 400 17 90.54 0.014411 9.826213e-07 0.749512 0.216604

20 53 17 39.07 0.009176 8.677528e-07 0.681199 0.199407

40 25 20 88.54 0.007388 4.323203e-07 0.649630 0.191585

80 9 22 168.57 0.006662 9.191242e-07 0.634515 0.187871

160 14 20 1171.86 0.006308 3.047304e-07 0.627107 0.186059

M = 80

10 221 19 110.51 0.009605 7.934991e-07 0.740930 0.217189

20 57 18 97.71 0.006882 1.144276e-07 0.673885 0.200459

40 17 17 175.53 0.006152 6.315244e-07 0.642891 0.192849

80 22 19 984.30 0.005836 8.265107e-07 0.628013 0.189226

160 15 17 3284.38 0.005746 2.460912e-07 0.620732 0.187460
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Hence,

sup
t∈[0,2]

(
yω̂,1(t, ω)

)2 =

⎧
⎪⎨

⎪⎩

(
ω̂
ω

− 1
)2

sin2(2ω), ω ∈ (0, π/4),
(

ω̂
ω

− 1
)2

, ω ∈ [π/4, 1],

and therefore

J (ω̂) =
∫ π/4

0

(
ω̂

ω
− 1

)2

sin2(2ω)dω +
∫ 1

π/4

(
ω̂

ω
− 1

)2

dω,

which attains its minimum at ω̂ = ω̄, where

ω̄ =
∫ π/4
0

sin2(2ω)
ω

dω − ln(π/4)
∫ π/4
0

sin2(2ω)

ω2 dω − 1 + 4/π
≈ .394139.

Thus, ū ≡ (ω̄, 0) is the best control that can be obtained by the single parameter approach
and this is the control that we use in the numerical trials.

In Table 2, we show the results for the sample sizes M ∈ {10, 20, 40, 80}. For each case,
fixing the problem (PM), we consider the approximations (P h

M) with step-sizes h = 2/N ,
for N ∈ {10, 20, 40, 80, 160}. For each M , when N = 10 the algorithm was initialized at
u = ū and for the successive approximations the initial point was the linear interpolation
of the previous solution. For each problem (P h

M), we report the number of iterations, the
average number of iterations required to solve the quadratic programs (83) at each iteration
of the algorithm, the corresponding total computational time and the obtained optimal value
Jh

M(u∗), as well as the values of J h
M at u ≡ 0 and u = ū.

As expected, the optimal value tends to decrease as the step-size h tends to zero. How-
ever, the optimal values are slightly smaller for M = 10 and M = 20 than for M = 40
and M = 80, with the same behavior for the single parameter control. For the different val-
ues of M , the number of iterations is large for N = 10 and quite small for the successive

Fig. 1 Obtained optimal controls for the single parameter approach and the sample average approach
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values of N , due to the choice of the initial points. This reduction is important in the aim
of decrease the total execution time, since there is an appreciable growth of computational
time per iteration as M and N increase.

Note that our approach significantly improves the obtained results comparing with the
uncontrolled case and the single parameter approach. This behavior is also illustrated in the
graphics which we present below, for the particular case M = 80 and N = 160. Figure 1
shows both components (the first one in solid line and the second one in dashed line) of the
control ū obtained by the single parameter approach and the optimal control u∗ obtained by
the sample average approach.

In Fig. 2, for the three cases described above, we show on the left the first component of
the trajectories, i.e. y1(·, ωi) for all i = 1, . . . , M , and on the right the second one y2(·, ωi).
It can be observed that the sample average approach notably improves the results, decreasing

Fig. 2 Obtained dynamics for the uncontrolled case, the single parameter case and the sample average case
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not only the range of amplitudes in the considered time interval, but also the the range of
final velocities.

Acknowledgements We thank the anonymous referees for their useful comments and suggestions.
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