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Abstract Given two point to set operators, one of which is maximally monotone, we intro-
duce a new distance in their graphs. This new concept reduces to the classical Bregman
distance when both operators are the gradient of a convex function. We study the properties
of this new distance and establish its continuity properties. We derive its formula for some
particular cases, including the case in which both operators are linear monotone and con-
tinuous. We also characterize all bi-functions D for which there exists a convex function h

such that D is the Bregman distance induced by h.
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1 Introduction

This paper focuses on an extension of the concept of Bregman distances to the framework
of point-to-set operators, one of which is maximally monotone. In the same way as classical
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Bregman distances are induced by convex functions, our new distance is induced by convex
representations of one of the maps; however, the way we associate a Bregman distance with
a convex representation is completely different from the association of a classical Bregman
distance with a differentiable convex function.

Classical Bregman distances have proved to be useful in devising algorithms for convex
optimization problems, as well as for variational inequalities, in which the distance plays a
penalization role. It is then natural to investigate whether one could introduce a more gen-
eral notion of Bregman distance which could be useful in algorithms for solving monotone
variational inequalities. Our new distance also provides a new interpretation of solutions of
variational inequalities. The variational inequality can be formulated as follows. Let X be a
Banach space and X∗ its dual. Given a maximally monotone operator S : X ⇒ X∗ and a
closed and convex set C ⊆ X, a solution of the variational inequality problem V IP (S,C)

is a pair (x, v) ∈ X × X∗ such that x ∈ C, v ∈ Sx and

〈y − x, v〉 ≥ 0, for all y ∈ C. (1.1)

The minimization of a convex function f constrained to the set C is a particular instance
of the V IP (S,C), with S = ∂f . The variational inequality problem, in turn, is a particular
instance of the more general inclusion problem 0 ∈ T (x), with T being the sum of ∂f plus
the normal cone NC , where NC(x) := {v ∈ X∗ : 〈y − x, v〉 ≤ 0, for all y ∈ C}. Combin-
ing this definition with (1.1) shows that solutions of the V IP (S,C) are those elements in
the graph of S which intersect the graph of −NC . We will show that our distance vanishes
at solutions of V IP (S,C), when applied to the maps S and −NC , which gives a new inter-
pretation to solutions of V IP (S,C). Moreover, our notion of Bregman distance extends the
classical one. Namely, when both maps are ∂f , it reduces to the Bregman distance induced
by f , in the sense of [16]. When f is convex and differentiable, it reduces to the classical
Bregman distance, in the sense of [6, Section 6.2].

In the present paper, we study the basic properties of this distance and show some specific
examples. We also study classical Bregman distances. We provide two axiomatic character-
izations, that is, we give necessary and sufficient conditions for a bifunction defined on the
product of a Banach space with itself to be the Bregman distance associated to some convex
function. Moreover, we study the correspondence that assigns to each differentiable convex
function f its associated Bregman distance

Df (x, y) := f (x) − f (y) − 〈x − y, ∇f (y)〉.
The rest of the paper is organized as follows. Section 2 presents some preliminaries on

convex functions and maximally monotone operators. In particular, we recall the basic ideas
on the representability of monotone operators by convex functions as well as the related
notion of enlargement of a maximally monotone operator and its main properties. In Section
2 we introduce and study our new notion of Bregman distance. It contains two subsections:
in the first one we consider the particular case when the monotone operators are linear,
and the second one is devoted to the study of the lower semicontinuity properties of the
newly introduced Bregman distances. Section 3 contains our characterizations of classical
Bregman distances and studies the mapping f 
−→ Df defined above.

2 Preliminaries

Let (X, ‖·‖) and (X∗, ‖·‖∗) be a Banach space and its dual, respectively. Given a point-to-
set operator T : X ⇒ X∗, the set D(T ) := {x ∈ X : T (x) 
= ∅} is called the domain of T ,
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while G(T ) := {(x, x∗) ∈ X×X∗ : x∗ ∈ T (x)} is the graph of T . Fix C a subset of a vector
space Z. The indicator function of C is the function δC : Z → R ∪ {+∞} =: R∞ defined
as δC(z) := 0 for z ∈ C and δC(z) := +∞ for z 
∈ C. We denote by int C and bdry C the
interior and the boundary of C, respectively.

Let f : X → R∞. Then dom f := f −1 (R) is the domain (or effective domain) of
f . We say that f is proper if dom f 
= ∅. The Fenchel conjugate of a proper function
f is f ∗ : X∗ → R∞ : x∗ 
→ supx∈X{〈x, x∗〉 − f (x)}. Recall that f : X → R∞ is
lower-semicontinuous at x̄ (lsc at x̄) if and only if for all λ ∈ R such that f (x̄) > λ, there
exists a neighborhood U of x̄ such that f (x) > λ for all x ∈ U . Similarly, f is upper-
semicontinuous at x̄ (usc at x̄) if and only if for all λ ∈ R such that f (x̄) < λ, there exists a
neighborhood U of x̄ such that f (x) < λ for all x ∈ U .

Given a function f : X → R∞, the subdifferential of f is the point-to-set mapping
∂f : X ⇒ X∗ defined by

∂f (x) :=
{ {x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉 + f (x) ≤ f (y)} if x ∈ dom f ;
∅ otherwise.

If C is a closed and convex set, then ∂δC =: NC , the normal cone to the set C. Namely,

NC(x) := {v ∈ X∗ : 〈v, y − x〉 ≤ 0 for all y ∈ C}.
Given ε ≥ 0, the ε− subdifferential of f is the point-to-set mapping ∂εf : X ⇒ X∗ defined by

∂εf (x) :=
{ {x∗ ∈ X∗ | (∀y ∈ X) 〈y − x, x∗〉 + f (x) ≤ f (y) + ε} if x ∈ dom f ;
∅ otherwise.

(2.2)
For future use we recall the Fenchel-Young inequality for a convex and lower semicon-

tinuous function f : X → R∞,

f ∗(v) + f (x) ≥ 〈x, v〉, for all (x, v) ∈ X × X∗, (2.3)

and
f ∗(v) + f (x) = 〈x, v〉 if and only if v ∈ ∂f (x). (2.4)

If Y is a vector space and x, y ∈ Y with x 
= y, we denote by [x, y] , ]x, y[ and ]y, x+∞[
the sets of points λx +(1−λ)y , with λ ∈ [0, 1], λ ∈ ]0, 1[ and λ ∈ ]0, +∞[, respectively.

In our analysis, we will make use of the concept of enlargement of a maximally monotone
operator, which we define next. Since these objects approximate the graph of the operator,
it is not surprising that they are useful in analyzing the distance induced by the graphs of
these operators. The definition below was introduced in [22].

Definition 2.1 Let T : X ⇒ X∗. We say that E : X × IR+ ⇒ X∗ is an enlargement of T

when the following hold.

(E1) T (x) ⊆ E(x, ε) for all ε ≥ 0, x ∈ X.
(E2) If 0 ≤ ε1 ≤ ε2 , then E(x, ε1) ⊆ E(x, ε2) for all x ∈ X.
(E3) The transportation formula holds for E: Let v1 ∈ E(x1, ε1), v2 ∈ E(x2, ε2), and

α ∈ [0, 1]. Define
x̂ := αx1 + (1 − α)x2,

v̂ := αv1 + (1 − α)v2,

ε̂ := αε1 + (1 − α)ε2 + α〈x1 − x̂, v1 − v̂〉 + (1 − α)〈x2 − x̂, v2 − v̂〉.
Then ε̂ ≥ 0 and v̂ ∈ E(x̂, ε̂).

When E verifies (E1) − (E3), we write E ∈ E(T ).
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Assume T = ∂f , with f a convex and lower semicontinuous function. In this case the
ε-subdifferential ∂{·}f (·) : X × IR+ ⇒ X∗, which maps (x, ε) to the set ∂εf (x) , is a
fundamental example of enlargement.

Another important example of an enlargement is defined as follows. Given an arbitrary
maximally monotone operator S : X ⇒ X∗, denote by Se : X × R+ ⇒ X∗ the set valued
map defined as

Se(x, ε) := {v ∈ X∗ : 〈y − x, u − v〉 ≥ −ε for all y ∈ X, u ∈ S(y)} (2.5)

(the set Se(x, ε) was called Sε(x) in [11] ).
The following fact collects properties of enlargements that we will need in the sequel.

Fact 2.2 The enlargement Se was introduced in [7] for the finite-dimensional case, and
extended first to Hilbert spaces in [9, 10] and then to Banach spaces in [11]. The following
facts (whose proofs can be found in the aforementioned references) hold.

(i) The set Se(x, ε) is weak∗-closed for every fixed x and ε.
(ii) If x ∈ intD(S), then the set Se(x, ε) is weak∗-compact (see [11] and [6, Theorem

5.3.4]).
(iii) The mapping Se is the biggest element in the family E(S) (see [22] and [6, Theorem

5.4.2]). This means that E ⊆ Se for every E ∈ E(S).
(iv) Denote by EC(S) the subset of E(S) consisting of all E ∈ E(S) such that E(x, ε) is

weak∗-closed for every x and every ε ≥ 0. Then for every E ∈ EC(S) we have that
E(x, ε) is weak∗-compact for every ε ≥ 0 and every x ∈ intD(S).

(v) Se(·, ε) is locally bounded in intD(S). Namely, for every x ∈ intD(S) there exists a
neighbourhood V of x such that Se(V, ε) is bounded (see [6, Theorem 5.3.4]). Since
E(·, ε) ⊂ Se(·, ε) for every E ∈ E(S), local boundedness in intD(S) is inherited by
all E ∈ E(S).

Our distance will make use of a family of convex functions associated with maximally
monotone operators. We define this family next.

Definition 2.3 Let S : X ⇒ X∗ be a maximally monotone operator. We say that h :
X × X∗ → R∞ represents S if the following three conditions hold:

(i) h is convex and norm × weak∗ lower semicontinuous in X × X∗,
(ii) h(x, v) ≥ 〈x, v〉, ∀(x, v) ∈ X × X∗, and

(iii) h(x, v) = 〈x, v〉 ⇐⇒ (x, v) ∈ G(S).

We denote this situation as h ∈ H(S).

Remark 2.4 Fix S : X ⇒ X∗ a maximally monotone operator. It is well known (see,
e.g., [12]) that H(S) has a smallest element and a biggest one. The smallest element is the
Fitzpatrick function associated to S:

FS(x, v) := sup
(z,w)∈G(S)

〈z − x, v − w〉 + 〈x, v〉.

The biggest element is σS := FS
∗ = cl conv(π +δG(S)), where π : X×X∗ → R is defined

as π(x, v) := 〈x, v〉. For more details on the family H(S), see [5, 12, 13, 15].
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Remark 2.5 An operator T : X ⇒ X∗ admitting a representing function h satisfying condi-
tions (i), (ii) and (iii) of Definition 2.3 is necessarily monotone [17, Theorem 5], but it may
not be maximally monotone. Such monotone operators are called representable. According
to [17, Proposition 32], in finite-dimensional spaces, the monotone representable opera-
tors are the intersections of arbitrary families of maximally monotone operators. In infinite
dimensional Banach spaces, such intersections are still representable, as easily follows from
[17, Corollary 10] and the representability of maximally monotone operators, but a rep-
resentable operator which cannot be expressed as an intersection of maximally monotone
operators was presented in [21]. Some further results on representable monotone operators
were given in [4].

We will need the following fact. For its proof, see [12, Propositions 2.6 and 3.5].

Fact 2.6 Let S : X ⇒ X∗ a maximally monotone operator. Fix x ∈ D(S) and h ∈ H(S),
if v ∈ X∗ is such that

h(x, v) ≤ 〈x, v〉 + ε, (2.6)

then v ∈ Se(x, ε). From the latter inclusion and the definition of D
,h
T (see Definition 3.1

below) we derive that

D
,h
T (x, y) = 0 ⇔ Ty ∩ Se(x, ε) 
= ∅, for all ε > 0.

Fact 2.6 motivates the following definition of enlargement.

Remark 2.7 Recall from [12, 13] that to a given maximally monotone operator S : X ⇒ X∗
and a fixed h ∈ H(S), one can associate the enlargement Lh of S defined as follows:

Lh(x, ε) := {v ∈ X∗ : h (x, v) ≤ 〈x, v〉 + ε}.
The norm-weak∗ lower semicontinuity of h implies that the graph of Lh(·, ·) is closed w.r.t.
the strong-weak∗ convergence . From the minimality of the Fitzpatrick function, it can be
seen that one has LFS = Se; in other words, for v ∈ X∗ one has

v ∈ Se(x, ε) ⇔ FS (x, v) ≤ 〈x, v〉 + ε.

3 A Bregman Distance for Maximally Monotone Operators

We will consider the following notion, which generalizes the concept of Bregman distance
as given in [16] (see Proposition 3.5 below).

Definition 3.1 Let S : X ⇒ X∗ be a maximally monotone operator, and let T : X ⇒ X∗.
Assume that h ∈ H(S). For fixed (x, y) ∈ D(S) × D(T ), define

D
,h
T (x, y) := infv∈Ty [h(x, v) − 〈x, v〉] ,

D�,h
T (x, y) := supv∈Ty [h(x, v) − 〈x, v〉] .

If y 
∈ D(T ) then D
,h
T (x, y) = D�,h

T (x, y) := +∞ for every x ∈ X by definition. If

x 
∈ D(S) we define D
,h
T (x, y) = D�,h

T (x, y) := +∞ for every y ∈ X. When T is point to

point, we simply write Dh
T := D�,h

T = D
,h
T .
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Remark 3.2 From Remark 2.4 we have that every h ∈ H(S) satisfies the inequalities

FS ≤ h ≤ σS,

hence, we have directly from the definition that

0 ≤ D�,FS

T ≤ D�,h
T ≤ D�,σS

T . (3.7)

Analogous inequalities hold for D
,h
T .

Remark 3.3 Fix (x, y) ∈ D(S) × D(T ). From the definitions, we readily obtain the
following facts.

(a) D�,h
T (x, y) ≥ D
,h

T (x, y) ≥ 0.

(b) If Ty ∩ Sx 
= ∅, then D
,h
T (x, y) = 0 for every h ∈ H(S).

(c) If Ty ⊂ Sx, then D�,h
T (x, y) = D
,h

T (x, y) = 0 for every h ∈ H(S).

Remark 3.4 For Definition 3.1 to make sense one does not need the operator S to be maxi-
mally monotone; it is enough for it to be representable. Namely, when there exists a function
h verifying conditions (i)-(iii) in Definition 2.3. In fact, several results in this paper, namely
Remark 3.3, Proposition 3.7(b)(c), implication (ii) =⇒ (i) in Corollary 3.8 , and Lemmas
3.17(b) and 3.18 still hold true if S is assumed to be just representable instead of maximally
monotone.

Recall from [16] that, to a given strictly convex function f : X → R∞, we can associate
two Bregman distances, defined as follows.

D


f (x, y) := f (x) − f (y) + infv∈∂f (y)〈y − x, v〉,

D
�
f (x, y) := f (x) − f (y) + supv∈∂f (y)〈y − x, v〉.

When f is differentiable at y, then we clearly have

D


f (x, y) = D

�
f (x, y) = Df (x, y) := f (x) − f (y) − 〈x − y,∇f (y)〉, (3.8)

which is the classical definition of Bregman distance. We prove next that our distances
reduce to D



f ,D

�
f when T = ∂f .

Proposition 3.5 Fix a lsc and strictly convex function f : X → R∞. Take T := S := ∂f

and hf (x, v) := f (x) + f ∗(v) (note that hf ∈ H(S) = H(T )) and we have

D
,hf

T = D


f ,

D�,hf

T = D
�
f ,

In particular, when f is differentiable at y, for every x ∈ X we have

D�,hf

T (x, y) = D
,hf

T (x, y) = Df (x, y) := f (x) − f (y) − 〈x − y,∇f (y)〉,
as in the classical definition of Bregman distances.
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Proof For all v ∈ ∂f (y) , we have f (y) + f ∗(v) = 〈v, y〉. Hence we can write

D
,hf

T (x, y) = infv∈∂f (y)

[
f (x) + f ∗(v) − 〈x, v〉]

= f (x) − f (y) + infv∈∂f (y)〈y − x, v〉 = D


f (x, y),

as wanted. The statement for D
�
f follows the same steps. The last statement is a direct

consequence of the definitions.

The following example shows that our distance can become the classical Bregman
distance even when hf does not represent T .

Example 3.6 Let X be a Hilbert space and fix λ > 0. Consider the operators S := ∇f

and Tλ := ∇f + λ I , for f : X → R∞ a convex, coercive, and differentiable function
with open domain. Under these assumptions, we have that S = ∇f is surjective (see., e.g.,
[2, Theorem 3.3]). Consider hf (x, v) := f (x) + f ∗(v). Then hf ∈ H(S). Call uy,λ :=
∇f (y) + λy and wy,λ be such that ∇f (wy,λ) = uy,λ. We have

Dhf

Tλ
(x, y) = f (x) + f ∗(uy,λ) − 〈x, uy,λ〉

= f (x) − f (wy,λ) − 〈x − wy,λ,∇f (wy,λ)〉 = Df (x, wy,λ),

where we used Fenchel-Young equality (2.4) in the second equality, and the definition of
Bregman distance in the last one. In this way, we can express the distance induced by the
operators as a classical Bregman distance.

We have seen in Remark 3.3 that different levels of “overlap” between the sets Sx and
Ty imply that the distances D
,h

T and D�,h
T vanish at (x, y). The next result studies the

converse situation, i.e., under which conditions the fact that the distance is zero implies the
corresponding “overlap” between the sets Sx and Ty.

Proposition 3.7 Let S : X ⇒ X∗ be a maximally monotone operator, h ∈ H(S). Let
(x, y) ∈ D(S) × D(T ). The following properties hold:

(a) Assume that T : X ⇒ X∗ is locally bounded in intD(T ) and weak∗-closed valued
(i.e., T z is weakly∗ closed for all z ∈ D(T )). Assume also that (x, y) 
∈ bdryD(S) ×
bdryD(T ). If D
,h

T (x, y) = 0 then Ty ∩ Sx 
= ∅.
(b) If D�,h

T (x, y) = 0 then Ty ⊂ Sx. Consequently, we have that

D�,h
T (x, y) = 0 ⇐⇒ Ty ⊂ Sx.

(c) Assume that T is point to point. IfDh
T (x, y) = 0 then Ty ∈ Sx. Consequently, if both

T and S are point to point, then Ty = Sx if Dh
T (x, y) = 0.

Proof Let us prove part (a). Assume that D
,h
T (x, y) = 0. The assumption on (x, y) implies

that either x or y must be in the interior of the corresponding domain. We consider each
case separately. If y ∈ intD(T ) then Ty is weak∗-compact, so the infimum for v ∈ Ty

in Definition 3.1 is attained at some v̄ ∈ Ty. This attainment, combined with the fact that
D
,h

T (x, y) = 0 yields

h(x, v̄) − 〈x, v̄〉 = D
,h
T (x, y) = 0,
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and we deduce that v̄ ∈ Sx. Hence Ty ∩ Sx 
= ∅. This proves the claim in the case
that y ∈ intD(T ). Assume now that x ∈ intD(S). By Fact 2.2(ii) this implies that the
set Se(x, ε) is weak∗-compact for every ε ≥ 0. Since D
,h

T (x, y) = 0, by Fact 2.6, we
have that the weak∗-compact sets Ty ∩ Se(x, ε) are nonempty for every ε > 0; hence the
family {Ty ∩ Se(x, ε)}ε>0 has the finite intersection property, which implies that Ty∩Sx =
Ty ∩ ⋂

ε>0
Se(x, ε) = ⋂

ε>0
(T y ∩ Se(x, ε)) is nonempty. Let us prove now part (b). Assume

that D�,h
T (x, y) = 0. The fact that D�,h

T (x, y) = 0 yields

0 ≤ h(x, v) − 〈x, v〉 ≤ 0,

for all v ∈ Ty, and we deduce that v ∈ Sx without any additional hypothesis. For part (c),
note that the equality Dh

T (x, y) = 0 yields

h(x, T y) = 〈x, T y〉,
which in turn gives Ty ∈ Sx because h ∈ H(S).

The next result characterizes solutions of V IP (S,C) in terms of the new distance.

Corollary 3.8 Let S : X ⇒ X∗ be maximally monotone, h ∈ H(S), and fix C ⊆ X a
closed and convex set. Fix x ∈ intD(S) ∩ C. The following properties are equivalent.

(i) D
,h
−NC

(x, x) = 0.
(ii) x solves V IP (S,C).

Proof The implication (ii)→(i) follows from Remark 3.3(b) for T = −NC , x = y and the
fact that (ii) entails the existence of v ∈ −NC(x) such that v ∈ S(x). The converse follows
from Proposition 3.7(a) for T = −NC and x = y.

Remark 3.9 We see from Proposition 3.7 that, when x /∈ bdryD(S), having D
,h
T (x, x) = 0

results in a nonempty intersection of the sets Sx and T x. Can we say something more when
these distances vanish on some open set? A possible way to address this question is by using
Theorem 3.10 below.

In the following theorem the maps ET and ES belong to EC(T ) and EC(S), respectively.
(see Fact 2.2(iv)).

Theorem 3.10 [8, Corollary 2.4, (iii)⇔(iv)] Let T , S : X ⇒ X∗ be two maximal mono-
tone operators and D ⊆ D(T ) be a nonempty open set. Then the following statements are
equivalent:

(i) T (x) = S(x) for all x ∈ D;
(ii) D ⊆ intD(S) and ET (x, ε) ∩ ES(x, ε) 
= ∅ for every x ∈ D, ε > 0.

We will use this theorem to establish the coincidence result between the operators.

Proposition 3.11 Let T , S : X ⇒ X∗ be two maximal monotone operators and let D ⊂
D(S) ∩ D(T ) be an open set. Fix h ∈ H(S). If D
,h

T (x, x) = 0 for all x ∈ D, then T = S

in D.
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Proof From Proposition 3.7(a) we see that T x ∩ Sx 
= ∅. This fact, together with condition
(E1) in Definition 2.1 directly imply condition (ii) in Theorem 3.10. Therefore, we have
S = T in the open set D.

Remark 3.12 According to [3, Theorem 9.7.2, Exercise 9.7.3], if S : X ⇒ X∗ is a max-
imally monotone operator of type (NI) (in particular, if the space is reflexive), for every
h ∈H(S) we have

h(x, v) − 〈x, v〉 ≥ 1

4
d2((x, v) ,G(S));

here d denotes the distance on X × X∗ defined by d ((x, v) , (y,w)) := ‖x − y‖2 +‖v−w‖2∗ .

Combining this fact with Definition 3.1 we obtain

D
,h
T (x, y) ≥ 1

4
inf

v∈Ty
d2((x, v) , G(S)) = 1

4
d2({x} × Ty, G(S)).

Consequently, we can see D
,h
T (x, y) as providing us with an upper estimate of the distance

between the sets {x} × Ty and G(S). This result gives an alternative proof of Proposition
3.7(a).

3.1 The Linear Case

When the operators are point to point and linear the distances can be explicitly computed.
Let H be a Hilbert space and assume that A : H → H and B : H → H are linear,
monotone and continuous. It is well known that such operators are automatically maximally
monotone [20, p. 30]. Following [1], for a given linear monotone operator A, we define
qA : H → R as

qA(x) := 〈x, Ax〉
2

, (3.9)

the quadratic function associated to A. Recall that the conjugate of A is the linear map
A∗ : H → H defined by 〈x, A∗y〉 = 〈Ax, y〉 for every x, y ∈ H .

Remark 3.13 The quadratic form qA can be used to compute the Fitzpatrick function of a
continuous linear and monotone operator.

FA(x, u) = supz∈H {〈x,Az〉 + 〈z, u〉 − 〈z, Az〉}

= 2 supz∈H

{
〈z, A∗x+u

2 〉 − qA(z)
}

= 2 q∗
A(A∗x+u

2 ),

(3.10)

where the first equality follows from the definition of Fitzpatrick function.

In this section, the maps are point to point. So when the function h ∈ H(A) is chosen
as the Fitzpatrick function the distance induced by two monotone linear mappings A and B

will be
DFA

B (x, y) = FA(x, By) − 〈x, By〉. (3.11)

We now collect some results taken from [1, Fact 2.2 and Theorem 2.3].

Fact 3.14 Let A : H → H be continuous, linear and symmetric. Then qA is convex if and
only if A is monotone. In this case, the following facts hold.
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(i) q∗
A ◦ A = qA,

(ii) ran (A) ⊂ dom q∗
A ⊂ cl (ran A),

(iii) For all (x, u) ∈ H × H we have F∗
A(u, x) = δG(A)(x, u) + 〈x, Ax〉.

In the next result we compute our distance induced by A and B.

Proposition 3.15 Let A, B : H → H be linear, monotone and continuous. Then the
following hold.

(a) DFA

B (x, y) = 2q∗
A(

A∗x+By
2 ) − 〈x, By〉

(b) If A is symmetric and ran A is closed, then

DFA

B (x, y) =
⎧⎨
⎩

+∞ if By 
∈ ran A

2qA(z0) − 〈x, By〉 if By ∈ ran A,

where z0 ∈ A−1(
Ax+By

2 ) := {z ∈ H : Az = Ax+By
2 }.

(c) DσA

B (x, y) = δ{0}(By − Ax).

Proof (a) This follows from (1) and (3). Part (b) follows directly from part (a) and Fact
3.14(i) and (ii) for the operator A+ instead of A. Part (c) follows directly from Fact 3.14(iii).

3.2 Continuity Properties

In this section we assume that X is a reflexive Banach space. Our aim is to establish lower
semicontinuity properties of our distances. We show that D
,h

T (·, y) and D
,h
T (x, ·) are lsc

w.r.t. the strong topology in the interior of the domains. On the other hand, D�,h
T (·, y) is lsc

w.r.t. the weak topology at every x ∈ D(S). We also provide two examples: one showing that
D
,h

T (x, ·) is not usc in general, and the other showing that D�,h
T (x, ·) is not lsc in general.

Remark 3.16 In the next result, we use the Eberlein-S̆mulian theorem, which states that a
subset of a Banach space is weakly compact if and only if it is weakly sequentially com-
pact (see [14, Chapter III, page 18]). We also use the fact that enlargements are locally
bounded at a point which is in the interior of their domains. This provides a neighbour-
hood of the reference point which is norm-closed and bounded, and hence weakly compact
(by Bourbaki-Alaoglu’s theorem and reflexivity). We then use the Eberlein-S̆mulian theo-
rem to deduce that the given neighbourhood is in fact weakly sequentially compact. Since
Lemmas 3.17 and 3.18 involve the strong topology in X, we can use sequences instead of
nets.

Lemma 3.17 Assume that S : X ⇒ X∗ is maximally monotone and h ∈ H(S), and fix
y ∈ D(T ).

(a) Let T : X ⇒ X∗ be such that T z is weakly closed for any z in its domain. Then the
function D
,h

T (·, y) : X → R∞ is lsc at every x ∈ intD(S) with respect to the strong
topology in X.

(b) The functionD�,h
T (·, y) : X → R∞ is lsc at every x ∈ D(S) with respect to the strong

topology in X.
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Proof Assume (a) is not true. This means that there exists a ∈ R and a sequence xn con-
verging strongly to x such that D
,h

T (x, y) > a and D
,h
T (xn, y) ≤ a. For n0 large enough

we have that

D
,h
T (xn, y) < a + 1

n
< D
,h

T (x, y),

for all n ≥ n0. The definition of D
,h
T , together with the left hand side of the above

expression, imply that for each fixed n ≥ n0, there exists vn ∈ Ty such that

h(xn, vn) − 〈xn, vn〉 < a + 1

n
. (3.12)

By Remark 2.7, this implies that

vn ∈ Lh(xn, a + 1

n
) ⊂ Lh(xn, a + 1), ∀n ≥ n0. (3.13)

Since x ∈ intD(S), we can use Fact 2.2(v) to deduce that the enlargement E(·, a + 1) :=
Lh(·, a + 1) is locally bounded at x. This implies the existence of two closed balls, denoted
by B(x, r) ⊂ X and B0 ⊂ X∗, respectively, such that Lh(B(x, r), a +1) ⊂ B0. By Remark
3.16, B0 is weakly sequentially compact. The latter fact, (3.13), and the weak sequential
compactness of B0 imply that {vn} ⊂ B0 for n large enough, and hence there is a subse-
quence of {vn} converging weakly to some vector v. Recalling now that {vn} ⊂ Ty and
the set Ty is weakly closed, we deduce that v ∈ Ty. By reflexivity and Remark 2.7 , the
graph of Lh is closed for the strong-weak convergence. Taking limit for n tending to infin-
ity in (3.13) yields v ∈ Lh(x, a). Taking limits in (3.12) (for the corresponding strong-weak
convergent subsequence), and using the definition of D
,h

T gives

D
,h
T (x, y) ≤ h(x, v) − 〈x, v〉 ≤ a,

where we used the fact that v ∈ Lh(x, a) in the rightmost inequality. The above expression
contradicts our assumption on a, completing the proof of (a).

Assume now that x ∈ D(S) and (b) is not true. For simplicity, write ψ(x) := D�,h
T (x, y).

The statement that ψ is not (strongly) lower semicontinuous at x means that there exists
a < ψ(x) and a sequence xn converging strongly to x such that ψ(xn) ≤ a. Using the
definition, this inequality implies that for every fixed v ∈ Ty and all n we have

h(xn, v) − 〈xn, v〉 ≤ a.

Since h (·, v) is strongly lsc and {xn} converges strongly to x the above inequality yields

h(x, v) − 〈x, v〉 ≤ a.

Since we can do this for every v ∈ Ty we deduce that D�,h
T (x, y) ≤ a, contradicting our

assumptions. Hence (b) holds.

The following result establishes lower semicontinuity of D
,h
T (x, ·). This fact is not true

for D�,h
T (x, ·), as will be shown in Example 3.21.

Lemma 3.18 Assume that S : X ⇒ X∗ is maximally monotone, h ∈ H(S), and T : X ⇒
X∗ is locally bounded in the interior of its domain. Suppose also that the graph of T is
closed w.r.t. the strong-weak topology. Fix y ∈ intD(T ) and x ∈ D(S). Then the function
D
,h

T (x, ·) : X → R∞ is lsc at y with respect to the strong topology in X.
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Proof Assume the claim is not true. Since we consider here the norm topology, this means
that there exists a ∈ R and a sequence yn converging strongly to y such that D
,h

T (x, y) > a

and D
,h
T (x, yn) ≤ a. From the second inequality for all n we deduce the existence of

vn ∈ Tyn such that

h(x, vn) − 〈x, vn〉 < a + 1

n
. (3.14)

Since y ∈ intD(T ), T is locally bounded at y. Using now a similar argument as the one
used in the proof of Lemma 3.17(a), we obtain a subsequence of {vn} converging weakly to
some vector v. By the strong-weak closedness of the graph of T we deduce that v ∈ Ty.
Using the (strong-weak) lsc of h we can write

a < D
,h
T (x, y) ≤ h(x, v) − 〈x, v〉 ≤ lim inf

n
[h(x, vn) − 〈x, vn〉] ≤ a,

where we used also (3.14) in the last inequality. This expression entails a contradiction and
therefore the claim on lower semicontinuity is true.

Example 3.20 below shows that D
,h
T (x, ·) may fail to be usc. In both of the next

examples, we make use of the following fact (for a proof, see [19]).

Fact 3.19 Assume that X is a Banach space and g : X → R is defined by g(x) := ‖x‖.
Then,

∂g(0) = B,

where B is the closed unit ball. For every y 
= 0 we have

∂g(y) = {z ∈ X∗ : 〈y, z〉 = ‖y‖}.
If X is a Hilbert space, then for all y 
= 0 we have

∂g(y) = {∇g(y)} = {y/‖y‖}. (3.15)

Example 3.20 Let X be a Hilbert space with dimension at least two, and let S := T := ∂g,
with g as in Fact 3.19. It was proved in [5] (see also [18, Example 5]) that the set H(S) has
only one element, which is then necessarily the Fitzpatrick function, given by

FS (x, v) = ‖x‖ + δB (v) ,

with δB denoting the indicator function of the closed unit ball of X. Thus, for x, y ∈ X we
have

D
,FS

T (x, y) = inf
v∈∂g(y)

{‖x‖ + δB (v) − 〈x, v〉} = inf
v∈∂g(y)

{‖x‖ − 〈x, v〉}

= ‖x‖ − sup
v∈∂g(y)

〈x, v〉 =
{

0 if y = 0

‖x‖ −
〈
x,

y
‖y‖

〉
if y 
= 0

,

where we used (3.15) in the last equality. If x 
= 0 then D

S,T (x, ·) is not usc at 0, since for

every sequence yn 
= 0 orthogonal to x and strongly converging to 0 one has

D

T (x, yn) = ‖x‖ > 0 = D


S,T (x, 0).
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Example 3.21 Assume X is a Hilbert space and fix a nonzero x ∈ X. Take S = Id and
T = ∂g, for g as in Fact 3.19. Using the second equality in (3.10) for A = Id we can write

D�,FS

T (x, 0) = supv∈B

{
2 supz∈X

{
〈z, x+v

2 〉 − ‖z‖2

2

}
− 〈x, v〉

}

= supv∈B

{‖ x+v
2 ‖2 − 〈x, v〉} = 1

4 supv∈B ‖x − v‖2

Computing the supremum in the right hand side, we obtain,

D�,FS

T (x, 0) = 1

4
(‖x‖ + 1)2.

Take now a nonzero sequence {yn} converging to 0. Since yn is never zero we have from
Fact 3.19 that Tyn = { yn

‖yn‖ } and hence we can write

D�,FS

T (x, yn) = 2 supz∈X

{
〈z, (x + yn

‖yn‖ )/2〉 − ‖z‖2/2
}

− 〈x,
yn

‖yn‖ 〉.
As in the previous example, we take again the sequence {yn} orthogonal to x and tending to
zero, so the expression above yields

D�,FS

T (x, yn) = ‖(x + yn

‖yn‖ )/2‖2

= ‖x‖2

4 + 1
4 .

Noting that for every nonzero x we have

D�,FS

T (x, yn) = ‖x‖2

4
+ 1

4
<

1

4
(‖x‖ + 1)2 = D�,FS

T (x, 0),

we conclude that D�,FS

T (x, ·) is not lsc at y = 0.

4 A Characterization of Bregman Distances

In this section we focus on the classical Bregman distance as in (3.8). Our aim is to charac-
terize the bifunctions D(·, ·) for which there exists a convex differentiable function h such
that D = Dh.

We say that a bifunction G : C × C → X∗, with C ⊆ X, is additively separable when
there exist two functions R and P such that G(x, y) = R(x) + P(y) for every x, y ∈ C.

Theorem 4.1 Let C ⊆ X be a nonempty convex set. A function D : C × C → R is a
Bregman distance, that is, there exists a differentiable convex function h : C → R such that
D = Dh if and only if D satisfies the following conditions:

(a) D is convex and differentiable in its first argument,
(b) D (x, x) = 0 for every x ∈ C,

(c) The mapping (x, y) 
→ ∇1D (x, y) is additively separable,
(d) ∇1D (x, x) = 0 for every x ∈ C.

Proof Clearly, properties (a)-(d) are satisfied by every Bregman distance. For (c), notice
that ∇1Dh (x, y) = ∇h (x) − ∇h (y) . Conversely, assume that properties (a)-(d) hold. By
(c), there exist two mappings R,U : C → X∗ such that

∇1D (x, y) = R (x) + U (y) for every x, y ∈ C. (4.16)
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From (d) it follows that R (x) + U (x) = 0 for every x ∈ C, hence (4.16) reduces to

∇1D (x, y) = R (x) − R (y) for every x, y ∈ C. (4.17)

Fix y ∈ C and define h := D (·, y) + 〈·, R (y)〉. By (a), the function h is convex and
differentiable. By (4.17), one has ∇h = R, and the expression

∇ (D (·, y) + (·, R (y))) (x) = ∇1D (x, y) + R (y) = R(x) (4.18)

depends only on x. Therefore the difference D (x, y) + 〈x, R (y)〉 − h (x) depends only on
y. Indeed, by (4.18) and the equality ∇h = R, we have

∇x [D (x, y) + 〈x,R (y)〉 − h (x)] = R(x) − R(x) = 0.

Hence, D (x, y) + 〈x, R (y)〉 − h (x) = k (y) for some function k : C → R. Using this
function k, we can write for every x, y ∈ C

h (x) − h (y) − 〈x − y,∇h (y)〉
= D (x, y) + 〈x, R (y)〉 − k (y) − (D (y, y) + 〈y, R (y)〉 − k (y)) − 〈x − y,∇h (y)〉 ,

which, in view of (b) and the fact that ∇h = R, reduces to

h (x) − h (y) − 〈x − y,∇h (y)〉 = D (x, y) .

Hence D = Dh, as claimed.

Remark 4.2 One can easily prove that h is determined by D up to addition with an affine
function, that is, Dh1 = Dh2 if and only if h1 − h2 is affine.

In view of Theorem 4.1 and Remark 4.2, one obtains

Corollary 4.3 Let C ⊆ X be a nonempty convex set, γC be the set of differentiable convex
functions on C, and ∼ be the equivalence relation on γC defined by

h1 ∼ h2 ⇔ h1 − h2 is affine.

Then the mapping [h] 
→ Dh is a well defined bijection from the quotient set γC/ ∼ onto
the set of functions D : C × C → R satisfying conditions (a)-(d) of Theorem 4.1.

We now give an alternative characterization.

Theorem 4.4 Let C ⊆ X be a convex set. A function D : C × C → R is a Bregman
distance if and only if it satisfies conditions (a) and (b) of Theorem 4.1 and

(e) ∇1D (x, y) + ∇1D (y, z) = ∇1D (x, z) for every x, y, z ∈ C.

Proof Clearly, in view of the equality ∇1Dh (x, y) = ∇h (x)−∇h (y), condition (e) holds.
Conversely, assume that properties (a), (b) and (e) hold. Fix z ∈ C and define h := D (·, z).
By (a), the function h is convex and differentiable. Using (e), for x, y ∈ C one obtains

∇h (x) = ∇1D (x, z) = ∇1D (x, y) + ∇1D (y, z) = ∇1D (x, y) + ∇h (y)

= ∇ (D (·, y) + 〈·, ∇h (y)〉) (x).

The above equality implies that

∇x (h(x) − D(x, y) − 〈x, ∇h(y)〉) = 0.

In other words, there exists a function k depending only on y such that

k(y) := h(x) − D (x, y) − 〈x, ∇h (y)〉 .
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Because k does not depend on x, we can replace x for y in the preceding expression:

k(y) = h(y) − D (y, y) − 〈y,∇h (y)〉 = h(y) − 〈y,∇h (y)〉 ,

where we also used (b). We thus have

D (x, y) = h(x) − 〈x,∇h (y)〉 − k (y)

= h(x) − 〈x,∇h (y)〉 − (h (y) − 〈y,∇h (y)〉) ,

which shows that D = Dh.

Corollary 4.5 Let C ⊆ X be a convex set, γC the set of differentiable convex functions on
C, and ∼ the equivalence relation on γC defined by

h1 ∼ h2 ⇔ h1 − h2 is affine.

Then the mapping [h] 
→ Dh is a well defined bijection from the quotient set γC/ ∼ onto
the set of functions D : C × C → R satisfying conditions (a) and (b) of Theorem 4.1 and
(e) of Theorem 4.4.
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