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Abstract We provide dual sufficient conditions for subtransversality of collections of sets
in an Asplund space setting. For the convex case, we formulate a necessary and suf-
ficient dual criterion of subtransversality in general Banach spaces. Our more general
results suggest an intermediate notion of subtransversality, what we call weak intrinsic sub-
transversality, which lies between intrinsic transversality and subtransversality in Asplund
spaces.
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1 Introduction

We study ways several sets in a normed linear space can be arranged in a ‘regular’ way
near a point in their intersection. Such regular intersection or, in other words, transver-
sality properties are crucial for the validity of qualification conditions in optimization as
well as subdifferential, normal cone and coderivative calculus, and convergence analysis of
computational algorithms.

For brevity, in this article we consider the case of two nonempty sets A and B. The
extension of the definitions and characterizations of transversality properties to the case of
any finite collection of n sets (n > 1) does not require much effort (cf. [33–35, 39, 40]).
The sets are assumed to have a common point x̄ ∈ A ∩ B. We shall use the notation {A,B}
when referring to the pair of two sets A and B as a single object.

The origins of the concept of regular arrangement of sets in space can be traced back to
that of transversality in differential geometry which deals of course with smooth manifolds
(see, for instance, [21, 24]). It is motivated by the problem of determining when the intersec-
tion of two smooth manifolds is also a smooth manifold near some point in the intersection.
This is true when the collection {A,B} of smooth manifolds is transversal at x̄ ∈ A ∩ B,
that is, the sum of the tangent spaces to A and B at x̄ generates the whole space. In finite
dimensions, this property can be equivalently characterized in dual terms:

NA(x̄) ∩ NB(x̄) = {0}, (1)

where NA(x̄) and NB(x̄) are the normal spaces (i.e., orthogonal complements to the tangent
spaces) to A and B, respectively, at the point x̄.

In the current article we study arbitrary (not necessarily smooth or convex) sets in a
normed linear space and focus on a particular transversality concept, called subtransver-
sality which has emerged as a key – by some estimates the key – notion in the analysis of
convergence of iterative methods for solving feasibility problems. Two equivalent primal
space definitions and some qualitative and quantitative characterizations of this property are
given in Section 2, where we also compare subtransversality with a more robust property
called simply transversality being a generalization of the discussed above corresponding
property from differential geometry.

The properties of transversality and subtransversality (also known under many other
names) of pairs of sets correspond directly to metric regularity and metric subregularity of
set-valued mappings, respectively; see Propositions 2, 3 and 4 below. This means, in partic-
ular, that characterizations of regularity properties of set-valued mappings can be translated
into characterizations of the corresponding transversality properties of pairs of sets and
vice versa. In the current article, when proving characterizations of the subtransversality
property of pairs of sets, we follow the sequence proposed in [36] when deducing metric
subregularity characterizations for set-valued mappings. Characterizations of subtransver-
sality can also be obtained by direct translation of the corresponding statements from [36]
using Propositions 2 or 4. We avoid doing this here, first, to keep a self-contained mostly
geometrical presentation, and second, because the developments in the current article show
that some statements in [36] are formulated not in the strongest form and can be improved.
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In fact, the characterizations of subtransversality derived in the current article can be used
to improve the corresponding statements in [36].

In Section 3 we present dual sufficient conditions for subtransversality in Asplund spaces
(Theorem 2) as well as a necessary and sufficient criterion for subtransversality of a pair of
convex sets in a general Banach space (Theorem 3), and compare them with the correspond-
ing criterion for transversality (Theorem 1). All three assertions are in a sense analogues
(Theorem 1 being a direct extension) of the classical criterion (1). Theorem 2 extends and
strengthens the corresponding assertion announced in the recent paper [38]. Along the way
we successively establish several sufficient (and some also necessary) primal and dual con-
ditions of subtransversality and also uncover a new notion of transversality, which we call
weak intrinsic transversality, that lies somewhere between transversality and subtransver-
sality. This property as well as a finer property of intrinsic transversality (the name is
borrowed from [17]) are briefly discussed in Section 4. A more detailed study of intrinsic
transversality and weak intrinsic transversality and their comparison with the corresponding
finite dimensional property introduced in [17] are going to appear in the forthcoming paper
[37].

1.1 Notation and Preliminaries

Given a normed linear space X, its topological dual is denoted X∗, while 〈·, ·〉 denotes the
bilinear form defining the pairing between the spaces. B and B

∗ stand for the closed unit
balls in X and X∗, respectively, while Bδ(x) denotes the open ball with centre at x ∈ X and
radius δ > 0. Given a set A in a normed linear space, its interior and boundary are denoted
int A and bd A, respectively, while cone A denotes the cone generated by A: cone A :=
{ta | a ∈ A, t ≥ 0}. dA(x) stands for the distance from a point x to a set A. Given an
α ∈ R∞ := R∪{+∞}, α+ denotes its positive part: α+ := max{α, 0}. N is a set of positive
integers.

Dual characterizations of transversality and subtransversality properties involve dual
space objects – normal cones. Given a subset A of a normed linear space X and a point
x̄ ∈ A, the Fréchet normal cone to A at x̄ is defined as follows:

NA(x̄) :=
{

x∗ ∈ X∗ | lim sup
a→x̄, a∈A\{x̄}

〈x∗, a − x̄〉
‖a − x̄‖ ≤ 0

}
. (2)

It is a nonempty weak∗ closed convex cone, often trivial (NA(x̄) = {0}). Similarly, given a
function f : X → R∞ := R ∪ {+∞} and a point x̄ ∈ dom f , the Fréchet subdifferential
of f at x̄ is defined as

∂f (x̄) :=
{
x∗ ∈ X∗ | lim inf

x→x̄, x =x̄

f (x) − f (x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≥ 0

}
. (3)

It is a weak∗ closed convex set, often empty. Using Fréchet normal cones, one can define
more robust (and in general nonconvex) limiting normal cones. If dim X < ∞, the definition
of the limiting normal cone to A at x̄ takes the following form:

NA(x̄) := Lim sup
a→x̄, a∈A

NA(a) :=
{
x∗ = lim

k→∞ x∗
k | x∗

k ∈ NA(ak), ak ∈ A, ak → x̄

}
. (4)

If X is a Euclidian space and A is closed, the Fréchet normal cones in definition (4) can be
replaced by the proximal ones:

N
p
A(x̄) := cone

(
P −1

A (x̄) − x̄
)
. (5)
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Here PA is the projection mapping:

PA(x) := {a ∈ A | ‖x − a‖ = dA(x) } , x ∈ X.

It is easy to verify that N
p
A(x̄) ⊂ NA(x̄), and NA(x̄) = {0} if and only if x̄ ∈ bd A. Unlike

(2) and (5), the cone (4) can be nonconvex.
If A is a convex set, then all three cones (2), (4) and (5) coincide and reduce to the normal

cone in the sense of convex analysis:

NA(x̄) := {
x∗ ∈ X∗ | 〈x∗, a − x̄〉 ≤ 0 for all a ∈ A

}
.

The proofs of the main results rely on two fundamental results of variational analysis:
the Ekeland variational principle (Ekeland [18]; cf., e.g., [32, Theorem 2.1], [47, Theorem
2.26], [16, Theorem 4B.5]) and several kinds of subdifferential sum rules. Below we provide
these results for completeness.

Lemma 1 (Ekeland variational principle) Suppose X is a complete metric space, f :
X → R∞ is lower semicontinuous and bounded from below, ε > 0, λ > 0. If

f (x̄) < inf
X

f + ε,

then there exists an x̂ ∈ X such that

(a) d(x̂, x̄) < λ,
(b) f (x̂) ≤ f (x̄),
(c) f (x) + (ε/λ)d(x, x̂) ≥ f (x̂) for all x ∈ X.

Lemma 2 (Subdifferential sum rules) Suppose X is a normed linear space, f1, f2 : X →
R∞, and x̄ ∈ dom f1 ∩ dom f2.

(i) Fuzzy sum rule. Suppose X is Asplund, f1 is Lipschitz continuous and f2 is lower
semicontinuous in a neighbourhood of x̄. Then, for any ε > 0, there exist x1, x2 ∈ X

with ‖xi − x̄‖ < ε, |fi(xi) − fi(x̄)| < ε (i = 1, 2), such that

∂(f1 + f2)(x̄) ⊂ ∂f1(x1) + ∂f2(x2) + εB∗.

(ii) Convex sum rule. Suppose f1 and f2 are convex and f1 is continuous at a point in
dom f2. Then

∂(f1 + f2)(x̄) = ∂f1(x̄) + ∂f2(x̄).

The first sum rule in the lemma above is known as the fuzzy or approximate sum
rule (Fabian [19]; cf., e.g., [32, Rule 2.2], [47, Theorem 2.33]) for Fréchet subdifferen-
tials in Asplund spaces. The other one is an example of an exact sum rule. It is valid
in arbitrary normed (or even locally convex) spaces. For rule (ii) we refer the readers to
[29, Theorem 0.3.3] and [54, Theorem 2.8.7].

Recall that a Banach space is Asplund if every continuous convex function on an open
convex set is Fréchet differentiable on some its dense subset [52], or equivalently, if the dual
of each its separable subspace is separable. We refer the reader to [8, 47, 52] for discus-
sions about and characterizations of Asplund spaces. All reflexive, in particular, all finite
dimensional Banach spaces are Asplund.
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2 Transversality and Subtransversality

In this introductory section we briefly discuss two standard regularity properties of a pair
of sets in a normed linear space, namely transversality and subtransversality (also known
under other names) with the emphasis on the second one.

Definition 1 Suppose X is a normed linear space, A,B ⊂ X, and x̄ ∈ A ∩ B. {A,B} is
subtransversal at x̄ if one of the following two equivalent conditions is satisfied:

(i) there exist numbers α ∈]0, 1[ and δ > 0 such that

(
A + (αρ)B

) ∩ (
B + (αρ)B

) ∩ Bδ(x̄) ⊂ (A ∩ B) + ρB for all ρ ∈]0, δ[; (6)

(ii) there exist numbers α ∈]0, 1[ and δ > 0 such that

αd (x, A ∩ B) ≤ max {d(x,A), d(x, B)} for all x ∈ Bδ(x̄). (7)

The exact upper bound of all α ∈]0, 1[ such that condition (6) or condition (7) is satisfied
for some δ > 0 is denoted str[A, B](x̄) with the convention that the supremum of the empty
subset of R+ equals 0.

The requirement that α < 1 in both parts of Definition 1 imposes no restrictions on the
property. It is only needed in the case x̄ ∈ int (A ∩ B) (when conditions (6) and (7) are
satisfied for some δ > 0 with any α > 0) to ensure that str[A, B](x̄) is always less than or
equal to 1 and simplify the subsequent quantitative estimates. It is easy to check that when
x̄ ∈ bd (A ∩ B), each of the conditions (6) and (7) implies α ≤ 1. We are going to use
similar requirements in other definitions throughout the article.

The property in part (i) of Definition 1 was introduced recently in [40] (under the name
subregularity). It can be viewed as a local analogue of the global uniform normal property
introduced in the convex setting in [3, Definition 3.1(4)] as a generalization of the property
(N) of convex cones by Jameson [30]. A particular case of the Jameson property (N) for
convex cones A and B such that B = −A and A ∩ (−A) = {0} was studied by M. Krein
in the 1940s. Subtransversality constant str[A, B](x̄) is, in a sense, a local analogue of the
normality constant in [3, Definition 4.2].

The metric property in part (ii) of Definition 1 is a very well known regularity property
that has been around for more than 30 years under various names ((local) linear regularity,
metric regularity, linear coherence, metric inequality, and subtransversality); cf. [3–5, 15,
17, 23, 25–27, 31, 44, 49, 51, 53, 55, 56]. It has been used as the key assumption when
establishing linear convergence of sequences generated by alternating projection algorithms
and a qualification condition for subdifferential and normal cone calculus formulae. One
can also observe that condition (7) is equivalent to the function x �→ max{d(x,A), d(x, B)}
having a local error bound [2, 20, 36]/weak sharp minimum [10–12] at x̄ with constant α.
The equivalence of the two properties in Definition 1 and the fact that the exact upper bounds
of all α ∈]0, 1[ in conditions (6) and (7) coincide were established in [40, Theorem 3.1].

The subtransversality of {A,B} is equivalent to the condition str[A, B](x̄) > 0, and
str[A, B](x̄) provides a quantitative characterization of this property.

The subtransversality property of pairs of sets in Definition 1 is a weaker version of
another well known regularity property in the next definition.
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Definition 2 Suppose X is a normed linear space, A,B ⊂ X, and x̄ ∈ A ∩ B. {A,B} is
transversal at x̄ if one of the following two equivalent conditions is satisfied:

(i) there exist numbers α ∈]0, 1[ and δ > 0 such that

(A − a − x1) ∩ (B − b − x2) ∩ (ρB) = ∅ (8)

for all ρ ∈]0, δ[, a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), and all x1, x2 ∈ X with
max{‖x1‖, ‖x2‖} < αρ;

(ii) there exist numbers α ∈]0, 1[ and δ > 0 such that

αd(x,(A−x1)∩(B−x2)) ≤max{d(x,A−x1), d(x,B−x2)} for all x ∈Bδ(x̄), x1, x2 ∈ δB.

(9)

The exact upper bound of all α ∈]0, 1[ such that condition (8) or condition (9) is satisfied
for some δ > 0 is denoted tr[A, B](x̄) with the convention that the supremum of the empty
subset of R+ equals 0.

The property in part (i) of Definition 2 was introduced by the first author in 2005. Since
then the terminology in the papers (co-)authored by him has changed several time causing
some confusion, for which he apologizes to the readers. The next table reflects the evolution
of the terminology.

2005 [33] 2006 [34] 2009 [35] 2013 [39] 2017 [38]
Regularity Strong regularity Property (UR)S Uniform regularity Transversality

In [42] the property is called linearly regular intersection. If A and B are closed con-
vex sets and int A = ∅, then this property is equivalent to the conventional qualification
condition: int A ∩ B = ∅ (cf. [33, Proposition 14]).

The metric property in part (ii) of Definition 2 was referred to in [33–35] as strong
metric inequality. The equivalence of the two properties in Definition 2 and the fact that the
exact upper bounds of all α ∈]0, 1[ in conditions (i) and (ii) coincide were established in
[33, Theorem 1].

From comparing the second parts in Definitions 1 and 2, one can see that the transver-
sality of a pair of sets corresponds to the subtransversality of all their small translations
holding uniformly (cf. [17, p. 1638]). The next inequality is straightforward:

tr[A, B](x̄) ≤ str[A, B](x̄).

Example 1 If A = B, then d (x, A ∩ B) = d(x,A) = d(x, B) for any x ∈ X. Hence,
condition (7) holds with any α ∈]0, 1[ and δ > 0. Thus, {A,B} is subtransversal at x̄ and
str[A,B](x̄) = 1.

Note that, under the conditions of Example 1, {A,B} does not have to be transversal at x̄.

Example 2 Let X = R
2, A = B = R × {0}, and x̄ = (0, 0). If x1 = (0, ε) and x2 = (0, 0),

then condition (8) does not hold for any a ∈ A, b ∈ B, ρ > 0, and ε > 0. Thus, {A,B} is
subtransversal at x̄ thanks to Example 1, but not transversal, and tr[A, B](x̄) = 0.

We refer the reader to [40] for more examples illustrating the relationship between the
properties in Definitions 1 and 2.
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The next proposition provides a useful metric characterization of the subtransversality
property complementing the one in part (ii) of Definition 1. It was established in [38,
Theorem 1(iii)] in the Euclidean space setting, but the proof given there is valid in an
arbitrary normed linear space.

Proposition 1 Suppose X is a normed linear space, A,B ⊂ X, and x̄ ∈ A ∩ B. {A,B} is
subtransversal at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0 such that

αd(x,A ∩ B) ≤ d(x, B) for all x ∈ A ∩ Bδ(x̄). (10)

Moreover,

1

2(str′[A, B](x̄))−1 + 1
≤ str[A, B](x̄) ≤ str′[A, B](x̄), (11)

where str′[A, B](x̄) is the exact upper bound of all numbers α ∈]0, 1[ such that condition
(10) is satisfied, with the convention that the supremum of the empty subset of R+ equals 0.

Proposition 1 can be considered as a nonconvex extension of [48, Theorem 3.1].

Remark 1 1. The maximum of the distances in Definitions 1 and 2 (explicitly present in
part (ii) and implicitly also in part (i)) and some other representations in the sequel cor-
responds to the maximum norm in R

2 employed in all these definitions and assertions.
It can be replaced everywhere by the sum norm (pretty common in this type of defini-
tions in the literature) or any other equivalent norm. All the assertions above including
the quantitative characterizations will remain valid (as long as the same norm is used
everywhere), although the exact values of str[A, B](x̄) and tr[A, B](x̄) do depend on
the chosen norm and some estimates (e.g. in Propositions 1) can change.

2. In some situations it can be convenient to use the reciprocal (str[A,B](x̄))−1 instead
of str[A, B](x̄) for characterizing the subtransversality property. The property is obvi-
ously equivalent to (str[A, B](x̄))−1 < ∞. For instance, using the reciprocals, the
quantitative estimates (11) in Propositions 1 can be rewritten in a simpler form as

(str′[A, B](x̄))−1 ≤ (str[A, B](x̄))−1 ≤ 2(str′[A, B](x̄))−1 + 1.

3. Thanks to Propositions 1, one can use str′[A, B](x̄) instead of str[A, B](x̄) for
quantitative characterization of the subtransversality property. Note that str′[A, B](x̄)

is not symmetric: str′[B,A](x̄) = str′[A, B](x̄). One can strengthen the conclu-
sion of Propositions 1 by replacing str′[A, B](x̄) in the right-hand side of (11)
by min{str′[A, B](x̄), str′[B, A](x̄)} and by max{str′[A, B](x̄), str′[B, A](x̄)} in its
left-hand side.

Not surprisingly, transversality properties of pairs of sets are strongly connected with the
corresponding regularity properties of set-valued mappings. The properties in Definitions 1
and 2 correspond, respectively, to metric subregularity and metric regularity of set-valued
mappings (cf., e.g., [16]), which partially explains the terminology adopted in the current
article.
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Definition 3 Suppose X and Y are metric spaces, F : X ⇒ Y , and (x̄, ȳ) ∈ gph F :=
{(x, y) ∈ X × Y | y ∈ F(x)}.
(i) F is metrically regular at (x̄, ȳ) ∈ gph F if there exist numbers α > 0 and δ > 0 such

that

αd
(
x, F−1(y)

)
≤ d(y, F (x)) for all x ∈ Bδ(x̄), y ∈ Bδ(ȳ);

(ii) F is metrically subregular at (x̄, ȳ) ∈ gph F if there exist numbers α > 0 and δ > 0
such that

αd
(
x, F−1(ȳ)

)
≤ d(ȳ, F (x)) for all x ∈ Bδ(x̄).

In a slight violation of the notation adopted in [16], we will use rg[F ](x̄, ȳ) and
srg[F ](x̄, ȳ) to denote the exact upper bounds of all α in parts (i) and (ii) of the above
definition, respectively.

The regularity properties in Definition 3 lie at the core of the contemporary variational
analysis. They have their roots in classical analysis and are crucial for the study of stability
of solutions to (generalized) equations and various aspects of subdifferential calculus and
optimization theory. For the state of the art of the regularity theory of set-valued mappings
and its numerous applications we refer the reader to the book by Dontchev and Rockafellar
[16] and the comprehensive survey by Ioffe [27, 28].

Given a pair of subsets A and B of a normed linear space X, one can define a set-valued
mapping F : X ⇒ X2 by the equality (cf. [26, 27])

F(x) := (A − x) × (B − x), x ∈ X. (12)

The next proposition employs the maximum norm on X2 (‖(x1, x2)‖ := max{‖x1‖ , ‖x2‖},
x1, x2 ∈ X).

Proposition 2 SupposeX is a normed linear space,A,B ⊂ X, x̄ ∈ A∩B, and a set-valued
mapping F : X ⇒ X2 is defined by (12).

(i) {A,B} is transversal at x̄ if and only if F is metrically regular at (x̄, 0);
(ii) {A,B} is subtransversal at x̄ if and only if F is metrically subregular at (x̄, 0).

Moreover, tr[A, B](x̄) = rg[F ](x̄, 0) and str[A, B](x̄) = srg[F ](x̄, 0).

Conversely, given a set-valued mapping F : X ⇒ Y between normed linear spaces and
a point (x̄, ȳ) ∈ gph F , one can define two sets in X × Y :

A := gph F, B := X × {ȳ}. (13)

The next proposition employs the maximum norm on X × Y (‖(x, y)‖ := max{‖x‖ , ‖y‖},
x ∈ X, y ∈ Y ).

Proposition 3 Suppose X and Y are normed linear spaces, F : X ⇒ Y , (x̄, ȳ) ∈ gph F ,
and sets A and B are defined by (13).

(i) F is metrically regular at (x̄, ȳ) if and only if {A,B} is transversal at (x̄, ȳ);
(ii) F is metrically subregular at (x̄, ȳ) if and only if {A,B} is subtransversal at (x̄, ȳ).
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Moreover,

1

2(rg[F ](x̄, ȳ))−1 + 1
≤ tr[A, B](x̄) ≤ min

{
rg[F ](x̄, ȳ)

2
, 1

}
,

1

2(srg[F ](x̄, ȳ))−1 + 1
≤ str[A,B](x̄) ≤ min

{
srg[F ](x̄, ȳ)

2
, 1

}
.

The equivalences in Propositions 2 and 3 and some quantitative estimates can be found
in [33, Theorems 2 and 3, and Corollaries 2.1 and 3.1]; see also [26, Proposition 3.5],
[27, Theorem 6.12], [34, Propositions 8 and 9], [35, Theorems 7 and 8, and Corol-
lary 7.1] and [38, Theorem 3]. The quantitative estimates in Proposition 3 are taken from
[40, Theorem 5.1].

Remark 2 The quantitative estimates in Proposition 3 can be improved by choosing an
appropriate norm on X × Y .

In the Euclidian space setting, the following (not more than) single-valued mapping G :
X2 ⇒ X can replace (12) in the equivalences in Proposition 2 (cf. [43]):

G(x1, x2) :=
{ {x1 − x2} if x1 ∈ A and x2 ∈ B,

∅ otherwise.
(14)

The next proposition employs the Euclidian norm on X2 (‖(x1, x2)‖ :=√
‖x1‖2 + ‖x2‖2, x1, x2 ∈ X).

Proposition 4 Suppose X is a Euclidian space, A,B ⊂ X, x̄ ∈ A ∩ B, and a mapping
G : X2 ⇒ X is defined by (14).

(i) {A,B} is transversal at x̄ if and only if G is metrically regular at ((x̄, x̄), 0);
(ii) {A,B} is subtransversal at x̄ if and only if G is metrically subregular at ((x̄, x̄), 0).

Moreover,

1

2(rg[G]((x̄, x̄), 0))−1 + 1
≤ tr[A, B](x̄) ≤ 1√

2(rg[G]((x̄, x̄), 0))−2 − 1
,

1

2(srg[G]((x̄, x̄), 0))−1 + 1
≤ str[A, B](x̄) ≤ 1√

2(srg[G]((x̄, x̄), 0))−2 − 1
.

The above proposition is extracted from [38, Theorem 3]; see also [27, Corollary 6.13].
In view of Propositions 2, 3 and 4, regularity models in terms of set-valued mappings and

pairs of sets are in a sense equivalent. In the current article we focus on the second model.
One of the typical applications of transversality properties of pairs (or more generally

finite collections) of sets is to the convergence analysis of alternating (or cyclic) projections
for solving feasibility problems [1, 4–7, 9, 17, 22, 23, 28, 38, 41–43, 45, 50].

Given two sets A and B, the feasibility problem consists in finding a point in their inter-
section A ∩ B. If these are closed sets in finite dimensions, alternating projections are
determined by a sequence (xk) starting with some point x0 and such that

xk+1 ∈ PAPB(xk) (k = 0, 1, . . .).

Here PA and PB stand for the Euclidean projection operators on the corresponding sets, i.e.,
e.g.,

PA(x) := {a ∈ A | ‖x − a‖ = d(x,A)},
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where the Euclidean norm and distance are used. If A is closed and convex, then PA is a
singleton. In analyzing convergence of the alternating projections (xk), it is usually helpful
to look at the sequence of intermediate points (bk) with bk ∈ PB(xk) and xk+1 ∈ PA(bk)

(k = 0, 1, . . .). We denote the joining sequence by (zk), that is

z2n = xn and z2n+1 = bn, (n = 0, 1, . . .). (15)

For simplicity of presentation let us assume throughout the discussion, without loss of
generality, that x0 ∈ A.

Bregman [9] and Gubin et al. [22] showed that, if A ∩ B = ∅ and the sets are closed and
convex, the sequence converges to a point in A ∩ B. In the case of two subspaces, this fact
was established by von Neumann in the mid-1930s; that is why the method of alternating
projections is sometimes referred to as von Neumann’s method. It was noted in [50] that
alternating projections can be traced back to the 1869 work by Schwarz. It was shown in
[22] that, if ri A ∩ ri B = ∅, the convergence is linear, i.e.,∥∥xk − x̂

∥∥ ≤ αck (k = 0, 1, . . .), (16)

where x̂ ∈ A ∩ B is the limit of the sequence, α > 0 and c ∈]0, 1[. If (16) holds, it is often
said that (xk) converges with R-linear rate c. A systematic analysis of the convergence of
alternating projections in the convex setting was done by Bauschke and Borwein [4, 5], who
demonstrated that it is the subtransversality property in Definition 1 that is needed to ensure
linear convergence. In fact, as the next proposition taken from [45] shows, subtransversal-
ity in the convex setting is necessary and sufficient for linear convergence of alternating
projections.

Proposition 5 Suppose X is a Euclidean space, A,B ⊂ X are closed and convex, and
x̄ ∈ A ∩ B.

(i) If {A,B} is subtransversal at x̄, then alternating projections converge linearly with
rate at most 1−str[A, B](x̄)2, provided that the starting point is sufficiently close to x̄.

(ii) If alternating projections converge linearly with rate c ∈]0, 1[ for any starting point
sufficiently close to x̄, then {A,B} is subtransversal at x̄ and str[A, B](x̄) ≥ 1−c

3−c
.

The picture becomes much more complicated if the convexity assumption is dropped. In
view of the following proposition taken from [45], subtransversality remains a necessary
condition for certain types of linear convergence of alternating projections.

Proposition 6 Suppose X is a Euclidean space, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. If
for any starting point x0 sufficiently close to x̄,

(i) either every sequence of alternating projections (xk) is linear monotone with rate
c ∈]0, 1[ in the sense that

d(xk+1, A ∩ B) ≤ cd(xk, A ∩ B) (k = 0, 1, . . .), (17)

(ii) or every sequence of joining alternating projections (zk) determined by (15) satisfies
the following conditions for a constant c ∈]0, 1[

‖zk+2 − zk+1‖ ≤ ‖zk+1 − zk‖, (k = 0, 1, . . .), (18a)

‖z2k+2 − z2k+1‖ ≤ c‖z2k+1 − z2k‖, (k = 0, 1, . . .), (18b)
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then {A,B} is subtransversal at x̄ and str[A, B](x̄) ≥ 1−c
5−c

.

As shown in [45], properties (17) and (18) both imply linear convergence of alternating
projections with R-linear rate, and the three properties are equivalent when the sets are
convex. It is conjectured in [45] that subtransversality is necessary for linear convergence
of (both convex and nonconvex) alternating projections. At the same time, simple examples
show that subtransversality is not sufficient to guarantee (any) convergence of alternating
projections to a solution of the feasibility problem.

A study of the convergence of alternating projections in the nonconvex setting was ini-
tiated recently by Lewis and Malick [43], and Lewis et al. [42], who demonstrated in the
Euclidean space setting that a stronger transversality property in Definition 2 is sufficient
for the local linear convergence of alternating projections for, respectively, a pair of smooth
manifolds or a pair of arbitrary closed sets one of which is super-regular at the reference
point. The last property holds, in particular, for convex sets and smooth manifolds. It was
shown later by Drusvyatskiy et al. [17] that transversality guarantees local linear conver-
gence of alternating projections for a pair of closed sets in a Euclidean space without the
super-regularity assumption. The role of the transversality property in the convergence anal-
ysis of alternating projections in the nonconvex setting is studied in Drusvyatskiy et al. [17],
Kruger and Thao [41], Noll and Rondepierre [50], and Kruger et al. [38].

In view of Propositions 5 and 6 and the above discussion, subtransversality is close
to being necessary for the local linear convergence of alternating projections for a pair
of closed sets in a Euclidean space, but is not sufficient unless the sets are convex. On
the other hand, transversality is sufficient, but is far from being necessary even in the
convex case. For example, transversality always fails when the affine span of the union
of the sets is not equal to the whole space, while alternating projections can still con-
verge linearly as is the case when the sets are convex with nonempty intersection of their
relative interiors. A quest has started for the weakest regularity property lying between
transversality and subtransversality and being sufficient for the local linear convergence
of alternating projections. We mention here the articles by Bauschke et al. [6, 7] utilizing
restricted normal cones, Drusvyatskiy et al. [17] introducing and successfully employ-
ing intrinsic transversality, Noll and Rondepierre [50] introducing a concept of separable
intersection, with 0-separability being a weaker property than intrinsic transversality and
still implying the local linear convergence of alternating projections under the additional
assumption that one of the sets is 0-Hölder regular at the reference point with respect to the
other.

3 Dual Characterizations

The dual criterion for the transversality property in Definition 2 in Asplund spaces is well
known, see [33–35, 39, 40].

Theorem 1 Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. Then {A,B} is
transversal at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0 such that ‖x∗

1 +x∗
2‖ >

α for all a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄), and all x∗
1 ∈ NA(a) and x∗

2 ∈ NB(b) satisfying
‖x∗

1‖ + ‖x∗
2‖ = 1. Moreover, the exact upper bound of all such α equals tr[A, B](x̄).

In finite dimensions, the above criterion admits convenient equivalent reformulations in
terms of limiting normals.
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Corollary 1 Suppose dim X < ∞, A, B ⊂ X are closed, and x̄ ∈ A ∩ B. Then {A,B} is
transversal at x̄ if and only if one of the following two equivalent conditions is satisfied:

(i) there exists a number α ∈]0, 1[ such that ‖x∗
1 + x∗

2‖ > α for all x∗
1 ∈ NA(x̄) and

x∗
2 ∈ NB(x̄) satisfying ‖x∗

1‖ + ‖x∗
2‖ = 1;

(ii) NA(x̄) ∩ (−NB(x̄)
) = {0}.

Moreover, the exact upper bound of all α in (i) equals tr[A, B](x̄).

The property in part (ii) of Corollary 1 is a well known qualification condi-
tion/nonseparabilty property that has been around for about 30 years under various names
(basic qualification condition, normal qualification condition, transversality, transversal
intersection, regular intersection, linearly regular intersection, and alliedness property); cf.
[13, 27, 42, 43, 46, 47, 51]. When A and B are smooth manifolds, it coincides with (1).

The next theorem deals with the subtransversality property in Definition 1. It provides a
dual sufficient condition for this property in an Asplund space.

Theorem 2 Suppose X is Asplund, A, B ⊂ X are closed, and x̄ ∈ A ∩ B. Then {A,B}
is subtransversal at x̄ if there exist numbers α ∈]0, 1[ and δ > 0 such that, for all a ∈
(A \ B) ∩Bδ(x̄), b ∈ (B \ A) ∩Bδ(x̄) and x ∈ Bδ(x̄) with ‖x − a‖ = ‖x − b‖, there exists
an ε > 0 such that ‖x∗

1 + x∗
2‖ > α for all a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b), x′

1 ∈ Bε(a),
x′

2 ∈ Bε(b), x′ ∈ Bε(x), and x∗
1 , x∗

2 ∈ X∗ satisfying∥∥x′ − x′
1

∥∥ = ∥∥x′ − x′
2

∥∥ , (19)

‖x∗
1‖ + ‖x∗

2‖=1,
〈
x∗

1 , x′−x′
1

〉=‖x∗
1‖‖x′−x′

1‖,
〈
x∗

2 , x′−x′
2

〉=‖x∗
2‖‖x′−x′

2‖, (20)

d(x∗
1 , NA(a′)) < δ, d(x∗

2 , NB(b′)) < δ. (21)

Moreover, str[A, B](x̄) ≥ α.

In the convex case, one can formulate a necessary and sufficient dual criterion of
subtransversality in general Banach spaces which takes a simpler form.

Theorem 3 SupposeX is a Banach space,A,B ⊂ X are closed and convex, and x̄ ∈ A∩B.
Then {A,B} is subtransversal at x̄ if and only if there exist numbers α ∈]0, 1[ and δ > 0
such that ‖x∗

1 + x∗
2‖ > α for all a ∈ (A \ B) ∩Bδ(x̄), b ∈ (B \ A) ∩Bδ(x̄), x ∈ Bδ(x̄) with

‖x − a‖ = ‖x − b‖, and x∗
1 , x∗

2 ∈ X∗ satisfying

‖x∗
1‖ + ‖x∗

2‖ = 1,
〈
x∗

1 , x − a
〉 = ‖x∗

1‖‖x − a‖, 〈
x∗

2 , x − b
〉 = ‖x∗

2‖‖x − b‖, (22)

d(x∗
1 , NA(a)) < δ, d(x∗

2 , NB(b)) < δ.

Moreover, the exact upper bound of all such α equals str[A, B](x̄).

Remark 3 1. It is sufficient to check the conditions of Theorems 1, 2 and 3 only for x∗
1 = 0

and x∗
2 = 0. Indeed, if one of the vectors x∗

1 and x∗
2 equals 0, then by the normalization

condition ‖x∗
1‖ + ‖x∗

2‖ = 1, the norm of the other one equals 1, and consequently
‖x∗

1 + x∗
2‖ = 1, i.e., such pairs x∗

1 , x∗
2 do not impose any restrictions on α.

2. Similarly to the classical condition (1), the (sub)transversality characterizations in The-
orems 1, 2 and 3 require that among all admissible (i.e., satisfying all the conditions
of the theorems) pairs of nonzero elements x∗

1 and x∗
2 there is no one with x∗

1 and x∗
2

oppositely directed.
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3. The sum ‖x∗
1‖+‖x∗

2‖ in Theorems 1, 2 and 3 corresponds to the sum norm on R
2, which

is dual to the maximum norm on R
2 used in Definitions 1 and 2. It can be replaced by

max{‖x∗
1‖, ‖x∗

2‖} (cf. [51, (6.11)]) or any other norm on R
2.

4. Condition (7) is equivalent to the inequality αd (x,A ∩ B) ≤ max {‖x − a‖, ‖x − b‖}
holding for all triples x ∈ Bδ(x̄), a ∈ A and b ∈ B. Since x̄ ∈ A ∩ B, it is
sufficient to check this inequality only for those triples which satisfy α‖x − x̄‖ >

max {‖x − a‖, ‖x − b‖}. This simple observation shows that the statement of Theo-
rem 2 can be slightly strengthened by adding the following condition: ‖x − a‖ =
‖x − b‖ < α‖x − x̄‖.

The proof of Theorem 2 follows the sequence proposed in [36] when deducing metric
subregularity characterizations for set-valued mappings and consists of a series of propo-
sitions providing lower primal and dual estimates for the constant str[A, B](x̄) and, thus,
sufficient conditions for the subtransversality of the pair {A,B} at x̄ which can be of
independent interest.

First observe that constant str[A, B](x̄) characterizing subtransversality and introduced
in Definition 1 can be written explicitly as

str[A, B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A, b∈B, x /∈A∩B

f (a, b, x)

d (x,A ∩ B)
= lim inf

a→x̄, b→x̄, x→x̄
x /∈A∩B

f̂ (a, b, x)

d (x,A ∩ B)
, (23)

with the convention that the infimum over the empty set equals 1, and the functions f :
X3 → R and f̂ : X3 → R∞ defined, respectively, by

f (x1, x2, x) := max{‖x1 − x‖ , ‖x2 − x‖}, x1, x2, x ∈ X, (24)

f̂ (x1, x2, x) := f (x1, x2, x) + iA×B(x1, x2), x1, x2, x ∈ X, (25)

where iA×B is the indicator function of A × B: iA×B(x1, x2) = 0 if x1 ∈ A, x2 ∈ B and
iA×B(x1, x2) = +∞ otherwise.

Below, we are going to use two different norms on X3: a norm depending on a parameter
ρ > 0 and defined as follows:

‖(x1, x2, x)‖ρ := max {‖x‖ , ρ ‖x1‖ , ρ ‖x2‖} , x1, x2, x ∈ X, (26)

and the conventional maximum norm ‖(·, ·, ·)‖ corresponding to ρ = 1 in the above defini-
tion; we drop the subscript ρ in this case. It is easy to check that the dual norm corresponding
to (26) has the following form:∥∥(x∗

1 , x∗
2 , x∗)

∥∥
ρ

= ‖x∗‖ + ρ−1(‖x∗
1‖ + ‖x∗

2‖), x∗
1 , x∗

2 , x∗ ∈ X∗. (27)

The next proposition provides an equivalent primal space representation of the sub-
transversality constant (23). Its proof is based on the application of the Ekeland variational
principle (Lemma 1).

Proposition 7 Suppose X is a Banach space, A, B ⊂ X are closed, and x̄ ∈ A ∩ B. Then
the following representation of the subtransversality constant (23) is true:

str[A,B](x̄)= lim
ρ↓0

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A,b′∈B,u∈X

(a′,b′,u)=(a,b,x)

(
f (a,b,x)−f(a′,b′,u)

)
+

‖(a′,b′,u)−(a,b,x)‖ρ

, (28)

with the convention that the infimum over the empty set equals 1.



714 A. Y. Kruger et al.

Proof Let R denote the expression in the right-hand side of (28). We first show that
str[A, B](x̄) ≤ R. If str[A, B](x̄) = 0, the inequality holds trivially. Let 0 < α <

str[A, B](x̄). By (23), there is a δ > 0 such that

f (a, b, x)

d (x,A ∩ B)
> α (29)

for all a ∈ A ∩ Bδ(x̄), b ∈ B ∩ Bδ(x̄) and x ∈ Bδ(x̄) with x /∈ A ∩ B. Choose a positive
ρ < min{δ, (α + 1)−1} and any a ∈ A ∩ Bρ(x̄), b ∈ B ∩ Bρ(x̄) and x ∈ Bρ(x̄) with
max{‖x − a‖ , ‖x − b‖} > 0. If x /∈ A ∩ B, then, in view of (29), one can find a u ∈ A ∩ B

such that
f (a, b, x)

‖u − x‖ > α.

Then,

f (a, b, x) − f (u, u, u)

‖(u, u, u) − (a, b, x)‖ρ

= f (a, b, x)

max{‖u − x‖ , ρ ‖u − a‖ , ρ ‖u − b‖}
≥ f (a, b, x)

max{‖u − x‖ , ρ(‖u−x‖+‖x−a‖), ρ(‖u−x‖+‖x−b‖)}
= f (a, b, x)

max{‖u − x‖ , ρ(max{‖x − a‖ , ‖x − b‖} + ‖u − x‖)}
= f (a, b, x)

max{‖u − x‖ , ρ(f (a, b, x) + ‖u − x‖)}

= min

⎧⎪⎪⎨
⎪⎪⎩

f (a, b, x)

‖u − x‖ ,
1

ρ

(
1 +

(
f (a,b,x)
‖u−x‖

)−1
)

⎫⎪⎪⎬
⎪⎪⎭ > α.

If x ∈ A ∩ B, then

f (a, b, x) − f (x, x, x)

‖(x, x, x) − (a, b, x)‖ρ

= f (a, b, x)

max{ρ ‖x − a‖ , ρ ‖x − b‖} = ρ−1 > α + 1 > α. (30)

Combining the two cases, we obtain

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B, u∈X
(a′,b′,u)=(a,b,x)

(
f (a, b, x) − f (a′, b′, u)

)
+

‖(a′, b′, u) − (a, b, x)‖ρ

≥ α.

The claimed inequality follows after letting ρ ↓ 0 and α ↑ str[A, B](x̄).
Now we show the opposite inequality: R ≤ str[A, B](x̄). Let str[A, B](x̄) < α < ∞.

Choose an α′ > 0 and a ρ > 0 such that str[A,B](x̄) < α′ < α and ρ < 1 − α′/α, and set

η := min
{ρ

4
,

ρ

2α′ , ρ
2
ρ

}
. (31)

By (23), there are â ∈ A, b̂ ∈ B and x̂ ∈ Bη(x̄) \ (A ∩ B) such that

f (â, b̂, x̂) < α′d
(
x̂, A ∩ B

)
. (32)

As x̂ /∈ A ∩ B, we have either x̂ = â or x̂ = b̂; hence ε := f (â, b̂, x̂) > 0. Denote
μ := d

(
x̂, A ∩ B

)
. Then 0 < ε < α′μ and μ ≤ ∥∥x̂ − x̄

∥∥ ≤ η ≤ ρ
4 < 1. Applying to the

lower semicontinuous function (25) the Ekeland variational principle (Lemma 1) with ε as
above and

λ := μ(1 − μ
ρ

2−ρ ) > 0, (33)
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we find points a ∈ A, b ∈ B and x ∈ X such that

‖(a, b, x) − (â, b̂, x̂)‖ρ < λ, f (a, b, x) ≤ f (â, b̂, x̂), (34)

and

f (a′, b′, u) + ε

λ

∥∥(a′, b′, u) − (a, b, x)
∥∥

ρ
≥ f (a, b, x) for all (a′, b′, u) ∈ A × B × X.

(35)
Thanks to (34), (33), (31) and (32), we have∥∥x − x̂

∥∥ < λ < μ ≤ ∥∥x̂ − x̄
∥∥ ,

d (x, A ∩ B) ≥ d
(
x̂, A ∩ B

) − ∥∥x − x̂
∥∥ > μ − λ = μ

2
2−ρ , (36)

‖x − x̄‖ ≤ ∥∥x − x̂
∥∥ + ∥∥x̂ − x̄

∥∥ < 2
∥∥x̂ − x̄

∥∥ ≤ 2η ≤ ρ

2
, (37)

f (a, b, x) ≤ f (â, b̂, x̂) < α′μ ≤ α′η ≤ ρ

2
. (38)

It follows from (36) that x /∈ A ∩ B, and consequently, either x = a or x = b. Besides, by
(37) and (38),

‖x − x̄‖ < ρ and max{‖a − x̄‖ , ‖b − x̄‖} ≤ max{‖x − a‖ , ‖x − b‖} + ‖x − x̄‖ < ρ.

Observe that μ
ρ

2−ρ ≤ η
ρ

2−ρ < η
ρ
2 ≤ ρ, and consequently, by (32) and (33),

ε

λ
<

α′μ
λ

= α′

1 − μ
ρ

2−ρ

<
α′

1 − ρ
< α.

Thanks to (35) and (24), we have

f (a, b, x) − f (a′, b′, u) ≤ α
∥∥(a′, b′, u) − (a, b, x)

∥∥
ρ

for all (a′, b′, u) ∈ A × B × X.

It follows that

inf
a∈A∩Bρ(x̄), b∈B∩Bρ(x̄)

x∈Bρ(x̄), max{‖x−a‖,‖x−b‖}>0

sup
a′∈A, b′∈B, u∈X
(a′,b′,u)=(a,b,x)

f (a, b, x) − f (a′, b′, u)

‖(a′, b′, u) − (a, b, x)‖ρ

≤ α.

Taking limits in the last inequality as ρ ↓ 0 and α ↓ str[A, B](x̄) yields the claimed
inequality.

Remark 4 1. The right-hand side of (28) is the uniform strict outer slope [36] of the
function (25) (considered as a function of two variables x and (x1, x2)) at (x̄, (x̄, x̄)).

2. The inequality ‘≤’ in (28) is valid in arbitrary (not necessarily complete) normed linear
spaces. The completeness of the space X is only needed for the inequality ‘≥’, the proof
of which is based on the application of the Ekeland variational principle.

The next proposition provides another two primal space representations of the sub-
transversality constant (23) which impose additional restrictions on the choice of a, b and x

under the inf in (28).
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Proposition 8 Suppose X is a Banach space, A, B ⊂ X are closed, and x̄ ∈ A ∩ B. Then
the following representations of the subtransversality constant (23) are true:

str[A,B](x̄)= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

sup
a′∈A,b′∈B, u∈X
(a′,b′,u)=(a,b,x)

(
f(a,b,x)−f(a′,b′,u)

)
+

‖(a′,b′,u)−(a,b,x)‖ρ

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖
sup

a′∈A, b′∈B, u∈X
(a′,b′,u)=(a,b,x)

(
f(a,b,x)−f(a′,b′,u)

)
+

‖(a′,b′,u)−(a,b,x)‖ρ

, (39)

with the convention that the infimum over the empty set equals 1.

Proof Let R, R1 and R2 denote the right-hand side of (28), and the first and the second
expressions in (39), respectively. Comparing the sets of restrictions on the choice of a, b

and x under the inf in these expressions, it is easy to observe that R ≤ R1 ≤ R2. Next we
show that both inequalities hold as equalities.

R = R1. Let a ∈ A, b ∈ B, x ∈ X, max{‖x − a‖ , ‖x − b‖} > 0, and ρ ∈]0, 1/2[. If
b ∈ A, i.e., b ∈ A ∩ B, then f (b, b, b) = 0 and

‖(b, b, b)−(a, b, x)‖ρ = max {‖b−x‖ , ρ ‖b−a‖}≤max {‖b−x‖ , ρ(‖b−x‖+‖a−x‖)}
≤ max {1, 2ρ} max {‖b−x‖ , ‖a−x‖} = max {‖b−x‖ , ‖a−x‖} .

Similarly, if a ∈ B, i.e., a ∈ A ∩ B, then f (a, a, a) = 0 and

‖(a, a, a) − (a, b, x)‖ρ ≤ max {‖b − x‖ , ‖a − x‖} .

Thus, in both cases,

sup
u∈X, a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

f (a, b, x) − f (a′, b′, u)

‖(a′, b′, u) − (a, b, x)‖ρ

≥ 1. (40)

Since str[A, B](x̄) ≤ 1, all points a and b with either a ∈ A ∩ B or b ∈ A ∩ B can be
excluded when computing str[A, B](x̄) using (28). This proves R = R1.

R1 = R2. Let a ∈ A, b ∈ B, x ∈ X and ρ > 0. If ‖x − a‖ < ‖x − b‖, then f (a, b, x) =
‖x − b‖. Taking ut := x − t (x − b) for t > 0, we have f (a, b, ut ) = (1 − t) ‖x − b‖ for
all sufficiently small t > 0, and ‖(a, b, ut ) − (a, b, x)‖ρ = ‖ut − x‖ = t ‖x − b‖. Hence,

f (a, b, x) − f (a, b, ut )

‖(a, b, ut ) − (a, b, x)‖ρ

= 1. (41)

Similarly, if ‖x − b‖ < ‖x − a‖, then we can take ut := x − t (x − a) to arrive at the same
equality (41) for all sufficiently small t > 0. Thus, in both cases, inequality (40) holds, and
points with ‖x − a‖ = ‖x − b‖ can be excluded when computing str[A, B](x̄) using the
first representation in (39).

Remark 5 The expression after sup in the right-hand sides of (28) and (39) can be greater
than 1 (see (30) when ρ < 1). Nevertheless, str[A, B](x̄) computed in accordance with (28)
or (39) (under the conventions employed in Propositions 7 and 8) is always less than or
equal to 1.
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Now we define a ‘localized’ subtransversality constant:

str1[A,B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

lim sup
a′→a, b′→b, u→x

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

(
f(a, b, x)−f (a′, b′, u)

)
+

‖(a′, b′, u)−(a, b, x)‖ρ

,

(42)

with the convention that the infimum over the empty set equals 1. It corresponds to the first
expression in (39) with sup replaced by lim sup. Observe that

lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

(
f (a, b, x) − f (a′, b′, u)

)
+

‖(a′, b′, u) − (a, b, x)‖ρ

.

in the above definition is the ρ-slope [36] (i.e., the slope [2, 14, 20, 26] with respect to
the distance in X3 corresponding to the norm defined by (26)) at (x, (a, b)) of the function
(u, (a′, b′)) �→ f (a′, b′, u).

Proposition 9 Suppose X is a normed linear space, A, B ⊂ X are closed, and x̄ ∈ A ∩ B.
Then the following representation of the subtransversality constant (42) is true:

str1[A, B](x̄)= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖
lim sup

a′→a, b′→b, u→x
a′∈A, b′∈B

(a′,b′,u)=(a,b,x)

(
f (a, b, x)−f (a′, b′, u)

)
+

‖(a′, b′, u)−(a, b, x)‖ρ

,

(43)

with the convention that the infimum over the empty set equals 1.

Proof The proof follows that of the last equality in (39). Comparing (42) and (43), we
immediately get the inequality str1[A,B](x̄) ≤ R, where R denotes the right-hand side of
(43). If a ∈ A, b ∈ B, x ∈ X, and ‖x − a‖ < ‖x − b‖, we take ut := x − t (x −b) for t > 0
and arrive at the equality (41) valid for all sufficiently small t > 0. This yields an analogue
of the inequality (40) with sup replaced by lim sup as in (42). The same argument applies
in the case ‖x − b‖ < ‖x − a‖. As a result, the points with ‖x − b‖ = ‖x − a‖ can be
excluded when computing str1[A,B](x̄) using definition (42). This proves representation
(43).

Remark 6 One can define an analogue of str1[A,B](x̄) using the limiting procedure in the
representation of str[A, B](x̄) in (28). Unlike the ‘nonlocal’ case in Propositions 7 and 8,
such an analogue does not coincide in general with str1[A,B](x̄) defined by (42), although
it can still be used for formulating sufficient conditions of subtransversality. In this paper,
we are not going to use quantities defined with the help of the limiting procedure in the
representation of str[A,B](x̄) in (28).

The next proposition clarifies the relationship between str1[A, B](x̄) and str[A, B](x̄).

Proposition 10 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. Then

(i) str1[A, B](x̄) ≤ str[A, B](x̄);
(ii) if A and B are convex, then (i) holds as equality.
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Proof (i) is an immediate consequence of the definition (42) and the first representation
in (39) (or Proposition (9) and the second representation in (39)).

(ii) Let A and B be convex. Then function f defined by (24) is convex. For any a ∈ A\B,
b ∈ B \A, x ∈ X, we have f (a, b, x) > 0. Hence, for any ρ > 0, and any a′ ∈ A, b′ ∈
B and u ∈ X with f (a′, b′, u) < f (a, b, x) (such a triple exists, e.g., f (x̄, x̄, x̄) = 0),
we have

f (a, b, x) − f (a′, b′, u)

‖(a, b, x) − (a′, b′, u)‖ρ

≤ lim
t↓0

f (a, b, x) − f ((a, b, x) + t ((a′, b′, u) − (a, b, x))

‖(a, b, x) − ((a, b, x) + t ((a′, b′, u) − (a, b, x))‖ρ

≤ lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

(
f (a, b, x) − f (a′, b′, u)

)
+

‖(a′, b′, u) − (a, b, x)‖ρ

.

In view of the first representation in (39) and definition (42), we have str[A, B](x̄) ≤
str1[A, B](x̄). In view of (i), this proves (ii).

Remark 7 Proposition 10 is valid in arbitrary (not necessarily complete) normed linear
spaces if str[A,B](x̄) is defined by one of the expressions in (39) (see Remark 4.2).

To proceed to dual characterizations of subtransversality, we need a representation of the
subdifferential of the convex function f given by (24). It is computed in the next lemma
which improves (in the current setting) [40, Lemma 4.2].

Lemma 3 Let X be a normed space and f be given by (24). Then

∂f(x1, x2,x)=
{
(x∗

1 , x∗
2 ,−x∗

1 −x∗
2 )∈(X∗)3 |(x∗

1 , x∗
2 )∈ ∂g(x1−x, x2−x)

}
, x1, x2, x ∈ X,

(44)

where g is the maximum norm on X2:

g(x1, x2) := max{‖x1‖ , ‖x2‖}, x1, x2 ∈ X. (45)

If x1 = x or x2 = x, then (x∗
1 , x∗

2 , x∗) ∈ ∂f (x1, x2, x) if and only if the following conditions
are satisfied:

x∗
1 + x∗

2 + x∗ = 0, ‖x∗
1‖ + ‖x∗

2‖ = 1,

〈x∗
1 , x1 − x〉 = ‖x∗

1‖ ‖x1 − x‖ , 〈x∗
2 , x2 − x〉 = ‖x∗

2‖ ‖x2 − x‖ ,

if ‖x1 − x‖ < ‖x2 − x‖ , then x∗
1 = 0,

if ‖x2 − x‖ < ‖x1 − x‖ , then x∗
2 = 0.

Proof The convex function f given by (24) is a composition of the continuous linear
mapping

(x1, x2, x) �→ (x1 − x, x2 − x) (46)

from X3 to X2 and the norm (45) on X2. The mapping adjoint to (46) is from (X∗)2 to
(X∗)3 and is of the form

(x∗
1 , x∗

2 ) �→ (x∗
1 , x∗

2 ,−x∗
1 − x∗

2 ).
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Representation (44) is a consequence of the standard convex chain rule (cf., e.g., [29, The-
orem 4.2.2]).

The dual norm corresponding to (45) is of the form (x∗
1 , x∗

2 ) �→ ‖x∗
1‖+‖x∗

2‖. Hence (cf.,
e.g., [29, Subection 0.3.2], [54, Corollary 2.4.16]), if (x1, x2) = 0, then

∂g(x1, x2)=
{
(x∗

1 , x∗
2 ) ∈ (X∗)2 | ‖x∗

1‖+‖x∗
2‖=1,

〈
(x∗

1 , x∗
2 ), (x1, x2)

〉=max{‖x1‖ , ‖x2‖}
}
.

(47)

If ‖x∗
1‖ + ‖x∗

2‖ = 1, then the last condition in (47) is equivalent to the following group of
conditions:

〈x∗
1 , x1〉 = ‖x∗

1‖ ‖x1‖ , 〈x∗
2 , x2〉 = ‖x∗

2‖ ‖x2‖ ,

if ‖x1‖ < ‖x2‖ , then x∗
1 = 0,

if ‖x2‖ < ‖x1‖ , then x∗
2 = 0.

The second part of the proposition follows now from the representation (44).

The subtransversality constant (42) admits dual estimates which are crucial for the con-
clusions of Theorems 2 and 3. In what follows we will use notations itrw[A, B](x̄) and
itrc[A, B](x̄) for the supremum of all α in Theorems 2 and 3, respectively, with the conven-
tion that the supremum over the empty set equals 0. It is easy to check the following explicit
representations of the two constants:

itrw[A, B](x̄) := lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖
lim inf

x′→x, x′
1→a, x′

2→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1‖=‖x′−x′

2‖
d(x∗

1 ,NA(a′))<ρ, d(x∗
2 ,NB(b′))<ρ, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x′−x′

1〉=‖x∗
1 ‖ ‖x′−x′

1‖, 〈x∗
2 ,x′−x′

2〉=‖x∗
2 ‖ ‖x′−x′

2‖

‖x∗
1 + x∗

2‖, (48)

itrc[A, B](x̄) := lim inf
x→x̄, a→x̄, b→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
d(x∗

1 ,NA(a))→0, d(x∗
2 ,NB(b))→0, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x−a〉=‖x∗

1 ‖ ‖x−a‖, 〈x∗
2 ,x−b〉=‖x∗

2 ‖ ‖x−b‖

‖x∗
1 + x∗

2‖, (49)

with the convention that the infimum over the empty set equals 1.

Proposition 11 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩ B.

(i) If either X is Asplund or A and B are convex, then the following dual representations
of the subtransversality constant (42) are true:

str1[A, B](x̄) = lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

(x∗
1 ,x∗

2 ,x∗)∈∂f̂ (a,b,x), ‖x∗
1‖+‖x∗

2‖<ρ

∥∥x∗∥∥

= lim
ρ↓0

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄), ‖x−a‖=‖x−b‖
(x∗

1 ,x∗
2 ,x∗)∈∂f̂ (a,b,x), ‖x∗

1‖+‖x∗
2‖<ρ

∥∥x∗∥∥ , (50)

where the function f̂ : X3 → R∞ is defined by (25) and the convention that the
infimum over the empty set equals 1 is in force. Moreover,

(ii) if X is Asplund, then str1[A, B](x̄) ≥ itrw[A, B](x̄);
(iii) if A and B are convex, then str1[A, B](x̄) = itrc[A, B](x̄).
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Proof (i) Let R1 and R2 denote the first and second expressions in (50), respectively. We
first show that str1[A, B](x̄) ≤ R1. Let ρ > 0, a ∈ A, b ∈ B, x ∈ X, (x∗

1 , x∗
2 , x∗) ∈

∂f̂ (a, b, x) and
∥∥x∗

1

∥∥ + ∥∥x∗
2

∥∥ < ρ2. Then, using the definition (3) of the Fréchet
subdifferential and representation (27) of the dual norm, we obtain

lim sup
a′→a,b′→b,u→x

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

f (a, b, x) − f (a′, b′, u)

‖(a′, b′, u) − (a, b, x)‖ρ

≤ ∥∥(x∗
1 , x∗

2 , x∗)
∥∥

ρ

− lim inf
a′→a,b′→b,u→x

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

f(a′,b′,u)−f(a,b,x)−〈
(x∗

1,x
∗
2,x

∗),(a′,b′,u)−(a,b,x)
〉

‖(a′, b′, u)−(a, b, x)‖ρ

≤ ∥∥(x∗
1 , x∗

2 , x∗)
∥∥

ρ
= ‖x∗‖ + ρ−1(‖x∗

1‖ + ‖x∗
2‖) ≤ ∥∥x∗∥∥ + ρ.

If ρ < 1, then ρ2 < ρ and it follows from the above estimate that

inf
a∈(A\B)∩Bρ(x̄), b∈(B\A)∩Bρ(x̄)

x∈Bρ(x̄)

lim sup
u→x, a′→a, b′→b

a′∈A, b′∈B
(a′,b′,u)=(a,b,x)

f (a, b, x) − f (a′, b′, u)

‖(a′, b′, u) − (a, b, x)‖ρ

≤ inf
a∈(A\B)∩B

ρ2 (x̄), b∈(B\A)∩B
ρ2 (x̄)

x∈B
ρ2 (x̄)

(x∗
1 ,x∗

2 ,x∗)∈∂f̂ (a,b,x), ‖x∗
1‖+‖x∗

2‖<ρ2

∥∥x∗∥∥ + ρ.

Passing to the limits as ρ ↓ 0 and using definition (42), we arrive at the inequality
str1[A, B](x̄) ≤ R1.

Next we prove the opposite inequality. Let str1[A, B](x̄) < β < α < ∞, ρ > 0
and ρ′ := min{1, α−1}ρ. By (43), one can find points â ∈ (A \ B) ∩ Bρ′(x̄), b̂ ∈
(B \ A) ∩ Bρ′(x̄) and x̂ ∈ Bρ′(x̄), such that ‖x̂ − â‖ = ‖x̂ − b̂‖ and

f(â, b̂, x̂) − f(a′,b′,u)≤β‖(a′,b′,u) − (â, b̂, x̂)‖ρ′ for all (a′,b′,u)∈A × B × X

near (â, b̂, x̂).

In other words, (â, b̂, x̂) is a local minimizer of the function

(a′, b′, u) �→ f̂ (a′, b′, u) + β‖(a′, b′, u) − (â, b̂, x̂)‖ρ′ ,

and consequently, its Fréchet subdifferential at (â, b̂, x̂) contains zero. We consider
two cases.

1) X is an Asplund space. Take an ε > 0 such that

ε<min{d(â,B), d(b̂,A)}, ∥∥x̂−x̄
∥∥ + ε<ρ′,

∥∥â−x̄
∥∥ + ε<ρ′,

‖b̂ − x̄‖ + ε<ρ′, β + ε<α.

Applying the fuzzy sum rule for Fréchet subdifferentials (Lemma 2(i)) and the
representation (27) of the dual norm, we can find points a ∈ A ∩ Bε(â), b ∈
B ∩ Bε(b̂), x ∈ Bε(x̂) and (x∗

1 , x∗
2 , x∗) ∈ ∂f̂ (a, b, x) such that∥∥(x∗

1 , x∗
2 , x∗)

∥∥
ρ′ = ‖x∗‖ + (‖x∗

1‖ + ‖x∗
2‖)/ρ′ < β + ε.

It follows that a ∈ (A \ B) ∩ Bρ(x̄), b ∈ (B \ A) ∩ Bρ(x̄) and x ∈ Bρ(x̄).
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2) A and B are convex. Then function f̂ is convex. Applying the convex sum rule
(Lemma 2(ii)), we can find a subgradient (x∗

1 , x∗
2 , x∗) ∈ ∂f̂ (â, b̂, x̂) such that∥∥(x∗

1 , x∗
2 , x∗)

∥∥
ρ′ = ‖x∗‖ + (‖x∗

1‖ + ‖x∗
2‖)/ρ′ ≤ β.

Thus, in both cases we have

‖x∗‖ + (‖x∗
1‖ + ‖x∗

2‖)/ρ′ < α,

and consequently, ∥∥x∗∥∥ < α,
∥∥x∗

1

∥∥ < ρ and
∥∥x∗

2

∥∥ < ρ.

It follows that R1 ≤ α. By letting α → str1[A, B](x̄), we obtain the claimed
inequality.

Observe that, unlike the first case, in the second one we did not produce a new
triple (a, b, x) to replace (â, b̂, x̂), so the equality ‖x̂ − â‖ = ‖x̂ − b̂‖ is preserved.
Hence, in the convex case both representations in (50) have been proved.

Now we proceed to the proof of the ‘moreover’ part of the proposition. The
remaining equality R1 = R2 in the Asplund space case will be established in the
process.

(ii) Suppose X is Asplund. Let str1[A, B](x̄) < α < 1 and ρ > 0. By the first represen-
tation in (50) proved above, there are a ∈ (A \ B) ∩ Bρ(x̄), b ∈ (B \ A) ∩ Bρ(x̄),
x ∈ Bρ(x̄) and (w∗

1, w∗
2, w∗) ∈ ∂f̂ (a, b, x), where f̂ is given by (25), such that

‖w∗
1‖ + ‖w∗

2‖ < ρ and ‖w∗‖ < α. (51)

Denote δ0 := max{‖x − a‖ , ‖x − b‖} > 0, δ1 := ∣∣ ‖x − a‖ − ‖x − b‖ ∣∣ and choose
an ε > 0 such that

ε < min

{
d(a, B), d(b,A),

δ0

2

}
, (52)

if δ1 > 0 then ε <
δ1

4
, (53)

‖x − x̄‖ + ε < ρ, δ0 + 2ε < ρ, (54)

‖w∗
1‖ + ε < ρ, ‖w∗

2‖ + ε < ρ, ‖w∗‖ + ε < α. (55)

Observe that function f̂ is the sum of two functions: the Lipschitz continuous
function f defined by (24) and the lower semicontinuous indicator function iA×B

(considered as a function on X3). We can apply the fuzzy sum rule for Fréchet sub-
differentials (Lemma 2(i)): there exist points x′

1, x
′
2, x

′ ∈ X, a′ ∈ A, b′ ∈ B,
x∗

1 , x∗
2 , x∗, u∗

1, u
∗
2 ∈ X∗ such that

‖x′ − x‖ < ε, ‖x′
1 − a‖ < ε, ‖x′

2 − b‖ < ε, ‖a′ − a‖ < ε, ‖b′ − b‖ < ε,

(56)(−x∗
1 ,−x∗

2 , x∗) ∈ ∂f (x′
1, x

′
2, x

′), u∗
1 ∈ NA(a′), u∗

2 ∈ NB(b′), (57)

‖(w∗
1, w∗

2, w∗) − (−x∗
1 ,−x∗

2 , x∗) − (u∗
1, u

∗
2, 0)‖ < ε.

The last inequality is equivalent to the following three:

‖w∗ − x∗‖ < ε, ‖w∗
1 + x∗

1 − u∗
1‖ < ε, ‖w∗

2 + x∗
2 − u∗

2‖ < ε. (58)

Thanks to (52), (56) and (54), we have a′ /∈ B, b′ /∈ A and the following estimates:

max{∥∥x′
1−x′∥∥ ,

∥∥x′
2−x′∥∥} ≥ max{‖x−a‖ − ‖x′

1 − a‖ − ‖x′ − x‖,
‖x−b‖−‖x′

2−b‖−‖x′−x‖}>δ0−2ε>0. (59)
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If δ1 > 0 then, in view of (53) and (56),∣∣∥∥x′
1−x′∥∥−∥∥x′

2−x′∥∥∣∣ ≥ ∣∣‖a−x‖−‖b−x‖∣∣−∥∥x′
1−a

∥∥−∥∥x′
2−b

∥∥−2
∥∥x′−x

∥∥
> δ1−4ε>0. (60)

Thanks to (59) and Lemma 3, we have

x∗ = x∗
1 + x∗

2 , (61)

‖x∗
1‖ + ‖x∗

2‖ = 1, (62)

〈x∗
1 , x′ − x′

1〉 = ‖x∗
1‖ ‖x′ − x′

1‖, 〈x∗
2 , x′ − x′

2〉 = ‖x∗
2‖ ‖x′ − x′

2‖, (63)

if
∥∥x′

1 − x′∥∥ <
∥∥x′

2 − x′∥∥ , then x∗
1 = 0, (64)

if
∥∥x′

2 − x′∥∥ <
∥∥x′

1 − x′∥∥ , then x∗
2 = 0. (65)

It follows from (61), the first inequality in (58) and the second inequality in (55) that

‖x∗
1 + x∗

2‖ = ‖x∗‖ ≤ ‖w∗‖ + ε < α. (66)

Then ‖x∗
2‖ − ‖x∗

1‖ < α, ‖x∗
1‖ − ‖x∗

2‖ < α and, in view of (62),

‖x∗
1‖ >

1 − α

2
> 0 and ‖x∗

2‖ >
1 − α

2
> 0. (67)

Hence, by (64), (65), and (60), we have
∥∥x′

1 − x′∥∥ = ∥∥x′
2 − x′∥∥ and δ1 = 0, i.e.,

δ0 = ‖x − a‖ = ‖x − b‖. This proves the second equality in (50). Inequalities (58)
and (55) yield the following estimates:

d(x∗
1 , NA(a′)) ≤ ‖x∗

1 − u∗
1‖ < ‖w∗

1‖ + ε < ρ,

d(x∗
2 , NB(b′)) ≤ ‖x∗

2 − u∗
2‖ < ‖w∗

2‖ + ε < ρ.

In view of (62), (63) and (66), after taking limits as ε ↓ 0, we conclude that

lim inf
x′→x, x′

1→a, x′
2→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1‖=‖x′−x′

2‖
d(x∗

1 ,NA(a′))<ρ, d(x∗
2 ,NB(b′))<ρ, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x′−x′

1〉=‖x∗
1 ‖ ‖x′−x′

1‖, 〈x∗
2 ,x′−x′

2〉=‖x∗
2 ‖ ‖x′−x′

2‖

‖x∗
1 + x∗

2‖ ≤ α.

By letting ρ ↓ 0 and α ↓ str1[A, B](x̄), we obtain the claimed inequality.
(iii) Let A and B be convex. We first prove the inequality itrc[A, B](x̄) ≤ str1[A, B](x̄)

by modifying slightly (simplifying!) the above proof of (i) replacing the fuzzy sum
rule for Fréchet subdifferentials by the exact convex sum rule.

Let str1[A, B](x̄) < α < 1 and ρ > 0. By the second representation in (50)
proved above, there are a ∈ (A \ B) ∩ Bρ(x̄), b ∈ (B \ A) ∩ Bρ(x̄), x ∈ Bρ(x̄) with
‖x − a‖ = ‖x − b‖, and (w∗

1, w∗
2, w∗) ∈ ∂f̂ (a, b, x), where f̂ is given by (25), sat-

isfying conditions (51). Observe that function f̂ is the sum of two convex functions:
the Lipschitz continuous function f defined by (24) and the indicator function iA×B

(considered as a function on X3). We can apply the convex sum rule (Lemma 2(ii)):
there exist a subgradient (−x∗

1 ,−x∗
2 , x∗) ∈ ∂f (a, b, x) and normals u∗

1 ∈ NA(a) and
u∗

2 ∈ NB(b) such that

w∗ = x∗, w∗
1 = u∗

1 − x∗
1 , w∗

2 = u∗
2 − x∗

2 . (68)

Thanks to Lemma 3, conditions (61) and (62) hold true as well as the following two:

〈x∗
1 , x − a〉 = ‖x∗

1‖ ‖x − a‖, 〈x∗
2 , x − b〉 = ‖x∗

2‖ ‖x − b‖. (69)
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It follows from (61), (51) and the first equality in (68) that

‖x∗
1 + x∗

2‖ = ‖x∗‖ = ‖w∗‖ < α. (70)

Then ‖x∗
2‖−‖x∗

1‖ < α, ‖x∗
1‖−‖x∗

2‖ < α and, in view of (62), inequalities (67) hold
true. Conditions (51) and (68) yield the following estimates:

d(x∗
1 , NA(a)) ≤ ‖x∗

1 − u∗
1‖ = ‖w∗

1‖ < ρ,

d(x∗
2 , NB(b)) ≤ ‖x∗

2 − u∗
2‖ = ‖w∗

2‖ < ρ.

Hence, itrc[A, B](x̄) ≤ α. By letting α ↓ str1[A, B](x̄), we obtain the claimed
inequality.

Let itrc[A, B](x̄) < α < 1 and ρ ∈]0, 1[. By definition (49), there are a ∈ (A \
B)∩Bρ(x̄), b ∈ (B \A)∩Bρ(x̄), x ∈ Bρ(x̄) with ‖x − a‖ = ‖x − b‖, x∗

1 , x∗
2 ∈ X∗,

and normals u∗
1 ∈ NA(a), u∗

2 ∈ NB(b) satisfying (69) and

‖x∗
1‖+‖x∗

2‖=1, ‖x∗
1 +x∗

2‖<α, ‖x∗
1 −u∗

1‖<
ρ

2
, ‖x∗

2 −u∗
2‖<

ρ

2
. (71)

Thus, (u∗
1, u

∗
2) ∈ ∂iA×B(a, b) and (−x∗

1 ,−x∗
2 , x∗) ∈ ∂f (a, b, x), where x∗ :=

x∗
1 + x∗

2 . By the convex sum rule (Lemma 2(ii)), (w∗
1, w∗

2, x∗) ∈ ∂f̂ (a, b, x), where
w∗

1 = u∗
1 − x∗

1 , w∗
2 = u∗

2 − x∗
2 . Then ‖w∗

1‖ + ‖w∗
2‖ < ρ and, in view of the second

representation in (50), str1[A, B](x̄) ≤ α. By letting α ↓ itrc[A, B](x̄), we obtain the
inequality str1[A, B](x̄) ≤ itrc[A, B](x̄).

Remark 8 The inequality ‘≤’ in both representations in (50) as well as the opposite inequalities
in the convex case are valid in arbitrary (not necessarily complete) normed linear spaces.

Proof of Theorems 2 and 3 The theorems follow now from Propositions 10 and 11 and
definitions (48) and (49).

Proposition 12 Suppose X is a Banach space, A,B ⊂ X are closed and convex, and
x̄ ∈ A ∩ B. Then str[A,B](x̄) = str1[A, B](x̄) = itrc[A, B](x̄).

Proof The assertion is a consequence of Proposition 10(ii) and Proposition 11(iii).

Remark 9 Using the representations in Propositions 7, 8, 9 and 11, one can formulate several
intermediate sufficient (and in some cases also necessary) conditions of subtransversality.

4 Intrinsic Transversality

The two-limit definition (48) as well as the corresponding dual space characterization of
subtransversality in Theorem 2 look complicated and difficult to verify. The following one-
limit modification of (48) in terms of Fréchet normals can be useful:

itr[A, B](x̄) := lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, x =a, x =b

x∗
1 ∈NA(a)\{0}, x∗

2 ∈NB(b)\{0}, ‖x∗
1‖+‖x∗

2‖=1

‖x−a‖
‖x−b‖ →1,

〈x∗
1 ,x−a〉

‖x∗
1‖‖x−a‖ →1,

〈x∗
2 ,x−b〉

‖x∗
2‖‖x−b‖ →1

‖x∗
1 + x∗

2‖, (72)
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with the convention that the infimum over the empty set equals 1. The relationship between
the constants (48), (49) and (72) is given by the next proposition.

Proposition 13 Suppose X is a Banach space, A,B ⊂ X are closed, and x̄ ∈ A ∩ B.

(i) 0 ≤ itr[A, B](x̄) ≤ itrw[A, B](x̄) ≤ itrc[A, B](x̄) ≤ 1;
(ii) if dim X < ∞, then

itrw[A, B](x̄) = lim inf
a→x̄, b→x̄, x→x̄

a∈A\B, b∈B\A, ‖x−a‖=‖x−b‖
d(x∗

1 ,NA(a))→0, d(x∗
2 ,NB(b))→0, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x−a〉=‖x∗

1 ‖ ‖x−a‖, 〈x∗
2 ,x−b〉=‖x∗

2 ‖ ‖x−b‖

‖x∗
1 + x∗

2‖, (73)

with the convention that the infimum over the empty set equals 1;

(iii) if dim X < ∞, and A and B are convex, then itrw[A, B](x̄) = itrc[A, B](x̄) =
str[A, B](x̄).

Proof (i) All three constants are nonnegative by definition and, thanks to the conventions
made, never greater than 1. Definition (49) corresponds to taking x′ = x, x′

1 = a′ = a

and x′
2 = b′ = b under the lim inf in (48). Hence, itrw[A, B](x̄) ≤ itrc[A, B](x̄).

Next we show that itr[A, B](x̄) ≤ itrw[A, B](x̄). Let itrw[A, B](x̄) < α < 1 and
ρ > 0. Choose an α′ with itrw[A, B](x̄) < α′ < α and a ρ′ > 0 with

ρ′ < min

{
ρ

2
,

1

2
,
α − α′

4
,
ρ(1 − α)

4

}
. (74)

By definition (48), there exist a ∈ (A \ B) ∩ Bρ′(x̄), b ∈ (B \ A) ∩ Bρ′(x̄) and
x ∈ Bρ′(x̄) such that ‖x − a‖ = ‖x − b‖, and

lim inf
x′→x, x′

1→a, x′
2→b, a′→a, b′→b

a′∈A, b′∈B, ‖x′−x′
1‖=‖x′−x′

2‖
d(x∗

1 ,NA(a′))<ρ′, d(x∗
2 ,NB(b′))<ρ′, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x′−x′

1〉=‖x∗
1 ‖ ‖x′−x′

1‖, 〈x∗
2 ,x′−x′

2〉=‖x∗
2 ‖ ‖x′−x′

2‖

‖x∗
1 + x∗

2‖ < α′. (75)

We obviously have a = b, x = a and x = b. Choose an ε > 0 such that

ε<d(a, B), ε<d(b,A), 2ε

(
1+ 4

1−α

(
ρ− 4ρ′

1−α

)−1
)
<‖x−a‖, 4ε

‖x−a‖−2ε
<ρ,

‖x−x̄‖+ε < ρ′, ‖a − x̄‖ + ε < ρ′, ‖b − x̄‖ + ε < ρ′.

By (75), there are points a′ ∈ A ∩ Bε(a), b′ ∈ B ∩ Bε(b), x′
1 ∈ Bε(a), x′

2 ∈ Bε(b),
x′ ∈ Bε(x), and x∗

1 , x∗
2 ∈ X∗ satisfying conditions (19), (20),

d(x∗
1 , NA(a′)) < ρ′, d(x∗

2 , NB(b′)) < ρ′ and ‖x∗
1 + x∗

2‖ < α′. (76)
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Then

d(a′, B) ≥ d(a, B) − ∥∥a′ − a
∥∥ > d(a, B) − ε > 0, (77)

d(b′, A) ≥ d(b,A) − ∥∥b′ − b
∥∥ > d(b,A) − ε > 0, (78)∥∥x′ − a′∥∥ ≤ ‖x − a‖ + ∥∥x′ − x

∥∥ + ∥∥a′ − a
∥∥ < ‖x − a‖ + 2ε,∥∥x′ − b′∥∥ ≤ ‖x − b‖ + ∥∥x ′ − x

∥∥ + ∥∥b′ − b
∥∥ < ‖x − b‖ + 2ε,

∥∥x ′−a′∥∥≥‖x−a‖−∥∥x′−x
∥∥−∥∥a′−a

∥∥>‖x−a‖−2ε>
8ε

1−α

(
ρ− 4ρ′

1−α

)−1

>0,

(79)

∥∥x′−b′∥∥≥‖x−b‖−∥∥x′−x
∥∥−∥∥b′−b

∥∥>‖x−b‖−2ε>
8ε

1−α

(
ρ− 4ρ′

1−α

)−1

>0,

(80)∥∥x′ − a′∥∥
‖x′ − b′‖ <

‖x − a‖ + 2ε

‖x − b‖ − 2ε
= 1 + 4ε

‖x − a‖ − 2ε
< 1 + ρ, (81)∥∥x ′ − a′∥∥

‖x′ − b′‖ >
‖x − a‖ − 2ε

‖x − b‖ + 2ε
= 1 − 4ε

‖x − a‖ + 2ε
< 1 − ρ, (82)∥∥x ′ − x̄

∥∥ ≤ ‖x − x̄‖ + ∥∥x′ − x
∥∥ < ‖x − x̄‖ + ε < ρ ′ < ρ, (83)∥∥a′ − x̄

∥∥ ≤ ‖a − x̄‖ + ∥∥a′ − a
∥∥ < ‖a − x̄‖ + ε < ρ′ < ρ, (84)∥∥b′ − x̄

∥∥ ≤ ‖b − x̄‖ + ∥∥b′ − b
∥∥ < ‖b − x̄‖ + ε < ρ′ < ρ, (85)∣∣‖x∗

1‖ − ‖x∗
2‖∣∣ ≤ ‖x∗

1 − (−x∗
2 )‖ < α′.

The last estimate together with the equality ‖x∗
1‖ + ‖x∗

2‖ = 1 yield

‖x∗
1‖ <

1 + α′

2
, ‖x∗

2‖ <
1 + α′

2
, (86)

‖x∗
1‖ >

1 − α′

2
> 0, ‖x∗

2‖ >
1 − α′

2
> 0. (87)

By (76), there are Fréchet normals v∗
1 ∈ NA(a′) and v∗

2 ∈ NB(b′) such that

∥∥x∗
1 − v∗

1

∥∥ < ρ′,
∥∥x∗

2 − v∗
2

∥∥ < ρ′. (88)

Hence, by (88), (74), (76), (87), and (86),

∥∥v∗
1

∥∥ + ∥∥v∗
2

∥∥ ≥ ∥∥x∗
1

∥∥ + ∥∥x∗
2

∥∥ − ∥∥x∗
1 − v∗

1

∥∥ − ∥∥x∗
2 − v∗

2

∥∥ > 1 − 2ρ′ > 0, (89)∥∥v∗
1 + v∗

2

∥∥ ≤ ∥∥x∗
1 + x∗

2

∥∥ + ∥∥x∗
1 − v∗

1

∥∥ + ∥∥x∗
2 − v∗

2

∥∥ < α′ + 2ρ′, (90)∥∥v∗
1

∥∥>
∥∥x∗

1

∥∥−ρ′ > 1−α′

2
−ρ′ > 1−α

2
,

∥∥v∗
2

∥∥>
∥∥x∗

2

∥∥−ρ′ > 1−α′

2
−ρ′ > 1−α

2
,

(91)∥∥v∗
1

∥∥<
∥∥x∗

1

∥∥+ρ′ < 1+α′

2
+ρ′ < 1+α

2
,

∥∥v∗
2

∥∥<
∥∥x∗

2

∥∥+ρ′ < 1+α′

2
+ρ′ < 1+α

2
,

(92)
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and

〈v∗
1 , x′−a′〉≥〈x∗

1 , x′−a′〉−‖x∗
1 −v∗

1‖‖x′−a′‖
≥〈x∗

1 , x′−x′
1〉−‖x∗

1‖‖x′
1−a′‖−‖x∗

1 −v∗
1‖‖x′−a′‖

=‖x∗
1‖‖x′−x′

1‖−‖x∗
1‖‖x′

1−a′‖−‖x∗
1 −v∗

1‖‖x′−a′‖ (by (20))
≥‖v∗

1‖‖x′−x′
1‖−‖x∗

1 −v∗
1‖‖x′−x′

1‖−‖x∗
1‖‖x′

1−a′‖−‖x∗
1 −v∗

1‖‖x′−a′‖
≥‖v∗

1‖(‖x′−a′‖−‖x′
1−a′‖)

−‖x∗
1 −v∗

1‖(‖x′−a′‖+‖x′
1−a′‖)

−‖x∗
1‖‖x′

1−a′‖−‖x∗
1 −v∗

1‖‖x′−a′‖
=(‖v∗

1‖−2‖x∗
1 −v∗

1‖)‖x′−a′‖
−(‖v∗

1‖+‖x∗
1 −v∗

1‖+‖x∗
1‖)‖x′

1−a′‖
>(‖v∗

1‖−2ρ′)‖x′−a′‖−
(

1+α
2 + α−α′

2 + 1+α′
2

)
2ε (by (88), (92), (86), (74))

= (‖v∗
1‖−2ρ′)‖x′−a′‖−(1+α)2ε

>(‖v∗
1‖−2ρ′)‖x′−a′‖−4ε (α < 1)

>
(
‖v∗

1‖−2ρ′− 1−α
2 ρ+2ρ′

)
‖x′−a′‖ (by (79))

=
(
‖v∗

1‖− 1−α
2 ρ

)
‖x′−a′‖

>‖v∗
1‖(1−ρ)‖x′−a′‖. (by (91))

Thus, 〈
v∗

1 , x′ − a′〉
‖v∗

1‖‖x′ − a′‖ > 1 − ρ.

Similarly, 〈
v∗

2 , x′ − b′〉
‖v∗

2‖‖x′ − b′‖ > 1 − ρ.

Set

x̂∗
1 = v∗

1∥∥v∗
1

∥∥ + ∥∥v∗
2

∥∥ , x̂∗
2 = v∗

2∥∥v∗
1

∥∥ + ∥∥v∗
2

∥∥ .

Then x̂∗
1 ∈ NA(a′) \ {0}, x̂∗

2 ∈ NB(b′) \ {0}, ∥∥x̂∗
1

∥∥+∥∥x̂∗
2

∥∥ = 1 and, by (89), (90), (74)
and the inequality 1 + α < 2, we have

∥∥x̂∗
1 + x̂∗

2

∥∥ = ‖v∗
1 + v∗

2‖∥∥v∗
1

∥∥ + ∥∥v∗
2

∥∥ <
α′ + 2ρ′

1 − 2ρ′ <
α′ + α−α′

2

1 − α−α′
2

<
α′ + α−α′

1+α

1 − α−α′
1+α

= α,

〈
x̂∗

1 , x′ − a′〉
‖x̂∗

1‖‖x′ − a′‖ > 1 − ρ,

〈
x̂∗

2 , x′ − b′〉
‖x̂∗

2‖‖x′ − b′‖ > 1 − ρ.

Hence, recalling (77), (78), (79), (80), (83), (84) and (85),

inf
a′∈(A\B)∩Bρ(x̄), b′∈(B\A)∩Bρ(x̄)

x′∈Bρ(x̄), x′ =a′, x′ =b′
x̂∗

1 ∈NA(a′)\{0}, x̂∗
2 ∈NB(b′)\{0}, ‖x̂∗

1‖+‖x̂∗
2‖=1

1−ρ<
‖x′−a′‖
‖x′−b′‖ <1+ρ,

〈x̂∗
1 ,x′−a′〉

‖x̂∗
1 ‖‖x′−a′‖ >1−ρ,

〈x̂∗
2 ,x′−b′〉

‖x̂∗
2 ‖‖x′−b′‖ >1−ρ

‖x̂∗
1 + x̂∗

2‖ < α,

The claimed inequality follows after passing to the limits as ρ ↓ 0 and α ↓
itrw[A,B](x̄).
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(ii) If dim X < ∞, then, thanks to the compactness of the unit sphere, the lim inf in (48)
reduces to

inf
d(x∗

1 ,NA(a))≤ρ, d(x∗
2 ,NB(b))≤ρ, ‖x∗

1 ‖+‖x∗
2 ‖=1

〈x∗
1 ,x−a〉=‖x∗

1 ‖ ‖x−a‖, 〈x∗
2 ,x−b〉=‖x∗

2 ‖ ‖x−b‖

‖x∗
1 + x∗

2‖.

As a result, the right-hand side of (48) reduces to that of (73).
(iii) In the convex case, the limiting and Fréchet normal cones coincide, and so do

the right-hand sides of (73) and (49). The second equality is a consequence of
Proposition 12.

The property introduced in Theorem 2 as a sufficient dual space characterization of sub-
transversality and corresponding to the condition itrw[A, B](x̄) > 0 as well as the stronger
property corresponding to the condition itr[A, B](x̄) > 0 are themselves important transver-
sality properties of the pair {A,B} at x̄. Borrowing partially the terminology from [17], we
are going to call these properties weak intrinsic transversality and intrinsic transversality,
respectively.

Definition 4 Suppose X is a normed linear space, A, B ⊂ X are closed, and x̄ ∈ A ∩ B.
The pair {A,B} is

(i) weakly intrinsically transversal at x̄ if itrw[A, B](x̄) > 0, i.e., there exist numbers
α ∈]0, 1[ and δ > 0 such that, for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄) and
x ∈ Bδ(x̄) with ‖x − a‖ = ‖x − b‖, one has ‖x∗

1 + x∗
2‖ > α for some ε > 0 and all

a′ ∈ A∩Bε(a), b′ ∈ B ∩Bε(b), x′
1 ∈ Bε(a), x′

2 ∈ Bε(b), x′ ∈ Bε(x), and x∗
1 , x∗

2 ∈ X∗
satisfying conditions (19), (20) and (21);

(ii) intrinsically transversal at x̄ if itr[A, B](x̄) > 0, i.e., there exist numbers α ∈]0, 1[
and δ > 0 such that ‖x∗

1 + x∗
2‖ > α for all a ∈ (A \ B) ∩Bδ(x̄), b ∈ (B \ A) ∩Bδ(x̄),

x ∈ Bδ(x̄), x∗
1 ∈ NA(a) \ {0} and x∗

2 ∈ NB(b) \ {0} satisfying

x = a, x = b, 1 − δ <
‖x − a‖
‖x − b‖ < 1 + δ, (93)

∥∥x∗
1

∥∥ + ∥∥x∗
2

∥∥ = 1,

〈
x∗

1 , x − a
〉

‖x∗
1‖‖x − a‖ > 1 − δ,

〈
x∗

2 , x − b
〉

‖x∗
2‖‖x − b‖ > 1 − δ. (94)

Remark 10 The properties introduced in Definition 4 are less restrictive than the dual
criterion of transversality in Theorem 1.

In view of Definition 4, Theorem 2 says that in Asplund spaces weak intrinsic
transversality (and consequently intrinsic transversality) implies subtransversality. Thanks
to Proposition 13(i) and Remark 10, we have the following chain of implications in Asplund
spaces:

transversality =⇒ intrinsic transversality

=⇒ weak intrinsic transversality =⇒ subtransversality.

By Proposition 13(iii), when the space is finite dimensional and the sets are convex, the last
two properties are equivalent.

As a consequence of Proposition 13(i), we obtain the following dual sufficient condition
of subtransversality of a pair of closed sets in an Asplund space. It expands and improves
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[40, Theorem 4.1] as well as a more recent result announced without proof in the Euclidean
space setting in [38, Theorem 4(ii)].

Corollary 2 Suppose X is Asplund, A,B ⊂ X are closed, and x̄ ∈ A ∩ B. Then {A,B}
is subtransversal at x̄ if there exist numbers α ∈]0, 1[ and δ > 0 such that ‖x∗

1 + x∗
2‖ > α

for all a ∈ (A \ B) ∩ Bδ(x̄), b ∈ (B \ A) ∩ Bδ(x̄), x ∈ Bδ(x̄), x∗
1 ∈ NA(a) \ {0} and

x∗
2 ∈ NB(b) \ {0} satisfying (93) and (94).
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