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Abstract In this paper we carry out an asymptotic analysis of the proximal-gradient dynamical
system {

ẋ(t) + x(t) = proxγf

[
x(t) − γ∇�(x(t)) − ax(t) − by(t)

]
,

ẏ(t) + ax(t) + by(t) = 0

where f is a proper, convex and lower semicontinuous function, � a possibly nonconvex
smooth function and γ, a and b are positive real numbers. We show that the generated
trajectories approach the set of critical points of f + �, here understood as zeros of its
limiting subdifferential, under the premise that a regularization of this sum function satisfies
the Kurdyka-Łojasiewicz property. We also establish convergence rates for the trajectories,
formulated in terms of the Łojasiewicz exponent of the considered regularization function.
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radu.bot@univie.ac.at
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1 Introduction

We begin with a short literature review that serves as motivation for the research conducted
in this paper.

The Newton-like dynamical system

ẍ(t) + λẋ(t) + γ∇2�(x(t))(ẋ(t)) + ∇�(x(t)) = 0 (1)

has been investigated by Alvarez, Attouch, Bolte and Redont in [3] in the context of
asymptotically approaching the minimizers of the optimization problem

inf
x∈Rn

�(x), (2)

for � a smooth C2 function and λ and γ positive numbers. System (1) is a second order
system both in time, due to the presence of the acceleration term ẍ(t), which is associated
to inertial effects, and in space, due to presence of the Hessian ∇2�(x(t)). The trajectories
generated by (1) have been proved to converge to a critical point �, when this function is
analytic, and to a minimizer of �, when it is convex. Dynamical systems of type (1) are of
large interest, as they occur in different applications in fields like optimization, mechanics,
control theory and PDE theory (see [3, 4, 9, 14, 16, 17]).

Let us underline that (1) arises as a natural combination of the continuous Newton method [4]

∇2�(x(t))(ẋ(t)) + ∇�(x(t)) = 0 (3)

with the heavy ball with friction method [6, 13]

ẍ(t) + λẋ(t) + ∇�(x(t)) = 0. (4)

While in (3) the Hessian may be degenerated and the trajectories in (4) may have some
oscillations with negative effects on numerical computations, their combination (1) over-
come in general these drawbacks. An illustrative example is described in detail in [3] in
the context of the minimization of the Rosenbrock function � : R

2 → R, �(x1, x2) =
100(x2 − x2

1 )2 + (1 − x1)
2, where the positive impact of the Hessian driven damping on the

trajectories is emphasized. For more insights into the theoretical and numerical advantages
of second order dynamical systems of type (1) we refer the reader to [3].

The authors of [3] have also pointed out the surprising fact that the dynamical system (1)
can be viewed as a first order dynamical system with no occurrence of the Hessian. More
precisely, it has been shown that (1) is equivalent to

{
ẋ(t) + γ∇�(x(t)) + ax(t) + by(t) = 0,

ẏ(t) + ax(t) + by(t) = 0
(5)

where a := λ− 1
γ

and b := 1
γ

. The obvious advantage of (5) comes from the fact that for its
asymptotic analysis no second order information on the smooth function � is needed. We
refer to [3, 16] for applications and other arguments in favor of this reformulation of (1).

On the other hand, in order to asymptotically approach the minimizers of constrained
optimization problems of the form

inf
x∈C

�(x), (6)

where C ⊆ R
n is a nonempty, closed, convex set, the following projection-gradient

dynamical system has been considered and investigated by Antipin [6] and Bolte [21]

ẋ(t) + x(t) = projC
(
x(t) − γ∇�(x(t))

)
. (7)
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Here, projC : Rn → C denotes the projection operator onto the set C.
These being given, the following combination of the systems (5) and (7)

{
ẋ(t) + x(t) = projC

[
x(t) − γ∇�(x(t)) − ax(t) − by(t)

]
ẏ(t) + ax(t) + by(t) = 0

(8)

has been proposed in [3], for a, b and γ positive numbers, in order to asymptotically
approach the minimizers of the constrained optimization problem (6) in the hypothesis that
the objective function � is convex.

Proximal-gradient dynamical systems, which are generalizations of (7), have been
recently considered by Abbas and Attouch in [1, Section 5.2] in the full convex setting.
Implicit dynamical systems related to both optimization problems and monotone inclusions
have been considered in the literature also by Attouch and Svaiter in [18], Attouch, Abbas
and Svaiter in [2] and Attouch, Alvarez and Svaiter in [7]. These investigations have been
continued and extended in [19, 29–32].

In the last years the interest in approaching the solvability of nonconvex optimization
problems from continuous and discrete perspective is continuously increasing (see [8, 10,
11, 25, 26, 28, 33, 35, 36, 38, 43]). Following this tendency, we investigate in this paper the
optimization problem

inf
x∈Rn

(
f (x) + �(x)

)
, (9)

where f is a (possibly nonsmooth) proper, convex and lower semicontinuous function and
� a (possibly nonconvex) smooth function. More precisely, in this paper we investigate the
convergence of the trajectories generated by the proximal-gradient dynamical system

{
ẋ(t) + x(t) = proxγf

[
x(t) − γ∇�(x(t)) − ax(t) − by(t)

]
,

ẏ(t) + ax(t) + by(t) = 0
(10)

where a, b and γ are positive real numbers and

proxγf : Rn → R
n, proxγf (y) = argmin

u∈Rn

{
f (u) + 1

2γ
‖u − y‖2

}
,

denotes the proximal point operator of γf , to a critical point of f +�, here understood as a
zero of its limiting subdifferential. To this end we assume that a regularization of the objec-
tive function satisfies the Kurdyka-Łojasiewicz property; in other words, it is a KL function.
The convergence analysis relies on methods and concepts of real algebraic geometry intro-
duced by Łojasiewicz [41] and Kurdyka [39] and later developed in the nonsmooth setting
by Attouch, Bolte and Svaiter [11] and Bolte, Sabach and Teboulle [26].

In the convergence analyis we use three main ingredients: (1) we prove a Lyapunov-
type property, expressed as a sufficient decrease of a regularization of the objective function
along the trajectories, (2) we show the existence of a subgradient lower bound for the tra-
jectories and, finally, (3) we derive convergence by making use of the Kurdyka-Łojasiewicz
property of the objective function (for a similar approach in the continuous case see [3]
and in the discrete setting see [11, 26]). Furthermore, we obtain convergence rates for the
trajectories expressed in terms of the Łojasiewicz exponent of the regularized objective
function.
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2 Preliminaries

We recall some notions and results which are needed throughout the paper. We consider
on R

n the Euclidean scalar product and the corresponding norm denoted by 〈·, ·〉 and ‖ · ‖,
respectively.

The domain of the function f : Rn → R ∪ {+∞} is defined by dom f = {x ∈ R
n :

f (x) < +∞}. We say that f is proper, if dom f �= ∅. For the following generalized subdif-
ferential notions and their basic properties we refer to [27, 42, 44]. Let f : Rn → R∪{+∞}
be a proper and lower semicontinuous function. The Fréchet (viscosity) subdifferential of f

at x ∈ dom f is the set

∂̂f (x) =
{
v ∈ R

n : lim inf
y→x

f (y) − f (x) − 〈v, y − x〉
‖y − x‖ ≥ 0

}
.

For x /∈ dom f , one sets ∂̂f (x) := ∅. The limiting (Mordukhovich) subdifferential is defined
at x ∈ dom f by

∂f (x) = {v ∈ R
n : ∃xk → x, f (xk) → f (x) and ∃vk ∈ ∂̂f (xk), vk → v as k → +∞},

while for x /∈ dom f , one takes ∂f (x) := ∅. Therefore ∂̂f (x) ⊆ ∂f (x) for each x ∈ R
n.

When f is convex, these subdifferential notions coincide with the convex subdifferential,
thus ∂̂f (x) = ∂f (x) = {v ∈ R

n : f (y) ≥ f (x) + 〈v, y − x〉 ∀y ∈ R
n} for all x ∈ R

n.
The following closedness criterion of the graph of the limiting subdifferential will be

used in the convergence analysis: if (xk)k∈N and (vk)k∈N are sequences in R
n such that

vk ∈ ∂f (xk) for all k ∈ N, (xk, vk) → (x, v) and f (xk) → f (x) as k → +∞, then
v ∈ ∂f (x).

The Fermat rule reads in this nonsmooth setting as follows: if x ∈ R
n is a local minimizer

of f , then 0 ∈ ∂f (x). We denote by

crit(f ) = {x ∈ R
n : 0 ∈ ∂f (x)}

the set of (limiting)-critical points of f .
When f is continuously differentiable around x ∈ R

n we have ∂f (x) = {∇f (x)}. We
will also make use of the following subdifferential sum rule: if f : Rn → R ∪ {+∞} is
proper and lower semicontinuous and h : Rn → R is a continuously differentiable function,
then ∂(f + h)(x) = ∂f (x) + ∇h(x) for all x ∈ R

n.
A crucial role in the asymptotic analysis of the dynamical system (10) is played by the

class of functions satisfying the Kurdyka-Łojasiewicz property. For η ∈ (0, +∞], we denote
by �η the class of concave and continuous functions ϕ : [0, η) → [0, +∞) such that
ϕ(0) = 0, ϕ is continuously differentiable on (0, η), continuous at 0 and ϕ′(s) > 0 for all
s ∈ (0, η). In the following definition (see [10, 26]) we use also the distance function to a
set, defined for A ⊆ R

n as dist(x, A) = infy∈A ‖x − y‖ for all x ∈ R
n.

Definition 1 (Kurdyka-Łojasiewicz property) Let f : Rn → R ∪ {+∞} be a proper and
lower semicontinuous function. We say that f satisfies the Kurdyka-Łojasiewicz (KL) prop-
erty at x ∈ dom ∂f = {x ∈ R

n : ∂f (x) �= ∅}, if there exist η ∈ (0, +∞], a neighborhood U

of x and a function ϕ ∈ �η such that for all x in the intersection

U ∩ {x ∈ R
n : f (x) < f (x) < f (x) + η}

the following inequality holds

ϕ′(f (x) − f (x)) dist(0, ∂f (x)) ≥ 1.
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If f satisfies the KL property at each point in dom ∂f , then f is called KL function.

The origins of this notion go back to the pioneering work of Łojasiewicz [41], where it
is proved that for a real-analytic function f : Rn → R and a critical point x ∈ R

n (that
is ∇f (x) = 0), there exists θ ∈ [1/2, 1) such that the function |f − f (x)|θ‖∇f ‖−1 is
bounded around x. This corresponds to the situation when ϕ(s) = Cs1−θ , where C > 0. The
result of Łojasiewicz allows the interpretation of the KL property as a re-parametrization
of the function values in order to avoid flatness around the critical points. Kurdyka [39]
extended this property to differentiable functions definable in o-minimal structures. Further
extensions to the nonsmooth setting can be found in [10, 22–24].

One of the remarkable properties of the KL functions is their ubiquity in applications (see
[26]). To the class of KL functions belong semi-algebraic, real sub-analytic, semiconvex,
uniformly convex and convex functions satisfying a growth condition. We refer the reader to
[8, 10, 11, 22–24, 26] and the references therein for more on KL functions and illustrating
examples.

In the analysis below the following uniform KL property given in [26, Lemma 6] will be
used.

Lemma 1 Let 
 ⊆ R
n be a compact set and let f : Rn → R ∪ {+∞} be a proper and

lower semicontinuous function. Assume that f is constant on 
 and that it satisfies the KL
property at each point of 
. Then there exist ε, η > 0 and ϕ ∈ �η such that for all x ∈ 


and all x in the intersection

{x ∈ R
n : dist(x, 
) < ε} ∩ {x ∈ R

n : f (x) < f (x) < f (x) + η} (11)

the inequality

ϕ′(f (x) − f (x)) dist(0, ∂f (x)) ≥ 1. (12)

holds.

In the following we recall the notion of locally absolutely continuous function and state
two of its basic properties.

Definition 2 (see, for instance, [2, 18]) A function x : [0, +∞) → R
n is said to be locally

absolutely continuous, if it absolutely continuous on every interval [0, T ], where T > 0.

Remark 2 (a) An absolutely continuous function is differentiable almost everywhere, its
derivative coincides with its distributional derivative almost everywhere and one can
recover the function from its derivative ẋ = y by integration.

(b) If x : [0, T ] → R
n is absolutely continuous for T > 0 and B : R

n → R
n is

L-Lipschitz continuous for L ≥ 0, then the function z = B ◦ x is absolutely continu-
ous, too. Moreover, z is differentiable almost everywhere on [0, T ] and the inequality
‖ż(t)‖ ≤ L‖ẋ(t)‖ holds for almost every t ∈ [0, T ].

The following two results, which can be interpreted as continuous versions of the quasi-
Fejér monotonicity for sequences, will play an important role in the asymptotic analysis of
the trajectories of the dynamical system investigated in this paper. For their proofs we refer
the reader to [2, Lemma 5.1] and [2, Lemma 5.2], respectively.
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Lemma 3 Suppose that F : [0, +∞) → R is locally absolutely continuous and bounded
from below and that there exists G ∈ L1([0, +∞)) such that for almost every t ∈ [0, +∞)

d

dt
F (t) ≤ G(t).

Then there exists limt→∞ F(t) ∈ R.

Lemma 4 If 1 ≤ p < ∞, 1 ≤ r ≤ ∞, F : [0, +∞) → [0, +∞) is locally absolutely
continuous, F ∈ Lp([0, +∞)), G : [0, +∞) → R, G ∈ Lr([0, +∞)) and for almost every
t ∈ [0, +∞)

d

dt
F (t) ≤ G(t),

then limt→+∞ F(t) = 0.

Further we recall a differentiability result that involves the composition of convex func-
tions with absolutely continuous trajectories, which is due to Brézis ([34, Lemme 3.3, p.
73]; see also [12, Lemma 3.2]).

Lemma 5 Let f : Rn → R∪{+∞} be a proper, convex and lower semicontinuous function.
Let x ∈ L2([0, T ],Rn) be absolutely continuous such that ẋ ∈ L2([0, T ],Rn) and x(t) ∈
dom f for almost every t ∈ [0, T ]. Assume that there exists ξ ∈ L2([0, T ],Rn) such that
ξ(t) ∈ ∂f (x(t)) for almost every t ∈ [0, T ]. Then the function t �→ f (x(t)) is absolutely
continuous and for almost every t such that x(t) ∈ dom ∂f we have

d

dt
f (x(t)) = 〈ẋ(t), h〉 ∀h ∈ ∂f (x(t)).

We close this sesction with the following characterization of the proximal point operator
of a proper, convex and lower semicontinuous function f : Rn → R ∪ {+∞}: for every
γ > 0 it holds (see for example [20])

p = proxγf (x) if and only ifx ∈ p + γ ∂f (p), (13)

where ∂f denotes the convex subdifferential of f .

3 Asymptotic Analysis

The dynamical system we investigate in this paper reads⎧⎨
⎩

ẋ(t) + x(t) = proxγf

[
x(t) − γ∇�(x(t)) − ax(t) − by(t)

]
ẏ(t) + ax(t) + by(t) = 0
x(0) = x0, y(0) = y0,

(14)

where x0, y0 ∈ R
n and a, b and γ are positive real numbers. We assume that f : Rn →

R ∪ {+∞} is proper, convex and lower semicontinuous, while � : Rn → R is a Fréchet
differentiable with L-Lipschitz continuous gradient, for L > 0, that is ‖∇�(x)−∇�(y)‖ ≤
L‖x − y‖ for all x, y ∈ R

n.
The existence and uniqueness of the trajectories generated by (14) can be proved by using

the estimates from the proof of Lemma 7 below and by following a classical argument, as
in [3, Theorem 7.1].
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For the asymptotic analysis, we impose on the parameters involved the following condition:

{
2γL(|1 − a| + γL) + |1 − a| + γL + bγL < 1
ab + a

2 + 1
2a|1 − a| + 1

2γ aL + 1
2γ abL < b

(15)

and notice that the first inequality is fulfilled for an arbitrary b > 0, if a ∈ (0, 2) and γ > 0
are chosen small enough, while the second one holds for a > 0 small enough.

Remark 6 The reader may notice from the analysis we will perform in the next subsection,
in particular from the proof of Lemma 7(a), that the conditions in (15) play a crucial role
when deriving a decrease property of the objective function, a result which is fundamental
for the asymptotic analysis of the dynamical system (14).

By time discretization, the dynamical system (14) gives rise to the following iterative
scheme

∀n ≥ 0 :
{

xn+1 := (1 − λn)xn + λn proxγf

[
xn − γ∇�(xn) − axn − byn

]
yn+1 := (1 − bhn)yn − ahnxn,

(16)

where x0, y0 ∈ R
n and (λn)n∈N, (hn)n∈N are positive real sequences. The results we will

obtain in this paper in relation to the asymptotic analysis of (14) justify and motivate the
study of the iterative scheme (16) when addressing the solving of the minimization prob-
lem (9). Numerical experiments on concrete problems should give more insights into the
proper choice of the parameters involved in (15). We refer the reader also to [15], where
the authors investigated in the convex setting the convergence properties of a numerical
scheme obtained by time discretization of the dynamical system with two potentials and
Hessian-driven damping proposed in [14].

3.1 Convergence of the trajectories

We begin with the proof of a decrease property for a regularization of the objective function
along the trajectories.

Lemma 7 Suppose that f + � is bounded from below and the parameters a, b, γ and L

satisfy (15). For x0, y0 ∈ R
n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the

unique global solution of (14). Then the following statements are true:

(a) d
dt

[
(f + �)(ẋ(t) + x(t)) + 1

2γ
‖ẋ(t)‖2 + 1

2γ a
‖ax(t) + by(t)‖2

]
≤ −M1‖ẋ(t)‖2 −

M2‖ẏ(t)‖2 for almost every t ≥ 0, where

M1 := 1

2γ
− L(|1 − a| + γL) − 1

2γ
|1 − a| − 1

2
L − 1

2
bL > 0

and

M2 := b

γ a
− b

γ
− 1

2γ
− 1

2γ
|1 − a| − 1

2
L − 1

2
bL > 0;

(b) ẋ, ẏ, ax + by ∈ L2([0, +∞);Rn) and limt→+∞ ẋ(t) = limt→+∞ ẏ(t) = limt→+∞
(ax(t) + by(t)) = 0;

(c) ∃ limt→+∞(f + �)
(
ẋ(t) + x(t)

) ∈ R.

Proof Define z : [0, +∞) → R
n by

z(t) = proxγf

[
x(t) − γ∇�(x(t)) − ax(t) − by(t)

]
. (17)
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Since proxγf is nonexpansive (that is 1-Lipschitz continuous), in view of Remark 2(b), z is
locally absolutely continuous. From the Lipschitz continuity of ∇� we obtain

‖z(t) − z(s)‖ ≤ (|1 − a| + γL)‖x(t) − x(s)‖ + b‖y(t) − y(s)‖ ∀t, s ≥ 0,

hence, for almost every t ≥ 0,

‖ż(t)‖ ≤ (|1 − a| + γL)‖ẋ(t)‖ + b‖ẏ(t)‖. (18)

Since

ẋ(t) + x(t) = z(t) ∀t ≥ 0, (19)

it follows that ẋ is locally absolutely continuous, hence ẍ exists almost everywhere on
[0, +∞) and for almost every t ≥ 0 it holds

‖ẍ(t)‖ ≤ (1 + |1 − a| + γL)‖ẋ(t)‖ + b‖ẏ(t)‖. (20)

We fix an arbitrary T > 0. From the characterization (13) of the proximal point operator
we have

− 1

γ
ẋ(t) − a

γ
x(t) − b

γ
y(t) − ∇�(x(t)) ∈ ∂f (ẋ(t) + x(t)) ∀t ∈ [0, +∞). (21)

Due to the continuity properties of the trajectories and their derivatives on [0, T ], (20) and
the Lipschitz continuity of ∇�, we have

x, ẋ, ẏ, ẍ,∇�(x) ∈ L2([0, T ];Rn).

Applying Lemma 5 we obtain that the function t �→ f
(
ẋ(t)+x(t)

)
is absolutely continuous

and

d

dt
f

(
ẋ(t) + x(t)

) =
〈
− 1

γ
ẋ(t) − a

γ
x(t) − b

γ
y(t) − ∇�(x(t)), ẍ(t) + ẋ(t)

〉

for almost every t ∈ [0, T ]. Moreover, it holds

d

dt
�

(
ẋ(t) + x(t)

) = 〈∇�
(
ẋ(t) + x(t)

)
, ẍ(t) + ẋ(t)

〉

for almost every t ∈ [0, T ]. Summing up the last two equalities and by taking into account
(14), we obtain

d

dt
(f + �)

(
ẋ(t) + x(t)

) = − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2 − 1

γ
〈ax(t) + by(t), ẍ(t) + ẋ(t)〉

+ 〈∇�
(
ẋ(t) + x(t)

) − ∇�(x(t)), ẍ(t) + ẋ(t)
〉

= − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2 + 1

γ
〈ẏ(t), ẍ(t) + ẋ(t)〉 (22)

+ 〈∇�
(
ẋ(t) + x(t)

) − ∇�(x(t)), ẍ(t) + ẋ(t)
〉

for almost every t ∈ [0, T ]. Further, due to (14) we have

d

dt

(
1

2
‖ax(t) + by(t)‖2

)
= 〈ax(t) + by(t), aẋ(t) + bẏ(t)〉
= −a〈ẋ(t), ẏ(t)〉 − b‖ẏ(t)‖2.
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Substituting the term 〈ẋ(t), ẏ(t)〉 from the last relation into (22) we get

d

dt
(f + �)

(
ẋ(t) + x(t)

) = − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2

− 1

γ a

d

dt

(
1

2
‖ax(t) + by(t)‖2

)
− b

γ a
‖ẏ(t)‖2

+ 1

γ
〈ẏ(t), ẍ(t)〉 + 〈∇�

(
ẋ(t) + x(t)

) − ∇�(x(t)), ẍ(t) + ẋ(t)
〉

≤ − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ
‖ẋ(t)‖2 − b

γ a
‖ẏ(t)‖2

− 1

γ a

d

dt

(
1

2
‖ax(t) + by(t)‖2

)
+ 1

γ
(1 + |1 − a| + γL)‖ẋ(t)‖ · ‖ẏ(t)‖

+ b

γ
‖ẏ(t)‖2 + L‖ẋ(t)‖ · ‖ẍ(t) + ẋ(t)‖

for almost every t ∈ [0, T ]. Noticing that

‖ẍ(t) + ẋ(t)‖ = ‖ż(t)‖
and by taking into account (18), we derive

d

dt
(f + �)

(
ẋ(t) + x(t)

) ≤ − 1

2γ

d

dt

(‖ẋ(t)‖2) − 1

γ a

d

dt

(
1

2
‖ax(t) + by(t)‖2

)

−
(

1

γ
− L

(|1 − a| + γL
)) ‖ẋ(t)‖2 −

(
b

γ a
− b

γ

)
‖ẏ(t)‖2

+ 1

γ
(1 + |1 − a| + γL + γ bL) ‖ẋ(t)‖ · ‖ẏ(t)‖

for almost every t ∈ [0, T ]. Finally, by using the inequality ‖ẋ(t)‖ · ‖ẏ(t)‖ ≤ 1
2‖ẋ(t)‖2 +

1
2‖ẏ(t)‖2 and by taking into account the definitions of M1 and M2, we conclude that (a)
holds.

(b) By integration we get

(f + �)
(
ẋ(T ) + x(T )

) + 1

2γ
‖ẋ(T )‖2 + 1

2γ a
‖ax(T ) + by(T )‖2 + M1

∫ T

0
‖ẋ(t)‖2dt

+M2

∫ T

0
‖ẏ(t)‖2dt ≤ (f + �)

(
ẋ(0) + x0

) + 1

2γ
‖ẋ(0)‖2 + 1

2γ a
‖ax0 + by0‖2. (23)

Since f + � is bounded from below and by taking into account that T > 0 has been
arbitrarily chosen, we obtain

ẋ, ẏ ∈ L2([0, +∞);Rn). (24)

Due to (20), this further implies

ẍ ∈ L2([0, +∞);Rn). (25)

Furthermore, for almost every t ∈ [0, +∞) we have

d

dt

(‖ẋ(t)‖2) = 2〈ẋ(t), ẍ(t)〉 ≤ ‖ẋ(t)‖2 + ‖ẍ(t)‖2.
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By applying Lemma 4, it follows that limt→+∞ ẋ(t) = 0. Moreover, from (14) we get that
ÿ exists and ÿ ∈ L2([0, +∞);Rn) due to (24). The same arguments are used in order to
conclude limt→+∞ ẏ(t) = 0.

(c) From (a) we get

d

dt

[
(f + �)(ẋ(t) + x(t)) + 1

2γ
‖ẋ(t)‖2 + 1

2γ a
‖ax(t) + by(t)‖2

]
≤ 0

for almost every t ≥ 0. From Lemma 3 it follows that

lim
t→+∞

[
(f + �)(ẋ(t) + x(t)) + 1

2γ
‖ẋ(t)‖2 + 1

2γ a
‖ax(t) + by(t)‖2

]

exists and it is a real number, hence from

lim
t→+∞ ẋ(t) = lim

t→+∞ ẏ(t) = lim
t→+∞(−ax(t) − by(t)) = 0

the conclusion follows.

We define the limit set of x as

ω(x) = {x ∈ R
n : ∃tk → +∞ such that x(tk) → x ask → +∞}.

Lemma 8 Suppose that f + � is bounded from below and the parameters a, b, γ and L

satisfy (15). For x0, y0 ∈ R
n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the

unique global solution of (14). Then

ω(x) ⊆ crit(f + �).

Proof Let x ∈ ω(x) and tk → +∞ be such that x(tk) → x as k → +∞. From (21) we
have

− 1

γ
ẋ(tk) − a

γ
x(tk) − b

γ
y(tk) − ∇�(x(tk)) + ∇�

(
ẋ(tk) + x(tk)

)

∈ ∂f
(
ẋ(tk) + x(tk)

) + ∇�
(
ẋ(tk) + x(tk)

) = ∂(f + �)
(
ẋ(tk) + x(tk)

) ∀k ∈ N. (26)

Lemma 7(b), (14) and the Lipschitz continuity of ∇� ensure that

− 1

γ
ẋ(tk) − a

γ
x(tk) − b

γ
y(tk) − ∇�(x(tk)) + ∇�

(
ẋ(tk) + x(tk)

) → 0 as k → +∞ (27)

and

ẋ(tk) + x(tk) → x ask → +∞. (28)

We claim that

lim
k→+∞(f + �)

(
ẋ(tk) + x(tk)

) = (f + �)(x). (29)

Indeed, from (28) and the lower semicontinuity of f we get

lim inf
k→+∞ f

(
ẋ(tk) + x(tk)

) ≥ f (x). (30)
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Further, since

ẋ(tk) + x(tk) = argmin
u∈Rn

[
f (u) + 1

2γ

∥∥u − (
x(tk) − γ∇�(x(tk)) − ax(tk) − by(tk)

)∥∥2
]

= argmin
u∈Rn

[
f (u) + 1

2γ
‖u − (

x(tk) − ax(tk) − by(tk)
)‖2 + 〈u − (

x(tk) − ax(tk) − by(tk)
)
,∇�(x(tk))〉

]
,

we have the inequality

f (ẋ(tk) + x(tk)) + 1

2γ
‖ẋ(tk) − ax(tk) − by(tk)‖2 + 〈ẋ(tk) − ax(tk) − by(tk),∇�(x(tk))〉

≤ f (x) + 1

2γ
‖x − (

x(tk) − ax(tk) − by(tk)
)‖2 + 〈x − (

x(tk) − ax(tk) − by(tk)
)
,∇�(x(tk))〉 ∀k ∈ N.

Taking in the above inequality the limit as k → +∞, we derive by using again Lemma 7(b)
that

lim sup
k→+∞

f
(
ẋ(tk) + x(tk)

) ≤ f (x),

which combined with (30) implies

lim
k→+∞ f

(
ẋ(tk) + x(tk)

) = f (x).

By using (28) and the continuity of � we conclude that (29) is true.
Altogether, from (26), (27), (28), (29) and the closedness criteria of the limiting

subdifferential we obtain 0 ∈ ∂(f + �)(x) and the proof is complete.

Lemma 9 Suppose that f + � is bounded from below and the parameters a, b, γ and L

satisfy (15). For x0, y0 ∈ R
n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the

unique global solution of (14). Consider the function

H : Rn×R
n×R

n → R∪{+∞}, H(u, v,w) = (f +�)(u)+ 1

2γ
‖u−v‖2+ 1

2γ a
‖av+bw‖2.

Then the following statements are true:

(H1) for almost every t ∈ [0, +∞) it holds

d

dt
H

(
ẋ(t) + x(t), x(t), y(t)

) ≤ −M1‖ẋ(t)‖2 − M2‖ẏ(t)‖2 ≤ 0

and
∃ lim

t→+∞ H
(
ẋ(t) + x(t), x(t), y(t)

) ∈ R;
(H2) when ζ : [0, +∞) → R

n × R
n × R

n is defined by

ζ(t) :=
(

−∇�(x(t)) + ∇�
(
ẋ(t) + x(t)

) + 1

γ
ẏ(t),− 1

γ
ẋ(t) − 1

γ
ẏ(t),− b

γ a
ẏ(t)

)
,

then for every t ∈ [0, +∞) it holds

ζ(t) ∈ ∂H
(
ẋ(t) + x(t), x(t), y(t)

)
and

‖ζ(t)‖ ≤
(

2

γ
+ b

γ a

)
‖ẏ(t)‖ +

(
L + 1

γ

)
‖ẋ(t)‖;
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(H3) for x ∈ ω(x) and tk → +∞ such that x(tk) → x as k → +∞, it holds

H
(
ẋ(tk) + x(tk), x(tk), y(tk)

) → (f + �)(x) = H
(
x, x,−a

b
x
)

as k → +∞.

Proof (H1) follows from Lemma 7. The first statement in (H2) is a consequence of (21),
the equation ẏ(t) + ax(t) + by(t) = 0 and the fact that

∂H(u, v, w) =
(

∂(f + �)(u) + 1

γ
(u − v)

)
×

{
1

γ
(v − u) + 1

γ
(av + bw)

}
×

{
b

γ a
(av + bw)

}

(31)

for all (u, v, w) ∈ R
n × R

n × R
n. The second statement in (H2) is a consequence of the

Lipschitz continuity of ∇�. Finally, (H3) has been shown as intermediate step in the proof
of Lemma 8.

Lemma 10 Suppose that f + � is bounded from below and the parameters a, b, γ and
L satisfy (15). For x0, y0 ∈ R

n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the
unique global solution of (14). Consider the function

H : Rn×R
n×R

n → R∪{+∞}, H(u, v,w) = (f +�)(u)+ 1

2γ
‖u−v‖2+ 1

2γ a
‖av+bw‖2.

Suppose that x is bounded. Then the following statements are true:

(a) ω(ẋ + x, x, y) ⊆ crit(H) = {(u, u,− a
b
u
) ∈ R

n × R
n × R

n : u ∈ crit(f + �)};
(b) limt→+∞ dist

((
ẋ(t) + x(t), x(t), y(t)

)
, ω

(
ẋ + x, x, y

)) = 0;
(c) ω

(
ẋ + x, x, y

)
is nonempty, compact and connected;

(d) H is finite and constant on ω
(
ẋ + x, x, y

)
.

Proof (a), (b) and (d) are direct consequences of Lemma 7, Lemma 8 and Lemma 9.
Finally, (c) is a classical result from [37]. We also refer the reader to the proof of Theorem

4.1 in [3], where it is shown that the properties of ω(x) of being nonempty, compact and
connected are generic for bounded trajectories fulfilling limt→+∞ ẋ(t) = 0.

Remark 11 Suppose that a, b, γ and L > 0 fulfill the inequality (15) and f +� is coercive,
in other words,

lim‖u‖→+∞(f + �)(u) = +∞.

For x0, y0 ∈ R
n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the unique global

solution of (14). Then f + � is bounded from below and x is bounded.
Indeed, since f + � is a proper, lower semicontinuous and coercive function, it follows

that infu∈Rn [f (u) + �(u)] is finite and the infimum is attained. Hence f + � is bounded
from below. On the other hand, from (23) it follows

(f +�)
(
ẋ(T )+ x(T )

) ≤ (f +�)
(
ẋ(0)+ x0

)+ 1

2γ
‖ẋ(0)‖2 + 1

2γ a
‖ax0 + by0‖2 ∀T ≥ 0.

Since f + � is coercive, the lower level sets of f + � are bounded, hence the above
inequality yields that ẋ + x is bounded, which combined with limt→+∞ ẋ(t) = 0 delivers
the boundedness of x. Notice that in this case y is bounded, too, due to Lemma 7(b) and the
equation ẏ(t) + ax(t) + by(t) = 0.
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Now we are in the position to present the first main result of the paper, which concerns
the convergence of the trajectories generated by (14).

Theorem 12 Suppose that f + � is bounded from below and the parameters a, b, γ and
L satisfy (15). For x0, y0 ∈ R

n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the
unique global solution of (14). Consider the function

H : Rn×R
n×R

n → R∪{+∞}, H(u, v,w) = (f +�)(u)+ 1

2γ
‖u−v‖2+ 1

2γ a
‖av+bw‖2.

Suppose that H is a KL function and x is bounded. Then the following statements are true:

(a) ẋ, ẏ, ax + by ∈ L1([0, +∞);Rn) and limt→+∞ ẋ(t) = limt→+∞ ẏ(t) =
limt→+∞(ax(t) + by(t)) = 0;

(b) there exists x ∈ crit(f +�) such that limt→+∞ x(t) = x and limt→+∞ y(t) = − a
b
x.

Proof According to Lemma 10, we can choose an element x ∈ crit(f + �) such that(
x, x, − a

b
x
) ∈ ω(ẋ + x, x, y). According to Lemma 9, it follows that

lim
t→+∞ H

(
ẋ(t) + x(t), x(t), y(t)

) = H
(
x, x,−a

b
x
)

.

We consider the following two cases.
I. There exists t ≥ 0 such that

H
(
ẋ(t) + x(t), x(t), y(t)

) = H
(
x, x, −a

b
x
)

.

Since from Lemma 9(H1) we have

d

dt
H

(
ẋ(t) + x(t), x(t), y(t)

) ≤ 0 ∀t ∈ [0, +∞),

we obtain for every t ≥ t that

H
(
ẋ(t) + x(t), x(t), y(t)

) ≤ H
(
ẋ(t) + x(t), x(t), y(t)

) = H
(
x, x,−a

b
x
)

.

Thus H
(
ẋ(t) + x(t), x(t), y(t)

) = H
(
x, x,− a

b
x
)

for every t ≥ t . According to Lemma
9(H1), it follows that ẋ(t) = ẏ(t) = 0 for almost every t ∈ [t, +∞), hence x and y are
constant on [t,+∞) and the conclusion follows.

II. For every t ≥ 0 it holds H
(
ẋ(t) + x(t), x(t), y(t)

)
> H

(
x, x, − a

b
x
)
. Take 
 :=

ω(ẋ + x, x, y).
By using Lemma 10(c) and (d) and the fact that H is a KL function, by Lemma 1, there

exist positive numbers ε and η and a concave function ϕ ∈ �η such that for all

(u, v,w) ∈ {(u, v, w) ∈ R
n × R

n × R
n : dist((u, v, w),
) < ε}

∩
{
(u, v,w) ∈ R

n × R
n × R

n : H
(
x, x, −a

b
x
)

< H(u, v, w) < H
(
x, x, −a

b
x
)

+ η
}

,

(32)

one has

ϕ′ (H(u, v, w) − H
(
x, x,−a

b
x
))

dist
(
(0, 0, 0), ∂H(u, v, w)

)
≥ 1. (33)
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Let t1 ≥ 0 be such that H
(
ẋ(t) + x(t), x(t), y(t)

)
< H

(
x, x,− a

b
x
) + η for all t ≥ t1.

Since limt→+∞ dist
((

ẋ(t) + x(t), x(t), y(t)
)
, 


)
= 0, there exists t2 ≥ 0 such that for all

t ≥ t2 the inequality dist
((

ẋ(t) + x(t), x(t), y(t)
)
, 


)
< ε holds. Hence for all t ≥ T :=

max{t1, t2},
(
ẋ(t) + x(t), x(t), y(t)

)
belongs to the intersection in (32). Thus, according to

(33), for every t ≥ T we have

ϕ′(H
(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
))

dist
(
(0, 0, 0), ∂H

(
ẋ(t)+x(t), x(t), y(t)

)) ≥ 1.

(34)

By applying Lemma 9(H2) we obtain for almost every t ∈ [T , +∞)(
C1‖ẋ(t)‖ + C2‖ẏ(t)‖

)
ϕ′ (H

(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x, −a

b
x
))

≥ 1, (35)

where

C1 := L + 1

γ
and C2 := 2

γ
+ b

γ a
. (36)

From here, by using Lemma 9(H1), that ϕ′ > 0 and

d

dt
ϕ

(
H

(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
))

=

ϕ′ (H
(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
)) d

dt
H

(
ẋ(t) + x(t), x(t), y(t)

)
,

we deduce that for almost every t ∈ [T , +∞) it holds

d

dt
ϕ

(
H

(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
))

≤ −M1‖ẋ(t)‖2 + M2‖ẏ(t)‖2

C1‖ẋ(t)‖ + C2‖ẏ(t)‖ .

(37)
Let be α > 0 (which does not depend on t) such that

− M1‖ẋ(t)‖2 + M2‖ẏ(t)‖2

C1‖ẋ(t)‖ + C2‖ẏ(t)‖ ≤ −α‖ẋ(t)‖ − α‖ẏ(t)‖ ∀t ≥ 0. (38)

From (37) we derive the inequality

d

dt
ϕ

(
H

(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
))

≤ −α‖ẋ(t)‖ − α‖ẏ(t)‖, (39)

which holds for almost every t ≥ T . Since ϕ is bounded from below, by integration it
follows ẋ, ẏ ∈ L1([0, +∞);Rn). From here we obtain that limt→+∞ x(t) exists and the
conclusion follows from the results obtained in this section.

Since the class of semi-algebraic functions is closed under addition (see for example
[26]) and (u, v, w) �→ c‖u−v‖2 + c′‖av +bw‖2 is semi-algebraic for c, c′ > 0, we obtain
the following direct consequence of the above theorem.

Corollary 13 Suppose that f + � is bounded from below and the parameters a, b, γ and
L satisfy (15). For x0, y0 ∈ R

n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the
unique global solution of (14). Suppose that x is bounded and f + � is semi-algebraic.
Then the following statements are true:

(a) ẋ, ẏ, ax + by ∈ L1([0, +∞);Rn) and limt→+∞ ẋ(t) = limt→+∞ ẏ(t) =
limt→+∞(ax(t) + by(t)) = 0;
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(b) there exists x ∈ crit(f +�) such that limt→+∞ x(t) = x and limt→+∞ y(t) = − a
b
x.

3.2 Convergence rates

In this subsection we investigate the convergence rates of the trajectories generated by the
dynamical system (14). When solving optimization problems involving KL functions, con-
vergence rates have been proved to depend on the so-called Łojasiewicz exponent (see [8,
22, 36, 41]). The main result of this subsection refers to the KL functions which satisfy Def-
inition 1 for ϕ(s) = Cs1−θ , where C > 0 and θ ∈ (0, 1). We recall the following definition
considered in [8].

Definition 3 Let f : Rn → R ∪ {+∞} be a proper and lower semicontinuous function.
The function f is said to have the Łojasiewicz property, if for every x ∈ crit f there exist
C, ε > 0 and θ ∈ (0, 1) such that

|f (x) − f (x)|θ ≤ C‖x∗‖ for every x fulfilling ‖x − x‖ < ε and every x∗ ∈ ∂f (x). (40)

According to [10, Lemma 2.1 and Remark 3.2(b)], the KL property is automatically
satisfied at any noncritical point, fact which motivates the restriction to critical points in the
above definition. The real number θ in the above definition is called Łojasiewicz exponent
of the function f at the critical point x.

The convergence rates obtained in the following theorem are in the spirit of [22] and [8].

Theorem 14 Suppose that f + � is bounded from below and the parameters a, b, γ and
L satisfy (15). For x0, y0 ∈ R

n, let (x, y) ∈ C1([0, +∞),Rn) × C2([0, +∞),Rn) be the
unique global solution of (14). Consider the function

H : Rn×R
n×R

n → R∪{+∞}, H(u, v,w) = (f +�)(u)+ 1

2γ
‖u−v‖2+ 1

2γ a
‖av+bw‖2.

Suppose that x is bounded and H satisfies Definition 1 for ϕ(s) = Cs1−θ , where C > 0 and
θ ∈ (0, 1). Then there exists x ∈ crit(f + �) such that limt→+∞ x(t) = x and limt→+∞
y(t) = − a

b
x. Let θ be the Łojasiewicz exponent of H at

(
x, x,− a

b
x
) ∈ crit H , according

to the Definition 3. Then there exist a1, b1, a2, b2 > 0 and t0 ≥ 0 such that for every t ≥ t0
the following statements are true:

(a) if θ ∈ (0, 1
2 ), then x and y converge in finite time;

(b) if θ = 1
2 , then ‖x(t) − x‖ + ‖y(t) + a

b
x‖ ≤ a1 exp(−b1t);

(c) if θ ∈ ( 1
2 , 1), then ‖x(t) − x‖ + ‖y(t) + a

b
x‖ ≤ (a2t + b2)

−
(

1−θ
2θ−1

)
.

Proof We define σ : [0, +∞) → [0, +∞) by (see also [22])

σ(t) =
∫ +∞

t

‖ẋ(s)‖ds +
∫ +∞

t

‖ẏ(s)‖ds for all t ≥ 0.

It is immediate that

‖x(t) − x‖ ≤
∫ +∞

t

‖ẋ(s)‖ds ∀t ≥ 0. (41)
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Indeed, this follows by noticing that for T ≥ t

‖x(t) − x‖ = ‖x(T ) − x − ∫ T

t
ẋ(s)ds‖

≤ ‖x(T ) − x‖ + ∫ T

t
‖ẋ(s)‖ds,

and by letting afterwards T → +∞.
Similarly we have ∥∥∥y(t) + a

b
x

∥∥∥ ≤
∫ +∞

t

‖ẏ(s)‖ds ∀t ≥ 0. (42)

From (41) and (42) we derive

‖x(t) − x‖ +
∥∥∥y(t) + a

b
x

∥∥∥ ≤ σ(t) ∀t ≥ 0. (43)

We assume that for every t ≥ 0 we have H (ẋ(t) + x(t), x(t), y(t)) > H
(
x, x, − a

b
x
)
.

As seen in the proof of Theorem 12, in the other case the conclusion follows automatically.
Furthermore, by invoking again the proof of above-named result, there exist t0 ≥ 0 and
α > 0 such that for almost every t ≥ t0 (see (37))

α‖ẋ(t)‖ + α‖ẏ(t)‖ + d

dt

[(
H

(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
)]1−θ ≤ 0 (44)

and ∥∥∥(
ẋ(t) + x(t), x(t), y(t)

) −
(
x, x, −a

b
x
)∥∥∥ < ε.

We derive by integration (for T ≥ t ≥ t0)

α

∫ T

t

‖ẋ(s)‖ds + α

∫ T

t

‖ẏ(s)‖ds +
[(

H
(
ẋ(T ) + x(T ), x(T ), y(T )

) − H
(
x, x,−a

b
x
))]1−θ

≤
[(

H
(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x,−a

b
x
))]1−θ

,

hence

ασ(t) ≤
[(

H
(
ẋ(t) + x(t), x(t), y(t)

) − H
(
x, x, −a

b
x
))]1−θ ∀t ≥ t0. (45)

Since θ is the Łojasiewicz exponent of H at
(
x, x,− a

b
x
)
, we have

∣∣∣H (ẋ(t) + x(t), x(t), y(t)) − H
(
x, x,−a

b
x
)∣∣∣θ ≤ C‖x∗‖ ∀x∗ ∈ ∂H (ẋ(t) + x(t), x(t), y(t))

for every t ≥ t0. According to Lemma 9(H2), we can find x∗(t) ∈
∂H (ẋ(t) + x(t), x(t), y(t)) and a constant N > 0 such that for every t ∈ [0, +∞)

‖x∗(t)‖ ≤ N‖ẋ(t)‖ + N‖ẏ(t)‖. (46)

From the above two inequalities we derive for almost every t ∈ [t0,+∞)∣∣∣H (ẋ(t) + x(t), x(t), y(t)) − H
(
x, x,−a

b
x
)∣∣∣θ ≤ C · N‖ẋ(t)‖ + C · N‖ẏ(t)‖,

which combined with (45) yields

ασ(t) ≤ (
C · N‖ẋ(t)‖ + C · N‖ẏ(t)‖) 1−θ

θ . (47)

Since
σ̇ (t) = −‖ẋ(t)‖ − ‖ẏ(t)‖ (48)
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we conclude that there exists α′ > 0 such that for almost every t ∈ [t0,+∞)

σ̇ (t) ≤ −α′(σ(t)
) θ

1−θ . (49)

If θ = 1
2 , then

σ̇ (t) ≤ −α′σ(t)

for almost every t ∈ [t0,+∞). By multiplying with exp(α′t) and integrating afterwards
from t0 to t , it follows that there exist a1, b1 > 0 such that

σ(t) ≤ a1 exp(−b1t) ∀t ≥ t0

and the conclusion of (b) is immediate from (43).
Assume that 0 < θ < 1

2 . We obtain from (49)

d

dt

(
σ(t)

1−2θ
1−θ

)
≤ −α′ 1 − 2θ

1 − θ

for almost every t ∈ [t0, +∞).
By integration we get

σ(t)
1−2θ
1−θ ≤ −αt + β ∀t ≥ t0,

where α > 0. Thus there exists T ≥ 0 such that

σ(T ) ≤ 0 ∀t ≥ T ,

which implies that x and y are constant on [T , +∞).
Finally, suppose that 1

2 < θ < 1. We obtain from (49)

d

dt

(
σ(t)

1−2θ
1−θ

)
≥ α′ 2θ − 1

1 − θ

for almost every t ∈ [t0, +∞). By integration one derives

σ(t) ≤ (a2t + b2)
−

(
1−θ
2θ−1

)
∀t ≥ t0,

where a2, b2 > 0. Statement (c) follows from (43).

Remark 15 (i) In the light of (38) one can notice that in the above proof α > 0 can be chosen
such that 2α max(C1, C2) ≤ min(M1, M2), where M1,M2 are defined in statement (a) of
Lemma 7 and C1, C2 in (36). Moreover, the parameter N in the above proof can be chosen as
N := max(C1, C2) (see Lemma 9(H2)). In this way, the impact of the parameters involved
on the convergence rates can be stated exactly. More insights into the role played by these
parameters should be gained through numerical experiments on the iterative scheme (16).

(ii) The computation of the Łojasiewicz exponent of H , which appears in the expression
of the convergence rates, is not a trivial task. One exception is the situation when H is semi-
algebraic (which happens for instance when f and � share this property); some progress
into this direction have been recently reported in [40].

(iii) For optimization problems involving KL functions, in particular convergence rates
for the iterates (trajectories) have been achieved; see for instance [8, 22, 36, 41]. In the
recent contribution [25], the authors addressed in the same setting also the convergence of
the objective function values. These investigations can open a new perspective for the study
of the convergence behavior of objective function values in the context of different numer-
ical algorithms and dynamical systems approaching optimization problems with analytic
features.
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32. Boţ, R.I., Csetnek, E.R.: Convergence rates for forward-backward dynamical systems associ-

ated with strongly monotone inclusions, Journal of Mathematical Analysis and Applications,
doi:10.1016/j.jmaa.2016.07.007 (2016)
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