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cally continuous with the perturbed payoff functions. Secondly, examples are illustrated to
show that the set of Pareto-Nash equilibria is neither upper semicontinuous nor lower semi-
continuous. By seeking an upper semicontinuous sub-mapping, it is shown that the set of
Pareto-Nash equilibria is partly upper semicontinuous and almost lower semicontinuous.
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1 Introduction

Multiobjective population games (MPGs) are population games with vector-valued payoffs.
The theory of population games [1] originates from Nash’s “mass-action” interpretation
of equilibrium points in his dissertation [2] and his related literatures [3, 4]. Population
games serve as a general model for studying strategic interactions among large numbers of
agents, hence they are widely applied to modelling many economic, social and technological
environments in which large collections of small agents make strategically interdependent
decisions, such as network congestion, public goods and externalities, cultural integration
and assimilation, markets and bargaining, etc.

Recently, population games and their applications have attracted increasing attention [5–
8]. However, it is worth noting that all the payoffs in the current researches still remain in
the scalar case. In other words, these models of population games were only considered as
single-objective ones. As we know, in real world the criteria for choosing a strategy usually
vary from population to population, even within one population, their criteria are often
more than one, such as individual payoff, social position and life satisfaction, etc. Hence,
a generalization of the scalar case to multiple criteria is of both theoretical and practical
significance for population games.

Weakly Pareto-Nash and Pareto-Nash equilibria, corresponding to weakly efficient and
efficient solutions in vector optimization problems, have been constant topics in multiob-
jective games in recent years. Some scholars explored the existence of weakly Pareto-Nash
and Pareto-Nash equilibria [9–11], others focused on their stability [12–14]. In essence, the
stability is to study the continuity properties of the set of equilibria. This ideas has been
widely used in various fields, such as optimization problems [15–18], linear systems [19],
and Nash equilibrium problems [12–14, 20, 21].

In this paper, we are mainly interested in the continuity properties of the set of weakly
Pareto-Nash equilibria and that of the set of Pareto-Nash equilibria for (MPGs). In partic-
ualr, about the issue of continuity, we focus on upper/lower semicontinuity of the set of
weakly Pareto-Nash equilibria and that of the set of Pareto-Nash equilibria with the pertur-
bation of payoff functions. Firstly, the set of weakly Pareto-Nash equilibria is proven to be
upper semicontinuous further continuous on a subset of the space of continuous payoff func-
tions equipped with uniform converge norm for (MPGs). However, the set of Pareto-Nash
equilibria does not have the same satisfactory continuity properties as that of weakly Pareto-
Nash equilibria for (MPGs). In fact, we illustrate two examples to show that the set-valued
mapping of Pareto-Nash equilibria is neither upper semicontinuous nor lower semicontin-
uous. Therefore, to some extent, the continuity of the set of Pareto-Nash equilibria is to be
discounted.

Inspired by [14, 16], we show that the Pareto-Nash equilibrium mapping is partly upper
semicontinuous although it is not upper semicontinuous by seeking an upper semicontinu-
ous sub-mapping. To achieve this result, the continuity of the set of weighted Nash equilibria
and the relationship between weighted Nash equilibria and Pareto-Nash equilibria play
crucial role.

The outline of the paper is as follows: in Section 2, the concepts of weakly Pareto-
Nash and Pareto-Nash equilibrium are proposed for (MPGs). And some preliminaries on
set-valued mappings are reviewed. Section 3 is devoted to the stability of weakly Pareto-
Nash equilibria and Pareto-Nash equilibria for (MPGs). In Section 4, a concise conclusion
is made for this paper.
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2 Preliminaries

Throughout this paper, N+ denotes the set of all positive integers, R denotes the set of real
numbers. For each k ∈ N+, Rk is a k−dimensional Euclidean space, its nonnegative orthant

R
k+ = {

a = (a1, a2, · · · , ak) ∈ R
k : aj ≥ 0, j = 1, . . . , k

}
,

and the interior of Rk+

intRk+ = {
a = (a1, a2, · · · , ak) ∈ R

k : aj > 0, j = 1, . . . , k
}
,

respectively. And denoted by Tk+ and intTk+ the simplex of Rk+ and its interior

T
k+ =

⎧
⎨

⎩
a = (a1, a2, · · · , ak) ∈ R

k+ :
k∑

j=1

aj = 1

⎫
⎬

⎭
,

intTk+ =
⎧
⎨

⎩
a = (a1, a2, · · · , ak) ∈ intRk+ :

k∑

j=1

aj = 1

⎫
⎬

⎭
,

respectively.
Consider (MPGs), we state it as follows: let P = {1, 2, . . . , P } (P ∈ N+) be a soci-

ety consisting of P populations of agents. In each population p ∈ P , there are a large
but finite number of agents and they are capable of independently choosing pure strate-
gies from a finite set Sp = {1, 2, · · · , np}, where np ∈ N+ means the total number of
the pure strategies in population p ∈ P , and the number np possibly varies from popula-
tion to population. For the convenience of discussion, throughout this paper, we all assume
that the mass of agents in every population is one unit. Thus, for each p ∈ P , denoted
by Xp = {

xp = (x
p

1 , x
p

2 , · · · , x
p
np ) ∈ R

np

+ : ∑np

l=1 x
p
l = 1

}
, the set of population states,

is an np − 1 dimensional simplex, and where the nonnegative scalar x
p
l represents the

share distribution of members playing strategy l ∈ Sp in population p, and the element
xp = (x

p

1 , x
p

2 , · · · , x
p
np ) is the state (vector) of population p. Let m = ∑

p∈P np ∈ N+
be the total number of pure strategies in all populations, and X = ∏

p∈P Xp = {
x =

(x1; x2; · · · ; xP ) ∈ R
m : xp ∈ Xp, p ∈ P

}
denotes the set of social states, in which

x1, x2, · · · , xP are vectors in different spaces and the element x = (x1; x2; · · · ; xP ) ∈ X

describes the all populations’ behavior at once. And we assume that in each population
p ∈ P agents all have kp ∈ N+ objectives whenever they play a strategy. Fp

l : X → R
kp

defines a vector-valued payoff function to a strategy l ∈ Sp , where the element F
p
lj ∈ R

represents the j th objective real-valued payoff to the strategy l ∈ Sp , j = 1, 2, · · · , kp .
Fp = (F

p

1 ;F
p

2 ; · · · ;F
p
np )T : X → R

npkp
describes population p’s payoff functions for all

strategies in Sp . Now let N = ∑
p∈P npkp ∈ N+, the payoff functions F : X → R

N is a
map that assigns each social state a vector of payoffs, one for each criterion corresponding
to each strategy in each population. Since the sets of populations and strategies are generally
taken as fixed, a (MPG) is identified with its payoff functions F in the context.
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The notions of weakly Pareto-Nash and Pareto-Nash equilibrium of (MPGs) are defined
as follows:

Definition 2.1 For a (MPG) F ,

(1) a social state x̄ = (x̄1; x̄2; · · · ; x̄P ) ∈ X is called a weakly Pareto-Nash equilibrium
of F if for each p ∈ P ,

x̄
p
i > 0 ⇒ F

p
i (x̄) − F

p
l (x̄) /∈ −intRkp

+ , ∀i, l ∈ Sp.

(2) a social state x̄ = (x̄1; x̄2; · · · ; x̄P ) ∈ X is called a Pareto-Nash equilibrium of F if
for each p ∈ P ,

x̄
p
i > 0 ⇒ F

p
i (x̄) − F

p
l (x̄) /∈ −R

kp

+ \{0}, ∀i, l ∈ Sp.

Denote the set of weakly Pareto-Nash equilibria and that of Pareto-Nash equilibria by
PEw(F) and PE(F), respectively.

Clearly, PE(F) ⊆ PEw(F). And if kp = 1 for each p ∈ P , a Pareto-Nash equi-
librium and a weakly Pareto-Nash equilibrium reduce to a Nash equilibrium of population
games [1].

Definition 2.2 A social state x̄ = (x̄1; x̄2; · · · ; x̄P ) ∈ X is called a weighted Nash equi-
librium of F with respect to a given weight combination λ = (λ1; λ2; · · · ; λP ) satisfying
λp ∈ T

kp

+ (∀p ∈ P) if for each p ∈ P ,

x̄
p
i > 0 ⇒ F

p
λ,i(x̄) ≥ F

p
λ,l(x̄), ∀i, l ∈ Sp,

where F
p
λ,i(x) = ∑kp

j=1 λ
p
j F

p
ij (x) is the additive weight payoff to a strategy i ∈ Sp . And

denoted byEλ(F ) the set of all weighted Nash equilibria of F with respect to a given weight
combination λ.

Let us recall some necessary definitions and results, which are helpful to main results of
this paper.

Let H be a topological vector space. A subset C of H is called a cone if tc ∈ C for any
c ∈ C and any nonnegative number t . A cone C is closed if it is a closed set. A cone C

is convex if it is a convex set. Further, it is pointed if C ∩ (−C) = {θ}, where θ denotes
the zero element of H . In particular, Rk+ is a closed convex and pointed cone of Rk . The
following two definitions can be found in [22].

Definition 2.3 Let E and H be two topological vector spaces, Y a nonempty convex
subset of E and C a closed, convex and pointed cone of H with intC 	= ∅. Let f : Y → H

be a vector-valued function. f is said to be C−continuous at y0 ∈ Y if, for any open
neighborhood V of zero element θ in H , there exists an open neighborhood U of y0 ∈ Y

such that, for all y ∈ U ,

f (y) ∈ f (y0) + V + C,

and C−continuous on Y if it is C−continuous at any point of Y .

Definition 2.4 Let E and H be two topological vector spaces, Y be a nonempty convex
subset of E and C be a closed, convex and pointed cone of H with intC 	= ∅. Let f : Y →
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H be a vector-valued function. f is called C−concave if for each y1, y2 ∈ Y and each
t ∈ [0, 1],

tf (y1) + (1 − t)f (y2) − f
(
ty1 + (1 − t)y2

) ∈ −C,

and C−convex if −f is C−concave.

If H = R
k, C = R

k+, the following two lemmas reveal the equivalent property of
R

k+−continuity and that of Rk+−concavity of a vector-valued function [12], respectively.

Lemma 2.5 Let X be a nonempty subset of a normed space and f : X → R
k be a vector-

valued function, where f = (f1, f2, · · · , fk). Then f is Rk+−continuous if and only if fj

is lower semicontinuous for every j = 1, 2, · · · , k.

Lemma 2.6 Let X be a nonempty convex subset of a normed space and f : X → R
k be a

vector-valued function, where f = (f1, f2, · · · , fk). Then f is Rk+−concave if and only if
fj is concave for every j = 1, 2, · · · , k.

The following lemma is referred to Theorem 1.1 of [12].

Lemma 2.7 Let X be a nonempty convex compact subset of a normed space and H be a
topological vector space with a closed, convex and pointed cone C and intC 	= ∅. Suppose
that φ : X × X → H satisfies the following conditions:

(i) for each fixed y ∈ X, x �→ φ(x, y) is C−continuous;
(ii) for each fixed x ∈ X, y �→ φ(x, y) is C−concave; and
(iii) for each x ∈ X, φ(x, x) /∈ intC.

Then there exists x∗ ∈ X such that φ(x∗, y) /∈ intC for all y ∈ X.

Definition 2.8 ([23]) Let X and Y be two Hausdorff topological spaces, and let B : Y →
2X be a set-valued mapping.

(1) B is upper semicontinuous at y ∈ Y if for any open set U in X with U ⊃ B(y), there
is an open neighborhood O(y) of y such that U ⊃ B(y

′
) for each y

′ ∈ O(y).
B is upper semicontinuous on Y if it is upper semicontinuous at every point y ∈ Y .

Further, B is an usco mapping if B is upper semicontinuous on Y and B(y) is compact
for every y ∈ Y .

(2) B is lower semicontinuous at y ∈ Y if for any open set U with U ∩ B(y) 	= ∅, there is
an open neighborhood O(y) of y such that U ∩ B(y

′
) 	= ∅ for each y

′ ∈ O(y).
B is lower semicontinuous on Y if it is lower semicontinuous at every point y ∈ Y .

(3) B is continuous at y ∈ Y if it is both upper and lower semicontinuous at y ∈ Y . B is
continuous on Y if it is continuous at every point y ∈ Y .

(4) B is almost lower semicontinuous at y ∈ Y if there exists at least one x ∈ B(y) such
that, for each open neighborhood N(x) of x, there exists an open neighborhood O(y)

of y such that N (x) ∩ B(y
′
) 	= ∅ for any y

′ ∈ O(y).

The following example provides a set-valued mapping that is almost lower semicontinu-
ous but not lower semicontinuous.
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Example 2.9 Let X = [0, 1] and define the set-valued mapping B : X → 2X by

B(x) =
{ {0}, x ∈ [0, 1),
[0, 1] , x = 1.

It is easy to check that B is almost lower semicontinuous but not lower semicontinuous at
x = 1.

The following lemma is referred to Corollary 9 in Chapter 3 of [23] or Theorem 7.1.16
of [24].

Lemma 2.10 Let X, Y be two Hausdorff topological spaces with X compact. If the
graph Graph(B) of the set-valued mapping B : Y → 2X is closed, then B is upper
semicontinuous on Y , where

Graph(B) = {(y, x) ∈ Y × X : x ∈ B(y)}.

Lemma 2.11 ([25], Theorem 2) Let X be a metric space, Y be a Baire space, and B :
Y → 2X be an usco mapping. Then there is a dense Gδ subset Q of Y such that B is lower
semicontinuous on Q.

Remark 2.12 Lemma 2.11 indicates the set-valued mapping B : Y → 2X is continuous on
a dense Gδ subset Q of Y , so B is usually called generic continuity on Y .

3 Stability of Weakly Pareto-Nash and Pareto-Nash Equilibrium
for (MPGs)

In this section, we begin with the existence of weakly Pareto-Nash equilibrium for (MPGs).

Theorem 3.1 Let F : X → R
N be a (MPG), where X = ∏

p∈P Xp , Xp is a simplex in

R
np

for each p ∈ P , and N = ∑
p∈P npkp ∈ N+. If F is continuous on X, then it admits

at least one weakly Pareto-Nash equilibrium.

Proof Define a vector-valued function φ : X × X → R
k by

φ(x, y) =
∑

p∈P

∑

l∈S
p

(
y

p
l − x

p
l

)
F̂

p
l (x),

where k = max
p∈P

kp , and for any p ∈ P and l ∈ Sp,

F̂
p
l (x) = (

F
p
l (x)

︸ ︷︷ ︸
kpcomponents

; F
p

l1(x), · · · , F
p

l1(x)
︸ ︷︷ ︸

k−kp times

) ∈ R
k.

It is easy to check that

(i) for each fixed y ∈ X, x �→ φ(x, y) is Rk+−continuous (by Lemma 2.5);
(ii) for each fixed x ∈ X, y �→ φ(x, y) is Rk+−concave (by Lemma 2.6); and
(iii) for each x ∈ X, φ(x, x) = 0 /∈ intRk+.
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Therefore, by Lemma 2.7, there exists x̄ ∈ X such that

φ(x̄, y) /∈ intRk+, ∀y ∈ X.

Now for any p ∈ P , denotes Ip(x̄) = {l ∈ Sp : x̄
p
l > 0}, obviously Ip(x̄) 	= ∅ as Xp

is a simplex of Rnp
for each p ∈ P . For each fixed i ∈ Ip(x̄), for any l ∈ Sp, setting

y = (x̄1; · · · ; x̄p−1; yp; x̄p+1; · · · ; x̄P ) ∈ X and

yp = (x̄
p

1 , · · · , x̄
p

i−1, 0︸︷︷︸
i

, x̄
p

i+1, · · · , x̄
p

l−1, x̄
p
i + x̄

p
l︸ ︷︷ ︸

l

, x̄
p

l+1, · · · , x̄
p
np ) ∈ XP .

Furthermore,

x̄
p
i

(
F

p
i (x̄) − F

p
l (x̄)

︸ ︷︷ ︸
kpcomponents

; F
p

i1(x̄) − F
p

l1(x̄), · · · , F
p

i1(x̄) − F
p

l1(x̄)
︸ ︷︷ ︸

k−kp times

) = φ(x̄, y) /∈ intRk+.

Because of x̄
p
i > 0, then

(
F

p
i (x̄) − F

p
l (x̄)

︸ ︷︷ ︸
kpcomponents

;F
p

i1(x̄) − F
p

l1(x̄), · · · , F
p

i1(x̄) − F
p

l1(x̄)
︸ ︷︷ ︸

k−kp times

)
/∈ intRk+. (1)

If F
p
i (x̄) − F

p
l (x̄) ∈ intRkp

+ , then F
p
ij (x̄) − F

p
lj (x̄) ∈ intRkp

+ for each j = 1, 2, · · · , kp

and thus
(
F

p
i (x̄) − F

p
l (x̄)

︸ ︷︷ ︸
kpcomponents

; F
p

i1(x̄) − F
p

l1(x̄), · · · , F
p

i1(x̄) − F
p

l1(x̄)
︸ ︷︷ ︸

k−kp times

) ∈ intRk+,

which contradicts that expression (1). Consequently, for all p ∈ P, i ∈ Ip(x̄), it holds true
that

x̄
p
i > 0 ⇒ F

p
i (x̄) − F

p
l (x̄) /∈ intRkp

+ ,∀l ∈ Sp.

Hence, x̄ is a weakly Pareto-Nash equilibrium of F . The proof is complete.

Let F be the collection of (MPGs) satisfying that: (i) Xp is a simplex in R
np

for all
p ∈ P ; (ii)F : X = ∏

p∈P Xp → R
N is continuous.

For any F,G ∈ F , define

ρ(F, G) = max
x∈X

∑

p∈P

‖Fp(x) − Gp(x)‖,

where ‖Fp(x)−Gp(x)‖ = ( ∑

l∈Sp

|Fp
l (x)−G

p
l (x)|2) 1

2 , the classical Euclidean norm inRnp
.

Clearly, ρ is a metric onF . Indeed, (F , ρ) is complete. From Theorem 3.1, PEw(F) 	=
∅ for each F ∈ F . And PEw , PE are both set-valued mappings from F to X, which are
called weakly Pareto-Nash and Pareto-Nash equilibrium mapping in the remainder of this
paper, respectively.

Definition 3.2 (i) For each F ∈ F , let x ∈ PEw(F) (resp. x ∈ PE(F)). Then x is
called an essential weakly Pareto-Nash (resp. Pareto-Nash) equilibrium of F provided
that for any open neighborhoodU of x inX, there exists an open neighborhoodN (F )

of F ∈ F such that U ∩PEw(F
′
) 	= ∅ (resp. U ∩PE(F

′
) 	= ∅) for any F

′ ∈ N (F ).
(ii) For each F ∈ F , let e(F ) be a nonempty closed subset of PEw(F) (resp.PE(F)),

Then e(F ) is called an essential set of weakly Pareto-Nash (resp. Pareto-Nash) equilib-
ria of F provided that for any open set U ⊃ e(F ), there exists an open neighborhood
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N (F ) of F ∈ F such that U ∩ PEw(F
′
) 	= ∅ (resp. U ∩ PE(F

′
) 	= ∅) for any

F
′ ∈ N (F ).

Remark 3.3 (i) x is an essential weakly Pareto-Nash (resp. Pareto-Nash) equilibrium of
F ∈ F , namely, the mapping PEw (resp. PE) is almost lower semicontinuous at F .

(ii) An essential set e(F ) of weakly Pareto-Nash (resp. Pareto-Nash) equilibria of F

means that near the game F there exists at least one weakly Pareto-Nash (resp. Pareto-
Nash) equilibrium near e(F ). In particular, if e(F ) is a singleton set, i.e., e(F ) = {x̄},
then x̄ is an essential weakly Pareto-Nash (resp. Pareto-Nash) equilibrium of F .

Theorem 3.4 The weakly Pareto-Nash equilibrium mapping PEw : F → 2X is usco
on F .

Proof Since X = ∏
p∈P Xp is compact, from Lemma 2.10, it suffices to verify that the

graph Graph(PEw) of the set-valued mapping PEw is closed, where

Graph(PEw) = {(F, x) ∈ F × X : x ∈ PEw(F)}.
Let {(F n, xn)}n∈N+ be a sequence in Graph(PEw) with (F n, xn) → (F̄ , x̄) ∈ F × X,
then Fn ∈ F , xn ∈ PEw(Fn). It needs to prove x̄ ∈ PEw(F̄ ). Argue by contradiction.
Suppose that x̄ /∈ PEw(F̄ ), then there are some p0 ∈ P and i0, l0 ∈ Sp0 , though x̄

p0
i0

> 0,

F̄
p0
i0

(x̄) − F̄
p0
l0

(x̄) ∈ −intRkp0
+ .

As (F n, xn) → (F̄ , x̄), then Fn → F̄ , xn → x̄, there exists N1 ∈ N+, such that Fn(x̄) →
F̄ (x̄) and (xn)

p0
i0

→ x̄
p0
i0

with (xn)
p0
i0

> 0 whenever n > N1. Further by combining the

continuity of Fn on X with the fact Fn → F̄ , xn → x̄, then there exists N2 ∈ N+ and
N2 > N1, such that

(F n)
p0
i0

(xn) − (F n)
p0
l0

(xn) ∈ −intRkp0
+ ,

whenever n > N2.
In a word, although (xn)

p0
i0

> 0, (F n)
p0
i0

(xn) − (F n)
p0
l0

(xn) ∈ −intRkp0
+ whenever n >

N2. By Definition 2.1, thus xn /∈ PEw(Fn), which contradicts the fact xn ∈ PEw(Fn).
Therefore, x̄ ∈ PEw(F̄ ), and hence Graph(PEw) is closed. Following from Lemma 2.10,
then PEw is upper semicontinuous on F .

Next, we need prove PEw(F) is compact for all F ∈ F . Observing thatX = ∏
p∈P Xp

is compact, so we have just to check PEw(F) is closed for all F ∈ F . To do this, we
merely repeat the first part of the proof with F ∈ F . The proof is complete.

From Theorem 3.4 and Lemma 2.11, it is easy to obtain the generic continuity of the set
of weakly Pateto-Nash equilibria for (MPGs) as follows:

Theorem 3.5 There exists a dense Gδ subset Q of F such that the weakly Pareto-Nash
equilibrium mapping PEw : F → 2X is lower semicontinuous further continuous on Q.
That is, every weakly Pareto-Nash equilibrium of each F ∈ Q is essential.

Proof From Theorem 3.4 and Lemma 2.11, there exists a dense Gδ subset Q of F such
that PEw is lower semicontinuous further continuous on Q. Let x∗ ∈ PEw(F) for F ∈
Q. Since PEw is lower semicontinuous at F , then x∗ is an essential weakly Pareto-Nash
equilibrium from Definition 3.2 and Remark 3.3. The proof is complete.
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One can observe that such generic continuity on the set of weakly Pareto-Nash equilibria
is due to its upper semicontinuity property. On involving the set of Pareto-Nash equilibria
of (MPGs), however, it is not a satisfactory one. The following example shows this point.

Example 3.6 Let F be a bi-objective population game played by two unit mass populations
with two strategies for each (n1 = n2 = 2). Let the corresponding sets of population states
be Y = {

y = (y1, y2) ∈ R
2+ : y1 + y2 = 1

}
, Z = {

z = (z1, z2) ∈ R
2+ : z1 + z2 = 1

}
,

respectively. Let X = Y × Z = {x = (y, z) : y ∈ Y, z ∈ Z} and b ∈ R be a constant. Let
F(x) = (

F 1(x);F 2(x)
)
, where for population 1, F 1(x) = (

F 1
1 (x);F 1

2 (x)
)T ,

F 1
1 (x) = (

F 1
11(x), F 1

12(x)
) = (y1, y2),

F 1
2 (x) = (

F 1
21(x), F 1

22(x)
) = (1 + y1, 1 + y2).

And for population 2, F 2(x) = (
F 2
1 (x);F 2

2 (x)
)T ,

F 2
1 (x) = (

F 2
11(x), F 2

12(x)
) = (z1, b),

F 2
2 (x) = (

F 2
21(x), F 2

22(x)
) = (1 + z1, b).

It is easy to see that the payoff to the 2nd strategy dominates that of the 1st strat-
egy in each population, thus PE(F) contains only one state x̄ = {(0, 1), (0, 1)}, i.e.,
PE(F) = {x̄}.

Let {Fn(x)}n∈N+ = {((F n)1(x); (F n)2(x)
)}n∈N+ be a perturbed sequence of F , where

(F n)1(x) = F 1(x);

(F n)21(x) = (
(F n)211(x), (F n)212(x)

) = (z1, b + 1/n),

(F n)22(x) = (
(F n)221(x), (F n)222(x)

) = (1 + z1, b).

Clearly, Fn → F(n → +∞), and we find that the Pareto-Nash equilibria of Fn is
PE(Fn) = {(0, 1)} × Z since for all x ∈ X, (F n)1(x) = F 1(x); yet

(F n)211(x) = z1 < (Fn)221(x) = 1 + z1,

(F n)212(x) = b + 1/n > (Fn)222(x) = b.

It is easy to check that all the other states x = (y, z) ∈ (Y\{(0, 1)}) × Z are not Pareto-
Nash equilibrium of Fn. Therefore, PE(Fn) = {(0, 1)} × Z is the Pareto-Nash equilibria
of Fn.

So the Pareto-Nash equilibrium mapping PE is not upper semicontinuous at F , because
however close Fn approaches F , the Pareto-Nash equilibria of Fn cannot be covered in any
small neighborhood of x̄ = {(0, 1), (0, 1)}, which is the unique Pareto-Nash equilibrium of
F . However, it is not difficult to examine that PEw is upper semicontinuous at F , because
all x = (y, z) ∈ {(0, 1)} × Z are weakly Pareto-Nash equilibria of F and of Fn as well.

To obtain the stability of Pareto-Nash equilibria for (MPGs), we define a sub-mapping
and partly upper semicontinuity of the Pareto-Nash equilibrium mapping PE below:

Definition 3.7 A mapping E0 : F → 2X is said to be a sub-mapping of the Pareto-Nash
equilibrium mapping PE if E0(F ) ⊂ PE(F) holds for each F ∈ F . Furthermore, if the
sub-mapping E0 : F → 2X is upper semicontinuous, then the Pareto-Nash equilibrium
mapping PE is said to be partly upper semicontinuous.
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Example 3.8 Consider a bi-objective single-population game F̃ = (F̃1; F̃2)
T with two

strategies. The state set is denoted by X = {x = (x1, x2) ∈ R
2+ : x1 + x2 = 1}.

For each x = (x1, x2) ∈ X,

F̃1(x) = (F̃11(x), F̃12(x)) = (x1, 2),

F̃2(x) = (F̃21(x), F̃22(x)) = (1 + x1, x2).

Clearly, each x = (x1, x2) ∈ X is a Pareto-Nash equilibrium of F̃ , i.e., PE(F̃ ) = X.
For a given weight combination λ = (λ1, λ2) = (1/3, 2/3) ∈ intT2+, the resulting

additive weight payoffs to strategy 1 and 2:

F̃λ,1(x) = λ1F̃11(x) + λ2F̃12(x) = x1/3 + 4/3,

F̃λ,2(x) = λ1F̃21(x) + λ2F̃22(x) = (1 + x1)/3 + 2x2/3 = −x1/3 + 1,

respectively. By Definition 2.2, obviously, F̃ has only one weighted Nash equilibrium
(1, 0) ∈ X with respect to the given weight combination λ = (λ1, λ2) = (1/3, 2/3) ∈
intT2+, since F̃λ,1(x) > F̃λ,2(x) holds for any x = (x1, x2) ∈ X no matter what value
x2 > 0 takes except for the state (1, 0) ∈ X. Consequently, for F̃ , Eλ(F̃ ) = {(1, 0)} ⊂ X =
PE(F̃ ). By Definition 3.7, Eλ(F̃ ) is a sub-mapping of PE(F̃ ).

Now, by seeking an upper semicontinous sub-mapping, we obtain the following partly
upper semicontinuity result of the Pareto-Nash equilibrium mapping PE.

Theorem 3.9 There exists an upper semicontinuous sub-mapping of PE, i.e., E0 : F →
2X such that E0(F ) ⊂ PE(F) for each F ∈ F and upper semicontinuous on F . That is,
PE is partly upper semicontinuous.

Proof Given a weight combination λ = (λ1; λ2; · · · ; λP ) with λp ∈ intTkp

+ (∀p ∈ P), for
each F ∈ F , since the additive weight payoff F

p
λ,i(x) to the strategy i ∈ Sp is continuous

on X for each population p ∈ P , then there exists weighted Nash equilibria for each
F ∈ F from Theorem 2.1.1 of [1], i.e., Eλ(F ) 	= ∅ and Eλ is a set-valued mapping from
F to X.

Set E0 = Eλ : F → 2X . Next, it is proven that the mapping Eλ : F → 2X is usco.
Let {(F n, xn)}n∈N+ be a sequence in Graph(Eλ) with (F n, xn) → (F̄ , x̄) ∈ F × X,

then Fn ∈ F , xn ∈ Eλ(F
n). Suppose that x̄ /∈ Eλ(F̄ ), then there exist some p0 ∈ P and

i0, l0 ∈ Sp0 such that x̄p0
i0

> 0, however,

F̄
p0
λ,i0

(x̄) < F̄
p0
λ,l0

(x̄).

As Fn
λ → F̄λ due to Fn → F̄ , further,

(F n)
p0
λ,i0

(x̄) < (Fn)
p0
λ,l0

(x̄).

Because (F n)
p0
λ,l(x) is continuous on X for any l ∈ Sp and xn → x̄, then (xn)

p0
i0

→ x̄
p0
i0

satisfying (xn)
p0
i0

> 0, and

(F n)
p0
λ,i0

(xn) < (Fn)
p0
λ,l0

(xn),

whenever n is sufficiently large.
In a word, (xn)

p0
i0

> 0, yet (F n)
p0
λ,i0

(xn) < (Fn)
p0
λ,l0

(xn) whenever n is sufficiently large.
By Definition 2.2, thus xn /∈ Eλ(F

n), which contradicts the assumption xn ∈ Eλ(F
n).

Therefore, x̄ ∈ Eλ(F̄ ), namely, Graph(Eλ) is closed. From Lemma 2.10, then Eλ is upper
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semicontinuous on F . Furthermore, to show Eλ(F ) is compact for each F ∈ F , we
have just to check PEw(F) is closed for all F ∈ F as X = ∏

p∈P Xp is compact. For
this purpose, we repeat the above proof on the closedness of Graph(Eλ) with Fn = F .
Consequently, Eλ is an usco mapping on F .

Besides, it holds true that Eλ(F ) ⊂ PE(F) for λ = (λ1; λ2; · · · ; λP ) with λp ∈ intTkp

+
for all p ∈ P . If not, there is one point x̃ ∈ Eλ(F ), nevertheless, x̃ /∈ PE(F). Then there
are some p0 ∈ P and i0, l0 ∈ Sp0 , x̃p0

i0
> 0, but Fp0

i0
(x̃) − F

p0
l0

(x̃) ∈ −R
kp0
+ \{0}, i.e.,

F
p0
l0j

(x̃) ≥ F
p0
i0j

(x̃), ∀j ∈ {1, 2, · · · , kp0}, and
F

p0
l0j

(x̃) > F
p0
i0j

(x̃), for some j ∈ {1, 2, · · · , kp0}.
Since λp0 ∈ intTkp0

+ within λ = (λ1; λ2; · · · ; λP ), it immediately follows that
F

p0
λ,l0

(x̃) > F
p0
λ,i0

(x̃). To sum up, x̃
p0
i0

> 0, however, F
p0
λ,l0

(x̃) > F
p0
λ,i0

(x̃). From Definition
2.2, this means that x̃ /∈ Eλ(F ), which is a contradiction. The proof is complete.

Remark 3.10 From the proof of Theorem 3.9, it is known that

(1) for each F ∈ F , ∅ 	= Eλ(F ) ⊂ PE(F) and Eλ(F ) is closed for a given λ =
(λ1; λ2; · · · ; λP ) with λp ∈ intTkp

+ ,∀p ∈ P . Further, Eλ(F ) is an essential set of
PE(F) by Definition 3.2(ii).

(2) The set of weighted Nash equilibria is usco on F . From Lemma 2.11, there is a
dense Gδ subset Q of F such that the set of weighted Nash equilibria is lower
semicontinuous further continuous on Q.

The following special case shows that the Pareto-Nash equilibrium mapping PE is not
lower semicontinuous on F .

Example 3.11 Let us consider a bi-objective single-population game F = (F1; F2)
T with

two strategies. Then the state set is denoted by X = {x = (x1, x2) ∈ R
2+ : x1 + x2 = 1}, the

simplex in R
2. Let a, b ∈ R be two constants.

For each x = (x1, x2) ∈ X,

F1(x) = (F11(x), F12(x)) = (a, b),

F2(x) = (F21(x), F22(x)) = (a, b).

Clearly, each x = (x1, x2) ∈ X is a Pareto-Nash equilibrium of F , i.e., PE(F) = X.
Let {Fn}n∈N+ = {((F n)1; (F n)2

)T }n∈N+ be an approximating sequence of F in which
for each x = (x1, x2) ∈ X we have

(F n)1(x) = (
(F n)11(x), (F n)12(x)

) = (a, b),

(F n)2(x) = (
(F n)21(x), (F n)22(x)

) = (a + 1/n, b + 1/n).

Obviously, the perturbed bi-objective population game Fn admits unique Pareto-Nash equi-
librium (0, 1) ∈ X, namely, PE(Fn) = {(0, 1)}. Nevertheless, for a special Pareto-Nash
equilibrium (1, 0) ∈ PE(F), we can choose a small enough neighborhood N (1, 0); no
matter how close Fn is to F , {(0, 1)} ∩ N (1, 0) = ∅. Therefore, PE is not lower semicon-
tinuous at F . Meanwhile, it is easy to check that PEw is also not lower semicontinuous at
F , too, as PEw(F) = X and PEw(Fn) = {(0, 1)}.

Theorem 3.12 There exists a dense Gδ subset Q of F such that the Pareto-Nash
equilibrium mapping PE is almost lower semicontinuous on Q.
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Proof From Lemma 2.11 and Remark 3.10(2), there exists a dense Gδ subset Q of F such
that the sub-mapping E0 = Eλ is lower semicontinuous on Q, where λ = (λ1; λ2; · · · ; λP )

satisfying λp ∈ intTkp

+ ,∀p ∈ P . Let x∗ ∈ Eλ(F ) for F ∈ Q. Then for any open
neighborhood O(x∗) of x∗, there exists an open neighborhood N (F ) of F such that
O(x∗) ∩ Eλ(F

′
) 	= ∅ for all F

′ ∈ N (F ). Since E0(F ) ⊂ PE(F), it also holds that
O(x∗) ∩ PE(F) 	= ∅. Therefore, PE is almost lower semicontinuous on Q by Definition
2.8(4). The proof is complete.

Remark 3.13 (1) There exists at least one essential Pareto-Nash equilibrium x∗ ∈ PE(F)

for most F ∈ F by the proof of Theorem 3.12.
(2) Combining the proof of Theorem 3.12 with Example 3.6, each x ∈ PE(F) being an

essential Pareto-Nash equilibrium is a necessary but not sufficient condition for the
continuity of PE at F ∈ F .

4 Conclusion

In this paper, we have proven some stability results for weakly Pareto-Nash and Pareto-Nash
equilibria of (MPGs) with the perturbed payoff functions. Here, the stability is dependent
on the semicontinuity property of the set-valued mapping PEw(F) (resp. PE(F)), which
associates to (MPGs) F . The weakly Pareto-Nash equilibrium mapping PEw is upper semi-
continuous. This leads to the generic continuity of weakly Pareto-Nash equilibrium, that
is, each weakly Pareto-Nash equilibrium is stable for most (MPGs) with continuous payoff
functions in the sense of Baire category. However, the problem is nontrivial as the Pareto-
Nash equilibrium mapping PE(F) is generally neither upper semicontinuous nor lower
semicontinuous (see Example 3.6 and 3.11). We prove the partly upper semicontinuity of
PE(F) by seeking an upper semicontinuous sub-mapping. Based on this fact, along with
the generic continuity of the set of weighted Nash equilibria (Remark 3.10(2)), it is further-
more shown that PE(F) is almost lower semicontinuous for most (PMGs). Therefore, most
(PMGs) have at least one stable Pareto-Nash equilibrium in the sense of Baire category. Our
work extends population games with single objective [1] to multiobjective cases. And our
results are new for population games.
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