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Abstract The paper deals with a strong-weak nonlinear bilevel problem which generalizes
the well-known weak and strong ones. In general, the study of the existence of solutions
to such a problem is a difficult task. So that, for a strong-weak nonlinear bilevel prob-
lem, we first give a regularization based on the use of strict ε-solutions of the lower level
problem. Then, via this regularization and under sufficient conditions, we show that the
problem admits at least one solution. The obtained result is an extension and an improve-
ment of some recent results appeared recently in the literature for both weak nonlinear
bilevel programming problems and linear finite dimensional case.
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1 Introduction

Let X and Y be two Hausdorff topological spaces, with Y is first countable. We are con-
cerned with the following bilevel optimization problem, called strong-weak Stackelberg
problem

(S) : min
x∈A

inf
y∈M(x)

sup
z∈M(x)

F (x, y, z)

whereM(x) is the solution set of the lower level problem

P(x) : min
z∈B

f (x, z)

F : X × Y × Y → R, f : X × Y → R are functions, A and B are respectively two
nonempty subsets of X and Y . As it is well-known, bilevel optimization problems have
applications in many areas; we cite for example, economics, transportation network design
and engineering. The class of strong-weak bilevel problems has been first introduced in [1]
(1995). Thereafter, other works have appeared on this class of problems; we cite for example
[11, 13, 14, 18, 23] and [26]. However, the majority of them deal with the linear finite
dimensional case, for which algorithms and numerical results are given. For illustration of
such a class of bilevel problems, let us give the following practical examples [1].

Example 1 (Stackelberg games) Let us consider a two-player game composed by a leader
and a follower where the two players try to minimize their objective functions F̂ and f̂

respectively. Let Â and B̂ denote the sets of strategies of the leader and the follower respec-
tively. The leader assumed to have all information about the follower, announces first a
strategy x ∈ Â and the follower reacts optimally by choosing a strategy y(x) ∈ B̂. If the
follower’s solution set is not always reduced to a singleton (i.e., there exists x̂ ∈ Â such that
M(x̂) is not a singleton), then, two extreme cases are possible.

i) The pessimistic case : In this case the game is noncooperative. Then, the leader
provides himself against the possible worst choice by the follower in M(x) by
minimizing the marginal function

sup
y∈M(x)

F̂ (x, y). (1)

ii) The optimistic case : In this case the follower is in full cooperation with the leader. So
that, the leader minimizes the marginal function

inf
y∈M(x)

F̂ (x, y).

The two above cases lead to a weak and a strong Stackelberg problems respectively.
Here, the terms ”weak” and ”strong” are taken in the sense of [10]. However, by taking
into account the cooperation degree of the follower, these two cases can be obtained
from the following general one. Then, if α ∈ [0, 1] is the cooperation index between
the two players, the leader minimizes the function

α inf
y∈M(x)

F̂ (x, y) + (1 − α) sup
z∈M(x)

F̂ (x, z).

Set Fα(x, y, z) = αF̂ (x, y) + (1 − α)F̂ (x, z). Then, the leader’s problem is
formulated as

(Ŝα) min
x∈Â

inf
y∈M(x)

sup
z∈M(x)

Fα(x, y, z)
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which is a strong-weak bilevel problem. Then, weak and strong bilevel problems are
particular cases of problem (Ŝα) which are respectively obtained for α = 0 and α = 1.

Example 2 (System of nondifferentiable convex inequalities) Let fi : R
n → R,

i = 1, ...., m, be closed proper convex functions and consider the following system of
inequalities

fi(x) ≤ 0, i = 1, ..., m.

Set C = {
x ∈ R

n/ fi(x) ≤ 0, i = 1, ...m} and θ(x) = (f +
1 (x), ..., f +

m (x)), with f +
i (x) =

max(0, fi(x)), i = 1, ..., m. Auslender and Crouzeix in [7] have been interested by the best
constant denoted by k2,∞ that satisfies

d2(x, C) ≤ k2,∞‖θ(x)‖∞ i.e., k2,∞ = sup
x �∈C

d2(x, C)

‖θ(x)‖∞
where d2(x, C) = minx∈C ‖x − y‖2, ‖.‖2 and ‖.‖∞ denote respectively the euclidean
norm on R

n and the Tchebycheff norm on R
m. Set f̂ (x) = maxi=1,...,m fi(x). Then, under

appropriate assumptions, the authors show that the constant k2,∞ is given by

k2,∞ = 1

k∗
2,∞

with k∗
2,∞ = min

x∈bdC

inf
y∈∂f̂ (x)

sup
z∈∂f̂ (x)

〈
y

‖y‖2 , z

〉

where bdC is the boundary of C and ∂f̂ (x) is the subdifferential of f̂ at x (see [25]). Define
the functions

f̃ (x, z) = f̂ ∗(z) − 〈x, z〉 and F̃ (x, y, z) =
〈

y

‖y‖2 , z

〉
, y �= 0

where f̂ ∗ is the conjugate function of f̂ . Set Ã = bdC and let M(x) denote the solution
set of the problem

min
z∈Rn

f̃ (x, z).

Then,M(x) = ∂f̂ (x). Hence

k∗
2,∞ = min

x∈Ã

inf
y∈M(x)

sup
z∈M(x)

F̃ (x, y, z)

which is the minimal value of a strong-weak Stackelberg problem.

Note that in the formulation above of problem (S), when the function F does not depend
on y, we obtain a weak Stackelberg problem, and when F does not depend on z, we obtain
a strong Stackelberg problem. Therefore, strong-weak bilevel problems constitute a wide
class of optimization problems which generalizes the class of weak and strong ones.

As it is well-known, weak nonlinear bilevel problems are difficult to solve from both
theoretical and numerical aspects. Due to the generalization above, strong-weak bilevel
problems present more difficulties. In fact, the problem (S) consists to minimize the
marginal function u(x) = infy∈M(x) supz∈M(x) F (x, y, z) which has a more complicated
expression than the marginal function considered in (1) for weak bilevel problems. In gen-
eral, even if the data are convex and differentiable, the marginal function u(.) is neither
convex nor differentiable. Furthermore, the multifunction M(.) which represents the con-
straints of u(.) does not possess enough useful topological properties. This explains the
difficulties encountered in particular in the study of the existence of solutions to such a class
of problems. For instance, the bilevel problem (S) may fail to have solutions even if the
variables x, y and z are in compact sets and the objective functions F and f are continuous
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(see Example 3 below). This fact results principally from the lack of lower semicontinuity
of the multifunction M(.). Then, let us summarize the following studies concerning this
subject. The existence of solutions for weak and strong-weak bilevel problems in the linear
finite dimensional case was established respectively in [4] and [26]. The studies are based
on the use of linear duality and penalty methods. However, the nonlinear case presents more
difficulties. For the finite dimensional case, sufficient conditions ensuring the existence of
solutions to nonlinear weak bilevel programming problems are given in [3]. So that, it is
interesting to consider the class of infinite dimensional nonlinear strong-weak bilevel prob-
lems. In this case, the obtained results shall also be applied to the infinite dimensional
nonlinear weak bilevel problems by deleting the variable y in the formulation of problem
(S) (that is when F does not depend on y).

Let us consider the following example where the functions F and f are continuous and
the variables x, y, and z range over compact sets, but the problem (S) has no solution.

Example 3 Let X = R
2, Y = R, A = [

0, 1
] × [

1, 2
]
, B = [

0, 1
]
, F and f be the functions

defined respestively on R2 × R × R and R2 × R by

F(x, y, z) = −x2yz − 1

2
x1x2, f (x, z) = 3

2

(
x2 − 3

2

)
z + 1

4
x2
1 (x2 + 1)2

with x = (x1, x2). Then

M(x) =

⎧
⎪⎪⎨

⎪⎪⎩

{1} if x2 ∈
[
1, 3

2

[

[0, 1] if x2 = 3
2

{0} if x2 ∈
]
3
2 , 2

]

which is a compact set for all x ∈ A. Set

w(x, y) = sup
z∈M(x)

F (x, y, z), u(x) = inf
y∈M(x)

w(x, y) and v = inf
x∈A

u(x).

Then

w(x, y) =
⎧
⎨

⎩

−x2y − 1
2x1x2 if x2 ∈ [

1, 3
2

[

− 3
4x1 if x2 = 3

2
− 1

2x1x2 if x2 ∈ ] 3
2 , 2

]

and

u(x) =
⎧
⎨

⎩

−x2 − 1
2x1x2 if x2 ∈ [

1, 3
2

[

− 3
4x1 if x2 = 3

2
− 1

2x1x2 if x2 ∈ ] 3
2 , 2

]
.

Therefore, the infimal value of problem

(S) min
x∈A

inf
y∈M(x)

sup
y∈M(x)

F (x, y, z)

is v = − 9
4 , but (S) has no solution. Note that the multifunction M(.) is not lower

semicontinuous on A.

Before describing the steps of our investigation and giving its advantages, it is useful to
give a brief survey on the study given in [1] considered in the finite dimensional case. For
each ε > 0, the authors first present a regularized problem (Sε) of (S). The regulariza-
tion is based on the use of ε-approximate solutions of the lower level problem. Under mild
assumptions, they show that (Sε) admits solutions. Then, approximation results are obtained
when the parameter of regularization ε goes to zero. This procedure of regularization has
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been inspired from the one given in [20] for weak bilevel problems. Our goal in this paper
is to provide sufficient conditions under which the problem (S) admits solutions. The study
is considered in a sequential setting and based on a new regularization procedure and tools
from variational convergence. This regularization uses strict ε-solutions of the lower level
problem and is inspired from those given in [1] and [20]. Under mild assumptions, we estab-
lish the existence of solutions for the regularized problem (Sε). Note that for example in the
case of real Hausdorff locally convex topological vector spaces, contrary to the regulariza-
tion used in [1], this regularization allows us to avoid convexity assumptions. Then, via this
regularization and under sufficient conditions, we show that the original bilevel problem (S)

has at least one solution. The obtained result can be applied to weak nonlinear bilevel prob-
lems in the finite and infinite dimensional cases by deleting the variable y. In particular, it
extends and improves the result given in [3] for weak nonlinear bilevel programming prob-
lems. In fact, the result will be obtained under weaker assumptions without using convexity
assumptions. Furthermore, our result gives a generalization from the linear finite dimen-
sional case to the nonlinear infinite dimensional one of the result given in [26]. However,
since the data are nonlinear, this generalization requires a new approach and other tools than
those used in [26]. Note that one of the used sufficient conditions reduces the problem of
existence of solutions for (S) to a problem of the existence of a common solution of two
parametric one-level optimization problems. Therefore, according to our study, we are led
to investigate in one-level optimization instead of two-level optimization.

The outline of the paper is as follows. In Section 2, we recall and establish some basic
results concerning the lower level problem. In section 3, we first present our regularization
and prove the existence of solutions to the regularized problem under mild assumptions.
Finally, we establish our main result on the existence of solutions to the original problem
(S).

2 The Lower Level Problem: Basic Results

In this section, we recall and establish some fundamental results concerning the lower level
problem that we need in the sequel.

Definition 1 Let Z be a Hausdorff topological space. We recall the following definitions

1) Let C be a nonempty subset of Z. The set C
seq

defined by

C
seq =

{
a ∈ Z/ ∃ an ∈ C, an → a, as n → +∞

}

is called the sequential closure of C.
2) Let (Cn)n∈N be a sequence of nonempty subsets of Z. The sets lim inf

n→+∞ Cn and

lim sup
n→+∞

Cn are defined as follows

i) lim inf
n→+∞ Cn =

{
y ∈ Z/ ∃ yn → y, as n → +∞, yn ∈ Cn, ∀n ∈ N

}
,

ii) lim sup
n→+∞

Cn =
{
y ∈ Z/ ∃ ynk

→ y, as k → +∞, ynk
∈ Cnk

, ∀k ∈ N

}
.

Throughout the rest of the paper, the sets A and B will be equipped with the induced
topologies of X and Y respectively. Moreover, we will always assume that B is sequentially
compact.
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Remark 1 In our case, the topological space Y is first countable. So that, the topological
closure and the sequential one coincide. In the sequel, we will work with the sequential
closure because this notion will be associated with the sequential compactness of B.

We will use the following assumptions.

(2.1) The function f is sequentially lower semicontinuous on the topological spaceA×B,
(2.2) For any (x, z) ∈ A × B, and any sequence (xn) converging to x in A, there exists a

sequence (zn) in B such that

lim sup
n→+∞

f (xn, zn) ≤ f (x, z),

(2.3) For any (x, z) ∈ A × B, and any sequence (xn) converging to x in A, there exists a
sequence (zn) converging to z in B such that

lim sup
n→+∞

f (xn, zn) ≤ f (x, z).

For x ∈ A, set
v(x) = inf

z∈B
f (x, z).

Remark 2

1) Assumption (2.2) is weaker than assumption (2.3). Note that assumptions (2.1)–(2.3)
are weaker than the continuity of the function f and are used in several papers; we cite
for example [1–3, 6, 17, 19–21].

2) Assume that assumption (2.1) is satisfied. Then, since B is sequentially compact, it
follows that for any x ∈ A, the problem P(x) has at least one solution and v(x) is a
finite real number.

Let x ∈ A such that v(x) is a finite real number. For ε > 0, let M(ε, x) and Ms(ε, x)

denote respectively the sets of ε-approximate solutions and strict ε-solutions of the lower
level problem P(x), i.e.,

M(ε, x) =
{
z ∈ B/f (x, z) ≤ v(x) + ε

}

and
Ms(ε, x) =

{
z ∈ B/f (x, z) < v(x) + ε

}
.

Then, we have the following convergence results.

Proposition 1 Assume that assumptions (2.1) and (2.2) hold. Then, for any sequence (xn)

converging to x in A, we have

i) lim sup
n→+∞

M(ε, xn) ⊂ M(ε, x), ∀ε ≥ 0,

ii) lim sup
n→+∞

M(εn, xn) ⊂ M(x), ∀εn ↘ 0+,

iii) lim sup
n→+∞

Ms(εn, xn)
seq ⊂ M(x), ∀εn ↘ 0+.

Proof For i) and ii) see [20]. We give the proof of iii). Since f is sequentially lower semi-
continuous on A×B, thenM(εn, xn) is sequentially closed on B. So thatMs(εn, xn)

seq ⊂
M(εn, xn), and the result follows by using ii).
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Proposition 2 Let ε > 0. Assume that assumptions (2.1) and (2.3) are satisfied. Then, for
any sequence (xn) converging to x in A, we have

Ms(ε, x)
seq ⊂ lim inf

n→+∞Ms(ε, xn)
seq

.

That is the multifunctionMs(ε, .)
seq

is sequentially lower semicontinuous on A.

Proof From the sequential compactness of B and assumptions (2.1) and (2.3), we have (see
[20])

Ms(ε, x) ⊂ lim inf
n→+∞Ms(ε, xn).

Then

Ms(ε, x)
seq ⊂ lim inf

n→+∞Ms(ε, xn)
seq

.

Since Y is first countable, then, the set lim infn→+∞ Ms(ε, xn) is closed. Therefore

Ms(ε, x)
seq ⊂ lim inf

n→+∞Ms(ε, xn)

⊂ lim inf
n→+∞Ms(ε, xn)

seq
.

Remark 3 Since the set of strict ε-solutions of the lower level problem is only defined for
ε > 0, then, the case ε = 0 can not be considered in Proposition 2. However, for the case
of ε-approximate solutions, the sequential lower semicontinuity of the multifunction M(.)

corresponding to the case where ε = 0 (M(.) = M(0, .)) requires strong assumptions
to be satisfied. This property plays a crucial role in the existence of solutions to weak and
strong-weak bilevel problems.

3 The First Level Problem: Existence of Solutions

In this section, we first present our regularization and prove the existence of solutions to
the regularized problem under mild assumptions. Then, under sufficient conditions, using
the regularization and the notion of variational convergence, we establish the existence of
solutions to problem (S). We note that contrary to the study given in [1], no convexity
properties are required for our investigation.

3.1 The Regularized Problem : Existence of Solutions

First, note that it is not difficult to show that the bilevel problem (S) admits solutions
under the lower semicontinuity of the multifunctionM(.) and additional mild assumptions.
Unfortunately, as it is well-known in the literature, the property of lower semicontinuity
of M(.) is not satisfied in general. So that, the first step in our investigation is to substi-
tute the multifunction M(.) with Ms(ε, .)

seq
which is lower semicontinuous under mild

assumptions (Proposition 2). This substitution will be as follows.
For ε > 0, we consider the following regularized problem of (S)

(Sε) : min
x∈A

inf
y∈M(x)

sup
z∈Ms (ε,x)

seq
F (x, y, z).
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As mentioned above, such a regularization is new and is inspired from those given in [1]
and [20]. Define the following marginal functions on A × B and A respectively by

wε(x, y) = sup
z∈Ms (ε,x)

seq
F (x, y, z) uε(x) = inf

y∈M(x)
wε(x, y).

In order to prove the existence of solutions to problem (Sε), we will show under suffi-
cient conditions that the marginal function uε(.) is sequentially lower semicontinuous on A

sequentially compact.
The following assumptions will be used.

(3.1) The function F is sequentially lower semicontinuous on A × B × B,
(3.2) The function F is sequentially upper semicontinuous on A × B × B,
(3.3) For any (x, y) ∈ A × B, the problems

max
z∈B

F(x, y, z) and min
z∈B

f (x, z)

admit a common solution.

For (x, y) ∈ A × B, set fx(.) = f (x, .) and Fx,y(.) = F(x, y, .).

Remark 4

1) Assumption (3.3) generalizes the following one which was used in [3] for weak
nonlinear bilevel programming problems, namely :

• For any x ∈ A, the following problems admit a common solution

max
y∈B

f1(x, y) and min
y∈B

f2(x, y)

where f1 and f2 are respectively the objective functions of the leader and the
follower.

2) Assumption (3.3) is satisfied for example when F and f have the following decompo-
sitions

F(x, y, z) = h(x, y) − ĥ(x, y)K(x, z) and f (x, z) = g(x) + ĝ(x)K(x, z)

where h, ĥ : X × Y → R, g, ĝ : X → R and K : X × Y → R are functions, with
ĥ(x, y) > 0 and ĝ(x) > 0, ∀ (x, y) ∈ A × B.

3) Consider the case where Y is a Banach space and assume that the following assump-
tions are satisfied

i) The set B is convex,
ii) For every x ∈ A, the function fx(.) is convex and lower semicontinuous on Y ,
iii) For every (x, y) ∈ A × B, the function Fx,y(.) is concave and upper semi

continuous on Y .

Then, assumption (3.3) can be written as

• For any (x, y) ∈ A × B, there exists z ∈ B, such that

0 ∈ [
∂fx(z) + NB(z)

] ∩ [
∂(−Fx,y(z)) + NB(z)

]

whereNB(z) is the normal cone to B at z (see for example [9]).

We begin by the sequential lower semicontinuity of the marginal function wε(., .).
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Proposition 3 Let ε > 0. Assume that assumptions (2.1), (2.3) and (3.1) are satisfied. Then,
the marginal function wε(., .) is sequentially lower semicontinuous on A × B.

The result can be deduced from the results given in [17] in a general case. For the
convenience of the reader, we give a short proof adapted to our case.

Proof Let (x, y) ∈ A × B and (xn, yn) be a sequence converging to (x, y) in A × B. Let us
show that

lim inf
n→+∞ wε(xn, yn) ≥ wε(x, y).

Let z ∈ Ms(ε, x)
seq

. From Proposition 2, there exists zn → z, as n → +∞ and
zn ∈ Ms(ε, xn)

seq
, ∀n ∈ N. Then

wε(xn, yn) = sup
t∈Ms (ε,xn)

seq
F (xn, yn, t) ≥ F(xn, yn, zn).

It follows that

lim inf
n→+∞ wε(xn, yn) ≥ lim inf

n→+∞ F(xn, yn, zn)

≥ F(x, y, z).

Since z is arbitrary inMs(ε, x)
seq

, it follows that

lim inf
n→+∞ wε(xn, yn) ≥ sup

z∈Ms (ε,x)
seq

F (x, y, z) = wε(x, y).

Hence, the marginal function wε(., .) is lower semicontinuous on A × B.

The following result shows the sequential lower semicontinuity on A of the marginal
function uε(.).

Proposition 4 Let ε > 0. Assume that assumptions (2.1), (2.3) and (3.1) are satisfied. Then,
the marginal function uε(.) is sequentially lower semicontinuous on A.

Proof Let x ∈ A and (xn) be a sequence converging to x in A. Let us show that

lim inf
n→+∞ uε(xn) ≥ uε(x).

Assume the contrary. Then, there exists α ∈ R such that

lim inf
n→+∞ uε(xn) < α < uε(x). (2)

Set
lim inf
n→+∞ uε(xn) = lim

n→+∞
n∈N

uε(xn)

whereN is an infinite subset of N. Then, there exists n0 ∈ N , such that

uε(xn) < α ∀ n ≥ n0, n ∈ N .

So that, for all n ≥ n0, n ∈ N , there exists yn ∈ M(xn) verifying

wε(xn, yn) < α.

Since B is sequentially compact, then, there exists N ′ ⊂ N such that yn → ȳ, as
n → +∞, n ∈ N ′

. Then, Proposition 1 implies that ȳ ∈ M(x). Therefore, by Proposition
3, we obtain

wε(x, ȳ) ≤ lim inf
n→+∞ wε(xn, yn) ≤ α.
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So that

uε(x) ≤ α

which gives a contradiction with the second strict inequality in (2).

Then, we obtain the following result on the existence of solutions to the regularized
problem.

Theorem 1 Let ε > 0. Assume that assumptions (2.1), (2.3) and (3.1) are satisfied. If
moreover, A is sequentially compact, then, the regularized problem (Sε) has at least one
solution.

Proof From Proposition 4 the marginal function uε(.) is sequentially lower semicontinuous
on A. Therefore, the result follows from the sequential compactness of A.

3.2 Existence of Solutions to Problem (S)

In this section, under sufficient conditions, we will establish the existence of solutions to
problem (S).

First, for ε > 0 and x ∈ A, consider the following auxiliary problem

Sε(x) : min
y∈M(x)

sup
z∈Ms (ε,x)

seq
F (x, y, z).

Then, we have the following result on the existence of solutions to problem Sε(x).

Proposition 5 Let ε > 0 and x ∈ A. Let assumptions (2.1), (2.3) and (3.1) hold. Then, the
problem Sε(x) has at least one solution.

Proof From Proposition 3 the marginal function wε(., .) is sequentially lower semicontinu-
ous on A × B. So that, the marginal function wε(x, .) is sequentially lower semicontinuous
on B. On the other hand, the set M(x) is sequentially closed in B sequentially compact.
Then,M(x) is sequentially compact and the result follows.

As mentioned in the introduction, the notion of variational convergence will play an
important role in our investigation. So that, we recall some results related to this notion.
Throughout the rest of the paper, for given problems of the form

(P) : min
x∈Â

f̂ (x) and (Q) : max
x∈B̂

ĝ(x)

we shall denote by ArgminP and ArgmaxQ their solution sets respectively, where f̂ , ĝ :
Z → R are functions, Z is a Hausdorff topological space, Â and B̂ are nonempty subsets
of Z.

Definition 2 [8, 12] Let ϕn, ϕ : Z → R, n ∈ N be functions. We say that the sequence (ϕn)

converges variationally to ϕ in Z if the following properties are satisfied

i) For any y ∈ Z and any sequence (yn) converging to y in Z, we have

lim inf
n→+∞ ϕn(yn) ≥ ϕ(y).
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ii) For any y ∈ Z, there exists a sequence (yn) in Z such that

lim sup
n→+∞

ϕn(yn) ≤ ϕ(y).

Consider the problems

(Pϕn) : min
y∈Z

ϕn(y) and (Pϕ) : min
y∈Z

ϕ(y).

Then, we have the following well-known important convergence result concerning the
solution sets of problems (Pϕn) and (Pϕ).

Theorem 2 [8, 12] Assume that the sequence (ϕn) converges variationally to ϕ in Z. Then

i) lim sup
n→+∞

ArgminPϕn ⊂ ArgminPϕ ,

ii) lim sup
n→+∞

εn-ArgminPϕn ⊂ ArgminPϕ , ∀εn ↘ 0+, where εn-ArgminPϕn denotes the set

of εn-approximate solutions of problem (Pϕn).

Lemma 1 Assume that assumptions (2.1), (2.2), (3.1) and (3.2) are satisfied. Let (t, s) ∈
A × B and (tn, sn) be a sequence converging to (t, s) in A × B. For n ∈ N, let zn be a
common solution of problems

max
z∈B

F(tn, sn, z) and min
z∈B

f (tn, z).

Then, any accumulation point of the sequence (zn)n∈N solves the problems

max
z∈B

F(t, s, z) and min
z∈B

f (t, z).

Proof Let z̄ be an accumulation point of the sequence (zn)n∈N. Since Y is first countable,
then, there exists N ⊂ N such that zn → z̄ as n → +∞, n ∈ N . Since zn ∈ M(tn), for
n ∈ N , it follows that z̄ ∈ lim supn→+∞ M(tn) ⊂ M(t) (Proposition 1). That is z̄ solves
the problem

min
z∈B

f (t, z).

Let us show that z̄ solves the problem

max
z∈B

F(t, s, z).

Assume that there exists z∗ ∈ B such that

F(t, s, z̄) < F(t, s, z∗).
Then, the sequential continuity of F implies that

F(tn, sn, zn) < F(tn, sn, z
∗) for large n ∈ N

which contradicts the optimality of zn for large n ∈ N to the problem

max
z∈Y

F (tn, sn, z).

In the sequel, for a subset B̂ of B, ψB̂(.) denotes the indicator function of the set B̂, i.e.,

ψB̂(x) =
{
0 if y ∈ B̂

+∞ if y �∈ B̂.
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Let εn ↘ 0+. Let (t, s) ∈ A × B and (tn, sn)n be a sequence converging to (t, s) in
A × B and consider the following auxiliary problems

Rn(tn, sn) : max
z∈Ms (εn,tn)

seq
F (tn, sn, z)

and
R(t, s) : max

z∈M(t)
F (t, s, z).

Then,Rn(tn, sn) andR(t, s) are respectively equivalent to the following problems

min
z∈B

{ − F(tn, sn, z) + ψMs (εn,tn)
seq (z)

}

and
min
z∈B

{ − F(t, s, z) + ψM(t)(z)
}

in the sense that they have the same solution sets and opposite optimal values. Define the
functions h and hn on B by

hn(z) = −F(tn, sn, z) + ψMs (εn,tn)
seq (z)

and
h(z) = −F(t, s, z) + ψM(t)(z).

Then, we have the following convergence result.

Proposition 6 Assume that assumptions (2.1), (2.2) and (3.1)-(3.3) are satisfied. Then, for
any (t, s) ∈ A × B and any sequence (tn, sn)n converging to (t, s) in A × B, we have

lim sup
n→+∞

ArgmaxRn(tn, sn) ⊂ ArgmaxR(t, s).

Proof We will show that the sequence (hn) converges variationally to h in B.

1) Let z ∈ B and (zn) be a sequence converging to z in B. Let us show that

lim inf
n→+∞ hn(zn) ≥ h(z).

We distinguish the following cases.

i) If z ∈ M(t), then, h(z) = −F(t, s, z). On the other hand, assumptions (3.1) and
(3.2) imply that

lim
n→+∞ F(tn, sn, zn) = F(t, s, z).

So that, for η > 0, there exists n0 ∈ N such that

|F(tn, sn, zn) − F(t, s, z)| < η ∀n ≥ n0, n ∈ N.

It follows that

−F(t, s, z) − η < −F(tn, sn, zn) ≤ −F(tn, sn, zn) + ψMs (εn,tn)
seq (zn).

Hence
h(z) − η < hn(zn) ∀n ≥ n0, n ∈ N.

Then
lim inf
n→+∞ hn(zn) ≥ h(z) − η.

Since η is arbitrary, we deduce that

lim inf
n→+∞ hn(zn) ≥ h(z).
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ii) If z �∈ M(t), then, h(z) = +∞. Moreover, zn �∈ Ms(εn, tn)
seq

for large n ∈ N.
Otherwise, there exists an infinite subset N ⊂ N such that zn ∈ Ms(εn, tn)

seq

for all n ∈ N . Then, z ∈ lim supn→+∞ Ms(εn, tn)
seq ⊂ M(t) (Proposition 1),

which gives a contradiction. We deduce that

hn(zn) = +∞ for large n ∈ N

and the result is obvious.

2) Let z̄ ∈ B. Let us show that there exists a sequence (z̄n) in B such that

lim sup
n→+∞

hn(z̄n) ≤ h(z̄).

As above, we distinguish the following cases.

i) If z̄ �∈ M(t), then, h(z̄) = +∞, and the result is obvious.
ii) If z̄ ∈ M(t), then h(z̄) = −F(t, s, z̄). According to assumption (3.3), for n ∈ N,

let z∗
n be a common solution of problems

max
z∈B

F(tn, sn, z) and min
z∈B

f (tn, z).

We have z∗
n ∈ M(tn) ⊂ Ms(εn, tn)

seq
. Then, hn(z

∗
n) = −F(tn, sn, z

∗
n). Let N be

an infinite subset of N such that

lim sup
n→+∞

hn(z
∗
n) = lim sup

n→+∞
{ − F(tn, sn, z

∗
n)

}

= lim
n→+∞
n∈N

{ − F(tn, sn, z
∗
n)

}
.

Using the sequential compactness of B, there exists N ′ ⊂ N such that z∗
n → z∗

as n → +∞, n ∈ N ′
. That is z∗ is an accumulation point of the sequence (z∗

n)n∈N.
According to Lemma 1, z∗ solves the problems

max
z∈B

F(t, s, z) and min
z∈B

f (t, z).

So that

lim sup
n→+∞

hn(z
∗
n) = lim

n→+∞
n∈N

{−F(tn, sn, z
∗
n)}

= lim
n→+∞
n∈N ′

{−F(tn, sn, z
∗
n)}

= −F(t, s, z∗)
≤ −F(t, s, z̄) = h(z̄).

We conclude that the sequence (hn) converges variationally to h. Then, using the result
of Theorem 2, we obtain

lim sup
n→+∞

ArgmaxRn(tn, sn) ⊂ ArgmaxR(t, s).

Let εn ↘ 0+ and t be an arbitrary point in A. Let us consider the following parametric
minimization problems

(Qt,n) : min
y∈M(t)

sup
z∈Ms (εn,t)

seq
F (t, y, z)
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and
(Qt ) : min

y∈M(t)
sup

z∈M(t)

F (t, y, z).

For (x, y) ∈ A × B and n ∈ N, set

w(x, y) = sup
z∈M(x)

F (x, y, z)

and

wn(x, y) = wεn(x, y)

= sup
z∈Ms (εn,x)

seq
F (x, y, z).

Proposition 7 Assume that assumptions (2.1), (2.2) and (3.1)-(3.3) are satisfied. For n ∈ N,
let yt,n be a solution of problem (Qt,n) and yt be an accumulation point of the sequence
(yt,n)n∈N. Then, yt solves the problem (Qt ), i.e.,

lim sup
n→+∞

ArgminQt,n ⊂ ArgminQt .

Proof Feasibility: We have (yt,n)n∈N ⊂ M(t) which is sequentially closed. Then, yt ∈
M(t).

Optimality: Assume that there exists y∗ ∈ M(t) such that

w(t, y∗) = sup
z∈M(t)

F (t, y∗, z) < w(t, yt ).

So that
F(t, y∗, z) < w(t, yt ) ∀ z ∈ M(t). (3)

There exists N1 ⊂ N such that yt,n → yt as n → +∞, n ∈ N1. For n ∈ N1, let zt,n be
a solution of the problem

Rn(t, yt,n) : max
z∈Ms (εn,t)

seq
F (t, yt,n, z)

i.e.,
wn(t, yt,n) = F(t, yt,n, zt,n) (4)

(such a solution exists since the function F(t, yt,n, .) is sequentially continuous and
Ms(εn, t)

seq
is sequentially compact). From the sequential compactness of B, there exists

an infinite subset N2 of N1 such that the sequence (zt,n)n∈N2 converges to zt ∈ B. Then,
Proposition 6 implies that

zt ∈ lim sup
n→+∞

ArgmaxRn(t, yt,n) ⊂ ArgmaxR(t, yt ).

That is zt solves the problem

R(t, yt ) : max
z∈M(t)

F (t, yt , z).

So that
w(t, yt ) = F(t, yt , zt ). (5)

For n ∈ N2, let z∗
n ∈ Ms(εn, t)

seq
such that

wn(t, y
∗) = sup

z∈Ms (εn,t)
seq

F (t, y∗, z) = F(t, y∗, z∗
n). (6)
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Let N3 be an infinite subset of N2 such that (z∗
n)n∈N3 converges to z∗ ∈ B. Proposition

1 implies that z∗ ∈ M(t). Then, from (3), we have

F(t, y∗, z∗) < w(t, yt ).

Using (5), we get
F(t, y∗, z∗) < F(t, yt , zt ).

So that, the sequential continuity of F implies that

F(t, y∗, z∗
n) < F(t, yt,n, zt,n) for large n ∈ N3.

Then, using respectively (6) and (4), we obtain

wn(t, y
∗) < wn(t, yt,n) for large n ∈ N3

which contradicts the optimality of yt,n to the problem (Qt,n) for large n ∈ N3.

Let εn ↘ 0+. For x ∈ A and n ∈ N, set

u(x) = inf
y∈M(x)

sup
z∈M(x)

F (x, y, z) and un(x) = uεn(x).

Recall that

uεn(x) = inf
y∈M(x)

wεn(x, y)

= inf
y∈M(x)

sup
z∈Ms (εn,x)

seq
F (x, y, z).

Now, we are able to state our main result on the existence of solutions to problem (S).

Theorem 3 Let assumptions (2.1), (2.3) and (3.1)-(3.3) hold. If moreover, A is sequentially
compact, then, the original strong-weak nonlinear bilevel problem (S) has at least one
solution.

Proof Let εn ↘ 0+. According to Theorem 1, for n ∈ N, let x̄n be a solution of the
regularized problem (Sεn). For n ∈ N, let ȳn be a solution of problem Sεn(x̄n) (Proposition
5). Since A × B is sequentially compact, then, there exists an infinite subset N of N such
that the subsequence (x̄n, ȳn)n∈N converges to (x̄, ȳ) ∈ A × B. Let us show that x̄ solves
the problem (S).

Feasibility: We obviously have x̄ ∈ A.
Optimality: Assume that there exists x∗ ∈ A such that

u(x∗) < u(x̄)

i.e.,
inf

y∈M(x∗)
sup

z∈M(x∗)
F (x∗, y, z) < inf

y∈M(x̄)
sup

z∈M(x̄)

F (x̄, y, z).

Hence

inf
y∈M(x∗)

sup
z∈M(x∗)

F (x∗, y, z) < sup
z∈M(x̄)

F (x̄, y, z) ∀ y ∈ M(x̄). (7)

For n ∈ N , we have ȳn is a solution of problem

Sεn(x̄n) : min
y∈M(x̄n)

sup
z∈Ms (εn,x̄n)

seq
F (x̄n, y, z)
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i.e.,

un(x̄n) = inf
y∈M(x̄n)

sup
z∈Ms (εn,x̄n)

seq
F (x̄n, y, z)

= sup
z∈Ms (εn,x̄n)

seq
F (x̄n, ȳn, z).

Let z̄n ∈ Ms(εn, x̄n)
seq

such that

un(x̄n) = sup
z∈Ms (εn,x̄n)

seq
F (x̄n, ȳn, z) = F(x̄n, ȳn, z̄n) (8)

i.e., z̄n ∈ ArgmaxRn(x̄n, ȳn), n ∈ N (such a point exists from the sequential compact-
ness of the set Ms(εn, x̄n)

seq
and the sequential continuity of the function F(x̄n, ȳn, .)

on B). Using again the sequential compactness of the set B, we deduce that there exists
an infinite subset N1 of N such that the sequence (z̄n)n∈N1 converges to z̄. Proposition
6 implies that

z̄ ∈ lim sup
n→+∞

ArgmaxRn(x̄n, ȳn) ⊂ ArgmaxR(x̄, ȳ).

That is
sup

z∈M(x̄)

F (x̄, ȳ, z) = F(x̄, ȳ, z̄). (9)

On the other hand, for n ∈ N1, ȳn solves the problem Sεn(x̄n). So that, ȳn ∈
M(x̄n). Since (ȳn)n∈N1 converges to ȳ, then it follows from Proposition 1 that ȳ ∈
lim supn→+∞ M(x̄n) ⊂ M(x̄). Then, from (7), we have

inf
y∈M(x∗)

sup
z∈M(x∗)

F (x∗, y, z) < sup
z∈M(x̄)

F (x̄, ȳ, z).

It follows from (9) that

inf
y∈M(x∗)

sup
z∈M(x∗)

F (x∗, y, z) < F(x̄, ȳ, z̄). (10)

For n ∈ N1, let yx∗,n be a solution of problem (Qx∗,n) considered in Proposition 7
((Qx∗,n) is obtained for t = x∗). That is

un(x
∗) = inf

y∈M(x∗)
sup

z∈Ms (εn,x∗)seq
F (x∗, y, z)

= sup
z∈Ms (εn,x∗)seq

F (x∗, yx∗,n, z). (11)

From the sequential compactness of B, there exists an infinite subset N2 of N1 such
that (yx∗,n)n∈N2 converges to yx∗ . Therefore, yx∗ solves the problem (see Proposition 7)

(Qx∗) : min
y∈M(x∗)

sup
z∈M(x∗)

F (x∗, y, z).

That is
min

y∈M(x∗)
sup

z∈M(x∗)
F (x∗, y, z) = sup

z∈M(x∗)
F (x∗, yx∗ , z).

It follows from (10) that

sup
z∈M(x∗)

F (x∗, yx∗ , z) < F(x̄, ȳ, z̄). (12)

In (11), for n ∈ N2, let z∗
n ∈ Ms(εn, x∗)seq such that

un(x
∗) = F(x∗, yx∗,n, z

∗
n). (13)
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Using the sequential compactness of B, we can find N3 ⊂ N2 such that z∗
n → z∗

which belongs toM(x∗) according to Proposition 1. Since z∗ ∈ M(x∗), then from (12),
we get

F(x∗, yx∗ , z∗) < F(x̄, ȳ, z̄).

Hence
F(x∗, yx∗,n, z

∗
n) < F(x̄n, ȳn, z̄n) for large n ∈ N3.

Using respectively (13) and (8), we obtain

un(x
∗) < un(x̄n) for large n ∈ N3

which contradicts the optimality of x̄n to the problem (Sεn), for large n ∈ N3.

Remark 5 Theorem 3 is also valid for weak nonlinear bilevel problems in the finite and
infinite dimensional cases by deleting the variable y. Then, by application of this Theorem,
we obtain under weaker assumptions without assuming convexity properties the result given
in [3] for weak nonlinear bilevel programming problems. So that, our result constitutes an
extension and an improvement of the result given in [3]. Moreover, it gives a generalization
from the linear finite dimensional case to the nonlinear infinite dimensional one of the result
given in [26]. However, according to our investigation, this generalization required a new
approach and tools different from those used in [26]. Furthermore, by means of the property
in assumption (3.3), we are led to investigate in one-level optimization instead of two-level
optimization (see the remark below).

Remark 6 The property considered in assumption (3.3) concerns two parameterized prob-
lems in one-level optimization. In order to verify this property, we are led to verify if the
solution sets of these two problems have a nonempty intersection. So that, by means of
Theorem 3, the problem of the existence of solutions to (S) is reduced principally to the
problem of the existence of a common solution of two parameterized one-level optimization
problems.

For illustration, let us consider the following example where all assumptions of Theorem
3 are satisfied.

Example 4 Let X = R
2, Y = R, A = [1, 2] × [1, 2] and B = [1, 2]. Let F and f be the

functions defined on R
2 × R × R and R2 × R respectively by

F(x, y, z) = −(x1 + 1

2
x2
2 )yz2

f (x, z) = (x1 − 1)x3
2z

2 + 1

2
(1 − x1)

2x2

with x = (x1, x2). It is easy to see that assumptions (2.1), (2.3), (3.1) and (3.2) are satisfied
and A and B are compact. Let us verify assumption (3.3). For (x, y) ∈ A × B, consider the
problems

P(x) : min
z∈[1,2] f (x, z)

and
Q(x, y) : max

z∈[1,2]
F(x, y, z)
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which admit respectively the following solution sets

M(x) =
{ [1, 2] if x1 = 1

{1} if x1 ∈ ]1, 2]

and
M̂(x, y) = {1}

Then, z = 1 is a common solution to the problemsP(x) andQ(x, y). Hence, assumption
(3.3) is satisfied. So that, according to Theorem 3 the solution set of the bilevel problem

(S) : min
xi≥1
xi≤2
i=1,2

inf
y∈M(x)

sup
z∈M(x)

{−(x1 + 1

2
x2
2 )yz2}

is nonempty.

The following example shows that assumption (3.3) is not necessary for the existence of
solutions.

Example 5 Let X = Y = R, A = [2, 3] and B = [−5, 5]. Let F and f be the functions
defined on R × R × R and R × R respectively by

F(x, y, z) = x − y − z

f (x, z) =
{
0 if z2 − x2 ≤ 0
z2 − x2 if z2 − x2 > 0.

For (x, y) ∈ A × B, consider the problems

P(x) : min
z∈[−5,5] f (x, z)

and
Q(x, y) : max

z∈[−5,5]
F(x, y, z).

So that, assumptions (2.1), (2.3), (3.1) and (3.2) are satisfied. Moreover, A and B are
compact sets. With the same notations as above in Example 4, we have

M(x) = [−x, x] and M̂(x, y) = {−5}.
If follows that assumption (3.3) is not satisfied. On the other hand, we can easily check

that x̄ = 2 solves the problem

(S) : min
x∈[2,3] inf

y∈M(x)
sup

z∈M(x)

(x − y − z).

So that, assumption (3.3) is not necessary.

4 Conclusion

As we have mentioned, the study of the existence of solutions to strong-weak nonlinear
bilevel problems is a difficult task. For illustration, the Example 3 presents a case where
the objective functions are continuous and the decision variables range over compact sets,
but the considered bilevel problem has no solutions. Then, our main result in Theorem 3
provides sufficient conditions ensuring the existence of solutions to such problems. For
that, we have first given a regularization for problem (S) which consists to substituteM(.)

with a lower semicontinuous multifunction. Then, the main result is established via this
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regularization and the notion of variational convergence. The use of such a regularization
allowed us to avoid convexity properties contrary to the one used in [1]. The obtained result
can be applied to weak nonlinear bilevel problems in the finite and infinite dimensional
cases by deleting the variable y. It is an extension and an improvement of the result given for
weak nonlinear bilevel programming problems in [3]. It is also a generalization of the result
given in [26] dealing with strong-weak bilevel problems. The generalization is from the lin-
ear finite dimensional case to the nonlinear infinite dimensional one. Another advantage of
our result is that we are led to investigate in one-level optimization instead of two-level opti-
mization. On the other hand, we note that the numerical study for such a class of problems
is still in its infancy. The linear finite dimensional case was studied in [26], where numerical
results are given. Another interesting subject is the numerical experiments of the nonlinear
strong-weak bilevel problems. This is out of the scope of this paper and will be the subject
of another paper.
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