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Abstract This paper provides a framework for deriving a new set of necessary conditions
for adverse control problems among two players. The distinguish feature of such problems
is that the first player has a priori knowledge on the second player strategy. A subclass of
adverse control problems is the one of minimax control problems, which frequently arise
in robust dynamic optimization. The conditions derived in this manuscript are expressed in
terms of relaxed derivatives: the dual variables and the related functions are limits of com-
putable sequences, obtained by considering a regularized version of the original problem
and applying well known necessary conditions. This topic was initially treated by J. Warga.
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1 Introduction

In this paper, we consider adverse control problems between two players described by
differential equations

y(t) = b +
t∫

t0

f (s, y(s), u(s))ds
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ỹ(t) = b̃ +
t∫

t0

f̃ (s, ŷ(s), u(s), v(s))ds.

In this model, u(.), b, and y(.) are, respectively, the control, the initial state and the state
trajectory of the first player, while v(.), b̃ and ỹ(.) are, respectively, the control, the initial
state and the state trajectory of the second player; ŷ(.) = (y(.), ỹ(.)) is the state trajectory
of the control system and b̂ = (b, b̃) is its initial condition at time t0, which can be varying
on a given set (details will be provided in the following section). Adverse control problems
concern the choice of (u(.), b, b̃) that minimizes a given function h0(y(u)(t1)) and satisfies
constraints expressed in terms of

h1(y(u)(t1)) = 0, ĥ(ŷ(u, v)(t1)) ≤ 0
for every admissible strategy v(.).

Adverse control problems have some formal analogy with differential games, but yield a
priori information to the second player about the first player strategy. The model formulation
that we deal with emphasizes this different feature by decoupling the player one trajectory
y(.) from the player two trajectory ỹ(.), instead of considering a joint differential equation

ŷ(t) = b̂ +
t∫

t0

f̂ (s, ŷ(s), u(s), v(s))ds,

as it is usually taken into account in the differential game framework. A particular case of
adverse control problems are minimax problems, in which

h0(y(u)(t1)) = sup
v

ĥ0(ŷ(u, v)(t1))

and the minimization process is carried out following some “worst case” criteria. A deeper
exposition on minimax optimal control is presented in the monograph [1].

Adverse control problems were extensively studied by Warga in his monograph [8], in
which he proposed two extensions of the original problem, aimed to guarantee the existence
of a solution. He denotes such enlarged problems as relaxed and hyperrelaxed, respectively.
The relaxed extension can be properly used to model the case in which the function f̃ is
additively coupled with respect to the control strategies of players one and two respectively,
that is:

f̃ (t, ŷ, u, v) = f̃1(t, ŷ, u) + f̃2(t, ŷ, v);
another case in which the relaxed extension can be successfully applied is when the second
player does not have perfect means to detect the value u(t), but can just detect an average
of values of u(.) over short intervals of time. In all the other cases (which means, when f̃

assumes a general form and when the second player can acquire information on the value
u(t)), the relaxed problem can fail to provide the “right” value of the adverse control prob-
lem: in other words, it can occur that the value of the relaxed extension is lower than the
value of the original problem, even for smooth dynamics (as it is showed in [8] and in the
last section of the paper). This lack of properness motivates the attention for the hyperre-
laxed extension: in this setting, the second player gains more freedom in the choice of the
control strategy, making the hyperrelaxed problem formulation “fair”, in the sense that the
value of the hyperrelaxed extension does not change with respect to the original one. In [8]
and [7], Warga proves the properness of the hyperrelaxed problem and the existence of a
sequence of original controls which approximates the hyperrelaxed problem solution.
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In the same monograph, necessary conditions both for relaxed and hyperrelaxed prob-
lems are derived in the case of smooth data. The nonsmooth setting is considered in [11],
where necessary conditions are derived using the notion of Warga derivative container (see
[9], [10]). However, as it is explained in ([11], Section 3), there are some technical diffi-
culties (related to the measurability of the relaxed and hyperrelaxed hamiltonians) which
prevent to obtain a “pointwise” maximum principle strong as much as in the smooth setting.

A different approach to the particular case in which minimax problems are considered is
provided in [6], where the set of “adverse trajectories” is identified with a compact metric
space. Necessary conditions are expressed in terms of a nonsmooth Pontryagin maximum
principle in which the adjoint equation and the transversality condition are modified in order
to gain good compactness properties in the proofs. Main ideas and tools used in the proofs
of [6] can be found in [4] and [5]

The aim of this paper is to provide a new set of necessary conditions for adverse control
problems which have a stronger resemblance with the necessary conditions established in
[8] for the smooth setting. Indeed, the main results, collected in theorems 31 and 32, provide
a form of Pontryagin maximum principle in which the pointwise maximum condition is still
preserved and the adjoint equations have limit representations.

The key idea of the proofs is to define a sequence of perturbed smooth problems for
which well-known necessary conditions apply and the couples solutions/multipliers con-
verge to a couple solution/multiplier of the hyperrelaxed (or relaxed) problem. We do not
make use of variational principles, but we regularize the data by convolution techniques.
We do not provide direct substitute to the non-existing derivative of nonsmooth data, but we
cope with the convolution integrals, using the concept of “relaxed derivative” established in
[12].

We stress that the sequence solutions/multipliers generated in the main proofs could be
computed in many cases of interest and no a priori information on the minimizers of the
adverse control problem is required.

The paper is organized as follows: in Section 2 we describe notations, a precise statement
of the problem, an overview on relaxation and hyperrelaxation schemes and the assumptions
that we refer to through all the paper; furthermore, we provide some tools, lemmas and
convergence results for convolution approximations and relaxed derivatives; in particular in
Section 2.7, we derive necessary conditions in the smooth case for the problem formulation
we will deal with. In Section 3, the main theorems and their proofs can be found, while in
Section 4 an illustrative example is discussed.

2 Preliminaries

2.1 Notation

In this section, we introduce notations and basic concepts which we will use through all the
paper.

Given a compact set K , we denote as C(K) the set of all continuous functions defined on
K. It is well known that the set C∗(K) (the set of linear and continuous functionals defined
on C(K)) can be identified with the set of finite Radon measures on K , which we denote as
f.r.m.(K). Further we denote as f.r.m.+(K) the set of finite positive Radon measures and by
r.p.m.(K) the set of Radon probability measures on K . We denote also as B(K) the Borel
σ−field on K and for every μ ∈ C∗(K), we denote as μ(K) the norm in total variation
of μ.
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Given a measure space (X,μ,F) and a metric space (Y, d), we denote as
L1(X,μ, Y ) := L(X, μ, Y )/ ∼, where L(X,μ, Y ) is the set of the μ-integrable functions
f : X → Y defined at every point x ∈ X such that

∫ |f (x)|μ(dx) < ∞ and ∼ is the
equivalence relation f ∼ g iff f = g μ-a.e. In the paper, we use the notation L1(X,μ) or
L1(μ, Y ) when there is no disambiguation in the codomain or the domain, respectively.

Given a set A, we denote as coA the convex hull of A and as χA the indicator function
related to A. Finally, we denote as B the closed unit ball in the euclidean space with suitable
dimension, as P(K) the power set of K , as Mr×k the set of matrices with r rows and k

columns and as Ik the identity matrix of dimension k.

2.2 Original Problem Statement

Consider the adverse control problem

(OP )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimizeu∈U h0(y(u)(t1))

over measurable functions u(.), v(.) such that
u(t) ∈ U(t), v(t) ∈ V (t) a.e. t ∈ [t0, t1]
ẏ(t) = f (t, y(t), u(t)) a.e. t ∈ [t0, t1]˙̃y(t) = f̃ (t, ŷ(t), u(t), v(t)) a.e. t ∈ [t0, t1]
y(t0) = b ∈ B, ỹ(t0) = b̃ ∈ B̃ and h1(y(u)(t1)) = 0
ĥ(ŷ(u, v)(t1)) ≤ 0 for each v ∈ V

,

where f : [t0, t1] × R
n × U → R

n, f̃ : [t0, t1] × R
n+m × U × V → R

m, h0 : Rn → R,
h1 : R

n → R and ĥ : R
n × R

m → R are given functions, U and V compact metric
spaces and [t0, t1] ⊂ R a given interval. The initial condition b̂ := (b, b̃) takes values
on the compact and convex set B̂ := B × B̃ ⊂ R

n × R
m. It turns out that the initial

condition can be regarded as a choice of control parameters for problem (OP ) (cfr. [8]).
We denote as ŷ = (y, ỹ), as f̂ = (f, f̃ ) and we sometimes emphasize the dependence
on the controls writing y(u)(t), ŷ(u, v)(t). The mappings U(.) : [t0, t1] → P(U) and
V (.) : [t0, t1] → P(V) are given Borel measurable multifunctions with compact values
and we denote as U (resp. V) the set of all measurable functions u(.) : [t0, t1] → U such that
u(t) ∈ U(t) a.e. t ∈ [t0, t1] (resp. v(.) : [t0, t1] → V such that v(t) ∈ V (t) a.e. t ∈ [t0, t1]).

2.3 Assumptions

In this paper, we assume the following hypotheses on the data: let � ⊂ R
n, �̃ ⊂ R

m be
open sets, �̂ := � × �̃. We consider functions

f̂ = (f, f̃ ) : [t0, t1] × �̂ × U × V → R
n+m, hi : � → R, i = 0, 1,

ĥ : �̂ → R

such that

H1) f̂ (., ŷ, u, v) is Lebesgue measurable for each (ŷ, u, v) and f̂ (t, ., ., .) is continuous
a.e. t ∈ [t0, t1];

H2) there exist a constant L
f̂
and an integrable function χ(.) such that

|f̂ (t, ŷ, u, v) − f̂ (t, ŷ ′, u, v)| ≤ L
f̂
|ŷ − ŷ′|

and
|f̂ (t, ŷ, u, v)| ≤ χ(t)

for every ŷ, ŷ′ ∈ �̂, u ∈ U, v ∈ V, a.e. t ∈ [t0, t1];
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H3) there exist positive numbers Lh0 , Lh1 , Lĥ
≥ 0 such that

|hi(y) − hi(y
′)| ≤ Lhi

|y − y′|, i = 0, 1, |ĥ(ŷ) − ĥ(ŷ′)| ≤ L
ĥ
|ŷ − ŷ′|,

for every y, y′ ∈ � and ŷ, ŷ′ ∈ �̂.

2.4 Relaxed and Hyperrelaxed Problems

The adverse control problem (OP ) does not always admit a solution, when we restrict the
choice of controls u(.) and v(.) to be elements of U and V , respectively. As it is showed in
[8] and [11], there are two ways to guarantee the existence of a solution for adverse control
problems.

The first method concerns the symmetric relaxation of both players. More precisely, we
introduce the set of Borel measurable mappings

S := {σ(.) : [t0, t1] → r.p.m.(U) : σ(t)(U(t)) = 1 a.e. t ∈ [t0, t1]} ,

and we symmetrically extend the choice for the second player to the set of Borel measurable
mappings

SP := {σP (.) : [t0, t1] → r.p.m.(V) : σP (t)(V (t)) = 1 a.e. t ∈ [t0, t1]} .

Then we consider the new relaxed problem (RP ), which has the same data of (OP ), but
where the dynamic equations are replaced by

y(σ )(t) = b +
t∫

t0

ds

∫
f (s, y(s), u)σ (s)(du)

ỹ(σ × σP )(t) = b̃ +
t∫

t0

ds

∫
f̃ (s, ŷ(s), u, v)σ (s)(du) × σP (s)(dv),

where σ × σP is the product measure between σ ∈ S and σP ∈ SP . The control strategies
for players one and two are now elements of S and SP , respectively. It is showed in ([8],
Example IX.2.2, pp 453–456) that the problems (OP ) and (RP ) can have different values
if we do not assume some special hypotheses on the structure of the dynamics.

We now move our attention to the hyperrelaxed extension, which does not modify the
value of the problem, let alone special assumptions on the structure of f̂ . The problem is
modified as follows: the first player can still choose the control strategy in the set of relaxed
controls S while the second player, in order to not modify the cost of the problem, has to
pick controls up from a larger set than S. These controls are mentioned as hyperrelaxed and
lie in the set

P̃ := {π(., .) : [t0, t1] × U → r.p.m.(V) : π(t, u)(V (t)) = 1, a.e. t ∈ [t0, t1], ∀ u ∈ U} .

Roughly speaking, if we consider the set of Borel measurable mappings

Q := {α : [t0, t1] → r.p.m.(U × V) : α(U(t) × V (t)) = 1, a.e. t ∈ [t0, t1]},
then S can be considered as the set of the Borel measurable mappings from [t0, t1] to the
set of marginal probabilities on U, while P̃ can be regarded as the set of the mappings from
[t0, t1] to the set of the conditional probabilities on V with respect to the information u ∈ U.
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The hyperrelaxed problem has the same data of (OP ), but the choice of controls is σ ∈ S
for the first player and π belonging to a modification of P̃ (details will be given later in the
subsection) for the second one. This changes the dynamic equations as follows:

y(σ )(t) = b +
t∫

t0

ds

∫
f (s, y(σ )(s), u)σ (s)(du),

ỹ(σ ⊗ π)(t) = b̃ +
t∫

t0

ds

∫
f̃ (s, ŷ(σ ⊗ π)(s), u, v)σ (s)(du) ⊗ π(s, u)(dv),

where the symbol σ ⊗ π denotes the unique element inQ such that
t∫

t0

ds

∫
ϕ(s, u, v)σ (s)(du) ⊗ π(s, u)(dv) =

t∫

t0

ds

∫
σ(s)(du)

∫
ϕ(s, u, v)π(s, u)(dv)

for every ϕ(., ., .) ∈ L1(dt, C(U × V)), (for more details, see [8], Lemma X.1.3, pp. 485).
We denote as (HP ) the hyperrelaxed version of the problem (OP ).

As it is pointed out in ([8], Remark, pp. 489), there appears not useful way to define a
compact metric topology on P̃ such that the function π → σ ⊗ π is continuous for every
σ ∈ S. However, we can overcome this difficulty proceeding as follows:

1. Restrict our attention to some fixed denumerable subset S ′ ⊂ S;
2. Introduce on P̃ the following relation ∼: π1 ∼ π2 if and only if

σ ⊗ π1(t) = σ ⊗ π2(t) a.e. t ∈ [t0, t1], ∀ σ ∈ coS ′.
We denote as P the set of equivalence classes on P̃;

3. We introduce a compact metric topology on P , which makes continuous the mapping
π → σ ⊗ π for every σ ∈ coS ′. By ([8], Lemma X.I.I, pp. 482), for every σ̃ ∈ coS ′
there exists a unique nonatomic measure ζ̃ such that

t1∫

t0

dt

∫
h(t, u)σ̃ (t)(du) =

∫
h(t, u)ζ̃ (d(t, u)) ∀ h ∈ L1([t0, t1] × U, ζ̃ ).

P can be regarded as the set of the ζ̃−measurable mappings π : [t0, t1] × U →
r.p.m.(V) such that π(t, u)(V (t)) = 1 ζ̃−a.e. which elements are also Borel measur-
able on the set ([t0, t1] × U). (for more details, see ([8], Definition X.2.1, pp. 496) and
following discussion).

We now state a lemma that provides a link between the measure ζ̃ and the elements σ ∈ S ′.

Lemma 21 Let S ′, P and ζ̃ be defined as above. Then limi σ ⊗ πi = σ ⊗ π for every
σ ∈ S ′ if limi πi = π in P . Furthermore, if E is a ζ̃−null set, then χE(t, u) = 0 σ(t)−a.e.
r, a.e. t ∈ [t0, t1], for every σ ∈ S ′.

Proof See ([8], Lemma X.2.2, pp. 497).

Using lemma 21 and the formal construction of the hyperrelaxed control set described
in points (1) − (3), it is easy to check that the definition of hyperrelaxed controls does not
depend on the choice of ζ̃ . Indeed, taking any other σ ∈ coS ′ and the associated measure
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ζ , it turns out that ζ and ζ̃ are equivalent and null sets of ζ̃ are also null sets of ζ (and vice
versa).

It is proven in ([8], Theorem VI.I.I, pp. 348) that the functions S � σ → y(σ ) and
Q � σ ⊗ π → ŷ(σ ⊗ π) are continuous. Furthermore, since ([8], Lemma X.3.3, pp. 504),
the function P � π → ŷ(σ ⊗ π) is continuous for every σ ∈ coS ′, and also the function
SP � σP → σ ⊗ σP is continuous for every σ ∈ S.

To summarize, the new relaxed and hyperrelaxed adverse control problems can be written
as follows:

(RP )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimizeσ∈S h0(y(σ )(t1))

over σ × σP ∈ S × SP , s.t.
ẏ(t) = f (t, y(t), σ (t)) a.e. t ∈ [t0, t1]˙̃y(t) = f̃ (t, ŷ(t), σ × σP (t)) a.e. t ∈ [t0, t1]
y(t0) = b ∈ B, ỹ(t0) = b̃ ∈ B̃ and h1(y(σ )(t1)) = 0
ĥ(ŷ(σ × σP )(t1)) ≤ 0 for each σP ∈ SP

,

and

(HP )

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Minimizeσ∈S h0(y(σ )(t1))

over σ ∈ S, π ∈ P, s.t.
ẏ(t) = f (t, y(t), σ (t)) a.e. t ∈ [t0, t1]˙̃y(t) = f̃ (t, ŷ(t), σ ⊗ π(t)) a.e. t ∈ [t0, t1]
y(t0) = b ∈ B, ỹ(t0) = b̃ ∈ B̃ and h1(y(σ )(t1)) = 0
ĥ(ŷ(σ ⊗ π)(t1)) ≤ 0 for each π ∈ P

,

where, to the sake of shortness, we have used the notation

f (t, y(t), σ (t)) :=
∫

U

f (t, y(σ )(t), u)σ (t)(du),

f̃ (t, ŷ(t), σ ⊗ π(t)) :=
∫

U×V

f̃ (t, ŷ(σ ⊗ π)(t), u, v)σ (t)(du) ⊗ π(u, t)(dv)

and

f̃ (t, ŷ(t), σ × σP (t)) :=
∫

U×V

f̃ (t, ŷ(σ × σP )(t), u, v)σ (du) × σP (dv)(t).

2.5 A Special Choice of S ′

Let σ̄ ∈ S be a given relaxed control. We define a special denumerable set S ′ which will
be used at a succeeding stage. By ([8] Condition IV.3.I, pp 280), there exists a denumerable
subset U∞ of U such that the set {u(t)|u ∈ U∞} is dense in U(t) a.e. t ∈ [t0, t1]. We stress
that the compactness of U is a sufficient condition by which such a condition is satisfied.
If we denote as I∞ the set of all the subintervals [a, b] of [t0, t1] with rational endpoints,
then the set U∞ × I∞ is still denumerable and takes the form {(uj , [aj , bj ]) : j ∈ N}. We
denote as δr the Dirac measure at r; we set σ0 := σ̄ and, for all j ∈ N,

σj (t) :=
{

δuj (t) if t ∈ [aj , bj ]
σ̄ (t) otherwise

.

We finally set S ′ := {σ0, σ1, σ2, . . .}. This special construction for the denumerable set S ′
will be helpful in the proofs of theorem 31.
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2.6 Relaxed Derivatives

Consider an open set �′ ⊂ R
n and a set � ⊂ �′ which has compact closure into �. We use

the notation � ⊂⊂ �′ and we can always suppose that there exists an ε > 0 small enough
such that � + εB ⊂ �′.

We construct a C∞ function as follows: define

�̄(x) :=

⎧⎪⎨
⎪⎩

exp
( −1
1−|x|2

)
if x ∈ B

0 otherwise

and consider its normalization �(x) = �̄(x)∫
B

�̄(x′)dx′ . It follows that �(.) is C∞, has compact

support in B and ∫

Rn

�(x)dx =
∫

B

�(x) = 1.

Furthermore we can define a function �j (x) := jn�(jx) which has compact support in
1
j
B and such that

∫
�j (x)dx = 1 for each j ∈ N. We say that the function �(.) is a C∞

mollifier and that {�j } is a sequence of mollifiers.
Let φ : �′ ⊂ R

n → R be a locally Lipschitz function with constant Lφ and take a
point x ∈ �. We next consider the convolution between the sequence of mollifiers and the
function φ(.) defining

φj (x) := (φ ∗ �j )(x) :=
∫

j−1B

�j (y)φ(x − y)dy =
∫

x+j−1B

�j (x − y)φ(y)dy.

The last equality is well defined for j sufficiently small because x ∈ �. The sequence
{φj (.)}j∈N is called convolution approximation of the function φ(.). It turns out that the
functions φj (.) are C∞ and their partial derivatives ∂xφ

j (.) are uniformly continuous on �̄.
Furthermore, by the Rademacher theorem, the function ∂xφ(.) exists a.e. and, for x ∈ �,
we set

∂xφ
j (x) :=

∫

j−1B

�j (y)∂xφ(x − y)dy.

If η : [t0, t1] → � is a continuous function, then t → ∂
j
x φ(η(t)) is Lebesgue measurable

and dominated by |∂j
x φ(η(t))| ≤ Lφ. It follows that the integral

�j :=
t1∫

t0

∂
j
x φ(η(t))dt

is well defined and, by the dominated convergence theorem, there exists � := limj �j . We
call � the relaxed derivative of φ(.) evaluated along the continuous function η(.).

We have the following result:

Lemma 22 Suppose that φ(.) and � are the same objects defined in Section 2.6 and that
φj (.) are the convolution approximations of φ(.). Then φj (.) are locally Lipschitz with
constant Lφ and, for all x ∈ �,

|∂xφ
j (x)| ≤ Lφ, |φj (x) − φ(x)| ≤ Lφ/j.



Necessary Conditions for Adverse Control Problems 667

Proof See [2].

The analysis carried out in this section can be easily extended to any function φ : [t0, t1]×
�×U → R

n such that t → φ(t, x, u) is integrable for every (x, u) ∈ �×U, x → φ(t, x, u)

is Lipschitz continuous a.e. t ∈ [t0, t1], for every u ∈ U and u → φ(t, x, u) is continuous
a.e. t ∈ [t0, t1], for every x ∈ �.

2.7 Preliminary Results: The Smooth Case

We now state results dealing with the case in which all the data of the adverse control
problems (RP ) and (HP ) are smooth. Such lemmas are very similar to [8], X.3.5, X.3.7,
but they differ in the typology of adverse control problems that we are dealing with. In what
follows, we will invoke the following hypothesis:

H4) f̂ (t, ., u, v), ĥ(.) and hi(.), i = 0, 1 are all continuously differentiable, a.e. t ∈
[t0, t1], for all u ∈ U, v ∈ V.

Furthermore, for t ∈ [t0, t1], σ̄ ∈ S and π ∈ P , we will denote as

Z(t) := In +
t1∫

t

Z(s)∂xf (s, y(σ̄ )(s), σ̄ (s))ds,

Ẑ(π)(t) = In+m +
t1∫

t

Ẑ(π)(s)∂xf̂ (s, ŷ(σ̄ ⊗ π)(s), (σ̄ ⊗ π)(s))ds,

which are well posed since the regularity of the dynamics with respect to the state variable.

Lemma 23 Assume hypotheses H1) - H4). Then, given (σ̄ , b̄,
¯̃
b) minimizer for problem

(HP ), there exist l0 ≥ 0, l1 ∈ R and ω ∈ f.r.m.+(P) such that

i) 0 < l0 + |l1| + ω(P) ≤ 1;
if we set

k(t) := (l0∂xh0(y(σ̄ )(t1)) + l1∂xh1(y(σ̄ )(t1)))Z(t),

k̂(π)(t) := ∂xĥ(ŷ(σ̄ ⊗ π)(t1))Ẑ(π)(t),

h(π, t, u) = max
v∈V (t)

k̂(π)(t)f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v),

and

H(t, u) = k(t)f (t, y(σ̄ )(t), u) +
∫

h(π, t, u)ω(dπ),

for each π ∈ P , u ∈ U(t), a.e. t ∈ [t0, t1], then
ii)

∫
H(t, u)σ̄ (t)(du) = min

u∈U(t)
H(t, u) a.e. t ∈ [t0, t1],

iii) h(π, t, u) =
∫

k̂(π)(t)f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv),

for ω-a.a. π ∈ P , a.e. t ∈ [t0, t1], σ̄ (t)−a.a. u ∈ U,

iv) ĥ(ŷ(σ̄ ⊗ π∗)(t1) = max
π∈P ĥ(ŷ(σ̄ ⊗ π)(t1)) = 0
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for ω-a.a. π∗ ∈ P , and

v) k(t0)b̄ + λ(b̄,
¯̃
b) = min

(b,b̃)∈B̂

k(t0)b + λ(b, b̃),

where λ := ∫
k̂(π)(t0)ω(dπ).

Proof We apply theorem [8], X.2.4 to the data of the problem (HP ). From condition [8],
X.2.4 (1), it follows that there exist l0 ≥ 0, l1 ∈ R, ω ∈ f.r.m.+(P) and an ω̃(.) function
which is L1(ω,P) and such that |ω̃(π)| = 1 for ω-a.a. π ∈ P . In particular, from condition
[8], X.2.4 (3), we obtain that ω̃ ≡ 1 and that

ĥ(ŷ(σ̄ ⊗ π∗)(t1)) = 0 ω − a.a π∗ ∈ P .

Conditions i) and iv) are then satisfied.
Now applying the result of [8], X.3.2 to the function (σ ⊗ π) → ĥ(ŷ(σ ⊗ π)(t1)) and
combining with [8], X.1.4, we get the relation

h(π, t, u) =
∫

∂xĥ(ŷ(σ̄ ⊗ π)(t1))Ẑ(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv),

for ω-a.a. π ∈ P , a.e. t ∈ [t0, t1], σ̄ (t)−a.a. u ∈ U, which is condition iii).
From [8], X.2.4 (2), arguing as in the proof of [8], X.3.5, Step 3, relations ii) and v)

follow. This completes the proof.

We now state a similar result for relaxed adverse control problems. We do not perform
the proof since it is based on the same arguments of the proof of lemma 23. We just point out
that instead of applying theorem X.2.4, [8], we invoke theorem IX.1.2, [8], which is specific
for the relaxed extension of problem (OP ). It is worth mentioning that the minimization
principle ii) is performed on the set of relaxed controls S and involves an ‘averaged max-
imized’ hamiltonian h(σP , t, s), s ∈ S . For given t ∈ [t0, t1], σ̄ ∈ S and σ̄P ∈ S , the
function Z(.) remains unchanged, while we define

Ẑ(σP )(t) = In+m +
t1∫

t

Ẑ(σP )(s)∂xf̂ (s, ŷ(σ̄ × σP )(s), (σ̄ × σP )(s))ds.

Lemma 24 Assume hypotheses H1) - H4). Then, given (σ̄ , b̄,
¯̃
b) minimizer for problem

(RP ), then there exist l0 ≥ 0, l1 ∈ R and ω ∈ f.r.m.+(P) such that

i) 0 < l0 + |l1| + ω(P) ≤ 1;
if we set

k(t) := (l0∂xh0(y(σ̄ )(t1)) + l1∂xh1(y(σ̄ )(t1)))Z(t),

k̂(σP )(t) := ∂xĥ(ŷ(σ̄ × σP )(t1))Ẑ(σP )(t)

h(σP , t, s) := max
v∈V (t)

k̂(σP )(t) ·
∫

f̂ (t, ŷ(σ̄ × σP )(t), u, v)s(du),

and

H(t, s) = k(t)f (t, y(σ̄ )(t), s) +
∫

h(σP , t, s)ω(dσP ), (s ∈ S)

then

ii)

∫
H(t, u)σ̄ (t)(du) = min

s∈S H(t, s) a.e. t ∈ [t0, t1],
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iii) h(σP , t, σ̄ (t)) = k̂(σP )(t)

∫
f̂ (t, ŷ(σ̄ × σP )(t), σ̄ (t), v)σP (dv),

for ω-a.a. σP ∈ SP , a.e. t ∈ [t0, t1],

iv) ĥ(ŷ(σ̄ × σ ∗
P )(t1)) = max

σ∈SP
ĥ(ŷ(σ̄ × σP )(t1)) = 0

for ω-a.a. σ ∗
P ∈ SP , and

v) k(t0)b̄ + λ(b̄,
¯̃
b) = min

(b,b̃)∈B̂

k(t0)b + λ(b, b̃)

where λ := ∫
k̂(σP )(t0)ω(dσP ).

2.8 Perturbed Problems

Convolution approximations can be used to define a sequence of problems whose limit
approximates the behavior of (OP ). If we consider the function f̂ (t, y, u, v), we can
construct its convolution approximation with respect to y as

f̂ j (t, ŷ, u, v) =
∫

j−1B

�j (x)f̂ (t, ŷ − x, u, v)dx.

The same procedure can be carried out on the functions

h
j
i (y) =

∫

j−1B

�j (x)hi(y − x)dx, i = 0, 1,

and

ĥj (ŷ) =
∫

j−1B

�j (x)ĥ(ŷ − x)dx.

The next properties is helpful for the pursuance of the discussion:

Lemma 25 Fix

α :=
∫ t1

t0

χ(τ)dτ, cŷ := L
f̂
+αeα, chi

:= Lhi
(cy +1) ∀ i = 0, 1, c

ĥ
:= L

ĥ
(cy +1).

Then, for each σ ∈ S and π ∈ P (or π ∈ SP ), we have:

(i) wj (t) := |ŷj (σ ⊗ π)(t) − ŷ(σ ⊗ π)(t)| ≤ cŷ/j ;
(ii) |f̂ j (t, ŷj (σ ⊗ π)(t), (σ ⊗ π)(t)) − f̂ (t, ŷ(σ ⊗ π)(t), (σ ⊗ π)(t))| ≤ (cŷ + 1)/j ;

(iii) |hj
i (y

j (σ )(t)) − hi(y(σ )(t))| ≤ chi
/j ∀ i = 0, 1;

(iv) |ĥj (ŷj (σ ⊗ π)(t)) − ĥ(ŷ(σ ⊗ π)(t))| ≤ c
ĥ
/j.

for every t ∈ [t0, t1].

Proof To prove relation (i), we fix σ ∈ S and π ∈ P (or π ∈ SP ) and from the definition
of ŷj (σ ⊗ π)(.), ŷ(σ ⊗ π)(.) respectively, it follows

wj(t) := |ŷj (σ ⊗ π)(t) − ŷ(σ ⊗ π)(t)|
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≤
∫

[|f̂ j (s, ŷj (σ ⊗ π)(s), (σ ⊗ π) (s)) − f̂ (s, ŷj (σ ⊗ π)(s), (σ ⊗ π) (s))|

+ |f̂ (s, ŷj (σ ⊗ π)(s), (σ ⊗ π) (s)) − f̂ (s, ŷ(σ ⊗ π)(s), (σ ⊗ π) (s))|]ds. (2.1)

By lemma 22, the first term of the integrand is bounded by j−1L
f̂
, while, in view of

the Lipschitz continuity of f̂ (t, ., u, v), the second term of the integrand is bounded by
L

f̂
wj (t). From the Gronwall inequality, relation (i) follows.
The proof of relations (ii) − (iv) is consequence of relation (i) and of the Lipschitz

continuity of the functions f̂ (t, ., u, v), h0(.), h1(.) and ĥ(.).

It follows from lemma 25 that the sequences {ŷj (σ ⊗ π)(.)}j∈J and{
f̂ j (t, ŷj (σ ⊗ π)(.), (σ ⊗ π)(.))

}
j∈J

converge uniformly with respect to σ ⊗ π ∈ Q, a.e.

t ∈ [t0, t1].
In the following, we define problems that will be helpful in the proofs of theorems 31

and 32.
Suppose that (RP ) has a solution (σ̄ , b̄,

¯̃
b) ∈ S ×B × B̃. Then we consider the problem

of seeking the optimal strategy σ j ∈ S which minimizes the cost hj

0(y(σ )(t1)) and such that

H
j

1 (y(σ )(t1)) = 0, Ĥ j (ŷ(σ × σP )(t1)) ≤ 0, ∀ σP ∈ SP ,

where y(σ )(.) and ŷ(σ × σP )(.) are the solutions of the equations

y(σ )(t) = b̄ +
t∫

t0

ds

∫
f j (s, y(σ )(s), u)σ (s)(du), (2.2)

ŷ(σ × σP )(t) = (b̄,
¯̃
b) +

t∫

t0

ds

∫
f̂ j (s, ŷ(σ × σP )(s), u, v)σ (s)(du) × σP (s)(dv), (2.3)

and the functions H
j

1 (.), Ĥ j (.) are defined as

H
j

1 (yj (σ )(t1)) := h
j

1(y
j (σ )(t1)) − aj ,

for some suitable choice of aj ∈ ch1
j
B, and as

Ĥ j (ŷj (σ × σP )(t1)) := ĥj (ŷj (σ × σP )(t1)) + c
ĥ

j
,

respectively. At the light of the previous discussion, we denote as (RP j ) the following
problem

(RP j )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Minimizeσ∈S h
j

0(y(σ )(t1))

over σ × σP ∈ S × SP , s.t.
ẏ(t) = f j (t, y(t), σ (t)) a.e. t ∈ [t0, t1]˙̃y(t) = f̃ j (t, ŷ(t), σ × σP (t)) a.e. t ∈ [t0, t1]
y(t0) = b̄, ỹ(t0) = ¯̃

b and H
j

1 (y(σ )(t1)) = 0
Ĥ j (ŷ(σ × σP )(t1)) ≤ 0 for each σP ∈ SP

,

If (σ̄ , b̄,
¯̃
b) is a solution for the problem (RP ) stated in Section 2.4, it is easy to check

that, using lemma 25, we can choose the parameter aj in such a manner that σ̄ is also an
admissible strategy for the perturbed problem (RP j ), for every j sufficiently large. From
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general compactness arguments (see [8], Theorem IX.1.1, pp 445), it follows that there
exists a minimizing control σ j ∈ S that solves the problem (RP j ).

The same procedure can be carried out when the second player chooses control strategies
in P . In this case, (2.2) is not modified, while (2.3) becomes

ŷ(σ ⊗ π)(t) = (b̄,
¯̃
b) +

t∫

t0

ds

∫
σ(s)(du)

∫
f̂ j (s, ŷ(σ ⊗ π)(s), u, v)π(s, u)(dv). (2.4)

The functions h
j

0(y(σ )(t1)), H
j

1 (y(σ )(t1)) and Ĥ (ŷ(σ ⊗ π)(t1)) remain unchanged (we
have just replaced σ × σP with σ ⊗ π ).
We define the problem of finding a control σ ∈ S which minimizes h

j

0(y(σ )(t1)), such that
y(σ )(.) and ŷ(σ ⊗ π)(.) are solutions of (2.2), (2.4) and

H
j

1 (y(σ )(t1)) = 0, Ĥ j (ŷ(σ ⊗ π)(t1)) ≤ 0 ∀ π ∈ P .

We denote as (HP j ) the hyperrelaxed perturbed problem

(HP j )

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Minimizeσ∈S h
j

0(y(σ )(t1))

over σ ∈ S, π ∈ P, s.t.
ẏ(t) = f j (t, y(t), σ (t)) a.e. t ∈ [t0, t1]˙̃y(t) = f̃ j (t, ŷ(t), σ ⊗ π(t)) a.e. t ∈ [t0, t1]
y(t0) = b̄, ỹ(t0) = ¯̃

b and H
j

1 (y(σ )(t1)) = 0
Ĥ j (ŷ(σ ⊗ π)(t1)) ≤ 0 for each π ∈ P

,

and as yj (σ )(.) and ŷj (σ ⊗ π)(.) the solutions of (2.2), (2.4) respectively.
The following remark is helpful in the proof of theorem 31. Suppose we deal with the set

of hyperrelaxed controls P with the particular choice of S ′ in Section 2.5 and assume that

(σ̄ , b̄,
¯̃
b) is a solution for the problem (HP ). From the particular choice of S ′, it follows

that σ̄ is also an admissible strategy for (HP j ) when we restrict our attention to controls
in coS ′ for the first player. Furthermore, since coS ′ has the same properties of S (which
means coS ′ is convex and sequentially compact), it follows that (HP j ) has also a solution
σ j ∈ coS ′ for every j (again, see [8], Theorem IX.1.1, pp. 445).

3 Main Theorems

In the statement and the proof of theorem 31, we use the following notation. We denote as
yj (σ )(.) the unique solution of (2.2) for σ ∈ coS ′ and as yj (σ ⊗ π)(.) the unique solution

of (2.4) for σ ∈ coS ′ and π ∈ P (we suppose that ¯̂
b := (b̄,

¯̃
b) is fixed for the perturbed

problem). From the discussion in Section 2.8, it follows that the problem (HP j ) has a
solution σ j ∈ coS ′ for every j. We define the adjoint backward equations

Zj (t) := In +
t1∫

t

Zj (s)∂xf
j (s, yj (σ j )(s), σ j (s))ds,

Ẑj (π)(t) = In+m +
t1∫

t

Ẑj (π)(s)∂xf̂
j (s, ŷj (σ j ⊗ π)(s), (σ j ⊗ π)(s))ds.



672 M. Palladino

Since the function x → f̂ j (t, x, u, v) is C∞ for every j , the functions above are
uniquely defined.

In the convergence analysis of theorem 31, we deal with the derivatives of the functions
h

j

1(.) and ĥj (.) instead of considering the derivatives of the functions H
j

1 (.) and Ĥ j (.). It is
easy to check that this simplification does not affect the statements i)−vii) of the following
theorem.

Theorem 31 Let (σ̄ , b̄,
¯̃
b) be an optimal solution to the problem (HP ). Then there exist a

set of index J ⊂ N, limiting multipliers l0 ≥ 0, l1 ∈ R, limiting initial directionsH0,H1 ∈
R

n, a ω ∈ f.r.m.+(P), a ω−integrable function Ĥ : P → R
n+m, and, for each π ∈ P ,

continuous functions Z : [t0, t1] → Mn×n, Ẑ(π) : [t0, t1] → M(n+m)×(n+m), such that:

i) Z(t)= lim
j∈J

Zj (t), Ẑ(π)(t)= lim
j∈J

Ẑj (π)(t) uniformly t ∈ [t0, t1], ω−a.a. π ∈ P;

(l0, l1) = lim
j∈J

(l
j

0 , l
j

1 ), H0 = lim
j∈J

∂xh
j

0(y
j (t1)), H1 = lim

j∈J
∂xh

j

1(y
j (t1)),

Ĥ(π) = lim
j∈J

∂xĥ
j (ŷ(σ j ⊗ π)(t1)), ω − a.a. π ∈ P;

ii) 0 < l0 + |l1| + ω(P) ≤ 1

Define:
k(t) := (l0H0 + l1H1) Z(t), k̂(π)(t) := Ĥ(π)Ẑ(π)(t),

h(π, t, u) := max
v∈V (t)

k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v),

H(t, u) := k(t)f (t, y(σ̄ )(t), u) +
∫

h(π, t, u)ω(dπ),

Then

iii) h(π, t, u) =
∫

k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv),

ω−a.a. π ∈ P , a.e. t ∈ [t0, t1], σ̄ (t)−a.a. u ∈ U. ,

iv)

t1∫

t0

dt

∫
H(t, u)(σ − σ̄ )(t)(du) ≥ 0 ∀σ ∈ S ′,

v) ĥ(ŷ(σ̄ ⊗ π∗)(t1) = max
π∈P ĥ(ŷ(σ̄ ⊗ π)(t1)) = 0 ω − a.a. π∗ ∈ P .

vi) k(t0)b̄ + λ(b̄,
¯̃
b) = min

(b,b̃)∈B̂

k(t0)b + λ(b, b̃),

where λ := ∫
k̂(π)(t0)ω(dπ). Furthermore, since the choice of S ′ as in Section 2.5,

condition iv) can be strengthened, obtaining

vii)

∫
H(t, u)σ̄ (t)(du) = min

u∈U(t)
H(t, u) a.e. t ∈ [t0, t1].

Proof Step 1: We first show that it suffices to prove the theorem in the special case where

B = {b̄} and B̃ = { ¯̃
b}. Indeed, suppose thatB∗ and B̃∗ are two arbitrary convex and compact

neighbourhood of b̄ and ˜̄b, respectively and that condition vii) of theorem 31 has been
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already proved for a problem formulation of (HP ) with fixed initial conditions. Denote as
B̂∗ := B∗ × B̃∗. We now consider a new problem related to (HP )

(MHP)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimizeσ∈S h0(y(σ )(t1))

over σ ∈ S, π ∈ P and (b(t), b̃(t)) ∈ B̂∗ a.e t ∈ [t0 − 1, t1] s.t.
ẏ(t) = b(t) − b̄ a.e. t ∈ [t0 − 1, t0]
ẏ(t) = f (t, y(t), σ (t)) a.e. t ∈ [t0, t1]
˙̃y(t) = b̃(t) − ¯̃

b a.e. t ∈ [t0 − 1, t0]˙̃y(t) = f̃ (t, ŷ(t), σ ⊗ π(t)) a.e. t ∈ [t0, t1]
y(t0) = b̄, ỹ(t0) = ¯̃

b and h1(y(σ )(t1)) = 0
ĥ(ŷ(σ ⊗ π)(t1)) ≤ 0 for each π ∈ P

,

It is a straightforward matter to check that if (σ̄ , b̄,
¯̃
b) is a minimizer for problem (HP ),

then ((σ̄ , b̄,
¯̃
b), b̄,

¯̃
b) is a minimizer for problem (MHP). This implies that theorem 31

can be applied. In particular, notice that in the interval [1 − t0, t0] the dynamic equation
derivatives are vanishing and the adjoint equations are Z(t) ≡ Z(t0), Ẑ(π)(t) ≡ Ẑ(π)(t0)

for all t ∈ [t0 − 1, t0], for all π ∈ P (notice that the convolution does not change the the
dynamic equations in t ∈ [t0 − 1, t1], since they are not state dependent). Thus, applying
condition vii) of theorem 31, we obtain

min
(b,b̃)∈B̂∗

(k(t0)(b − b̄) + λ((b, b̃) − (b̄,
¯̃
b))) = 0

which gives condition vi) of theorem 31 when we pose B̂∗ = B̂. In particular, it follows

that we can prove the theorem in the special case B = {b̄} and B̃ = { ¯̃
b}.

Step 2: Consider the sequences of functions
⎧⎨
⎩Zj (t) = In +

t1∫

t

Zj (s)∂xf
j (s, yj (σ j )(s), σ j (s))ds

⎫⎬
⎭

j∈N
and ⎧⎨

⎩Ẑj (t)(π) = In+m +
t1∫

t

Ẑj (π)(s)∂xf̂
j (s, ŷj (σ j ⊗ π)(s), (σ j ⊗ π)(s))ds

⎫⎬
⎭

j∈N

for every π ∈ P . It is easy to check that both sequences are equibounded and equicontinu-
ous. The first property follows because

|∂xf
j (t, yj (σ j )(t), σ j (t))| ≤ Lf , |∂xf̂

j (t, yj (σ j ⊗ π)(t), (σ j ⊗ π)(t))| ≤ L
f̂

for every j ∈ N, a.e. t ∈ [t0, t1], and therefore

|Zj (t)| ≤ Lf

t1∫

t0

|Zj (s)|ds + 1, |Ẑj (π)(t)| ≤ L
f̂

t1∫

t0

|Ẑj (π)(s)|ds + 1.

In view of the previous inequalities, we can use the Gronwall lemma which yields

|Zj (s)| ≤ 1 + (t1 − t0)Lf e(t1−t0), |Ẑj (π)(s)| ≤ 1 + (t1 − t0)Lf̂
e(t1−t0) =: Ĉ.
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Therefore both sequences are uniformly bounded. Furthermore, by an easy calculation,
it follows that, for each π ∈ P ,

|
(
Zj

)′
(t)| ≤ |Zj (t)|, |

(
Ẑj

)′
(π)(t)| ≤ |Ẑj (π)(t)|,

a.e. t ∈ [t0, t1]. These arguments show that we can apply the Ascoli-Arzelà theorem and
that there exist J1 ⊂ N and continuous functions Z(.), Ẑ(π)(.) such that, for each π ∈ P ,

lim
j∈J1

Zj (t) = Z(t), lim
j∈J1

Ẑj (π)(t) = Ẑ(π)(t),

uniformly with respect to t ∈ [t0, t1].
The perturbed problems (HP j ) have C∞ data and solutions σ j ∈ coS ′. Therefore

lemma 23 can be applied for the minimizer (σ j , b̄,
¯̃
b). In particular, from lemma 23,

condition i), it follows that there exist lj0 ≥ 0, lj1 ∈ R and ωj ∈ f.r.m.+(P) such that,

0 < l
j

0 + |lj1 | + ωj (P) ≤ 1.

By standard compactness arguments, we can find a subset J2 ⊂ J1, l0 ≥ 0, l1 ∈ R and
ω ∈ f.r.m.+(P) such that

lim
j∈J2

l
j

0 = l0, lim
j∈J2

l
j

1 = l1, lim
j∈J2

ωj = ω weakly − ∗
and

0 < l0 + |l1| + ω(P) ≤ 1.

By lemma 25 (i) and using the result of ([8], Theorem VI.I.6, pp. 348), there exists
J3 ⊂ J2 such that

lim
j∈J3

yj (σ j )(t) = lim
j∈J3

y(σ j )(t) = y(σ̄ )(t) (3.1)

and, since the continuity of the functions π → ŷj (σ ⊗ π)(.) for every σ ∈ coS ′,

lim
j∈J3

ŷj (σ j ⊗ π)(t) = lim
j∈J3

ŷ(σ j ⊗ π)(t) = ŷ(σ̄ ⊗ π)(t) (3.2)

uniformly with respect to π ∈ P and t ∈ [t0, t1]. (The fact that σj ⇁ σ̄ follows from the
optimality of σ j . Indeed

lim
j∈J3

h
j

0(y
j (σ j )(t1) = h0(y(σ̄ )(t1)) ≤ lim

j∈J3
h

j

0(y
j (σ )(t1) = h0(y(σ )(t1))

for all σ ∈ coS ′).
From lemma 22, it follows that |∂xh

j

0(y
j (σ j )(t1))| ≤ Lh0 , |∂xh

j

1(y
j (σ j )(t1))| ≤ Lh1

and |∂xĥ(ŷj (σ j ⊗ π)(t1))| ≤ L
ĥ
for every π ∈ P . Then, using a similar convergence

analysis, we can suppose that there exist J ⊂ J3,H0,H1 ∈ R
n such that

lim
j∈J

∂xh
j

0(y
j (σ j )(t1)) = H0, lim

j∈J
∂xh

j

1(y
j (σ j )(t1)) = H1,

and, using ([8], Lemma X.I.6 pp. 489) for each fixed π ∈ P , there exist a vector Ĥ(π) and
a sequence {πj }j∈J ⊂ P , such that

lim
j∈J

∂xĥ
j (ŷj (σ j ⊗ πj )(t1)) = Ĥ(π).



Necessary Conditions for Adverse Control Problems 675

This completes the proof of points i) and ii).

Step 3: We observe that the functions Ĥ(.) : P → R
n and Ẑ(.)(t) : P → R

n+m are
pointwise limits of sequences of continuous functions π → {∂xĥ

j (ŷj (σ j ⊗π)(t1))}j∈N and
π → {Ẑj (π)(t)}. Since the set P is equipped with the Borel B(P)−field, the continuous
functions π → {∂xĥ

j (ŷj (σ j ⊗ π)(t1))}j∈N and π → {Ẑj (π)(t)} are ω-measurable and
their limit functionsH(.) and Ẑ(.)(t) are also ω-measurable (and bounded).
From lemma 23, condition iv), it follows that

ĥj (ŷj (σ j ⊗ π∗)(t1)) = max
π∈P ĥj (ŷj (σ j ⊗ π)(t1)), ωj − a.a. π∗

which is equivalent to

ĥj (ŷj (σ j ⊗ π)(t1)) ≤ ĥj (ŷj (σ j ⊗ π∗)(t1)) ωj − a.a. π∗, ∀π ∈ P .

Since ωj is a positive measure for each j , it follows that

∫ [
ĥj (ŷj (σ j ⊗ π) − ĥj (ŷj (σ j ⊗ π∗))

]
ωj (dπ∗) ≤ 0, ∀π ∈ P . (3.3)

We recall that, for σ ∈ coS ′ and π ∈ P , the function σ ⊗ π → ĥj (ŷj (σ ⊗ π)(t1)) is
continuous for every j , π → ĥj (ŷj (σ j ⊗ π)(t1)) is continuous for every j and ωj ⇁ ω,
σ j ⇁ σ̄ weakly-*.

Adding and subtracting the term
∫

ĥj (ŷj (σ j ⊗ π∗)(t1))ω(dπ∗) (which is well-defined
since the continuity of ĥ(ŷ(σ ⊗ .)(t1))), we can estimate

|
∫

ĥj (ŷj (σ j⊗π∗)(t1))(ω−ωj )(dπ∗)| ≤ sup
σ⊗π

|ĥ(ŷ(σ⊗π)(t1))|×|
∫

(ω−ωj )(dπ∗)| → 0,

where the right hand side converges to 0 since ωj ⇁ ω weakly-*. Then, with the help of
the dominated convergence theorem, we can pass to the limit in (3.3), obtaining

∫ [
ĥ(ŷ(σ̄ ⊗ π)) − ĥ(ŷ(σ̄ ⊗ π∗))

]
ω(dπ∗) ≤ 0, ∀π ∈ P .

Define the sequences of functions k̂j : P ×[t0, t1] → R
n+m and hj : P ×[t0, t1]×U → R

such that

k̂j (π)(t) := ∂xĥ
j (ŷj (σ j ⊗ π)(t1))Ẑ

j (π)(t)

and

hj (π, t, u) := max
v∈V (t)

k̂j (π)(t) · f̂ j (t, ŷj (σ j ⊗ π)(t), u, v).

With the help of lemma 25, it is easy to check that, for every π ∈ P , k̂j (.)(π) → k̂(.)(π)

in L1([t0, t1], dt). Using again lemma 25, it follows that hj (π, ., u) → h(π, ., u) in L1 for
every π ∈ P , u ∈ U, and hj (π, t, .) → h(π, t, .) uniformly a.e. t ∈ [t0, t1], for every π ∈ P
and hj (., t, u) → h(., t, u) pointwise, for every u ∈ U, a.e. t ∈ [t0, t1].

By lemma 23, condition iii), the function π → hj (π, t, u) is ωj−integrable for each j ,
u ∈ U, a.e. t ∈ [t0, t1] and can be expressed by the relation

hj (π, t, u) =
∫

k̂j (π)(t) · f̂ j (t, ŷj (σ j ⊗ π)(t), u, v)π(t, u)(dv),
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for ωj−a.a. π ∈ P and ζ̃−a.a (t, u) ∈ [t0, t1] × U, where ζ̃ is the positive Radon measure
introduced in Section 2.4.

It follows that

∫
ωj (dπ)

∫
[hj (π, t, u)−

∫
k̂j (π)(t)·f̂ j (t, ŷj (σ j⊗π)(t), u, v)π(t, u)(dv)]ζ̃ (dt, du)= 0.

Define the function

I j (π) :=
∫ [

hj (π, t, u) −
∫

k̂j (π)(t) · f̂ j (t, ŷj (σ j ⊗ π)(t), u, v)π(t, u)(dv)

]
ζ̃ (dt, du)

which is ωj−integrable and the function

I (π) :=
∫ [

h(π, t, u) −
∫

k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv)

]
ζ̃ (dt, du)

which is the pointwise limit of I j (π).

With a similar analysis used above, we can add and subtract
∫

I j (π)ω(dπ) (still well
defined by the continuity of I j (.)) and

|
∫

I j (π)(ω − ωj )(dπ)| ≤ K|
∫

(ω − ωj )(dπ))| → 0

since ωj ⇁ ω weakly-*, where K := 2L
ĥ
Ĉ||χ(.)||L1 .

Then, with the help of the dominated convergence theorem, it follows that

∫
ω(dπ)

∫ [
h(π, t, u) −

∫
k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv)

]
ζ̃ (dt, du) = 0.

From the definition of hj (., ., .), it follows that I j (π) ≥ 0 ωj−a.a. π ∈ P , as well as its
limit function I (π) ≥ 0 ω−a.a. π ∈ P . Using lemma 21, we obtain

∫
ω(dπ)

t1∫

t0

dt

∫ [
h(π, t, u) −

∫
k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv)

]
σ̄ (t)(du) = 0.

Since all the measures involved in the integrals are positive definite, it follows that

h(π, t, u) =
∫

k̂(π)(t) · f̂ (t, ŷ(σ̄ ⊗ π)(t), u, v)π(t, u)(dv),

ω−a.a. π ∈ P , a.e. t ∈ [t0, t1], σ̄ (t)−a.a. u ∈ U, which is condition iii).
Step 4:We now derive relation iv) from lemma 23, condition ii). Define the functions

kj (t) :=
(
l
j

0∂xh
j

0(y
j (σ j )(t1)) + l

j

1∂xh
j

1(y
j (σ j )(t1))

)
Zj (t)

and

Hj(t, u) := kj (t) · f j (t, yj (σ j )(t), u) +
∫

hj (π, t, u)ωj (dπ).

From lemma 23, condition ii), it follows that∫
Hj(t, u)(σ − σ j )(t)(du) ≥ 0, a.e. t ∈ [t0, t1],
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which can be explicitly written as∫
kj (t)·f j (t, yj (σ j )(t), u)(σ−σ j )(t)(du)+

∫
(σ−σ j )(t)(du)

∫
hj (π, t, u)ωj (dπ) ≥ 0,

for every σ ∈ coS ′, a.e. t ∈ [t0, t1]. We now observe that the function u →∫
hj (π, t, u)ωj (dπ) is continuous for every j ∈ N, a.e. t ∈ [t0, t1]. Furthermore, adding

and subtracting the term
∫
hj (π, t, u)ω(dπ), we can prove that u → ∫

hj (π, t, u)ωj (dπ)

converges uniformly to u → ∫
h(π, t, u)ω(dπ), a.e. t ∈ [t0, t1] (in turns, we have

used the weakly-* convergence of the sequence {ωj } and the continuity of the function
u → h(π, t, u), for every π ∈ P and a.e. t ∈ [t0, t1]). This in particular implies that the
functions u → ∫

h(π, t, u)ω(dπ) and u → H(t, u) are continuous, a.e. t ∈ [t0, t1]. A use
of the dominated convergence theorem and the convergence of σ j ⇁ σ̄ weakly-* permits
us to pass to the limit in the relation above, yielding

∫
k(t) · f (t, y(σ̄ )(t), u)(σ − σ̄ )(t)(du) +

∫
(σ − σ̄ )(t)(du)

∫
h(π, t, u)ω(dπ) ≥ 0,

which is exactly the relation ∫
H(t, u)(σ − σ̄ )(t)(du) ≥ 0

for every σ ∈ coS ′, a.e. t ∈ [t0, t1]. By integrating with respect to t on [t0, t1], we obtain
relation v).

Step 5: In this last step, we derive a pointwise condition for the function H(., .). We
preliminary observe that the H(., .) is integrable with respect to t for every u ∈ U and
continuous with respect to u a.e. t ∈ [t0, t1], since the functions (t, u) → h(π, t, u) and
(t, u) → k(t)f (t, y(σ̄ )(t), u) satisfy the same property.

We recall that S ′ is defined as in Section 2.5. It follows that, for every u(.) ∈ R∞, there
exists a null set Zu ⊂ [t0, t1] such that

H(t, u(t)) −
∫

H(t, u)σ̄ (t)(du) ≥ 0 ∀t ∈ [t0, t1]\Zu.

Since the set U∞ is denumerable, then Z := ∪u∈U∞Zu is still a null set. The set {u(t) :
u ∈ U∞} is dense in U(t) a.e. t ∈ [t0, t1] and this implies∫

H(t, u)σ̄ (t)(du) = inf
u∈U∞

H(t, u(t)) = min
u∈U(t)

H(t, u).

This completes the proof.

The result proved for hyperrelaxed controls can be similarly derived also for relaxed
adverse control problems. In this case, we do not need to choose any denumerable subset
S ′ of S and the convergence analysis is more straightforward. Now we denote by yj (σ )(.)

the unique solution of (2.2) for σ ∈ S and by yj (σ ×σP )(.) the unique solution of (2.3) for
σ ∈ S and σP ∈ SP . The problem (RP j ) has a solution σ j ∈ S for every j. The function
Zj (t) is the same of theorem 31, while

Ẑj (σP )(t) = In+m +
t1∫

t

Ẑj (σP )(s)∂xf̂
j (s, ŷj (σ j × σP )(s), (σ j × σP )(s))ds
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We deal with the derivatives of the functions h
j

1(.) and ĥj (.) instead that considering the

derivatives of H
j

1 (.) and Ĥ j (.). In what follows, we propose the proof in the relaxed case,
pointing out the main differences with the analysis carried out in theorem 31.

Theorem 32 Let (σ̄ , b̄,
¯̃
b) be an optimal solution to the problem (RP ). Then there exist

a set of index J ⊂ N , limiting multipliers l0 ≥ 0, l1 ∈ R, limiting initial directions
H0,H1 ∈ R

n, a ω ∈ f.r.m.+(SP ), a ω−integrable function Ĥ : SP → R
n+m, and the

continuous functions Z : [t0, t1] → Mn×n, Ẑ(σP ) : [t0, t1] → M(n+m)×(n+m), such that:

i) Z(t) = lim
j∈J

Zj (t), Ẑ(σP )(t) = lim
j∈J

Ẑj (σP )(t) uniformly t ∈ [t0, t1], ω−a.a. σP ∈ SP ,

(l0, l1) = lim
j∈J

(l
j

0 , l
j

1 ), H0 = lim
j∈J

∂xh
j

0(y
j (t1)), H1 = lim

j∈J
∂xh

j

1(y
j (t1)),

Ĥ(σP ) = lim
j∈J

∂xĥ
j (ŷ(σ j × σP )(t1)), ω − a.a. σP ∈ SP ;

ii) 0 < l0 + |l1| + ω(SP ) ≤ 1

Define:

k(t) := (l0H0 + l1H1) Z(t), k̂(σP )(t) := Ĥ(σP )Ẑ(σP )(t),

h(σP , t, s) := max
v∈V (t)

k̂(σP )(t) ·
∫

f̂ (t, ŷ(σ̄ × σP )(t), u, v)s(du),

H(t, s) := k(t)f (t, y(σ̄ )(t), s) +
∫

h(σP , t, s)ω(dσP ), (s ∈ S).

Then

iii) h(σP , t, σ̄ (t)) =
∫

k̂(σP )(t)f̂ (t, ŷ(σ̄ × σP )(t), σ̄ (t), v)σP (t)(dv),

ω−a.a. σP ∈ SP , a.e. t ∈ [t0, t1],
iv)

∫
H(t, u)σ̄ (t)(du) = min

s∈S H(t, s) a.e. t ∈ [t0, t1],

v) ĥ(ŷ(σ̄ × σ ∗
P )(t1) = max

σP ∈SP

ĥ(ŷ(σ̄ × σP )(t1)) = 0 ω − a.a. σ ∗
P ∈ SP .

and
vi) k(t0)b̄ + λ(b̄,

¯̃
b) = min

(b,b̃)∈B̂

k(t0)b + λ(b, b̃)

where λ := ∫
k̂(σP )(t0)ω(dσP ).

Proof Steps 1–2: The hypothesis reduction argument showed in theorem 31, Step 1, can be
carried out in identical fashion, obtaining in this way condition vi). Also the compactness
argument showed in 31, Step 2 can be reproduce in the relaxed framework. We just recall
that, if σ j ⇁ σ weakly-* in S , then also σ j × σP ⇁ σ × σP weakly-* inQ. Furthermore
the mapping σP → σ × σP is continuous as well as the function σP → ŷj (σ × σP ) for
every j. This remark justifies the use of theorem 31, Step 2 arguments, regarding functions
Z(.) and Ẑ(σP )(.). The perturbed problems (RP j ) have C∞ data and solutions σ j ∈ S . It
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follows that theorem lemma 24 can be applied. In particular from lemma 24, condition i), it
follows that there exist lj0 ≥ 0, lj1 ∈ R and ωj ∈ f.r.m.+(SP ) such that,

0 < l
j

0 + |lj1 | + ωj (SP ) ≤ 1

and, considering a subsequence of index J2 ⊂ J1, we obtain l0 ≥ 0, l1 ∈ R and ω ∈
f.r.m.+(SP ) such that

lim
j∈J2

l
j

0 = l0, lim
j∈J2

l
j

1 = l1, lim
j∈J2

ωj = ω weakly − ∗

and such that
0 < l0 + |l1| + ω(SP ) ≤ 1.

From lemma 25, i) and using the result of ([8], Theorem VI.I.6, pp. 348), there exists
J3 ⊂ J2 such that

lim
j∈J3

yj (σ j )(t) = lim
j∈J3

y(σ j )(t) = y(σ̄ )(t)

and, since σ j × σP ⇁ σ̄ × σP inQ, we have

lim
j∈J3

ŷj (σ j × σP )(t) = lim
j∈J3

ŷ(σ j × σP )(t) = ŷ(σ̄ × σP )(t)

uniformly with respect to t ∈ [t0, t1], σP ∈ SP . (Again, the fact that σ j ⇁ σ̄ follows from
the optimality of σ j . Indeed

lim
j∈J3

h
j

0(y
j (σ j )(t1) = h0(y(σ̄ )(t1)) ≤ lim

j∈J3
h

j

0(y
j (σ )(t1) = h0(y(σ )(t1))

for all σ ∈ S).
By the same analysis described in theorem 31, there exist J ⊂ J3, H0,H1 ∈ R

n such
that

lim
j∈J

∂xh
j

0(y
j (σ j )(t1)) = H0, lim

j∈J
∂xh

j

1(y
j (σ j )(t1)) = H1,

and, for each fixed σP ∈ SP , a vector Ĥ(σP ) such that

lim
j∈J

∂xĥ(ŷj (σ j × σP )(t1)) = Ĥ(σP ).

Relations i) and ii) are proved. Since the function Ĥ : P → R
n is the pointwise limit of the

sequence of continuous functions {σP → ∂xĥ(ŷj (σ j × σP )(t1))}j∈J , it follows that Ĥ(.)

is B(SP )−measurable.
Step 3: From lemma 24, condition iv), we have

ĥj (ŷj (σ j × σ ∗
P )(t1)) = max

σP ∈SP

ĥj (ŷj (σ j × σP )(t1)) ωj − a.a. σ ∗
P ∈ SP .

Expressing the relation above in integral form and using the same convergence analysis
showed in theorem 31, Step 3, we obtain

ĥ(ŷ(σ̄ × σ ∗
P )(t1) = max

σP ∈SP

ĥ(ŷ(σ̄ × σP )(t1)) ω − a.a. σ ∗
P ∈ SP .

We set
k̂j (σP )(t) := ∂xĥ

j (ŷj (σ j × σP )(t1))Ẑ
j (σP )(t),

and

hj (σP , t, s) := max
v∈V (t)

k̂j (σP )(t) ·
∫

f̂ j (t, ŷj (σ j × σP )(t), u, v)s(du), (s ∈ S).
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From lemma 24, condition iii), it follows that

hj (σP , t, σ j (t)) =
∫

k̂j (σP )(t)f̂ j (t, ŷj (σ j × σP )(t), σ j (t), v)σP (t)(dv),

for ωj−a.a. σP ∈ SP , a.e. t ∈ [t0, t1]. Preliminary, we observe that the function (σP , t) →
hj (σP , t, σ (t)) is ωj × dt−integrable for every σ ∈ S. We can write the relation above as

∫
ωj (dσP )

t1∫

t0

[hj (σP , t, σ j (t))

−
∫

k̂j (σP )(t)f̂ j (t, ŷj (σ j × σP )(t), σ j (t), v)σP (t)(dv)]dt = 0

and, using the same procedure carried out in theorem 31, Step 3, where this time we deal
with the functions

I j (σP ) :=
t1∫

t0

[hj (σP , t, σ j (t))−
∫

k̂j (σP )(t)f̂ j (t, ŷj (σ j ×σP )(t), σ j (t), v)σP (t)(dv)]dt

and the pointwise limit

I (σP ) :=
t1∫

t0

[h(σP , t, σ̄ (t)) −
∫

k̂(σP )(t)f̂ (t, ŷ(σ̄ × σP )(t), σ̄ (t), v)σP (t)(dv)]dt,

it follows that

h(σP , t, σ̄ (t)) =
∫

k̂(σP )(t)f̂ (t, ŷ(σ̄ × σP )(t), σ̄ (t), v)σP (t)(dv),

ω−a.a. σP ∈ SP , a.e. t ∈ [t0, t1]. This proves relation iii). We also observe that, in this
case, we do not make use of ζ̃ in the convergence analysis.

Step 4: We follow the same approach used in theorem 31, Step 4.
Define the functions

kj (t) :=
(
l
j

0∂xh
j

0(y
j (σ j )(t1)) + l

j

1∂xh
j

1(y
j (σ j )(t1))

)
Zj (t)

and

Hj(t, s) := kj (t) · f j (t, y(σ j )(t), s) +
∫

hj (σP , t, s)ωj (σP ),

for every s ∈ S , a.e. t ∈ [t0, t1]. (Notice that this time s is a relaxed control). It is easy to
check that the sequence of functions {t → kj (t)}j∈N is continuous and {t → Hj(t, s)}j∈N
is integrable for every s ∈ S . From lemma 24, condition ii), it follows that∫

Hj(t, u)(s − σ j )(t)(du) ≥ 0,

for every s ∈ S and a.e. t ∈ [t0, t1]. Recalling that σ j ⇁ σ̄ weakly-*, we obtain∫
H(t, u)(s − σ̄ )(t)(du) ≥ 0

for every s ∈ S , a.e. t ∈ [t0, t1], from which relation iv) follows. This completes the
proof.
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Comments:

1. Theorems 31 and 32 appear as a generalisation to the nonsmooth case of lemmas 23 and
24. In particular, in the case in which differentiability hypotheses are invoked (namely,
hypothesis H4)), it turns out that the limits appearing in theorems 31 and 32 converge
to the unique adjoint arcs k(.) and k̂(.)(π) of lemmas 23 and 24, respectively. In the
nonsmooth case, we loose such representations and it remains just limiting relations
for the adjoint arcs k(.) and k̂(.)(π) for each π ∈ P . However, for such limits, the
pointwise version of the maximum principle vii) can be still derived in theorem 31.
This condition was achieved in [11] just in the case in which the dynamic constraint
has an additive structure and some further a priori hypotheses on the optimal trajectory
were required.

2. The notion of “relaxed derivative” appears in the adjoint equations Z(.), Ẑ(.)(.) and the
related functions of the theorems 31, 32. The convergence analysis used to obtain such
functions avoids some measurability issues which come out dealing with derivative
containers (see [11], comments in Section 3 and following discussion). In the present
theorems, the measurability is guaranteed by the limit process.

3. In this paper we have chosen the standard C∞ mollifier

�̄(x) :=

⎧⎪⎨
⎪⎩

exp
( −1
1−|x|2

)
if x ∈ B

0 otherwise

.

The limits appearing in theorems 31 and 32 depend on such a choice. A more
detailed discussion on how to construct nonsmooth subgradients based on convolution
argument can be found in [3]. However, as long as the compactness and the contin-
uous differentiability of the mollified sequences appearing in the proofs of theorems
31 and 32 are preserved, the main results of the paper can be still proved in this new
framework.

4. The use of the function h(., ., .) makes a breakthrough with respect to other neces-
sary conditions for nonsmooth problems obtained in the earlier literature. Indeed, it
is sensitive to expect that theoretical and computational methods based on the present
necessary conditions might take advantage of the “maximization” related to func-
tion h(., ., .) and of the “minimization” related to function H(., .) (or, to be more
precise, the maximization and minimization process related to the sequence of func-
tions hj (., ., .) and Hj(., .), respectively). This will be matter of studies in following
papers.

4 An Example

Consider the minimax optimal control problem

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Minimizeu∈U maxv∈V y(u, v)(1)
over measurable functions u(.), v(.) such that
u(t) ∈ {−1, 1}, v(t) ∈ {−1, 1} a.e. t ∈ [0, 1]
ẏ(u, v)(t) = |y(u, v)(t)|u(t)v(t) a.e. t ∈ [0, 1]
y(0) = 1

.
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This problem can be reformulated as

(E)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Minimizeu∈U α

over measurable functions u(.), v(.) such that
u(t) ∈ {−1, 1}, v(t) ∈ {−1, 1} a.e. t ∈ [0, 1]
α̇(t) = 0,
ẏ(u, v)(t) = |y(u, v)(t)|u(t)v(t) a.e. t ∈ [0, 1]
y(0) = 1
y(u, v)(1) − α ≤ 0 ∀ v ∈ V

,

This is a version of (OP ), with the choice of data: [t0, t1] = [0, 1], U = V = {−1} ∪
{+1},B×B̃ = [−a, a]×{1}with a large enough, (f (t, α, u), f̃ (t, α, y, u, v)) = (0, |y|uv),
h0(α) = α, h1(α) ≡ 0 and ĥ(α, y) = y − α. Notice that this kind of example cannot be
treated in the framework of [8] and [11].

We aim to study the hyperrelaxed version of problem (E), which concerns a problem
with same data, but where the dynamic constraint is expressed by

y(σ ⊗ π)(t) = 1 +
∫ t

0
ds

∫
U

|y(s)| σ(s)(du)

∫
V

u vπ(s, u)(dv)

(notice that the role of α is not relevant in the dynamic equation) and the relation
y(u, v)(1) − α ≤ 0 becomes

y(σ ⊗ π)(1) − α ≤ 0 ∀ π ∈ P .

From theorem 31, condition i), it follows that there exists a sequence k̂ε(π)(t) →
k̂(π)(t) converging uniformly w.r.t. t ∈ [0, 1], pointwise w.r.t. π ∈ P , to some function
k̂(π)(t). The function h(π, t, u) has the form

h(π, t, u) = max
v∈{−1,1}

k̂(π)(t)|y|u v = |y||k̂(π)(t)|
and does not depend on u. This implies that condition vii) of theorem 31 is satisfied for
every u ∈ {−1, 1}. So we can choose an arbitrary control σ̄ (t) = δu(t) with, for instance,
u(t) ≡ 1. Plugging such a control into the hyperrelaxed dynamics and looking at the func-
tion y(σ̄ ⊗ π)(1), we observe that the maximum of theorem 31, condition v) is achieved
when π(t, u)(dv) = δu(t)(dv) and that an optimal solution is given by solving the ordi-
nary differential equation ẏ(σ̄ ⊗ π)(t) = |y(σ̄ ⊗ π)(t)|, y(σ̄ ⊗ π)(0) = 1. It follows that
ᾱ = y(σ̄ ⊗ π)(1).

On the other hand, if we consider the relaxed extension of problem (E), we obtain a
problem with the same data, but where the dynamics is now expressed by

y(σ × σP )(t) = 1 +
∫ t

0
ds

∫
U×V

|y(s)| u v σ(s)(du) × σP (s)(dv).

Arguing as before, it follows from theorem 32 that there exists a sequence k̂ε(σP )(t)

converging uniformly w.r.t. t ∈ [0, 1], pointwise w.r.t. σP ∈ SP , to k̂(σP )(t). Since y(0) =
1, there exists a positive measure set T ′ := [0, c) ⊂ [0, 1], such that, for every σP ∈ SP and
t ∈ T ′, y(σ̄ × σP )(t) is not vanishing. Now we use the ‘averaged function’ h(., ., .) which
satisfies the equality

h(σP , t, s) = max
v∈{−1,1}

k̂(σP )(t)|y(σ̄ × σP )(t)|
∫
U

u v s(du) =

= |k̂(σP )(t)| |
∫
U

u s(du)| |y(σ̄ × σP )(t)|
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for s ∈ S and t ∈ T ′. Furthermore condition v) of theorem 32 implies that ω is not the
zero measure (otherwise, this would imply that maxσP

y(σ̄ × σP )(1) < ᾱ, a contradiction
with the definition of minimizer for problem (E)). Condition iv) of theorem 32 can be
applied on the set T ′: if |k̂(σP )(t)| �= 0, then the optimal relaxed control has the form
σ̄ (t) = 1

2 (δ{−1}(t) + δ{+1}(t)) on the set T ′; if |k̂(σP )(t)| ≡ 0, from the definition of
relaxed derivative we find that also in this case the adjoint equation has to be generated by a
chattering control like σ̄ (t). Plugging such a control into the dynamic equation, we observe
that the optimal trajectory satisfies the equation ẏ(σ̄ × σP )(t) = 0, y(σ̄ × σP )(0) = 1 on
T ′. Then also k̂(σP ) is constant on T ′. In particular, this implies that c = 1, the optimal
trajectory is determined by the equations ẏ(σ̄ × σP )(t) = 0, ȳ(0) = 1 and ᾱ = y(σ̄ ×
σP )(1) = 1.

This example shows some of the typical difficulties of relaxation of adverse control prob-
lems. First of all, notice that for the same problem, the cost of the relaxed extension is
lower than the cost of the hyperrelaxed extension. Furthermore, the ‘real’ pointwise max-
imum principle vii) of theorem 31 cannot be extended in the general case to theorem 32.
With reference to the relaxed extension of problem (E), it is easy check that the use at the
end of the analysis of condition vii) of theorem 31 would imply a contradiction. This phe-
nomenon confirms the results showed in [11], theorem 2.4, where special assumptions on
the dynamic equations or on the properties of the optimal trajectories were made (cfr. with
[11], Sections 2 and 3).
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6. Vinter, R.B.: Minimax optimal control. SIAM J. Control Optim. 44(3), 939–968 (2005)
7. Warga, J.: Conflicting and minimax controls. J. Math. Anal. Appl. 33, 655–673 (1971)
8. Warga, J.: Optimal Control of Differential and Functional Equations. Academic Press, New York (1972)
9. Warga, J.: Necessary conditions without differentiability assumptions in unilateral control problems. J.

Differ. Equ. 21(1), 25–38 (1976)
10. Warga, J.: Derivative containers, inverse functions, and controllability. Calculus of variations and control

theory, (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975; dedicated to Laurence
Chisholm Young on the occasion of his 70th birthday). Math. Res. Center, Univ. Wisconsin, Publ. No.
36, Academic Press, New York, pp. 13-45; errata, p. 46 (1976)

11. Warga, J.: Nonsmooth problems with conflicting controls. SIAM J. Control Optim. 29(3), 678–701
(1991)

12. Warga, J.: Relaxed derivatives and extremality conditions in optimal control. Prepared for publication
following the author’s death by Q. J. Zhu, Set-Valued Var. Anal. 20(3), 467–475 (2012)


	Necessary Conditions for Adverse Control Problems
	Abstract
	Introduction
	Preliminaries
	Notation
	Original Problem Statement
	Assumptions
	Relaxed and Hyperrelaxed Problems
	A Special Choice of S
	Relaxed Derivatives
	Preliminary Results: The Smooth Case
	Perturbed Problems

	Main Theorems
	An Example
	Acknowledgments
	References


