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Abstract In this paper we first develop two new results of variational analysis. One is
a fixed point theorem for parametric dynamic systems in quasimetric spaces, which can
also be interpreted as an existence theorem of minimal points with respect to reflexive and
transitive preferences for sets in products spaces. The other one is a variational principle for
set-valued mappings acting from quasimetric spaces to vector spaces with variable ordering
structures, which can be treated as a far-going extension of Ekeland’s variational principle
to this setting. Both of these results are motivated by applications to adaptive dynamical
aspects of Sen’s capability theory of wellbeing. As consequence of our mathematical results,
we develop new applications to such human behavioral models by using a recent variational
rationality approach to behavioral sciences.
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1 Introduction

Variational analysis has been well recognized as a fruitful area in mathematics with numer-
ous applications to optimization, equilibria, control theory, economics, mechanics, etc.;
see, e.g., the books [9, 22, 26] and the references therein. The seminal contributions of
Lionel Thibault to variational and nonsmooth analysis and optimization (particularly to
their infinite-dimensional aspects) as well as their various applications are difficult to
overstate.

Modern variational principles lie at the heart of variational analysis and its applications.
Among the most powerful ones is Ekeland’s variational principle (EVP), which asserts in
essence that, given a lower semicontinuous extended-real-valued function on a metric space
and its ε-minimizer (that always exists whenever ε > 0), it is possible to perturb a bit
both the function and the given point so that the new point gives an exact global minimum
of the perturbed function. This result has been of great use in many areas of mathematics
and its applications; see, e.g., Ekeland’s survey [17], the books [9, 18, 22, 26], and their
bibliographies for the history and important developments in this direction. Starting with the
discovery of the EVP in the 1970s, numerous extensions of it appeared in the literature (see
the references in Section 3 to those related to our study). It should be mentioned that many
extensions and modifications of the EVP were given as pure mathematical results, without
significant motivations and applications.

The intention of this paper is different. Our new and far-going extension of the EVP
to set-valued mappings has been fully motivated by applications to capability theory of
wellbeing initiated by Sen in welfare economics [28] (Nobel Prize in Economics, 1998) and
then largely extended to other areas of behavioral sciences. We will describe major features
of the capability approach to behavioral science below; the total bibliography in this field is
enormous.

Our main motivation in this paper is to incorporate some dynamical issues into the static
capability theory by using the ideas of the variational rationality approach to behavioral sci-
ences suggested recently by Soubeyran [33, 34] and discussed in what follows. To proceed
effectively in this way, the development of new mathematical tools of variational analysis
is ultimately required. Namely, the nature of the variational rationality approach in connec-
tion with capability theory calls for such an extension of the EVP that can be applied to
set-valued mappings defined on quasimetric spaces with values in topological vector spaces
ordered by variable preferences. We derive the needed variational principle from a new
fixed point theorem for parametric dynamical systems in quasimetric spaces, which is a far-
reaching extension of the nonparametric Dancs-Hegedüs-Medvegyev (DHM) fixed point
theorem [13] in metric spaces. Furthermore, we show that the new fixed point result can be
equivalently interpreted as a minimal point theorem for nonempty subsets in product spaces
with a preference structure satisfying general requirements.

These mathematical results are of their own interest regardless of applications to capa-
bility theory, and so we present them first. Section 2 is devoted to the aforementioned fixed
point theorem and its minimal point interpretation, while in Section 3 we employ this theo-
rem and other techniques of variational analysis to derive a new counterpart of the EVP for
set-valued mappings.

Section 4 contains a brief summary of the main issues of the (static) capability theory and
our justification of dynamical aspects needed for further improvements. In Sections 5 and 6
we describe the variational rationality model of human behavior, which allows us to apply
the mathematical results obtained in Sections 2 and 3 to developing dynamical aspects of
capability theory. Section 7 discusses the major findings in this direction. The concluding
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Section 8 summarizes the main contributions of the paper and formulates some topics of the
future research.

2 Fixed Point Theorem for Parametric Dynamical Systems

This section is devoted to establishing a new parametric version of the celebrated Dancs-
Hegedüs-Medvegyev fixed point theorem for parametric dynamical systems in quasimetric
spaces and its equivalent to minimal point theorem for sets in the corresponding product
spaces. The results obtained seem to be new even in the classical nonparametric setting of
metric spaces.

For the reader’s convenience we first recall the definition of quasimetric spaces and some
of their standard properties; cf., in particular, the book [11] and the references therein.

Definition 2.1 (quasimetric spaces) A quasimetric space is a set X equipped with a
function q : X × X �−→ IR+ := [0,∞) having the following properties:

(i) (positivity) q(x, x′) ≥ 0 for all x, x′ ∈ X with q(x, x) = 0 for all x ∈ X;
(ii) (triangle inequality) q(x, x′′) ≤ q(x, x′) + q(x′, x′′) for all x, x′, x′′ ∈ X.

The function q in Definition 2.1 is known as quasimetric. If in addition it satisfies the
symmetry property q(x, x′) = q(x′, x) for all x, x′ ∈ X, then q is a metric. We denote
by (X, q) the space X with the quasimetric q. It is worth mentioning that our definition of
quasimetrics is a bit different from the conventional one, which imposes the requirement:
q(x, x′) = 0 if and only if x′ = x for all x, x′ ∈ X. Since q is not symmetric, we may have
two distinct points x, x′ with q(x, x′) = 0. Observe that quasimetrics make perfect sense
even in finite-dimensional (non-Euclidean) spaces.

A simple and interesting example of a quasimetric on IR is given by

q(x, y) := x − y if x ≥ y and q(x, y) := 1 otherwise. (2.1)

The topological space endowed with this quasimetric is known as the Sorgenfrey line.
Similarly to metric spaces, every quasimetric space (X, q) can be viewed as a topological

space on which the topology is introduced by taking the collection of balls {IBr(x) | r > 0}
as a base of the neighborhood filter for every x ∈ X, where the (left) ball IBr(x) is defined
by

IBr(x) := {
y ∈ X

∣∣ q(x, y) < r
}
.

According to this topology, the convergence xk → x∗ ∈ X means that lim
k→∞ q(xk, x∗) = 0.

Observe that the quasimetric q may not be continuous, as in the case of (2.1), but it always
lower semicontinuous (l.s.c.) due to the triangle inequality.

Definition 2.2 (left-sequential closedness and completeness) Let (X, q) be a quasimetric
space, and let � be a nonempty subset of X. Then:

(i) � is LEFT-SEQUENTIALLY CLOSED if x∗ ∈ � for any sequence xk → x∗ with
{xk} ⊂ �.

(ii) A sequence {xk} ⊂ X is LEFT-SEQUENTIAL CAUCHY if for each k ∈ IN there is Nk

with
q(xn, xm) < 1/k for all m ≥ n ≥ Nk.

(iii) (X, q) is LEFT-SEQUENTIALLY COMPLETE if each Cauchy sequence from (ii)
converges.
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In what follows we deal only with quasimetric spaces satisfying the Hausdorff property:
[

lim
k→∞ q(xk, x∗) = 0 and lim

k→∞ q(xk, x̃∗) = 0
] =⇒ x∗ = x̃∗. (2.2)

It is not hard to check that quasimetric (2.1) is Hausdorff in contrast, e.g., to

q(x, y) :=
{

x − y if x ≥ y,

ex−y otherwise.
(2.3)

Now we are ready to obtain the main result of this section. Given a set-valued mapping
� : X × Z →→ X × Z, we say that {(xk, zk)} is a generalized Picard sequence/iterative
process if

(x2, z2) ∈ �(x1, z1), (x3, z3) ∈ �(x2, z2), . . . , (xk, zk) ∈ �(xk−1, zk−1), . . . .

Theorem 2.3 (parametric fixed point theorem) Let (X, q) be a complete Hausdorff
quasimetric space, let Z be a set of parameters, and let ∅ = � ⊂ X × Z. Assume that the
parametric dynamical system � : X × Z →→ X × Z satisfies the following requirements:

(A1) (x, z) ∈ �(x, z) for all (x, z) ∈ �.
(A2) For all (x1, z1), (x2, z2) ∈ � such that (x2, z2) ∈ �(x1, z1) we have �(x2, z2) ⊂

�(x1, z1).
(A3) The LIMITING MONOTONICITY CONDITION: for each generalized Picard sequence

{(xk, zk)} from � with xk → x∗ as k → ∞ there is z∗ ∈ Z with (x∗, z∗) ∈ � such
that

(x∗, z∗)∈�(xk, zk) for all k ∈ IN and (x∗, z)∈� ∩ �(x∗, z∗)=⇒z=z∗. (2.4)

(A4) The CONVERGENCE CONDITION: for each generalized Picard sequence
{(xk, zk)} ⊂ � the quasidistances q(xk, xk+1) tend to zero as k → ∞.

Then for every (x0, z0) ∈ � there is a generalized Picard sequence {(xk, zk)} ⊂ � starting
at (x0, z0) and ending at a fixed point (x∗, z∗) of � in the sense of �(x∗, z∗) = {(x∗, z∗)}.

Proof Without loss of generality, assume that the quasimetric q : X×X → IR+ is bounded
on X; otherwise, we use the equivalent quasimetric q̃(x, u) := q(x,u)

1+q(x,u)
. Given ∅ = � ⊂ X

and x ∈ �, the radius of the smallest ball containing � and centered at x is r(x; �) :=
supu∈� q(x, u). Fix an arbitrary pair (xk, zk) ∈ � and denote �k := {x ∈ X | ∃ z ∈
Z, (x, z) ∈ �(xk, zk)} for all k ∈ IN ∪ {0}. We construct a generalized Picard sequence
defined as follows:

(xk, zk) ∈ �(xk−1, zk−1) with q(xk−1, xk) ≥ r
(
xk−1; �k−1

) − 1/2k−1. (2.5)

It is clear from (A1) that iterations (2.5) are well defined. Furthermore, by (A2) we have
�n ⊂ �m if m, n ∈ IN with n ≥ m ∈ IN . The convergence condition (A4) tells us that the
quasidistances q(xk, xk+1) tend to zero as k → ∞. Taking into account the inequality in
(2.5) ensures that r(xk;�k) ↓ 0 as k → ∞, which implies that for every ε > 0 there exists
Nε ∈ IN such that

r(xk;�k) < ε whenever k ≥ Nε.

Picking now any m ≥ n ≥ Nε , we have xm ∈ �m ⊂ �n and q(xn, xm) ≤ r(xn; �n) ≤ ε,
which verifies that the sequence {xk} ⊂ X is left-sequential Cauchy. The completeness of
X ensures the existence of x∗ ∈ X such that xk → x∗ as k → ∞. Applying then the
limiting monotonicity condition to the chosen sequence {(xk, zk)} gives us z∗ ∈ Z satisfying
(x∗, z∗) ∈ � and (2.4).
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Let us finally show that (x∗, z∗) is a fixed point of the dynamical system �. Arguing by
contradiction, suppose that there is some (x, z) ∈ �\{(x∗, z∗)} such that (x, z) ∈ �(x∗, z∗).
It follows from (2.4) and (A2) that (x, z) ∈ �(xk, zk) for all k ∈ IN and thus q(xk, x) → 0
due to r(xk; �k) ↓ 0 as k → ∞. Since X is Hausdorff and q(xk, x∗) → 0, we have x = x∗.
The assumption made reduces now to (x∗, z) ∈ �(x∗, z∗), which yields z = z∗ by (2.4).
The obtained contradiction verifies that �(x∗, z∗) = {(x∗, z∗)} and thus completes the proof
of the theorem.

Next we present a direct consequence of Theorem 2.3 for the case of nonparametric
dynamical systems, which extends even in this setting the DHM fixed point [13, Theo-
rem 3.1] in the following two directions: (1) we do not impose the symmetry property of
metrics (vs. quasimetrics), and (2) we do not require that all the sets �(x) for x ∈ X are
closed in X.

Corollary 2.4 (extension of the DHM fixed point theorem) Let (X, q) be a complete
Hausdorff quasimetric space, and let � : X →→ X be a dynamical system satisfying the
conditions:

(A1′) x ∈ �(x) for all x ∈ X.
(A2′) x2 ∈ �(x1) =⇒ �(x2) ⊂ �(x1) for all x1, x2 ∈ X.
(A3′) For each generalized Picard sequence {xk} ⊂ X convergent to x∗ it follows that

x∗ ∈ �(xk) for all k ∈ IN , which is automatic if �(x) is closed for all x ∈ X and
(A2′) holds.

(A4′) For each generalized Picard sequences {xk} ⊂ X we have that q(xk, xk+1) → 0 as
k → ∞.

Then for every starting point x0 ∈ X there is a convergent generalized Picard sequence
{xk} ⊂ X with the limit x∗ which is a fixed point of �, i.e., �(x∗) = {x∗}.

Proof Consider an arbitrary singleton Z = {z∗} and define the mapping �̃(x, z∗) :=
�(x) × {z∗} on X × Z. Applying Theorem 2.3 to �̃ verifies the statement of this corollary.

The next result gives us an equivalent form of Theorem 2.3 as a minimal point theorem
for a given subset of a product space ordered by some preference satisfying the imposed
requirements.

Theorem 2.5 (parametric minimal point theorem in product spaces) Let (X, q) be a
complete Hausdorff quasimetric space, let Z be a nonempty set of parameters, and let �

be a nonempty subset of the product space X × Z. Endow the set � with a reflexive and
transitive preference � satisfying the following two requirements:

(B1) The LIMITING MONOTONICITY CONDITION: for every {(xk, zk)} ⊂ � with
(xk, zk) � (xk−1, zk−1), k ∈ IN , the convergence xk → x∗ yields the existence of
z∗ ∈ Z such that (x∗, z∗) ∈ � and

(x∗, z∗) � (xk, zk) for all k ∈ IN and (x∗, z) � (x∗, z∗) =⇒ z = z∗.

(B2) The CONVERGENCE CONDITION: q(xk, xk+1) → 0 as k → ∞ for every sequence
{(xk, zk)} entirely belonging to the set � and decreasing with respect to �.
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Then � has a minimal point (x∗, z∗) with respect to the preference � in the sense that the
inclusion (x, z) ∈ � with (x, z) � (x∗, z∗) yields (x, z) = (x∗, z∗). Moreover, for every
(x0, z0) ∈ � there is a decreasing sequence {(xk, zk)} ⊂ � starting at (x0, z0) and ending
at a minimal point (x∗, z∗) of � with respect to �. Conversely, the above statement implies
the validity of Theorem 2.3.

Proof To derive the formulated minimal point result from Theorem 2.3, consider the level-
set mapping � : X × Z ⇒ X × Z defined by

�(x, z) := Lev ((x, z); �) = {
(u, v) ∈ �

∣∣ (u, v) � (x, z)
}

(2.6)

and show that it satisfies all the four condition (A1)–(A4) in Theorem 2.3. Since we
obviously have the equivalences (A3)⇐⇒(B1) and (A4)⇐⇒(B2), it remains to check the
validity of conditions (A1) and (A2) for the level-set mapping � from (2.6).

It can be easily seen that the inclusion (x, z) ∈ �(x, z) for (x, z) ∈ � in (A1) follows
from the reflexivity property of the preference �. To verify (A2), we need to show that
�(u, v) ⊂ �(x, z) when (u, v) ∈ �(x, z). Pick (t, w) ∈ �(u, v) arbitrarily and get by
(2.6) the relationships

[
(t, w) ∈ �(u, v) and (u, v) ∈ �(x, z)

] (2.6)⇐⇒ [
(t, w) � (u, v) and (u, v) � (x, z)

]

transitivity=⇒ (t, w) � (x, z)
(2.6)⇐⇒ (t, w) ∈ �(x, z),

where the implication holds due to the transitivity property of �. This verifies (A2).
Applying now Theorem 2.3 to the mapping � from (2.6), for every (x0, z0) ∈ � we find

a generalized Picard/decreasing sequence {(xk, zk)} ⊂ � starting at (x0, z0) and converging
to some pair (x∗, z∗) such that

�(x∗, z∗) = {
(x∗, z∗)

} := {
(u, z) ∈ �

∣∣ (u, v) � (x∗, z∗)
}
.

This clearly justifies the minimality of (x∗, z∗) for the set � with respect to the preference
�.

To complete the proof of the theorem, we need to verify the converse implication therein,
i.e., that the minimal point result ensures the validity of the fixed point assertion of Theo-
rem 2.3. Indeed, take � in the setting of Theorem 2.3 and define the reflexive and transitive
preference � on the set � ⊂ X × Z by

(u, v) � (x, z) :⇐⇒ (u, v) ∈ �(x, z).

Then proceeding as in the proof above allows us to verify assumption (B1) for this
preference and to deduce the fixed point result from the minimal point formulation.

3 Variational Principle for Mappings with Variable Orderings

In this section we derive a new variational principle for set-valued mappings defined on
quasimetric spaces and taking values in linear topological spaces endowed by variable
ordering structures. This result and its consequences presented below can be treated as far-
going extensions of the classical EVP to the general setting under consideration needed
for subsequent applications to capability theory of wellbeing, where both quasimetric and
variable preference issues are essential; see Sections 5–7 for more discussions. In fact, the
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results obtained in this section reduce to the set-valued versions of the EVP established
by Bao and Mordukhovich [4, 5] in the case of constant/invariable ordering structures for
mappings between metric spaces and vector spaces.

Note that vector optimization problems with variable ordering structures have already
been studied in the literature, especially during recent years, due to their theoretical inter-
est and many important applications to operations research, economics, engineering design,
behavioral sciences, etc.; see, e.g., [6–8, 15, 16, 32, 36, 37] and the references therein. It
seems that our previous papers [7, 8], motivated by applications to various models in behav-
ioral sciences and dealing with single-valued objectives, were the first attempts to extend the
EVP to problems with ordering structures defined on image spaces. A different approach to
vectorial variational principles for problems with variable structures acting on both domain
and image spaces was developed in the concurrent preprint by Soleimani and Tammer [32]
based on a nonlinear scalarization technique. On the other hand, there is a number of pub-
lications invoking quasimetric structures, either on domain spaces or as perturbations, into
variational principles of the Ekeland type, with no variable ordering structures involved;
see, e.g., [11, 24, 35] and the references therein. These results and approaches are essen-
tially different from ours obtained below. Observe also that, in contrast to [4, 5, 7, 8], we
derive here the new variational principle in the general framework by using the parametric
fixed point theorem from Section 3.

We begin with describing the set optimization setting considered in what follows. Let Z

be a (real) linear topological space with ∅ = � ⊂ Z, and let � ⊂ Z be a proper convex
ordering cone. We say that z∗ ∈ � is a minimal point of � with respect to �, written as
z∗ ∈ Min (�; �), if

� ∩ (z∗ − �) = {z∗}. (3.7)

To describe the class of variable preferences invoking in our main result, take vectors
z1, z2 ∈ Z, denote d := z1 − z2, and say that z2 is preferred by the decision maker to z1
with the domination factor d for z1. The set of all the domination factors for z1 together
with the zero vector 0 ∈ Z is denoted by K[z1]. Then the set-valued mapping K : Z →→ Z

is called a variable ordering structure. We define a binary/ordering relation induced by the
variable ordering structure K as

z2 ≤K[z1] z1 if and only if z2 ∈ z1 − K[z1] (3.8)

and say that z∗ ∈ � is Pareto efficient/minimal point to the set � in Z with respect to the
variable ordering structure K if there is no other vector z ∈ � \ {z∗} such that z ≤K[z∗] z∗,
i.e.,

(
z∗ − K[z∗]

) ∩ � = {z∗}.
It is worth observing that generally the binary/ordering relation ≤K[·] is nontransitive (see
(C3) in Theorem 3.1) and not even compatible with positive scalar multiplication.

Consider next a set-valued mapping F : X →→ Z between a quasimetric space (X, q)

and a linear topological vector space Z equipped with an ordering structure K : Z →→ Z.
Denote the domain and graph of F by, respectively,

dom F := {
x ∈ X

∣∣ F(x) = ∅}
and gph F := {

(x, z) ∈ X × Z
∣∣ z ∈ F(x)

}
.

We say that a pair (x∗, z∗) ∈ gph F is a (Pareto) minimizer of F with respect to the
ordering structure K if z∗ ∈ Min

(
F(X);K[z∗]

)
is a minimal point of the image set

F(X) := ⋃
x∈X F(x) with respect to K , i.e., F(X) ∩ (z∗ − K[z∗]) = {z∗}. Fix further a
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direction ξ ∈ Z \ {0} and a threshold/accuracy ε > 0. We say that a pair (x∗, z∗) ∈ gph F

is an εξ -approximate minimizer of F with respect to the ordering structure K if

F(X) ∩ (
z∗ − εξ − K[z∗]

) = ∅.

Now we are ready to derive the aforementioned main result of this section.

Theorem 3.1 (variational principle for set-valued mappings with variable ordering
structures) Let F : (X, q) →→ Z be a set-valued mapping between a quasimetric space
(X, q) to a linear topological space Z, let K : Z →→ Z be an ordering structure on Z, and
let �K := ∩z∈F(X)K[z] with F(X) := ⋃

x∈X F(x). Impose the following assumptions on
the initial data:

(C1) The quasimetric space (X, q) is (left-sequentially) complete and Hausdorff.
(C2) For every z ∈ F(X) the domination setK[z] is a proper, closed, and convex subcone

of Z.
(C3) The ordering structure K satisfies the monotonicity property: for any z, v ∈ F(X),

if v ≤K[z] z, then K[v] ⊂ K[z]; this condition implies the transitivity of the binary
relation ≤K [· ].

(C4) The mapping F is quasibounded from below with respect to a cone �, i.e. there is a
bounded subset M ⊂ Z such that F(X) ⊂ M + �.

(C5) The mapping F satisfies the limiting decreasing monotonicity condition on domF

with respect to K in the sense that for any sequence {(xk, zk)} ⊂ gphF such that
xk → x∗ ∈ X as k → ∞ and that {zk} is decreasing with respect to ≤K[· ]
(i.e. zk+1 ≤K[zk] zk for all k ∈ IN), it follows that there is a minimal point
z∗ ∈ Min

(
F(x∗);K[z∗]

)
for which z∗ ≤K[zk] zk as k ∈ IN .

Then given any γ > 0, (x0, z0) ∈ gphF , and ξ ∈ �K \ cl (−�−K[z0]), there exists a pair
(x∗, z∗) ∈ gphF with z∗ ∈ Min

(
F(x∗); K[z∗]

)
satisfying the relationships

z∗ + γ q(x0, x∗)ξ ≤K[z0] z0, (3.9)

z + γ q(x∗, x)ξ ≤K[z∗] z∗ for all (x, z) ∈ gphF \ {(x∗, z∗)}. (3.10)

If furthermore (x0, z0) is an εξ -approximate minimizer of F with respect to K , then x∗ can
be chosen so that in addition to (3.9) and (3.10) with γ = (ε/λ) we have

q(x0, x∗) ≤ λ. (3.11)

Proof Without loss of generality, assume that γ = 1. The general case can be eas-
ily reduced to it by rescaling the quasimetric on X as q̃(x, u) := γ q(x, u). Define
� : X × Z →→ X × Z by

�(x, z) := {
(u, v) ∈ X × Z

∣∣ v + q(x, u)ξ ≤K[z] z
}

(3.12)

and get due to the choice of ξ and the convexity of the cone K[z] that v ≤K[z] z, which
yields

K[v] ⊂ K[z] (3.13)

by the imposed condition (C3).
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Let us verify that the assumptions made in this theorem ensure that the mapping � from
(3.12) satisfies all the assumptions (A1)–(A4) of Theorem 2.3.

(A1) By (3.12) we always have (x, z) ∈ �(x, z) for all (x, z) ∈ gph F since z +
q(x, x)ξ = z ≤K[z] z.

(A2) For any (x, z), (u, v) ∈ gph F with (u, v) ∈ �(x, z) and for any (t, w) ∈ �(u, v)

we have

(u, v) ∈ �(x, z) and (t, w) ∈ �(u, v)

(3.12)⇐⇒ v + q(x, u)ξ ≤K[z] z and w + q(u, t)ξ ≤K[v] v

(3.8)⇐⇒ ∃ θz ∈ K[z], θv ∈ K[v] : v + q(x, u)ξ = z − θz and w+q(u, t)ξ =v−θv

=⇒ ∃ θ := θz+θv+(
q(x, u)+q(u, t)−q(x, t)

)
ξ ∈ K[z] : w + q(x, t)ξ = z−θ

(3.8)⇐⇒ w + q(x, t)ξ ≤K[z] z
(3.12)⇐⇒ (t, w) ∈ �(x, z)

provided that θ := θz + θv + (q(x, u) + q(u, t) − q(x, t))ξ ∈ K[z]. The latter
condition holds due to the choice of ξ ∈ �K ⊂ K[z], the triangle inequality for the
quasimetric, the convexity of the cone K[z] (K[z]+K[z] = K[z]), and the inclusion
K[v] ⊂ K[z] in (3.13). Indeed, we have

θ := θz + θv + (q(x, u) + q(u, t) − q(x, t))ξ ∈ K[z] + K[z] + K[z] = K[z].
Due to the arbitrary choice of (t, w) ∈ �(u, v), it yields �(u, v) ⊂ �(x, z), which
justifies (A2).

(A3) To verify that � from (3.12) satisfies the limiting monotonicity condition on � :=
�(x0, z0), take any generalized Picard sequence {(xk, zk)} ⊂ � with xk → x∗ ∈ X

and

(xk, zk) ∈ �(xk−1, zk−1)
(3.12)⇐⇒ zk + q(xk−1, xk)ξ ≤ K[zk−1]zk−1

(3.13)=⇒ zk ≤K[zk−1] zk−1, k ∈ IN.

Then by (C5) we get x∗ ∈ dom F and z∗ ∈ Min
(
F(x∗);K[z∗]

)
with z∗ ≤K[zk] zk

for all k ∈ IN . Invoking now (A2) gives us �(xk+n, zk+n) ⊂ �(xk, zk) for all
k, n ∈ IN . This together with the choice of ξ ∈ �K ⊂ K[zk] and the triangle
inequality for q yields the following estimate:

z∗ + q(xk, z∗)ξ ∈ zk+n − K[zk+n] + q(xk, x∗)ξ

= zk+n + q(xk, xk+n)ξ − K[zk+n] + (q(xk, x∗) − q(xk, xk+n))ξ

⊂ zk − K[zk] − K[zk+n] + q(xk+n, x∗)ξ − �K

⊂ zk − K[zk] + q(xk+n, x∗)ξ.

Passing there to the limit as n → ∞ with taking into account the closedness of K[zk]
and the convergence q(xk+n, x∗) → 0 as n → ∞, we arrive at the equivalence

z∗+q(xk, z∗)ξ ∈zk−K[zk] (3.8)⇐⇒ z∗+q(xk, z∗)ξ ≤K[zk]zk
(3.12)⇐⇒ (x∗, z∗)∈�(xk, zk).
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Since k ∈ IN was chosen arbitrarily and since z∗ ∈ Min
(
F(x∗); K[z∗]

)
, it follows

that

(x∗, z) ∈ �(x∗, z∗)
(3.12)⇐⇒ z = z + q(x∗, x∗)ξ ≤K[z∗] z∗

(C5)=⇒ z = z∗,

which justifies the validity of assumption (A3) in Theorem 2.3.
(A4) To verify the convergence condition for (3.12), let � := �(x0, z0) and take a

generalized Picard sequence {(xk, zk)} ⊂ � meaning in this setting that

(xk, zk)∈�(xk−1, zk−1) ⇐⇒ zk+q(xk−1, xk)ξ ≤K[zk−1] zk−1, k∈IN. (3.14)

We need to show that q(xk, xk+1) → 0 as k → ∞. Observe by (3.13) that the
sequence {K[zk]} is nonexpansive, i.e., K[zk] ⊂ K[zk−1] for all k ∈ IN . It follows
from the convexity of K[z0] that

m∑

k=0

K[zk] = K[z0] for all m ∈ IN ∪ {0}.

Summing up the inequalities in (3.14) from k = 0 to m and letting tm :=∑m
k=0 q(xk, xk+1) yield

tmξ ∈ z0−zm+1−K[z0] ⊂ z0−M − � − K[z0] for all m ∈ IN ∪ {0}, (3.15)

where the set M ⊂ Z and the cone � are taken from the definition of quasibound-
edness assumed in (C4). Now we claim that

∞∑

k=0

q(xk, xk+1) < ∞. (3.16)

Arguing by contradiction, suppose that (3.16) does not hold, i.e., the increasing
sequence {tm} tends to ∞ as m → ∞. By using (3.15) and the boundedness of the
set M , find a bounded sequence {wm} ⊂ z0 − M satisfying

tmξ − wm ∈ −� − K[z0] ⇔ ξ − wm/tm ∈ −� − K[z0], m ∈ IN ∪ {0}.
This gives us by letting m → ∞ and taking into account the boundedness of {wm}
and the divergence of {tm} that ξ ∈ cl(−�−K[z0]), which contradicts the choice of
ξ ∈ �K \ cl(−� − K[z0]). Thus (3.16) holds and so q(xk, xk+1) → 0 as k → ∞.

Since all the assumptions of Theorem 2.3 are satisfied for the mapping � in (3.12) with
� = �(x0, z0), we now apply its conclusion and find (x∗, z∗) ∈ gph F such that (x∗, z∗) ∈
�(x0, z0) and �(x∗, z∗) = {(x∗, z∗)}. This clearly gives us (3.9) and (3.10). To complete
the proof of the theorem, it remains to obtain estimate (3.11) when (x0, z0) is chosen as
an εξ -approximate minimizer of F with γ = (ε/λ). Arguing by contradiction, suppose
that q(x0, x∗) > λ. Since (x∗, z∗) ∈ �(x0, z0), where the quasimetric in question is now
(ε/λ)q(·, ·) instead of q(·, ·) and since ξ ∈ �K ⊂ K[z0], we get the following estimate:

z∗ ∈ z0 − (ε/λ)q(x0, x∗)ξ − K[z0] ⊂ z0 − εξ − K[z0],
which clearly contradicts the choice of (x0, z0) as an εξ -approximate minimizer of F with
respect to the ordering structure K . Thus we arrive at (3.11) and complete the proof of the
theorem.
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Remark 3.2 (on closedness assumptions) If K is a constant ordering structure K[z] ≡ �

with some convex ordering cone � ⊂ Z and if (X, q) is a metric space, then Theorem 3.1
reduces to the set-valued version of the Ekeland variational principle established in [5, Theo-
rem 4.3], but with the following improvement: we do not assume now that F is level-closed,
i.e., all the level sets

Lev (z; F) := {
x ∈ X

∣∣ ∃ v ∈ F(x) with v ≤� z
}
, z ∈ Z,

are closed in X. This closedness means that for any sequence {(xk, zk)} ⊂ gph F the exis-
tence of z ∈ Z with zk ≤� z for all k ∈ IN , and xk → x∗ implies the existence of
z∗ ∈ F(x∗) with z∗ ≤� z. In our new version, even for constant ordering structure and met-
ric space settings, we need this property only for sequences {(xk, zk)} with the monotonicity
of {zk} in the sense that zk+1 ≤� zk for all k ∈ IN . It is called the level-decreasing-
closedness property. To illustrate the difference, consider the following simple example of
the extended-real-valued and lower semicontinuous (as in the original Ekeland principle)
function ϕ : IR → IR := IR ∪ {∞} defined by

ϕ(x) :=

⎧
⎪⎨

⎪⎩

∞ if x ≥ 1,

x if 0 < x < 1,

0 if x ≤ 0.

It is easy to check that ϕ is level-decreasingly-closed while not level-closed. Indeed, the
1-level set of ϕ is (−∞, 1) being an open subset of IR.

The next consequence of Theorem 3.1 provides a new quasimetric version of the classical
Ekeland principle for extended-real-valued functions, which incorporates also the closed-
ness improvement discussed in Remark 3.2. The later means that we do not require anymore
the lower semicontinuity of the function in question, which has always been imposed in the
literature.

Corollary 3.3 (quasimetric version of the classical Ekeland variational principle) Let
(X, q) be a (left-sequentially) complete Hausdorff quasimetric space, and let ϕ : X → IR

be a proper level-decreasingly-closed and bounded below function on X. Take any ε, λ > 0
and x0 ∈ domϕ satisfying ϕ(x0) ≤ infx∈X ϕ(x) + ε. Then there is x∗ ∈ domϕ such that

ϕ(x∗) + (ε/λ)q(x0, x∗) ≤ ϕ(x0)
(

=⇒ ϕ(x∗ ≤ ϕ(x0) and q(x0, x∗) ≤ λ
)
,

ϕ(x) + (ε/λ)q(x∗, x) > ϕ(x∗) for all x ∈ domϕ \ {x∗}.
Proof It follows directly from Theorem 3.1.

Finally in this section, we demonstrate that the Hausdorff property (2.2) of the quasimet-
ric space in question cannot be dropped in Theorem 3.1 and Corollary 3.3. To illustrate it,
consider the quasimetric space (IR, q) with q is defined in (2.3), which is not Hausdorff as
discussed above. Take ϕ(x) := e−x , x0 = 0, ξ = 1 and ε = λ = 1 in the framework of
Corollary 3.3. Since ϕ is decreasing, a candidate for x∗ must be positive, say x∗ = a > 0.
Then

ϕ(x) + q(x∗, x) = e−x + ea−x < e−a = ϕ(x∗)
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for any x sufficiently large (x > 2a + ln 2), which indicates that the minimization con-
clusion in Corollary 3.3 does not hold for x∗ = a. Since a was arbitrarily chosen as long
as ϕ(a) < ϕ(x0), this shows the failure of the EVP for l.s.c. functions on non-Hausdorff
spaces.

It is worth mentioning that the Hausdorff requirements was missed in the formulations
and proofs of quasimetric extensions of the EVP in [35] and some other publications.

4 Capability Approach and Dynamical Challenges

Here we discuss some principal issues of the famous capability approach to wellbe-
ing. This approach is usually contrasted with two other main theories: the traditional
income-based measures of welfare, and the subjective measures of wellbeing. The capa-
bility theory was first suggested by Amartya Sen in the 1980s as an approach to welfare
economics [28] and then was extended by Sen and his followers to a broader range of
behavior sciences developments; see, e.g., the books [20, 23, 25, 27, 29] and the refer-
ences therein. The core focus of the capability approach is on what individuals/agents are
able (capable of) to do or to be along their life, rather than on what bundle of commodi-
ties they can command with their income and how much utilities they derive from this
bundle. In this section we first briefly recall basic elements of the static capability the-
ory and then discuss challenging dynamical issues addressed and partly resolved in this
paper.

4.1 Basic Notions of Static Capability Theory of Wellbeing

Let us start with some fundamental concepts of Sen’s static capability approach.

Bundles of Commodities Agents have access to bundle of commodities/resources x ∈ X,
where X ⊂ X signifies the agent’s subset of resources.

Conversion Factors Every bundle of resources x is mapped into a vector of characteris-
tics c(x) ∈ C via a conversion function c(·). Characteristics are independent of the agent.
However, the capability approach left unspecified whether a certain good is a resource or a
conversion factor.

Utilization Functions Each agent has a personal utilization function f : c ∈ C �−→ b =
f (c/ϕ) ∈ B, which converts characteristics c into beings b = f (c/ϕ) ∈ B, or more gener-
ally into functionings (beings and doings); see below. The vector b represents the beings (or
functionings) that the agent has to manage in order to accomplish by using the commodities
he/she possesses and choosing an utilization function f from F. The vector of parameters
ϕ = (ϕi, ϕs, ϕe) represents individual (ϕi), social (ϕs) and environmental (ϕe) influences;
see [20].

Functionings In the general sense, functionings consist of beings and doings and are crucial
to adequately understand the capacity approach; capacity is conceptualized as a reflection of
the freedom to achieve valuable functionings; see [29]. Each functioning can be described
as a function x ∈ X �−→ b = f (c(x)/ϕ) that tells us what the individual has achieved (a
being b) given his/her choice of a utilization function f ∈ F.
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Capabilities The individual’s overall quality of life, or wellbeing, is determined not only by
what he/she has done (actions, i.e., doings) and has achieved (outcomes of his/her actions,
i.e., beings), but also by the individual’s capability set including all the other actions he/she
could have done and all the other beings that could have reached. Sen defined [28] the set
P(x) of functioning vectors feasible for the agent in the form

P(x) := {
b ∈ B | b = f

(
c(x)/ϕ

)
for some f ∈ F

}
.

If the agent has only access to a subset of commodity bundles X ⊂ X, his/her capability set
is

Q(ϕ) := {
b ∈ B | b = f

(
c(x)/ϕ

)
for some f ∈ F and some x ∈ X

}
.

This subset defines the effective “freedom” that the individual has, given his/her commands
over commodities and possibilities of converting the characteristics of goods into function-
ings. To summarize this brief discussion, we conclude that Sen’s formalization goes from
commodities via functionings to capability. Other static formalizations are given, e.g., in
[19, 27].

4.2 Dynamical Aspects of Capability Theory

Sen’s original model and subsequent developments offer a static view of capabilities and
consider characteristics and utilization functions as given exogenously, which is not the case
as recognized by Sen himself [28]. Several authors have considered that this static aspect is
the main limitation of Sen capability approach. In particular, Brandolini and D’Alessio [10]
wrote: “...the lack of a dynamic orientation makes the (Sen) approach ill-suited to deal with
scenarios of the following sort: a person’s capability set at time k might reject voluntary
choices of the person at time k −1. A student willingly commits to years of study in relative
poverty in order to later secure a better job. That student might initially have foregone a
bigger opportunity set (through work without study) to later have an even larger opportunity
set.” In this paper we develop a dynamical approach to capability theory, which modelizes
the co-evolution of functionings and preferences.

Course Pursuit between Functionings and Preferences Sen’s capability approach is driven
by the two main concepts: (i) functionings and capabilities, and (ii) adaptive prefer-
ences. These two basic ingredients have strong dynamical aspects. First of all, functionings
(beings and doings, i.e., human behaviors) can change or stay. They are determined endoge-
nously by agents. Given the current period, what is really important for the agent is
not only his/her current functionings, but mainly what the agent can be able to do or
to be in the future, i.e., his/her capabilities. Furthermore, it has been one of the start-
ing points of the capacity approach that preferences should adapt to favorable or adverse
circumstances.

It what follows we propose to take into account the two interrelated dynamical issues:
dynamics of functionings and capabilities, and dynamics of preferences. Let us proceed in
this way by offering a course pursue between functionings and variable preferences with
possible intermediate stays.

How Capabilities Evolve As in Sen’s model, x ∈ X represents a bundle of commodities
and c(x) signifies characteristics of this bundle. Let ω ∈ �(x) ⊂ � be a way of using these
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commodities (a way of functioning) let f (c(x), ·/ϕ) : ω ∈ �(x) �−→ z = f (c(x), ω/ϕ) ∈
Z be an utilization function (a functioning itself ), and let z = b = f (c(x), ω/φ) ∈ Z = B
be what the agent achieves (a vector of beings). As before, the vector ϕ = (ϕi, ϕs, ϕe)

represents the given influences: individual ϕi , social ϕs , and environmental ϕe. By F(x) :=
{z = f (c(x), ω/ϕ)| ω ∈ �(x)} ⊂ Z we denote the subset of beings relative to the given
bundle of commodities x ∈ X, i.e., the subset of beings that the commodity bundle x can
command. Given the agent’s resources, let X ⊂ X be the subset of commodity bundles that
the agent can access. Then the capability set is

Q := {
z ∈ Z

∣∣ z = f (c(x), ω/ϕ) for some ω ∈ �(x) and x ∈ X
} =

⋃

x∈X

F(x).

Note that the set-valued mapping F(·) : x ∈ X ⊂ X �−→ F(x) ⊂ Z = B defined above
signifies the subset of beings reachable from each x. This means that the inclusion z ∈ F(x)

is understood as the existence of a way of using ω ∈ �(x) such that z = f (c(x), ω/ϕ).
In this discrete dynamical setting, at each period k ∈ IN the agent can use a com-

modity bundle xk ∈ X to reach any being from zk+1 ∈ F(xk). This defines a dynamic
of the reachable beings as soon as we determine a dynamic of the commodity bundles
xk ∈ X.

How Preferences Adapt The problem of adaptive preferences is one of the tenets and major
starting points of the capability approach, and it is known therein as the “hopeless beggar”
or “adaptation problem.” Sen emphasized that agents adapt their preferences to what they
are able to get. For example, individuals who are denied decent conditions of living can con-
sider themselves to be happy or satisfied if they accept their situations. To the best of our
knowledge, the current developments in capability theory do not present adequate models
of preference adaptation. A major point of this paper is to offer a multidimensional mod-
elization of how preferences adapt based on dynamical issues presented in the developed
variational technique.

Wellbeing and Illbeing/Poverty Traps Considering the capability approach as a dynamical
process, where functionings and adaptive preferences interact along the whole transition
period, requires the description of endpoints of this dynamics. In real-life problems such
endpoints correspond to wellbeing or illbeing traps. The concept of traps can be found
almost everywhere in behavior sciences (cognitive, decision, affective, motivational, tech-
nological, social traps, etc.). In particular, in psychology a behavioral trap is “easy to enter
and difficult to exit” [1]. Another striking example comes from economics, where a poverty
trap is “any self-reinforcing mechanism, which causes poverty to persist” [3, p. 33]. The
end of the dynamical process is treated there as an equilibrium at a low-level of wellbeing.
Let us also mention the recent source [14] related to the hope model, with well documented
and strong empirical findings; see more details on this model in Section 7. A major issue
is to find a rigorous formalization of such traps and derive practical conclusions based on
mathematical results, which is done below.

Lack of Resources and Capabilities As Comim [12] wrote, “one of the most important
contributions of the capability approach is its emphasis on the processes that allow individ-
uals to expand their capability set (exercise their freedoms).” This process aspect could also
be seen in Sen’s distinction between culmination outcomes (i.e., outcomes that ignore the
processes of getting there) and comprehensive outcomes, i.e., outcomes that consider such
processes; see [29].
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Poverty Traps as Lack of Aspirations In an influential contribution, Appadurai [2] argued
that the poor may lack the capacity to aspire, and policies that strengthen this capacity could
help them to “ contest and alter the conditions of their poverty” (p. 59). Aspiration is a
desire or ambition to achieve something. As written in [2], the “capacity to aspire” involves
not only setting goals but also knowing how to reach them: the poor may lack the capacity
to aspire to contest and alter the conditions of their own poverty.

5 Variational Rationality: Prototype Model

In this section we summarize and discuss basic elements of the variational rationality (VR)
approach for the prototype model from [33, 34]. In Sections 6 and 7 we extend the VR
approach to a new adaptive dynamical model in capability theory, which is of our main
interest in this paper. To be able to do that, we split into two steps the presentation of the
VR model. This allows us to better correlate with the mathematical developments given in
Section 2 and 3. The first step is to consider dynamics of acceptable stays and changes.
The second step is to make more precise what is the concrete content of acceptable stays or
changes. The answer is: worthwhile stays and changes.

5.1 Variational Rationality: Succession of Acceptable Stays and Changes

Adaptive Processes of Acceptable Temporary Stays and Changes Agent’s behavior is
defined as a succession {x0, . . . , xk, . . .} ⊂ X of actions entwining possible stays xk ∈
X � xk+1 ∈ X, xk+1 = xk and possible changes xk ∈ X � xk+1 ∈ X, xk+1 = xk .
This behavior is said to be variationally rational if at each period k + 1 the agent chooses
to change or to stay depending on what he/she accepts to consider as an acceptable change
in contrast to a stay. Such acceptable changes balance satisfactions and sacrifices to change
rather than to stay. Agents accept to change if the satisfactions to change are high enough
with respect to the sacrifices. This VR approach generalizes and extends to dynamic set-
tings, and in several ways, the well-recognized Simon static satisficing theory of rational
choice [30] concerning behavior of bounded and procedural rational agents. It focuses the
attention not only on satisfactions (as in Simon’s case) but also on sacrifices. Then the
agent is supposed to be rational enough trying to implement at each period k + 1 a suc-
cession of acceptable (satisficing with not too much sacrifices) stays and changes xk+1 ∈
Wek,γk+1(xk), γk+1 ∈ ϒ as k ∈ IN, where ek ∈ E stands for the past experience. Details
follow.

Acceptable Transitions Given the degree of acceptability γk ∈ ϒ at step k ∈ IN (discussed
later), the agent performs his/her action xk . Using this at step k +1, the agent adapts his/her
behavior in the following way: chooses a new degree of acceptability γk+1 ∈ ϒ of the next
acceptable change xk+1 ∈ Wek,γk+1(xk), which may be the same as before. This degree of
acceptability satisfies some tolerable sacrifices and depends on how much acceptable the
agent considers that the action must be to accept to change rather than to stay. There are two
possible cases:

(i) A temporary acceptable stay is defined by xk � xk+1 = xk , which is the case when
Wek,γk+1(xk) = {xk}. In this case the agents chooses, in a rational variational way, to
stay at xk = xk+1. If furthermore at the subsequent steps k + 2, k + 3, . . . the agent
does not change the degree of acceptability, he/she chooses to stay there forever at
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least if his experience is of Markov type. This defines an “acceptable to stay” trap,
which is a permanent acceptable stay.

(ii) A temporary acceptable change is defined by xk � xk+1 = xk . In this the case
Wek,γk+1(xk) = {xk} and the agent can find xk+1 ∈ Wek,γk+1(xk) with xk+1 =
xk . Then the agent chooses to move from xk to xk+1 ∈ Wek,γk+1(xk), and so
on.

Endpoints as Variational Traps Given the final “acceptable to change” rate γ∗ > 0, and
a final experience e∗ ∈ E, we say that the endpoint x∗ ∈ X ends in an acceptable stay
and that the worthwhile change process xk+1 ∈ Wek,γk+1(xk) as k ∈ IN is a stationary
trap if We∗,γ∗(x∗) = {x∗}. Furthermore, we say that x∗ ∈ X is an aspiration point of the
acceptable stay and change process xk+1 ∈ Wek,γk+1(xk), k ∈ IN , if it can be reached by a
direct acceptable change x∗ ∈ Wek,γk+1(xk). An aspiration point x∗ is feasible if there are
enough resources to be able to reach the endpoint starting from the initial point x0. Finally,
a variational trap is both a stationary trap and an aspiration point of a worthwhile stay and
change dynamic.

Variational Rationality Objectives include the following major components. Starting with
any given initial point x0 ∈ X and depending on the satisfaction and sacrifice functions, we
want to find a path of acceptable changes so that:

(i) the steps go to zero and have finite length;

(ii) the corresponding iterations converge to a variational trap;

(iii) the convergence rate and stopping criteria are determined;

(iv) the efficiency or inefficiency of such acceptable to change processes are studied to
clarify whether the acceptable to change process ends at a critical point, a local
or global optimum, a local or global equilibrium, an epsilon-equilibrium, a Pareto
solution, etc.

5.2 Acceptable Changes as Worthwhile Changes

Dynamics of acceptable stays and change being defined as before, the VR approach consid-
ers worthwhile changes, xk+1 ∈ Wek,γk+1(xk) as specific instances of acceptable changes,
where satisfactions refer to motivations to change and sacrifices refer to resistances to
change rather than to stay. In this paper we limit the impact of experience e = ek ∈ E to the
last action ek = xk (the Markov case). Then a dynamic of worthwhile temporary stays and
changes simplifies in xk+1 ∈ Wγk+1(xk).

Motivation to Change M(x, x′) = U [A(x, x′)] is defined as the pleasure or utility U [A]
of the advantage to change A(x, x′) ∈ IR from x to x′. In the simplest case we define
the advantages to change as the difference A(x, x′) = g(x′) − g(x) between a payoff
to be improved (e.g., performance, revenue, profit) g(x′) ∈ IR when the agent performs
a new action x′ and the payoff g(x) ∈ IR when he/she repeats a past action x suppos-
ing that repetition gives the same payoff as before. On the other hand, the advantages to
change A(x, x′) = f (x) − f (x′) can also be the difference between a payoff f (x) to
be decreased (e.g., cost, unsatisfied need) when the agent repeats the same old action x

and the payoff f (x′) the agent gets when he/she performs a new action x′. The pleasure
function U [·] : A ∈ IR �−→ U [A] ∈ IR+ is strictly increasing with the initial condition
U [0] = 0.
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Resistance to Change R(x, x′) = D[I (x, x′)] is defined as the pain or disutility D[I ] of
the inconveniences to change I (x, x′) = C(x, x′) − C(x, x) ∈ IR+, which is the difference
between the costs to be able to change C(x, x′) ∈ IR+ from x to x′ and the costs C(x, x) ∈
IR+ to be able to stay at x. In the simplest case we suppose that C(x, x) = 0 for all x ∈ X

while the costs to be able to change are defined as the quasidistances C(x, x′) = q(x, x′) ∈
IR+ satisfying the conditions: (a) q(x, x′) ≥ 0, (b) q(x, x′) = 0 ⇐⇒ x′ = x, and (c)
q(x, x′′) ≤ q(x, x′)+q(x′, x′′) for all x, x′, x′′ ∈ X. The pain function D[·] : I ∈ IR+ �−→
D[I ] ∈ IR+ is strictly increasing with D[0] = 0.

Worthwhile Change and Stay Processes The VR approach defines as acceptable any change
or stay that is worthwhile or not worthwhile by the following algorithm. Consider step k+1,
and let x = xk be the preceding action. At this step the agent first take the acceptability
ratio γ ′ = γk+1 ∈ IR+. To choose further a new action x′ = xk+1, the agent calculates
the motivation to change M(x, x′) ∈ IR and the resistance to change R(x, x′) ∈ IR+ from
x to x′. Then the agent decides that it is worthwhile to move from x to x′ if his/her moti-
vation to change exceeds the resistance to change up to the acceptability ratio γk+1, i.e.,
if M(x, x′) ≥ γ ′R(x, x′). Thus the worthwhile to change and stay process satisfies the
alternative conditions

g(xk+1) − g(xk) ≥ γk+1q(xk, xk+1) or f (xk) − f (xk+1) ≥ γk+1q(xk, xk+1)

for each k ∈ IN . This yields the alternative representations for worthwhile to change or stay
sets

Wγ ′(x) = {
x′ ∈ X

∣∣ g(x′) − g(x) ≥ γ ′q(x, x′)
}

or Wγ ′(x)

= {
x′ ∈ X

∣∣ f (x) − f (x′) ≥ γ ′q(x, x′)
}
.

It is worth mentioning that the defined worthwhile transitions are path dependent in the
sense that when worthwhile to change sets are nested, the set of decisions the agent can take
today is limited by the decisions he/she has made in the past, even though past circumstances
may no longer be relevant. We refer the reader to [33, 34] for more details and discussions
in this direction.

Entering Ekeland’s Variational Principle To illustrate the connections with Ekeland’s vari-
ational principle, consider the simplest model with γk+1 = γ∗ = ε/λ > 0 for all k ∈ IN

and g(x0) ≥ g − ε, where g = sup {g(y), y ∈ X} < ∞. In this model we have that x∗ ∈ X

is:

(i) a stationary trap Wγ∗(x∗) = {x∗} if g(x′) − g(x∗) < γ∗q(x∗, x′) or f (x∗) − f (x′) <

γ∗q(x∗, x′) whenever x′ ∈ X with x′ = x∗;
(ii) an aspiration point if x∗ ∈ Wγ∗(xk), i.e., g(x∗) − g(xk+1) ≥ γ∗q(xk+1, x∗) or

f (xk+1) − f (x∗) ≥ γ∗q(xk+1, x∗) for all xk+1 = x∗, k ∈ IN ;
(iii) a feasible aspiration point if q(x0, x∗) ≤ λ, where λ represents the initial level of

resources.

Applying to this model of variational rationality, the classical Ekeland’s principle sup-
poses a constant rate of acceptability, and hence the corresponding stay and change dynamic
is not adaptive. It also supposes the boundedness from above and upper semicontinuity of
the maximizing payoff g(·) and a symmetric cost to be able to change function, which is the
distance function C(x, x′) = d(x, x′) = d(x′, x). As follows from the discussions above,
this is not sufficient to cover adaptive dynamical issues coming from realistic requirements
of capability theory.
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6 Variational Models in Dynamical Capability Theory

Among major requirements to mathematical modeling of adaptive dynamical processes in
capability theory from the viewpoint of extended variational rationality approach we list the
following:

(i) Multidimensional set-valued framework dealing with Pareto efficiency in the space of
beings.

(ii) Dynamics of the improving process, where motivation and resistance to change
matter.

(iii) Adaptive/variable preferences, which help balancing at each step between variable
weights to solve the tradeoff between different reachable beings.

Our presentation follows the logic of the VR approach, and it moves from the vague con-
cept of acceptable stay or change to the much more precise concept of worthwhile stay
or change. First we consider modeling the functionings/preferences dynamics in term of
acceptable stays and changes, which mainly relates to the fixed point theorem of Section 2.
Then our attention is paid to the functionings/preferences dynamics in term of worthwhile
stays and changes, which relates to the obtained variational principle for mappings with
variable preferences.

6.1 Wellbeing Adaptive Dynamics of Acceptable Stays and Changes

Given a subset � ⊂ X × Z of the commodity-being product space, we say that a well-
being pair (x, z) is feasible if (x, z) ∈ �. Note that � defines a functioning set-valued
mapping F : X →→ Z by z ∈ F(x) if and only if (x, z) ∈ �. Suppose now that the agent
follows a feasible wellbeing dynamics (xk+1, zk+1) ∈ �(xk, zk) from a current wellbeing
pair (xk, zk) ∈ � to the next one (xk+1, zk+1) ∈ �, where �(x, z) ⊂ �. This feasible well-
being dynamics allows the agent to stay if (xk, zk) ∈ �(xk, zk) for all k ∈ IN . It is nested
if the inclusion (xk+1, zk+1) ∈ �(xk, zk) yields �(xk+1, zk+1) ⊂ �(xk, zk) for all k ∈ IN .
Consider the following classes of preferences:

(i) Abstract preorders � on the wellbeing (commodity-being) product space X × Z,
which a reflexive and transitive preferences. Then we define a feasible and improving
dynamics of feasible wellbeing pairs (x, z) ∈ � by (xk+1, zk+1) ∈ �(xk, zk), k ∈ IN ,
where

�(x, z) := {
(u, v) ∈ X × Z

∣∣ (u, v) � (x, z)
}
.

(ii) variable preferences ≥K(z) on the space of beings Z, which show how to solve, in
an adaptive way, tradeoff problems between multidimensional components of beings
z ∈ Z. More precisely, associate with each vector of beings z from a topological
space Z a variable proper cone K(z) ⊂ Z, which is supposed to be closed and convex
while satisfying also the monotonicity property: v ∈ K(z) implies that K(v) ⊂ K(z).
Under some consistency assumptions, this defines a variable domination structure on
the space of beings.

We are interested in the following major issues:

(1) The convergence of such an improving wellbeing dynamic (xk+1, zk+1) ∈ �(xk, zk)

as k → ∞ to some wellbeing limiting position (x∗, z∗) ∈ �.
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(2) Effective conditions ensuring that the wellbeing limiting position (x∗, z∗) ∈ � is an
endpoint of this improving dynamic, i.e., �(x∗, z∗) = {(x∗, z∗)}.

(3) The efficiency of this endpoint in the sense that it is a Pareto optimal solution and it
can describe wellbeing/illbeing traps.

6.2 Towards Wellbeing Adaptive Dynamics of Worthwhile Stays and Changes

The usage of an abstract improving dynamic description to modelize how functionings and
capabilities can change or stay is too vague and does not seem to be of practical help for
offering a realistic theory of wellbeing. Indeed, what does it mean to “improve” wellbe-
ing and how to describe wellbeing or illbeing/poverty traps that happen in real world? In
Section 7 we justify, based on the obtained mathematical results, that the wellbeing dynam-
ics follows a succession of worthwhile temporary wellbeing stays and changes. These
variational rationality processes define worthwhile to change reference dependent prefer-
ences. To proceed in this way and having in mind the multiobjective and adaptive aspects of
the wellbeing concept, we have to consider variable preferences �r that take into account
variable weights on different criteria on the product space of actions and payoffs, where
r indicates the current reference point depending on the current experience of the agent
and a future satisficing level. Recall that in applications to capability theory, actions rep-
resent commodity bundles x ∈ X and payoffs refer to beings z ∈ Z. In Section 4 we
have already discussed various types of wellbeing and illbeing/poverty traps, which arise
in real-life models of behavioral sciences and which can be considered from dynamical
viewpoints of capability theory. Now we intend to modelize these traps as variational traps
in adaptive dynamical modeling of variational rationality. Furthermore, the challenge is to
constructively describe them as endpoints of the corresponding worthwhile stay and change
adaptive dynamical processes similarly to the prototype model of human behavior discussed
above.

6.3 Variational Rationality Challenges to Variational Principles

It follows from the previous discussions that proper versions of variational principles of the
Ekeland type can provide the key impacts to meet our goals in dynamical issues of capa-
bility theory via the adaptive approach of variational rationality. Indeed, even the classical
Ekeland principle and its proof can catch the dynamics in worthwhile change and stay pro-
cesses with endpoint variational traps. However, the classical Ekeland framework and its
known extensions are not sufficient to meet our purposed in adaptive dynamical models of
capability theory. The following three major mathematical challenges should be imposed
simultaneously to fits its requirements:

(i) the possibility of being applied to set-valued mappings;
(ii) quasimetric structures on the domain spaces of such mappings;
(iii) variable preference structures on the ordering image spaces.

As the reader can see, all these requirements are met in the mathematical framework
of Section 3; see [8] for detailled psychological aspects, and so now we are able to
apply the obtained results to capability theory of wellbeing. It is done in the next sec-
tion, where applications of these results, as well as the related fixed point/minimal point
results of Section 2, to capability theory are given via the variational rationality approach.
Furthermore, we also interpreted behavioral meanings of the assumptions made in the
theorems.
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7 Major Findings and Applications to Hope Model

Now we are in a position to consider applications of the developed variational approach and
results to dynamical issues of capability theory. We first reveal the behavioral sense of the
assumptions and conclusions of the main theorems of Section 2 and 3. It opens the gate of
their applications to a broad spectrum of adaptive dynamical problems of capability theory,
including those formulated and discussed in Section 4. We consider these results among
major findings of this paper.

Then we address in more detail the hope model mentioned in Section 4. After considering
empirical data, we present a variational description of the hope model and, based on the
developed VR approach and obtained mathematical results, show how capability traps can
be seen as the ends of a succession of worthwhile stays and changes.

7.1 Behavioral Sense and Applications of the Fixed Point Theorem

We start with Theorem 2.3, which is a new fixed point result for parametric dynamical
systems. This variational result plays a crucial role in our proof of the variational principle
in Theorem 3.1 and shares the major assumptions with the latter. Applying in the framework
of capability theory to feasible pairs (x, z) ∈ gph F ⊂ X × Z of commodities and beings,
it reflects an acceptable stay and change dynamic and justifies the existence of a fixed point
at the end as a variational trap resulting from convergent and acceptable stay and change
processes, where the agent accepts at each intermediate step to change while stops accepting
to change at the end of the process.

Let us first discuss the behavioral content of the major assumptions of this theorem,
which it mostly shares with the variational principle of Theorem 3.1, and then reveal
the behavioral meaning of the established conclusions for dynamical issues of capability
theory.

Costs to be Able to Change as Quasidistances They are given as C(x, x′) = q(x, x′)ξ ∈ Z

and represent for each individual his/her costs to be able to acquire the usage of the bundle
of commodities x′ ∈ X provided that this agent owns and is able to use ex ante the bundle
of commodities x ∈ X. It gives us C(x, x) = 0 for all x ∈ X, which corresponds to the
VR settings discussed in Sections 5 and 6. The costs to acquire new abilities (commodi-
ties in this case), starting from having old ones, significantly help to modelize inertia and
learning aspects within capability theory. They mainly concern durable goods that survive
to their first utilization. The costs to acquire of nondurable goods (ingredients, efforts, etc.)
are embedded in the utilization function. The triangular inequality for quasimetrics comes
from the definition of a change as a path of operations (e.g., acquisitions, conservations,
deletions), where each operation generates a cost. Then the costs to be able to change are
the sum of these costs. Their infimum defines a quasidistance (not the distance due to the
obvious lack of symmetry) and modelizes ability costs as costs to be able to change. It fully
justifies the quasimetric requirement on the spaces in questions in the mathematical results
of Sections 2 and 3.

Acceptable Stays or Changes In behavioral models not all changes are acceptable; some can
be rejected. Changes that are acceptable (i.e., are not rejected) are described in Theorem 2.3
as follows: the transition from the feasible means-end pair (x, z) ∈ gph F to the new feasible
means-end pair (x′, z′) ∈ gph F is acceptable if and only if we have (x′, z′) ∈ �(x, z) ⊂
X × Z, which is condition (A1) of Theorem 2.3.
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Dynamics is Path Dependent The improving processes are path dependent because they are
nested, which follows from condition (A2).

Aspiration Points Exist This corresponds to the limiting monotonicity condition (A3) real-
istic in general for models of behavioral sciences (see [7, 8] for more details); in particular,
for dynamical issues of capability theorem discussed in Section 4.

Agents Make Small Steps This is the convergent condition (A4), which reflects one of the
main realistic characteristics of bounded rational and muddling through processes; see [21,
30] and a short survey of these two famous approaches in [8].

Endpoints are Variational Traps This is the conclusion of Theorem 3.1 about the existence
of a fixed point of the acceptable stay and change dynamics.

Parametric Minimal Point Theorem This result, Theorem 2.5, provides an equivalent inter-
pretation of the acceptable stay and change dynamics in the product space X × Z and
justifies the existence of a variational trap (the end of the improving process) as a minimal
point/Pareto solution with respect to a certain reflexive and transitive preference. The latter
assumptions are satisfied in the dynamical models of capability theory discussed above.

7.2 Impacts of the Main Variational Principle

The major assumptions of Theorem 3.1, which are interrelated with (A1)–(A4) in Theo-
rem 2.3, as well as necessity of the quasimetric requirement have been discussed in the
previous subsection. Let us reveal now the remaining behavioral features specific for the
obtained variational principle for set-valued mappings with variable preferences.

Variational Principle as Dynamic Process Analyzing Theorem 3.1 and its proof shows that
the proof itself provides a dynamical algorithmic iterative process of making decisions
at each step on worthwhile change or stay adaptive dynamics and establishes verifiable
sufficient conditions for the existence of a variational trap, which can be interpreted as
the corresponding wellbeing or illbeing trap in dynamical problems of capability theory
including those those listed in Section 4.

Variable Ordering Structures The presence of adaptive preferences is at the core of Sen’s
capability approach. These variable preferences ≥K[z] are applied on the space of beings
z ∈ Z and are defined by variable cones K[z] ⊂ Z. The cones K[z] and their intersection
play a major role in reflecting a minimal coherence between the changing preferences in
behavioral science models and dynamical issues of capability theory discussed in Section 4.

Functionings are Described by Set-Valued Mappings Such a mapping is given by F : x ∈
X �−→ F(x) ⊂ Z in Theorem 3.1 and defines, for each commodity bundle x ∈ X, the
agent’s feasible functionings, which he or she possesses as

F(x) := {
z = f (x, ω)

∣∣ ω ∈ �(x)
}
.

Hypothesis (C4) on the quasiboundedness of F from below means actually that illbeings
are bounded from below. Hypothesis (C5) supposes the existence of weak aspiration points.
If F has the domination property, this tells us that the agent may hope for better.
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Justification of Worthwhile Changes Theorem 3.1 and its proof tells us that

A(z, z′) ≥K[z] γ I (x, x′)

in our notation, which provides the justification of worthwhile changes.

Variational Traps Conclusions (3.9)–(3.11) describe the achieved properties of variational
traps as endpoints of the convergent iterative process of worthwhile changes. Their behav-
ioral interpretations are similar to those given for the prototype VR model in Section 5 with
the major addition that now we deal with real-life adaptive models of capability theory (and
generally of behavioral sciences) by employing variable multidimensional preferences. This
vectorial aspect is very important, given the huge amounts of different needs and criteria to
define wellbeing.

Let us finally apply the VR approach and obtained results to the case of hope model,
which can be considered as a dynamical outgrowth of capacity theory; cf. Section 4.

7.3 Hope Model via Variational Rationality

Let us first describe the hope problem and some conclusions based in empirical findings.

Empirical Findings: Poverty Traps as Lack of Hope It has been widely accepted that hope
is characterized by expectations that desired goals will be attained. Snyder [31] went a
step further. He showed that hope comprises two beliefs occurring simultaneously: (1) the
individual is capable of executing the means to attain desired goals (agency thinking), and
(2) the individual is capable of generating those means (pathways thinking). Then hope is
defined as “the perceived capability to derive pathways to desired goals and to motivate
oneself via agency thinking to use those pathways.” In other words, hopeful people believe
that they are able to do something to obtain their goals. More recently, Duflot [14] has
argued that a strong lack of hope, and not just capitals, credits, skills, or food, could create
and sustain a poverty trap. Drawing on the results of a number of empirical studies, she
listed several reasons why the poor might neglect opportunities to improve their economic
conditions and discussed how hope can help breaking poverty traps.

Applications of the Variational Principle From the viewpoint of the VR approach, hope
can be defined in term of the existence of appropriate worthwhile changes. Indeed, the VR
approach leads us to the following formulation of the hope variational problem:

given (x, z)∈gph F andz′ ∈Z, find x′ ∈X with z′ ∈F(x′),z−z′ ≥K[z]γ q(x, x′)ξ, (7.17)

where hope corresponds to the being z′ ∈ Z, and where variable preferences ≥K[z] adapt to
the current being z ∈ Z. In this interpretation the condition z − z′ ≥K[z] γ q(x, x′)ξ tells
us that it is worthwhile to change from (x, z) ∈ gph F(x) to (x′, z′) ∈ gph F(x′). Observe
that in format (7.17) the notion of wellbeing is actually illbeing (poverty) and that the cone
“minimization” is applied to unsatisfied needs (i.e., payoffs to be decreased) described by
z = f (x, ω) and z′ = f (x′, ω′). This means that advantages to change expressed by
A(z, z′) = z − z′ are higher than some proportion γ > 0 of inconvenience to change
I (x, x′) = C(x, x′) − C(x, x) ≥K[z] 0, where the costs to be able to change are given by
C(x, x′) = q(x, x′)ξ and C(x, x) = 0 for all x ∈ X. In other words, the hope variational
problem (7.17) can be reformulates as: given z ∈ F(x) and z′ ∈ Z, find x′ ∈ X with

z′ ∈ F(x′) and A(z, z′) ≥K[z] γ I (x, x′).
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In this variational model the lack of hope results from the lack of motivation and/or too much
inertia and resistance to change. Applying our main variational principle of Theorem 3.1
with ξ = γ shows that this leads us to a poverty trap, which is described as z∗ ∈ F(x∗) and
turns out to be a particular instance of variational traps, where

z∗ − z′ <K(z∗) γ q(x∗, x′)ξ for all (x′, z′) ∈ gph F = (x∗, z∗) ∈ gph F

in the notation of Theorem 3.1 with their behavioral interpretation given in this section.

8 Concluding Remarks

This paper is one of the first attempts to apply variational principles and techniques of
variational analysis to adaptive dynamical models of behavioral sciences. We mainly con-
centrate here on dynamical aspects of capability theory by applying and developing the
VR approach to multiobjective and set-valued frameworks of Pareto efficiency arising in
capability theory of wellbeing. The major challenge for our consideration is provided by
multidimensional variable preferences, which motivate us to derive new variational princi-
ples and related mathematical results that are able to address these needs. In this way we
offer new insights into dynamical problems of capability theory of wellbeing by developing
it as a course pursuit between functionings and adaptive preferences.

Our future research directs to more detailed studies of various adaptive and dynami-
cal aspects of capability theory (including those discussed in Section 4) by using the VR
approach and adequate tools of variational analysis, which should be developed to meet new
requirements for applications. We also plan to investigate the possibility for applications
to capability theory of the recent variational principle derived in [32] for problems with
variable preferences, which is different from ours. Furthermore, our future goals include
applications of the developed variational principles and techniques to other adaptive models
of behavioral sciences.
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12. Comim, F.: Capability dynamics: the importance of time to capability assessments, Capability and Sus-

tainability Centre, St. Edmund’s College, University of Cambridge, UK. http://cfs.unipv.it/sen/papers/
Comim.pdf (2003)
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