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Abstract For a metric space (X, d) the classical Monge-Kantorovich metric dM gives a
distance between two probability measures on X which is tied to the underlying distance d

on X in an essential way. In this paper, we extend the Monge-Kantorovich metric to signed
measures and set-valued measures (multimeasures) and, in each case, prove completeness
of a suitable space of these measures. Using this extension as a framework, we construct
self-similar multimeasures by using an IFS-type Markov operator.

Keywords Monge-Kantorovich metric · Set-valued measures · Spaces of measures ·
Iterated function systems · Zonotope
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1 Introduction

There are many different metrics one can place on the set of probability measures which
yield the topology of weak convergence [23]. Such metrics have obvious applications to
convergence rates in probabilistic limit theorems and also to measuring “closeness” in
probabilistic approximations. The Monge-Kantorovich metric is a particularly nice exam-
ple of such a metric. This metric was introduced for compact metric spaces in [18,
19]. The Monge-Kantorovich metric results from the dual of Kantorovich’s reformulation
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of Monge’s problem of the transportation of mass. As such, the distance between two
probability distributions is linked to the underlying metric on the metric space.

For a metric space (X, d), let

Lip1(X) = {f : X → R | |f (x) − f (y)| ≤ d(x, y) ∀x, y ∈ X } .

The Monge-Kantorovich distance between two Borel probability measures μ, ν on X is
given as

dM(μ, ν) = sup

{∫
X

f (x) d(μ − ν)(x) : f ∈ Lip1(X)

}
. (1)

From this we see that dM is defined via a duality between measures and Lipschitz functions;
one of Kantorovich’s many great achievements was recognizing and proving this duality.
The “geometric” link between dM and d is most easily seen when μ and ν are point masses.
If X = [0, 1] and μ = δx and ν = δy (point masses at x and y respectively), then it is easy
to see that dM(μ, ν) = |x − y|. This explicit reliance of dM(μ, ν) on the underlying metric
d on X is one of the most useful features of the Monge-Kantorovich metric in applications
[27].

Our purpose is to construct a version of the Monge-Kantorovich metric on set-valued
measures (or multimeasures) and to prove completeness of an appropriately defined space
of multimeasures. In order to do this, we first need a version of the Monge-Kantorovich
metric on signed measures. We then prove completeness of a suitable subspace of signed
measures and multimeasures under the Monge-Kantorovich metric. As a simple application
of our results, we construct an Iterated Function System (IFS) operator on multimeasures.
This gives a construction of self-similar multimeasures whose values are nonempty compact
and convex subsets of Rm.

Multimeasures φ can be considered as a generalization of the classical notion of a signed
measure or a vector-valued measure μ by setting φ(E) = {μ(E)}. Vector-valued measures
in the IFS setting have been studied in [3, 10, 21]. Set-valued measures were first introduced
for the needs of mathematical economics. In [8, 20, 29] they were used to study equilibria in
exchange economies in which coalitions correspond to measurable sets and are the primary
economic units. Furthermore, the study of set-valued measures has been developed exten-
sively because of its applications in other fields such as optimization and optimal control
[13, 25, 26].

In Section 2 we give some background on multimeasures with compact and convex
values. Section 3 contains the major results of this paper, the construction of the Monge-
Kanntorovich metric on spaces of signed and set-valued measures and the proofs of the
completeness of these spaces. For simplicity of exposition we restrict our constructions
to compact metric spaces, though it is possible to extend this to locally compact Polish
spaces. Finally, in Section 4 we define the natural IFS operators on multimeasures, derive
contractivity conditions, and provide some examples.

2 Preliminary Definitions and Notations

Consider a nonempty set X and a σ -algebra B on X. A set-valued measure or multimeasure
on (X,B) is a function

φ : B → {K ⊂ R
m : K �= ∅},
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which for any finite or countable sequence of disjoint sets Ai ∈ B satisfies

φ

⎛
⎝⋃

i≥1

Ai

⎞
⎠ =

∑
i≥1

φ(Ai).

The right side is defined to be the infinite Minkowski sum given by

∑
i

Ki =
{∑

i

ki : ki ∈ Ki,
∑

i

|ki | < +∞
}

.

A finite vector-valued measure is a multimeasure after identifying vectors with singleton
sets, and in particular a real non-negative measure is a multimeasure iff all sets have finite
measure.

For A ⊂ R
m and q ∈ R

m the support function of the set A in the direction q is defined by

spt(q,A) = sup{q · x : x ∈ A}.
For a multimeasure φ let

φq(B) = sup{q · x : x ∈ φ(B)} = spt(q, φ(B)).

Then φq is a signed measure with values in (−∞,∞]. However, we will only consider
multimeasures for which φ(B) is bounded, so that, as we will see below, φq is a finite
real-valued measure.

A multimeasure φ is defined to be bounded if φ(X) is bounded. If E ∈ B then

φ(X) = φ(E) + φ(X \ E) ⊇ φ(E) + a

for any a ∈ φ(X\E), and so φ(X) contains a translate of φ(E). Thus φ is bounded iff φ(A)

is bounded for all A ∈ B. In particular, if φ is bounded, then φq is a finite signed measure
for any q

If 0 �= a ∈ φ(∅) then na ∈ φ(∅) for all natural numbers n and so φ(∅) is unbounded and
hence φ is unbounded. Thus φ(∅) = {0} if φ is bounded.

The range of φ is defined to be
⋃

A∈B φ(A). The range of φ is bounded iff φ is bounded.
To see this let e1, . . . , em be the standard basis for Rm. Let |φei | and |φ−ei | be the total

variation measures corresponding to φei and φ−ei (see below). Then for any E ∈ B and any
x ∈ φ(E),

|x| ≤
m∑

i=1

|x · ei | ≤
m∑

i=1

|φei |(E) + |φ−ei |(E)

≤
m∑

i=1

|φei |(X) + |φ−ei |(X).

Since we assumed that φ was bounded, we know that |φq |(X) is finite for all q and thus

range(φ) =
⋃
A∈B

φ(A) ⊆
{

x : ‖x‖ ≤
m∑

i=1

|φei |(X) + |φ−ei |(X)

}
.

An atom of the multimeasure φ is a set A ∈ B such that φ(A) �= {0} but for all B ∈ B
with B ⊂ A either φ(B) = {0} or φ(A \B) = {0}. Suppose φ is bounded and atomless (i.e.
has no atoms). Then φ(A) is convex for any A (this is a version of Lyapunov’s theorem for
vector-valued measures) and the range of φ is also convex, see [2, Theorems 4.2, 4.4].

Moreover, if φ is bounded and atomless, then φ(X) is compact iff φ(A) is compact for
all A ∈ B, see [2, Theorems 4.2, 4.4].
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If φ is a bounded multimeasure, then so are φ defined by φ(A) = φ(A), and φ∗ defined
by φ∗(A) = coφ(A), the convex hull of φ(A), see [2, Propositions 4.5, 4.6].

LetHc(R
m) denote the set of non-empty compact convex subsets of Rm.We will assume

that all multimeasures φ take values in Hc(R
m). By our comments above, assuming that φ

is nonatomic and φ(X) ∈ Hc(R
m) implies that φ(E) ∈ Hc(R

m) for any E. Thus it is not
much of a restriction to assume convex values for our multimeasures.

3 Monge-Kantorovich Metric

In this section we extend the classical Monge-Kantorovich metric to multimeasures and
generalize the metric in [21]. TheMonge-Kantorovich metric is frequently used for studying
IFSs, see the definitions and discussion in [5, 2. Preliminaries].

We begin with a discussion of the Monge-Kantorovich metric on signed measures
because we use this as a preliminary step in defining the Monge-Kantorovich metric on
multimeasures.

Assume, unless specified otherwise, that (X, d) is a compact metric space and B is the
collection of Borel subsets of X.We make this assumption for convenience only. Our exten-
sion is possible for X a locally compact Polish space, but the technical details are more
involved. In particular, it is necessary to assume a finite first-moment condition on the space
of measures in addition to the fixed mass and boundedness conditions we already assume
in Definition 3.1. Without such a condition there is no reason for the Monge-Kantorovich
metric, as defined below, to be finite (see [28, Chaptes 1, 7] for a general discussion).

Let M(X,R) be the Banach space of finite signed measures μ defined on B, together
with the total variation norm ‖ · ‖ defined below.

By the Hahn Jordan decomposition theorem, μ is a finite signed measure iff μ = μ+ −
μ− where μ+ and μ− are finite non-negative measures. The measures μ+ and μ− can be
taken as mutually singular, in which case they are uniquely determined by μ.

The variation measure of μ is |μ| = μ+ + μ−. The total variation of μ is defined
by ‖μ‖ := |μ|(X).

As usual, C(X) denotes the collection of all continuous functions f : X → R. By the
Riesz representation theorem, (M(X,R), ‖ · ‖) is the dual space of C(X) endowed with the
supremum norm ‖f ‖∞ = sup{|f (x)| : x ∈ X}.

Definition 3.1 Suppose q ∈ R and k ≥ |q|. Let

Mq,k(X,R) = {μ ∈ M(X,R) : μ(X) = q, ‖μ‖ ≤ k.} .

The metric dM onMq,k(X,R) is defined by

dM(μ, ν) = sup

{∫
X

f d(μ − ν) : f ∈ Lip1(X)

}
.

Notice that Mq,k(X,R) is weak* compact as a subset of M(X,R). To see this, we
first note that bounded, norm-closed balls in M(X,R) are weak* compact by the Banach-
Alaoglu theorem. Then sinceMq,k(X,R) is norm-bounded and weak* closed, it is a weak*
closed subset of a weak* compact set and thus is itself weak* compact. As a consequence,
the weak* topology on Mq,k(X,R) is metrizable and it turns out that our version of the
Monge-Kantorovich metric yields this topology (see Proposition 3.4).
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The requirement μ(X) = q is a balancing condition which is necessary for dM to be
finite. The fact dM is complete is shown in Theorem 3.3. The uniform mass bound is
necessary for completeness as the following example shows.

Example 3.2. Take X = [−1, 1], q = 0, and temporarily drop the second condition in
Definition 3.1.

Let μn = nδn−3 − nδ−n−3 . Then

μn(X) = 0, dM(μn, 0) = 2n−2, ‖μn‖ = 2n → ∞ as n → ∞.

Let νn = ∑n
i=1 μi . For j > n we have

dM(νj , νn) = dM

⎛
⎝ j∑

i=n+1

μi, 0

⎞
⎠ ≤

j∑
i=n+1

dM(μi, 0) ≤ 2
∑

i≥n+1

i−2 → 0 as n → ∞.

Thus the sequence (νn)n≥1 is a Cauchy sequence in the dM metric.
However, νn cannot converge in the dM metric to a (finite) signed measure ν since

νn(0, 1) = −νn(−1, 0) = 1 + 2 + · · · + n → ∞.

More precisely, by looking at the supports of the νn one sees ν would have to agree on
[n−3, 1] with νn, which contradicts the fact ν has finite mass.

The following result is probably known, but we include a proof since we cannot find one
in the literature and we need this result for the sequel.

Theorem 3.3. (Mq,k(X,R), dM) is a complete metric space.

Proof First we show that dM(μ, ν) is finite. Take f ∈ Lip1(X) and let a ∈ X. Then∣∣∣∣
∫

f d(μ − ν)

∣∣∣∣ =
∣∣∣∣
∫

(f − f (a)) d(μ − ν)

∣∣∣∣ (since μ(X) = ν(X) = q)

≤
∫

|f − f (a)| d(|μ| + |ν|)
≤ 2k diam(X),

where diam(X) is the diameter of X. It is obvious that dM(μ, ν) = dM(ν, μ) and that
d(μ, ν) = 0 if μ = ν. The triangle inequality is equally clear since supA + B ≤ supA +
supB. Suppose that μ �= ν. SinceM(X,R) is the dual space to C(X), we know that C(X)

separates the points ofM(X,R) and thus there is a g ∈ C(X) with
∫

g dμ >
∫

g dν. Since
X is compact and metric, Lipschitz functions are dense in C(X) by the Stone-Weierstrass
Theorem. Thus there exists an f ∈ Lip1(X) with

∫
f dμ >

∫
f dν and so dM(μ, ν) > 0.

The only thing left to prove is completeness.
Suppose (μn)n≥1 is a dM Cauchy sequence from Mq,k(X,R). By weak* compactness

ofMq,k(X,R) there is a subsequence (μnk
)k≥1 and a μ ∈ Mq,k(X,R) such that∫

f dμnk
→

∫
f dμ for all f ∈ C(X).

Suppose ε > 0. Since (μn) is dM Cauchy, for all n, nk ≥ N(ε) we have that∣∣∣∣
∫
X

f dμnk
−

∫
X

f dμn

∣∣∣∣ < ε,
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uniformly over f ∈ Lip1(X). Taking the limit as k → ∞, we get∣∣∣∣
∫
X

f dμ −
∫
X

f dμn

∣∣∣∣ ≤ ε,

independent of f ∈ Lip1(X). Thus dM(μ,μn) → 0.

The classical Monge-Kantorovich metric on probability measures gives the weak* topol-
ogy. It is not surprising that our extension also gives the weak* topology on Mq,k(X,R),
as we show in this next proposition. We do not use this result in the sequel, but include it
for completeness and interest.

Proposition 3.4. The Monge-Kantorovich metric dM on Mq,k(X,R) yields the weak*
topology.

Proof Since Lipschitz functions are dense in C(X), convergence in the dM metric on
Mq,k(X,R) implies weak* convergence. Thus any weak* closed set is also dM -closed and
so the topology induced by dM on Mq,k(X,R) is finer than the weak* topology. Next we
note thatMq,k(X,R) is compact and Hausdorff under the weak* topology and is Hausdorff
under the metric dM . We will show that Mq,k(X,R) is also compact under the metric dM .
Since any Hausdorff topology is maximal among compact topologies [30, 17C], this means
that the dM topology must coincide with the weak* topology onMq,k(X,R).

We show that Mq,k(X,R) is totally bounded under the dM metric, and thus since we
already know it is complete this means that it must be compact. Let ε > 0 be given and
α = ε/(2k+1). SinceX is compact, there are xi , for i = 1, 2, . . . , N , so thatX = ∪iBα(xi).
Let Ai be a partition of X with xi ∈ Ai ⊆ Bα(xi). Now, the set

P = {(p1, p2, . . . , pN) ∈ R
N :

∑
i

pi = q,
∑

i

|pi | ≤ k}

is compact and � : P → Mq,k(X,R) given by �(p1, p2, . . . , pN) = ∑
i piδxi

is
continuous in the dM metric. Thus, �(P ) ⊆ Mq,k(X,R) is also compact.

Take μ ∈ Mq,k(X,R) and define pi = μ(Ai) and ν = �(p1, p2, . . . , pN). Then

sup
f ∈Lip1(X)

∫
f d(μ − ν) = sup

f ∈Lip1(X)

∑
i

∫
Ai

f d(μ − ν)

≤
∑

i

sup
fi∈Lip1(Ai )

∫
Ai

fi d(μ Ai − piδxi
)

=
∑

i

dM(μ Ai, piδxi
)

≤
∑

i

|pi | diam(Ai) ≤ 2α
∑

i

|pi | ≤ 2kα.

This means that the (2kα)-dilation of �(P ) coversMq,k(X,R). Finally, since �(P ) is dM -
compact, we can find μ1, μ2, . . . , μ	 ∈ �(P ) for which ∪iBα(μi) = �(P ). But then the
μi form an ε-net forMq,k(X,R) since

Mq,k(X,R) ⊆ {μ ∈ Mq,k(X,R) : dM(μ,�(P )) < 2kα}
⊆ {μ ∈ Mq,k(X,R) : dM(μ,μi) < (2k + 1)α, for some μi}.

ThusMq,k(X,R) is totally bounded under the metric dM and so is compact.
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We now extend the Monge-Kantorovich metric to set-valued measures.

Definition 3.5 FixQ,K ∈ Hc(R
m)withQ ⊆ K . LetMQ,K(X,Rm) be the set of all Borel

multimeasures φ on X, with values inHc(R
m), and such that φ(X) = Q and φ(E) ⊆ K for

all E.

We note thatMQ,K(X,Rm) �= ∅ since the point mass Qδx is inMQ,K(X,Rm) for any
x ∈ X. Notice if 0 ∈ φ(X \ E), then

φ(E) = {0} + φ(E) ⊆ φ(X \ E) + φ(E) = φ(X).

Thus, under the condition that 0 ∈ φ(E) for all E, we can use K = Q. In general, the
assumption that φ(X) = Q is bounded implies that the range of φ is bounded and thus
contained in a compact set. This means that φ(X) = Q is enough to guarantee that there is
some K with φ(E) ⊆ K for all E.

Let S1 = {x ∈ R
m : ‖x‖ = 1} be the unit sphere in R

m. It is important to note that
φ ∈ MQ,K(X,Rm) and p ∈ S1 implies that φp ∈ Mq,k(X,R) where

q = spt(p,Q) and k ≥ | spt(p,K)| + | spt(−p,K)|.

Definition 3.6 We define the following function onMQ,K(X,Rm),

d̂M(φ1, φ2) = sup
p∈S1

dM(φ
p

1 , φ
p

2 ).

Lemma 3.7 Given two multimeasures φ1 and φ2 suppose that φ
p

1 (A) = φ
p

2 (A) for all
p ∈ S1 and A ∈ B. Then φ1(A) = φ2(A) for all A ∈ B.

Proof Suppose that there exists A∗ ∈ B such that φ1(A
∗) �= φ2(A

∗). Without any loss of
generality, suppose that there exists a point l ∈ φ1(A

∗) with l �∈ φ2(A
∗). Using a standard

separation argument in Rm, we get a vector p∗ ∈ S1 such that p∗l > p∗y for all y ∈ φ2(A
∗)

and so φ
p∗
1 (A∗) > φ

p∗
2 (A∗), which is a contradiction.

Theorem 3.8 (MQ,K(X,Rm), d̂M) is a metric space.

Proof Let φ1, φ2 ∈ MQ,K(X,Rm). We first observe that for all p ∈ S1 the signed
measures φ

p

1 and φ
p

2 have equal mass φ
p

1 (X) = φ
p

2 (X) = spt(p,Q).
Fix p ∈ S1 and a ∈ X. Then

∫
X

f (x)d(φ
p

1 − φ
p

2 )(x) =
∫
X

(f (x) − f (a))d(φ
p

1 − φ
p

2 )(x)

≤ diam(X)

∫
X

d(|φp

1 | + |φp

2 |)(x) = diam(X)(|φp

1 |(X) + |φp

2 |(X))

≤ 2 diam(X)(| spt(p,K)| + | spt(−p,K)|) ≤ 4 diam(X) sup
y∈K

‖y‖.

Thus d̂M(φ1, φ2) < ∞ (in fact, this shows that the diameter ofMQ,K(X,Rm) is bounded).
Suppose that d̂M(φ1, φ2) = 0 then this implies φ

p

1 (A) = φ
p

2 (A) for all p ∈ S1 and
A ∈ B and so, using the previous lemma, we get φ1 = φ2. The other properties can be
easily proved.



326 D. La Torre, F. Mendivil

The following lemma is taken from the discussion in section 8.E of [24], and especially
Theorem 8.24.

Lemma 3.9 If s(p) is a convex function from R
m to (−∞, +∞) which is positively

homogeneous, then it is the support function of a certain compact and convex set A, namely

A =
⋂

p∈Rm

{x : p · x ≤ s(p)}.

Note that since s(p) �= ∞ for all p ∈ R
m, the convexity implies the continuity of s(p).

Lemma 3.10 Let μp , p ∈ R
m, be a family of signed measures on the Borel subsets B

of X and suppose that the function p → μp(E) is convex, positively homogeneous and
|μp(E)| < ∞ for all E ∈ B. Define φ : B → Hc(R

m) by

φ(E) =
⋂
p∈S1

{x ∈ R
m : x · p ≤ μp(E)}

for all E ∈ B. Then φ is a multimeasure and φp = μp for all p ∈ S1.

Proof We give the idea of how to prove the additive property. For simplicity, we restrict
to the case of two disjoint sets A1, A2. First, we comment that by Lemma 3.9 and positive
homogeneity, we have μp(E) = spt(p, φ(E)) for all p and E ∈ B.

Since each μp is a signed measure, μp(A1 ∪ A2) = μp(A1) + μp(A2). For x ∈ φ(A1)

and y ∈ φ(A2), we see that

(x + y) · p = x · p + y · p ≤ μp(A1) + μp(A2) = μp(A1 ∪ A2)

for all p and thus x + y ∈ φ(A1 ∪ A2) so φ(A1) + φ(A2) ⊆ φ(A1 ∪ A2).
For the reverse inclusion, suppose that z ∈ φ(A1 ∪ A2) with z �∈ φ(A1) + φ(A2). Since

φ(A1) + φ(A2) is a compact and convex set, there is some p∗ so that

z · p∗ > (x + y) · p∗, for all x ∈ φ(A1), y ∈ φ(A2).

However, since φ(A1), φ(A2) are compact, there are x∗ ∈ φ(A1) and y∗ ∈ φ(A2) with
x∗ · p∗ = spt(p∗, φ(A1)) = μp∗(A1) and y∗ · p∗ = spt(p∗, φ(A2)) = μp∗(A2) so that

(x∗ + y∗) · p∗ < z · p∗ ≤ μp∗(A1 ∪ A2) = μp∗(A1) + μp∗(A2),

which is a contradiction.

Theorem 3.11 The metric space (MQ,K(X,Rm), d̂M) is complete.

Proof Let φn be a Cauchy sequence in MQ,K(X,Rm). For any fixed p we know that φ
p
n

is a dM -Cauchy sequence by the definition of d̂M . Additionally, φp
n (X) = spt(p, φn(X)) =

spt(p,Q) for any p. Thus φ
p
n → μp for some signed measure μp, by Theorem 3.3, with

convergence in dM uniformly over p ∈ S1. We also observe that μp(X) = spt(p,Q). Since

|φp
n (E)| = | spt(p, φn(E))| ≤ | spt(p,K)| ≤ sup

l∈K

‖l‖ := γ,

φ
p
n (E) is uniformly bounded in p and n.
We now show thatμp(E) (as p varies over S1) is a support function for any givenE ∈ B.

For this we show that (as a function of p ∈ R
m):

• p → μp(E) is convex, and
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• p → μp(E) is positively homogeneous.

For all n and E, the functions p → φ
p
n (E) (being support functions) are convex and pos-

itively homogeneous. From this we obtain that for all α ∈ R+, for p, p1, p2 ∈ R
m and

E ∈ B,
φ

αp
n (E) − αφ

p
n (E) = 0

and

φ
p1
n (E) + φ

p2
n (E) − φ

p1+p2
n (E) ≥ 0.

Taking the limit as n tends to infinity we get that p → μp(E) is subadditive and positively
homogeneous which implies that p → μp(E) is convex. Similarly |μp(E)| ≤ γ for all
E ∈ B and so p �→ μp(E) is continuous in p for any fixed E ∈ B, being convex and
bounded. Define φ by

φ(E) =
⋂
p∈S1

{x ∈ R
m : x · p ≤ μp(E)}.

To show that φ(X) = Q, we first note that

Q ⊆ φ(X) =
⋂
p∈S1

{x ∈ R
m : x · p ≤ μp(X)} =

⋂
p∈S1

{x ∈ R
m : x · p ≤ sup

l∈Q

l · p}.

For the reverse inclusion, if there exists x∗ ∈ φ(X) and x∗ �∈ Q then, using a standard
separation argument in R

m, we see there exists p∗ such that p∗ · x∗ > p∗ · l for all l ∈ Q.
Since Q is compact this implies that (by taking a maximum) p∗ · x∗ > supl∈Q p∗ · l, which
is a contradiction. Thus Q = φ(X). Showing that φ(E) ⊆ K is done in a similar manner.
Finally, φ is a multimeasure and spt(p, φ) = μp , that is φn → φ in the d̂M metric.

4 IFS Markov Operators

We now turn to the definition of an IFSMarkov operator onMQ,K(X,Rm). First we briefly
describe the construction for probability measures [15], as we follow the same pattern.

Let X be a complete metric space and let B be the corresponding Borel σ -algebra. Let
wi : X → X for i ∈ {1, 2, . . . , N} be be Lipschitz with the Lipschitz factor for wi being ci .
Let (pi)

N
i=1 be a collection of probabilities such that pi > 0 and

∑
i pi = 1. This determines

the IFS with probabilities (IFSP) wi, pi for i = 1 . . . N . The Markov operator M associated
to this IFSP is an operator on probability measures μ over (X,B) that is defined by

Mμ(B) =
∑

i

piμ
(
w−1

i (B)
)

(2)

for all B ∈ B. If μ is supported on B and the wi(B) are mutually disjoint then the result
of this operator is to assign probability pi to wi(B), that is, Mμ(wi(B)) = pi . A second
application of M assigns probability pipj to the set wi(wj (B)), a third application assigns
probability pipjpk to the set wi(wj (wk(B))), and so on. This recursively distributes a limit
probability measure over X which is supported on the fractal set defined by the wi’s. If∑

i pici < 1, then M is contractive in the Monge-Kantorovich metric and thus has a unique
fixed point, the invariant measure of the IFSP.

For our operator on multimeasures, we again take Lipschitz wi : X → X for i =
1, 2, . . . , N . We also take linear functions Ti : R

m → R
m with

∑
i TiQ = Q and∑

i∈S TiK ⊆ K for all S ⊆ {1, 2, . . . , N} (the choice K = λQ for λ ≥ 1 often works, but
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might be overly restrictive). We define the IFS operator

Mφ(B) =
∑

i

Ti

(
φ(w−1

i (B))
)

for all B ∈ B. A simple argument shows that Mφ ∈ MQ,K(X,Rm) whenever φ ∈
MQ,K(X,Rm) (to see this, it is useful to note that each Ti is continuous with respect to the
Hausdorff metric since Ti is linear, and thus Lipschitz). Further, since each Ti is linear and
φ takes convex values, if φ(E) ⊆ φ(X) = Q for all E, then Mφ(E) ⊆ Q for all E as well.

The condition
∑

i∈S TiK ⊆ K for all S ⊆ {1, 2, . . . , N} seems like it might be quite
strong. However, if 0 ∈ K and

∑N
i=1 TiK ⊆ K , then for any S ⊆ {1, 2, . . . , N}

∑
i∈S

TiK ⊆
N∑

i=1

TiK ⊆ K.

Theorem 4.1 For the IFS Markov operator defined above we have

d̂M(Mφ1, Mφ2) ≤
(∑

i

ci‖Ti‖
)

d̂M(φ1, φ2)

for all φ1, φ2 ∈ MQ,K(X,Rm).

Proof First we note that for linear T and convex A, we have

sup
p∈S1

spt(p, T A) = sup
x∈T A

sup
p∈S1

p · x = sup
y∈A

‖Ty‖
≤ ‖T ‖ sup

y∈A

‖y‖ = ‖T ‖ sup
p∈S1

sup
y∈A

p · y

= sup
p∈S1

‖T ‖ spt(p,A).

For a given Lipschitz f , we have

sup
p∈S1

∫
X

f (x) d
[
spt(p,Mφ1(x)) − spt(p,Mφ2(x))

]

= sup
p∈S1

∫
X

f (x) d

[
spt(p,

∑
i

Tiφ1(w
−1
i (x))), spt(p,

∑
i

Tiφ2(w
−1
i (x)))

]

= sup
p∈S1

∫
X

f (x)
∑

i

d
[
spt(T ∗

i p, φ1(w
−1
i (x))) − spt(T ∗

i p, φ2(w
−1
i (x)))

]

≤ sup
p∈S1

∫
X

{∑
i

‖Ti‖f (wi(y))

}
d

[
spt(p, φ1(y)) − spt(p, φ2(y))

]
.

The function f̃ = ∑
i ‖Ti‖f ◦ wi has Lipschitz factor at most

∑
i ci‖Ti‖. Taking the

supremum over all Lipschitz functions, we get that

d̂M(Mφ1,Mφ2) ≤
(∑

i

ci‖Ti‖
)

d̂M(φ1, φ2),

as was desired.

We say that the IFS operator M is average contractive if
∑

i ci‖Ti‖ < 1. Notice that this
is the natural generalization of the usual average contractive condition for a standard IFS
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with probability weights. The following theorem is an immediate corollary of Theorems
3.11 and 4.1.

Theorem 4.2 Suppose that M is an average contractive IFS operator on MQ,K(X,Rm).
Then there is a unique invariant “fractal” multimeasure φ ∈ MQ,K(X,Rm) for M .

Example 4.3 As a first example, we choose K = Q ⊂ R
m to be the closed unit ball and

X = [0, 1] with wi(x) = x/2 + i/2 for i = 0, 1. Further let p0 ∈ (0, 1) and p1 = 1 − p0
and define Ti = piI . Then the invariant multimeasure for the IFS Markov operator

Mφ(B) = T0φ(w−1
0 (B)) + T1φ(w−1

1 (B))

is the measure Qμ where μ is the probability measure which is the invariant distribution
for the standard IFS with maps {w0, w1} and probabilities {p0, p1}. In this case, the multi-
measure is rather simple, being the product of the scalar (probability) measure μ and the set
Q.

Example 4.4 Let X = [0, 1], w0(x) = x/3, w1(x) = x/3 + 2/3 (so c0 = c1 = 1/3) and

T0(x, y) =
(

α 0
0 1 − α

)(
x

y

)
, T1(x, y) =

(
1 − α 0
0 α

)(
x

y

)
,

with 1/2 < α < 1. Now, let K = Q = [−1, 1]2 ⊂ R
2. It is easy to see that T0(Q) +

T1(Q) = Q. In this case, the invariant multimeasure φ is supported on the classical Cantor
Set and the values are rectangles which are more “horizontal” to the left and more “vertical”
to the right.

Figure 1 illustrates both of these types of multimeasure attractors by showing a type of
“density” for each them. For the “circular” example we use p0 = 0.3 and p1 = 0.7 while
for the “rectangular” example we have α = 0.7.

The next example is a nice generalization of our second example and is really an entire
class of examples.

Example 4.5 A set Q ⊂ R
m is a zonotope if Q = l1 + l2 + · · · + lp where li ⊂ R

m are
(closed) line segments. Many natural convex sets are zonotopes or can be approximated by
zonotopes, see [6, 20]. By translating we can assume that li has its midpoint at the origin,
so that li ⊂ Q and Q = −Q. Let Q = l1 + l2 + · · · + lp ⊂ R

m be a zonotope as above,

Fig. 1 Circular and rectangular multimeasures



330 D. La Torre, F. Mendivil

and let Pi : R
m → R

m be the orthogonal projection onto the subspace spanned by li .
Further, let αi = |li |/diam(PiQ), and let Ti = αiPi . Note that αi < 1. Then li = TiQ so∑

i TiQ = Q. Let K = Q.
Take any IFS maps wj : X → X for j = 1, 2, . . . , N with contraction factors cj and

take βi,j ∈ [0, 1] with ∑
j βi,j = 1. Define Ti,j = βi,j Ti so that Ti = ∑

j Ti,j . Notice that
Q = ∑

i,j Ti,jQ. Finally, we define M onMQ,Q(X,Rm) by

Mφ(B) =
∑
i,j

Ti,j φ(w−1
j (B)).

By a simple calculation we see that M is average contractive if
∑

i ciαi < 1.
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